1
|
Ding X, Wu Y, Vainshtein A, Rodriguez V, Ricco E, Okoh JT, Liu Y, Kraushaar DC, Peles E, Rasband MN. Age-dependent regulation of axoglial interactions and behavior by oligodendrocyte AnkyrinG. Nat Commun 2024; 15:10865. [PMID: 39738113 DOI: 10.1038/s41467-024-55209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice. During development, AnkG is also expressed at comparable levels in oligodendrocytes and facilitates the efficient assembly of paranodal junctions. However, the physiological roles of glial AnkG in the mature nervous system, and its contributions to BD-like phenotypes, remain unexplored. Here, we show that oligodendroglia-specific AnkG conditional knockout results in destabilization of axoglial interactions in aged but not young adult mice. In addition, these mice exhibit significant histological, electrophysiological, and behavioral pathophysiologies. Unbiased translatomic profiling reveals potential compensatory machineries. These results highlight the functions of glial AnkG in maintaining proper axoglial interactions throughout aging and suggest a contribution of glial AnkG to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Victoria Rodriguez
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Emily Ricco
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James T Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yanhong Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel C Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Ding X, Wu Y, Rodriguez V, Ricco E, Okoh JT, Liu Y, Kraushaar DC, Rasband MN. Age-dependent regulation of axoglial interactions and behavior by oligodendrocyte AnkyrinG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587609. [PMID: 38617359 PMCID: PMC11014615 DOI: 10.1101/2024.04.01.587609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice. During development, AnkG is also expressed at comparable levels in oligodendrocytes and facilitates the efficient assembly of paranodal junctions. However, the physiological roles of glial AnkG in the mature nervous system, and its contributions to BD-like phenotypes, remain unexplored. Here, we generated oligodendroglia-specific AnkG conditional knockout mice and observed the destabilization of axoglial interactions in aged but not young adult mice. In addition, these mice exhibited profound histological, electrophysiological, and behavioral pathophysiologies. Unbiased translatomic profiling revealed potential compensatory machineries. These results highlight the critical functions of glial AnkG in maintaining proper axoglial interactions throughout aging and suggests a previously unrecognized contribution of oligodendroglial AnkG to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Victoria Rodriguez
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030
| | - Emily Ricco
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030
| | - James T. Okoh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Yanhong Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Daniel C. Kraushaar
- Genomic and RNA Profiling Core, Baylor College of Medicine, Houston, TX 77030
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
3
|
Cifuentes-Diaz C, Canali G, Garcia M, Druart M, Manett T, Savariradjane M, Guillaume C, Le Magueresse C, Goutebroze L. Differential impacts of Cntnap2 heterozygosity and Cntnap2 null homozygosity on axon and myelinated fiber development in mouse. Front Neurosci 2023; 17:1100121. [PMID: 36793543 PMCID: PMC9922869 DOI: 10.3389/fnins.2023.1100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, a large variety of alterations of the Contactin Associated Protein 2 (CNTNAP2) gene, encoding Caspr2, have been identified in several neuronal disorders, including neurodevelopmental disorders and peripheral neuropathies. Some of these alterations are homozygous but most are heterozygous, and one of the current challenges is to estimate to what extent they could affect the functions of Caspr2 and contribute to the development of these pathologies. Notably, it is not known whether the disruption of a single CNTNAP2 allele could be sufficient to perturb the functions of Caspr2. To get insights into this issue, we questioned whether Cntnap2 heterozygosity and Cntnap2 null homozygosity in mice could both impact, either similarly or differentially, some specific functions of Caspr2 during development and in adulthood. We focused on yet poorly explored functions of Caspr2 in axon development and myelination, and performed a morphological study from embryonic day E17.5 to adulthood of two major brain interhemispheric myelinated tracts, the anterior commissure (AC) and the corpus callosum (CC), comparing wild-type (WT), Cntnap2 -/- and Cntnap2 +/- mice. We also looked for myelinated fiber abnormalities in the sciatic nerves of mutant mice. Our work revealed that Caspr2 controls the morphology of the CC and AC throughout development, axon diameter at early developmental stages, cortical neuron intrinsic excitability at the onset of myelination, and axon diameter and myelin thickness at later developmental stages. Changes in axon diameter, myelin thickness and node of Ranvier morphology were also detected in the sciatic nerves of the mutant mice. Importantly, most of the parameters analyzed were affected in Cntnap2 +/- mice, either specifically, more severely, or oppositely as compared to Cntnap2 -/- mice. In addition, Cntnap2 +/- mice, but not Cntnap2 -/- mice, showed motor/coordination deficits in the grid-walking test. Thus, our observations show that both Cntnap2 heterozygosity and Cntnap2 null homozygosity impact axon and central and peripheral myelinated fiber development, but in a differential manner. This is a first step indicating that CNTNAP2 alterations could lead to a multiplicity of phenotypes in humans, and raising the need to evaluate the impact of Cntnap2 heterozygosity on the other neurodevelopmental functions of Caspr2.
Collapse
Affiliation(s)
- Carmen Cifuentes-Diaz
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Giorgia Canali
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Marta Garcia
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Mélanie Druart
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Taylor Manett
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Mythili Savariradjane
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Camille Guillaume
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Corentin Le Magueresse
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Laurence Goutebroze
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France,*Correspondence: Laurence Goutebroze,
| |
Collapse
|
4
|
Jordans S, Hardt R, Becker I, Winter D, Wang-Eckhardt L, Eckhardt M. Age-Dependent Increase in Schmidt-Lanterman Incisures and a Cadm4-Associated Membrane Skeletal Complex in Fatty Acid 2-hydroxylase Deficient Mice: a Mouse Model of Spastic Paraplegia SPG35. Mol Neurobiol 2022; 59:3969-3979. [PMID: 35445918 PMCID: PMC9167166 DOI: 10.1007/s12035-022-02832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
PNS and CNS myelin contain large amounts of galactocerebroside and sulfatide with 2-hydroxylated fatty acids. The underlying hydroxylation reaction is catalyzed by fatty acid 2-hydroxylase (FA2H). Deficiency in this enzyme causes a complicated hereditary spastic paraplegia, SPG35, which is associated with leukodystrophy. Mass spectrometry-based proteomics of purified myelin isolated from sciatic nerves of Fa2h-deficient (Fa2h−/−) mice revealed an increase in the concentration of the three proteins Cadm4, Mpp6 (Pals2), and protein band 4.1G (Epb41l2) in 17-month-old, but not in young (4 to 6-month-old), Fa2h−/− mice. These proteins are known to form a complex, together with the protein Lin7, in Schmidt-Lanterman incisures (SLIs). Accordingly, the number of SLIs was significantly increased in 17-month-old but not 4-month-old Fa2h−/− mice compared to age-matched wild-type mice. On the other hand, the relative increase in the SLI frequency was less pronounced than expected from Cadm4, Lin7, Mpp6 (Pals2), and band 4.1G (Epb41l2) protein levels. This suggests that the latter not only reflect the higher SLI frequency but that the concentration of the Cadm4 containing complex itself is increased in the SLIs or compact myelin of Fa2h−/− mice and may potentially play a role in the pathogenesis of the disease. The proteome data are available via ProteomeXchange with identifier PXD030244.
Collapse
Affiliation(s)
- Silvia Jordans
- Department for Pediatric Hematology and Oncology, Center for Pediatrics, University Hospital Bonn, Venusberg-Campus 1, 53117, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
5
|
Kalafatakis I, Savvaki M, Velona T, Karagogeos D. Implication of Contactins in Demyelinating Pathologies. Life (Basel) 2021; 11:life11010051. [PMID: 33451101 PMCID: PMC7828632 DOI: 10.3390/life11010051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.
Collapse
|
6
|
Kunisawa K, Hatanaka N, Shimizu T, Kobayashi K, Osanai Y, Mouri A, Shi Q, Bhat MA, Nambu A, Ikenaka K. Focal loss of the paranodal domain protein Neurofascin155 in the internal capsule impairs cortically induced muscle activity in vivo. Mol Brain 2020; 13:159. [PMID: 33228720 PMCID: PMC7685608 DOI: 10.1186/s13041-020-00698-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 11/12/2022] Open
Abstract
Paranodal axoglial junctions are essential for rapid nerve conduction and the organization of axonal domains in myelinated axons. Neurofascin155 (Nfasc155) is a glial cell adhesion molecule that is also required for the assembly of these domains. Previous studies have demonstrated that general ablation of Nfasc155 disorganizes these domains, reduces conduction velocity, and disrupts motor behaviors. Multiple sclerosis (MS), a typical disorder of demyelination in the central nervous system, is reported to have autoantibody to Nfasc. However, the impact of focal loss of Nfasc155, which may occur in MS patients, remains unclear. Here, we examined whether restricted focal loss of Nfasc155 affects the electrophysiological properties of the motor system in vivo. Adeno-associated virus type5 (AAV5) harboring EGFP-2A-Cre was injected into the glial-enriched internal capsule of floxed-Neurofascin (NfascFlox/Flox) mice to focally disrupt paranodal junctions in the cortico-fugal fibers from the motor cortex to the spinal cord. Electromyograms (EMGs) of the triceps brachii muscles in response to electrical stimulation of the motor cortex were successively examined in these awake mice. EMG analysis showed significant delay in the onset and peak latencies after AAV injection compared to control (Nfasc+/+) mice. Moreover, EMG half-widths were increased, and EMG amplitudes were gradually decreased by 13 weeks. Similar EMG changes have been reported in MS patients. These findings provide physiological evidence that motor outputs are obstructed by focal ablation of paranodal junctions in myelinated axons. Our findings may open a new path toward development of a novel biomarker for an early phase of human MS, as Nfasc155 detects microstructural changes in the paranodal junction.
Collapse
Affiliation(s)
- Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Nobuhiko Hatanaka
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kenta Kobayashi
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yasuyuki Osanai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Health Sciences, Toyoake, 470-1192, Japan
| | - Qian Shi
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, 78229-3900, USA
| | - Atsushi Nambu
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| |
Collapse
|
7
|
Lubetzki C, Sol-Foulon N, Desmazières A. Nodes of Ranvier during development and repair in the CNS. Nat Rev Neurol 2020; 16:426-439. [DOI: 10.1038/s41582-020-0375-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
|
8
|
Molecular organization and function of vertebrate septate-like junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183211. [PMID: 32032590 DOI: 10.1016/j.bbamem.2020.183211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
Septate-like junctions display characteristic ladder-like ultrastructure reminiscent of the invertebrate epithelial septate junctions and are present at the paranodes of myelinated axons. The paranodal junctions where the myelin loops attach to the axon at the borders of the node of Ranvier provide both a paracellular barrier to ion diffusion and a lateral fence along the axonal membrane. The septate-like junctions constrain the proper distribution of nodal Na+ channels and juxtaparanodal K+ channels, which are required for the safe propagation of the nerve influx and rapid saltatory conduction. The paranodal cell adhesion molecules have been identified as target antigens in peripheral demyelinating autoimmune diseases and the pathogenic mechanisms described. This review aims at presenting the recent knowledge on the molecular and structural organization of septate-like junctions, their formation and stabilization during development, and how they are involved in demyelinating diseases.
Collapse
|
9
|
Elazar N, Vainshtein A, Rechav K, Tsoory M, Eshed-Eisenbach Y, Peles E. Coordinated internodal and paranodal adhesion controls accurate myelination by oligodendrocytes. J Cell Biol 2019; 218:2887-2895. [PMID: 31451613 PMCID: PMC6719437 DOI: 10.1083/jcb.201906099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/09/2023] Open
Abstract
Elazar et al. show that reduced axoglial adhesion at both the paranodal junction and the internodes results in the formation of multimyelinated axons. Their findings demonstrate that accurate ensheathment by oligodendrocytes depends on the coordinated action of these different adhesion systems. Oligodendrocyte–axon contact is mediated by several cell adhesion molecules (CAMs) that are positioned at distinct sites along the myelin unit, yet their role during myelination remains unclear. Cadm4 and its axonal receptors, Cadm2 and Cadm3, as well as myelin-associated glycoprotein (MAG), are enriched at the internodes below the compact myelin, whereas NF155, which binds the axonal Caspr/contactin complex, is located at the paranodal junction that is formed between the axon and the terminal loops of the myelin sheath. Here we report that Cadm4-, MAG-, and Caspr-mediated adhesion cooperate during myelin membrane ensheathment. Genetic deletion of either Cadm4 and MAG or Cadm4 and Caspr resulted in the formation of multimyelinated axons due to overgrowth of the myelin away from the axon and the forming paranodal junction. Consequently, these mice displayed paranodal loops either above or underneath compact myelin. Our results demonstrate that accurate placement of the myelin sheath by oligodendrocytes requires the coordinated action of internodal and paranodal CAMs.
Collapse
Affiliation(s)
- Nimrod Elazar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res 2019; 97:897-913. [PMID: 30883896 PMCID: PMC6565461 DOI: 10.1002/jnr.24411] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
The unique polarization and high-energy demand of neurons necessitates specialized mechanisms to maintain energy homeostasis throughout the cell, particularly in the distal axon. Mitochondria play a key role in meeting axonal energy demand by generating adenosine triphosphate through oxidative phosphorylation. Recent evidence demonstrates how axonal mitochondrial trafficking and anchoring are coordinated to sense and respond to altered energy requirements. If and when these mechanisms are impacted in pathological conditions, such as injury and neurodegenerative disease, is an emerging research frontier. Recent evidence also suggests that axonal energy demand may be supplemented by local glial cells, including astrocytes and oligodendrocytes. In this review, we provide an updated discussion of how oxidative phosphorylation, aerobic glycolysis, and oligodendrocyte-derived metabolic support contribute to the maintenance of axonal energy homeostasis.
Collapse
Affiliation(s)
- Kelly Anne Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
11
|
Kim MJ, Petratos S. Oligodendroglial Lineage Cells in Thyroid Hormone-Deprived Conditions. Stem Cells Int 2019; 2019:5496891. [PMID: 31182964 PMCID: PMC6515029 DOI: 10.1155/2019/5496891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes are supporting glial cells that ensure the metabolism and homeostasis of neurons with specific synaptic axoglial interactions in the central nervous system. These require key myelinating glial trophic signals important for growth and metabolism. Thyroid hormone (TH) is one such trophic signal that regulates oligodendrocyte maturation, myelination, and oligodendroglial synaptic dynamics via either genomic or nongenomic pathways. The intracellular and extracellular transport of TH is facilitated by a specific transmembrane transporter known as the monocarboxylate transporter 8 (MCT8). Dysfunction of the MCT8 due to mutation, inhibition, or downregulation during brain development leads to inherited hypomyelination, which manifests as psychomotor retardation in the X-linked inherited Allan-Herndon-Dudley syndrome (AHDS). In particular, oligodendroglial-specific MCT8 deficiency may restrict the intracellular T3 availability, culminating in deficient metabolic communication between the oligodendrocytes and the neurons they ensheath, potentially promulgating neurodegenerative adult diseases such as multiple sclerosis (MS). Based on the therapeutic effects exhibited by TH in various preclinical studies, particularly related to its remyelinating potential, TH has now entered the initial stages of a clinical trial to test the therapeutic efficacy in relapsing-remitting MS patients (NCT02506751). However, TH analogs, such as DITPA or Triac, may well serve as future therapeutic options to rescue mature oligodendrocytes and/or promote oligodendrocyte precursor cell differentiation in an environment of MCT8 deficiency within the CNS. This review outlines the therapeutic strategies to overcome the differentiation blockade of oligodendrocyte precursors and maintain mature axoglial interactions in TH-deprived conditions.
Collapse
Affiliation(s)
- Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
12
|
Manso C, Querol L, Lleixà C, Poncelet M, Mekaouche M, Vallat JM, Illa I, Devaux JJ. Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo. J Clin Invest 2019; 129:2222-2236. [PMID: 30869655 DOI: 10.1172/jci124694] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurofascin-155 (Nfasc155) is an essential glial cell adhesion molecule expressed in paranodal septate-like junctions of peripheral and central myelinated axons. The genetic deletion of Nfasc155 results in the loss of septate-like junctions and in conduction slowing. In humans, IgG4 antibodies against Nfasc155 are implicated in the pathogenesis of chronic inflammatory demyelinating polyneuropathy (CIDP). These antibodies are associated with an aggressive onset, a refractoriness to intravenous immunoglobulin, and tremor of possible cerebellar origin. Here, we examined the pathogenic effects of patient-derived anti-Nfasc155 IgG4. These antibodies did not inhibit the ability of Nfasc155 to complex with its axonal partners contactin-1/CASPR1 or induce target internalization. Passive transfer experiments revealed that IgG4 antibodies target Nfasc155 on Schwann cell surface, and diminished Nfasc155 protein levels and prevented paranodal complex formation in neonatal animals. In adult animals, chronic intrathecal infusions of antibodies also induced the loss of Nfasc155 and of paranodal specialization and resulted in conduction alterations in motor nerves. These results indicate that anti-Nfasc155 IgG4 perturb conduction in absence of demyelination, validating the existence of paranodopathy. These results also shed light on the mechanisms regulating protein insertion at paranodes.
Collapse
Affiliation(s)
- Constance Manso
- Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France.,Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR5297, Bordeaux, France
| | - Luis Querol
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro para la Investigación en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro para la Investigación en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mallory Poncelet
- Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier University, Hopital Gui de Chauliac, Montpellier, France
| | - Mourad Mekaouche
- Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France.,Aix Marseille Université, CNRS, INP UMR7051, Marseille, France
| | - Jean-Michel Vallat
- National Reference Center for "rare peripheral neuropathies" and Department of Neurology, University Hospital, Limoges, France
| | - Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro para la Investigación en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jérôme J Devaux
- Aix Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France.,Institute for Neurosciences of Montpellier, INSERM U1051, Montpellier University, Hopital Gui de Chauliac, Montpellier, France
| |
Collapse
|
13
|
Andrews NP, Boeckman JX, Manning CF, Nguyen JT, Bechtold H, Dumitras C, Gong B, Nguyen K, van der List D, Murray KD, Engebrecht J, Trimmer JS. A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. eLife 2019; 8:43322. [PMID: 30667360 PMCID: PMC6377228 DOI: 10.7554/elife.43322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
Generating recombinant monoclonal antibodies (R-mAbs) from mAb-producing hybridomas offers numerous advantages that increase the effectiveness, reproducibility, and transparent reporting of research. We report here the generation of a novel resource in the form of a library of recombinant R-mAbs validated for neuroscience research. We cloned immunoglobulin G (IgG) variable domains from cryopreserved hybridoma cells and input them into an integrated pipeline for expression and validation of functional R-mAbs. To improve efficiency over standard protocols, we eliminated aberrant Sp2/0-Ag14 hybridoma-derived variable light transcripts using restriction enzyme treatment. Further, we engineered a plasmid backbone that allows for switching of the IgG subclasses without altering target binding specificity to generate R-mAbs useful in simultaneous multiplex labeling experiments not previously possible. The method was also employed to rescue IgG variable sequences and generate functional R-mAbs from a non-viable cryopreserved hybridoma. All R-mAb sequences and plasmids will be archived and disseminated from open source suppliers. The immune system fights off disease-causing microbes using antibodies: Y-shaped proteins that each bind to a specific foreign molecule. Indeed, these proteins bind so tightly and so specifically that they can pick out a single target in a complex mixture of different molecules. This property also makes them useful in research. For example, neurobiologists can use antibodies to mark target proteins in thin sections of brain tissue. This reveals their position inside brain cells, helping to link the structure of the brain to the roles the different parts of this structure perform. To use antibodies in this way, scientists need to be able to produce them in large quantities without losing their target specificity. The most common way to do this is with cells called hybridomas. A hybridoma is a hybrid of an antibody-producing immune cell and a cancer cell, and it has properties of both. From the immune cell, it inherits the genes to make a specific type of antibody. From the cancer cell, it inherits the ability to go on dividing forever. In theory, hybridomas should be immortal antibody factories, but they have some limitations. They are expensive to keep alive, hard to transport between labs, and their genes can be unstable. Problems can creep into their genetic code, halting their growth or changing the targets their antibodies recognize. When this happens, scientists can lose vital research tools. Instead of keeping the immune cells alive, an alternative approach is to make recombinant antibodies. Rather than store the whole cell, this approach just stores the parts of the genes that encode antibody target-specificity. Andrews et al. set out to convert a valuable toolbox of neuroscience antibodies into recombinant form. This involved copying the antibody genes from a large library of preserved hybridoma cells. However, many hybridomas also carry genes that produce non-functional antibodies. A step in the process removed these DNA sequences, ensuring that only working antibodies made it into the final library. Using frozen cells made it possible to recover antibody genes from hybridoma cells that could no longer grow. The recombinant DNA sequences provide a permanent record of useful antibodies. Not only does this prevent the loss of research tools, it is also much more shareable than living cells. Modifications to the DNA sequences in the library allow for the use of many antibodies at once. This could help when studying the interactions between different molecules in the brain. Toolkits like these could also make it easier to collaborate, and to reproduce data gathered by different researchers around the world.
Collapse
Affiliation(s)
- Nicolas P Andrews
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Justin X Boeckman
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Colleen F Manning
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Joe T Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Hannah Bechtold
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Camelia Dumitras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Belvin Gong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Kimberly Nguyen
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Deborah van der List
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States.,Department of Physiology and Membrane Biology, University of California, Davis, United States
| |
Collapse
|
14
|
Abstract
Vertebrate nervous systems rely on rapid nerve impulse transmission to support their complex functions. Fast conduction depends on ensheathment of nerve axons by myelin-forming glia and the clustering of high concentrations of voltage-gated sodium channels (Nav) in the axonal gaps between myelinated segments. These gaps are the nodes of Ranvier. Depolarization of the axonal membrane initiates the action potential responsible for impulse transmission, and the Nav help ensure that this is restricted to nodes. In the central nervous system, the formation of nodes and the clustering of Nav in nodal complexes is achieved when oligodendrocytes extend their processes and ultimately ensheath axons with myelin. However, the mechanistic relationship between myelination and the formation of nodal complexes is unclear. Here we review recent work in the central nervous system that shows that axons, by assembling distinct cytoskeletal interfaces, are not only active participants in oligodendrocyte process migration but are also significant contributors to the mechanisms by which myelination causes Nav clustering. We also discuss how the segregation of membrane protein complexes through their interaction with distinct cytoskeletal complexes may play a wider role in establishing surface domains in axons.
Collapse
Affiliation(s)
- Aniket Ghosh
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Diane L. Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Brivio V, Faivre-Sarrailh C, Peles E, Sherman DL, Brophy PJ. Assembly of CNS Nodes of Ranvier in Myelinated Nerves Is Promoted by the Axon Cytoskeleton. Curr Biol 2017; 27:1068-1073. [PMID: 28318976 PMCID: PMC5387178 DOI: 10.1016/j.cub.2017.01.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 12/17/2016] [Accepted: 01/12/2017] [Indexed: 11/02/2022]
Abstract
Nodes of Ranvier in the axons of myelinated neurons are exemplars of the specialized cell surface domains typical of polarized cells. They are rich in voltage-gated sodium channels (Nav) and thus underpin rapid nerve impulse conduction in the vertebrate nervous system [1]. Although nodal proteins cluster in response to myelination, how myelin-forming glia influence nodal assembly is poorly understood. An axoglial adhesion complex comprising glial Neurofascin155 and axonal Caspr/Contactin flanks mature nodes [2]. We have shown that assembly of this adhesion complex at the extremities of migrating oligodendroglial processes promotes process convergence along the axon during central nervous system (CNS) node assembly [3]. Here we show that anchorage of this axoglial complex to the axon cytoskeleton is essential for efficient CNS node formation. When anchorage is disrupted, both the adaptor Protein 4.1B and the cytoskeleton protein βII spectrin are mislocalized in the axon, and assembly of the node of Ranvier is significantly delayed. Nodal proteins and migrating oligodendroglial processes are no longer juxtaposed, and single detached nodal complexes replace the symmetrical heminodes found in both the CNS and peripheral nervous system (PNS) during development. We propose that axoglial adhesion complexes contribute to the formation of an interface between cytoskeletal elements enriched in Protein 4.1B and βII spectrin and those enriched in nodal ankyrinG and βIV spectrin. This clusters nascent nodal complexes at heminodes and promotes their timely coalescence to form the mature node of Ranvier. These data demonstrate a role for the axon cytoskeleton in the assembly of a critical neuronal domain, the node of Ranvier.
Collapse
Affiliation(s)
- Veronica Brivio
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Catherine Faivre-Sarrailh
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR 7286, CNRS, 13344 Marseille, France
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Diane L Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Peter J Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
16
|
Martin PM, Cifuentes-Diaz C, Devaux J, Garcia M, Bureau J, Thomasseau S, Klingler E, Girault JA, Goutebroze L. Schwannomin-interacting Protein 1 Isoform IQCJ-SCHIP1 Is a Multipartner Ankyrin- and Spectrin-binding Protein Involved in the Organization of Nodes of Ranvier. J Biol Chem 2016; 292:2441-2456. [PMID: 27979964 DOI: 10.1074/jbc.m116.758029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
The nodes of Ranvier are essential regions for action potential conduction in myelinated fibers. They are enriched in multimolecular complexes composed of voltage-gated Nav and Kv7 channels associated with cell adhesion molecules. Cytoskeletal proteins ankyrin-G (AnkG) and βIV-spectrin control the organization of these complexes and provide mechanical support to the plasma membrane. IQCJ-SCHIP1 is a cytoplasmic protein present in axon initial segments and nodes of Ranvier. It interacts with AnkG and is absent from nodes and axon initial segments of βIV-spectrin and AnkG mutant mice. Here, we show that IQCJ-SCHIP1 also interacts with βIV-spectrin and Kv7.2/3 channels and self-associates, suggesting a scaffolding role in organizing nodal proteins. IQCJ-SCHIP1 binding requires a βIV-spectrin-specific domain and Kv7 channel 1-5-10 calmodulin-binding motifs. We then investigate the role of IQCJ-SCHIP1 in vivo by studying peripheral myelinated fibers in Schip1 knock-out mutant mice. The major nodal proteins are normally enriched at nodes in these mice, indicating that IQCJ-SCHIP1 is not required for their nodal accumulation. However, morphometric and ultrastructural analyses show an altered shape of nodes similar to that observed in βIV-spectrin mutant mice, revealing that IQCJ-SCHIP1 contributes to nodal membrane-associated cytoskeleton organization, likely through its interactions with the AnkG/βIV-spectrin network. Our work reveals that IQCJ-SCHIP1 interacts with several major nodal proteins, and we suggest that it contributes to a higher organizational level of the AnkG/βIV-spectrin network critical for node integrity.
Collapse
Affiliation(s)
- Pierre-Marie Martin
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Carmen Cifuentes-Diaz
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jérôme Devaux
- the Aix Marseille University, CNRS, CRN2M, 13344 Marseille, France
| | - Marta Garcia
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jocelyne Bureau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Sylvie Thomasseau
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Esther Klingler
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Jean-Antoine Girault
- From INSERM, UMR-S 839, F-75005 Paris.,the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris.,the Institut du Fer à Moulin, 75005 Paris, and
| | - Laurence Goutebroze
- the Université Pierre et Marie Curie (UPMC)-Sorbonne Universités, UMR-S 839, 75005 Paris, .,the Institut du Fer à Moulin, 75005 Paris, and
| |
Collapse
|
17
|
Elbaz B, Traka M, Kunjamma RB, Dukala D, Brosius Lutz A, Anton ES, Barres BA, Soliven B, Popko B. Adenomatous polyposis coli regulates radial axonal sorting and myelination in the PNS. Development 2016; 143:2356-66. [PMID: 27226321 PMCID: PMC4958326 DOI: 10.1242/dev.135913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
The tumor suppressor protein adenomatous polyposis coli (APC) is multifunctional - it participates in the canonical Wnt/β-catenin signal transduction pathway as well as modulating cytoskeleton function. Although APC is expressed by Schwann cells, the role that it plays in these cells and in the myelination of the peripheral nervous system (PNS) is unknown. Therefore, we used the Cre-lox approach to generate a mouse model in which APC expression is specifically eliminated from Schwann cells. These mice display hindlimb weakness and impaired axonal conduction in sciatic nerves. Detailed morphological analyses revealed that APC loss delays radial axonal sorting and PNS myelination. Furthermore, APC loss delays Schwann cell differentiation in vivo, which correlates with persistent activation of the Wnt signaling pathway and results in perturbed extension of Schwann cell processes and disrupted lamellipodia formation. In addition, APC-deficient Schwann cells display a transient diminution of proliferative capacity. Our data indicate that APC is required by Schwann cells for their timely differentiation to mature, myelinating cells and plays a crucial role in radial axonal sorting and PNS myelination.
Collapse
Affiliation(s)
- Benayahu Elbaz
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Maria Traka
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Rejani B Kunjamma
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Danuta Dukala
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Amanda Brosius Lutz
- Stanford University School of Medicine, Department of Neurobiology, Fairchild Building Room D235, 299 Campus Drive, Stanford, CA 94305-5125, USA
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ben A Barres
- Stanford University School of Medicine, Department of Neurobiology, Fairchild Building Room D235, 299 Campus Drive, Stanford, CA 94305-5125, USA
| | - Betty Soliven
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | - Brian Popko
- Department of Neurology, Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Trotter J, Klein C, Krämer EM. GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist 2016. [DOI: 10.1177/107385840000600410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins in mammalian cells play a role in adhesion and signaling. They are sorted in the trans-Golgi network into glycosphingolipid- and cholesterol-rich microdomains termed rafts. Such rafts can be isolated from many cell types including epithelial cells, neural cells, and lymphocytes. In polarized cells, the rafts segregate in distinct regions of the cell. The rafts constitute platforms for signal transduction via raft-associated srcfamily tyrosine kinases. This review compares the sorting, distribution, and signaling of GPI-anchored proteins and rafts in epithelial cells, lymphocytes, and neural cells. A possible involvement of rafts in distinct diseases is also addressed.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany,
| | - Corinna Klein
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Krämer
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Manso C, Querol L, Mekaouche M, Illa I, Devaux JJ. Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. Brain 2016; 139:1700-12. [PMID: 27017186 DOI: 10.1093/brain/aww062] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
Paranodal axoglial junctions formed by the association of contactin-1, contactin-associated protein 1, and neurofascin-155, play important functions in nerve impulse propagation along myelinated axons. Autoantibodies to contactin-1 and neurofascin-155 define chronic inflammatory demyelinating polyradiculoneuropathy subsets of patients with specific clinical features. These autoantibodies are mostly of the IgG4 isotype, but their pathogenicity has not been proven. Here, we investigated the mechanisms how IgG subclasses to contactin-1 affect conduction. We show that purified anti-contactin-1 IgG1 and IgG4 bind to paranodes. To determine whether these isotypes can pass the paranodal barrier, we incubated isolated sciatic nerves with the purified antibody or performed intraneural injections. We found that IgG4 diffused into the paranodal regions in vitro or after intraneural injections. IgG4 infiltration was slow and progressive. In 24 h, IgG4 accessed the paranode borders near the nodal lumen, and completely fill the paranodal segments by 3 days. By contrast, control IgG, anti-contactin-1 IgG1, or even anti-contactin-associated-protein-2 IgG4 did not pass the paranodal barrier. To determine whether chronic exposure to these antibodies is pathogenic, we passively transferred anti-contactin-1 IgG1 and IgG4 into Lewis rats immunized with P2 peptide. IgG4 to contactin-1, but not IgG1, induced progressive clinical deteriorations combined with gait ataxia. No demyelination, axonal degeneration, or immune infiltration were observed. Instead, these animals presented a selective loss of the paranodal specialization in motor neurons characterized by the disappearance of the contactin-associated protein 1/contactin-1/neurofascin-155 complex at paranodes. Paranode destruction did not affect nodal specialization, but resulted in a moderate node lengthening. The sensory nerves and dorsal root ganglion were not affected in these animals. Electrophysiological examination further supported these results and revealed strong nerve activity loss affecting predominantly small diameter or slow conducting motor axons. These deficits partly matched with those found in patients: proximal motor involvement, gait ataxia, and a demyelinating neuropathy that showed early axonal features. The animal model thus seemed to replicate the early deteriorations in these patients and pointed out that paranodal loss in mature fibres results in conduction defects, but not conduction slowing. Our findings indicate that IgG4 directed against contactin-1 are pathogenic and are reliable biomarkers of a specific subset of chronic inflammatory demyelinating polyneuropathy patients. These antibodies appear to loosen the paranodal barrier, thereby favouring antibody progression and causing paranodal collapse.
Collapse
Affiliation(s)
- Constance Manso
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Luis Querol
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mourad Mekaouche
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jérôme J Devaux
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| |
Collapse
|
20
|
Freeman SA, Desmazières A, Fricker D, Lubetzki C, Sol-Foulon N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell Mol Life Sci 2016; 73:723-35. [PMID: 26514731 PMCID: PMC4735253 DOI: 10.1007/s00018-015-2081-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Sean A Freeman
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Anne Desmazières
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Desdemona Fricker
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Catherine Lubetzki
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Nathalie Sol-Foulon
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| |
Collapse
|
21
|
BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells. J Neurosci 2015; 35:7082-94. [PMID: 25948259 DOI: 10.1523/jneurosci.3778-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In myelinated axons, K(+) channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na(+) channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K(+) channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K(+) channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni(2+) elicited a similar effect on APs, indicating the involvement of Ni(2+)-sensitive Ca(2+) channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex.
Collapse
|
22
|
Kastriti ME, Sargiannidou I, Kleopa KA, Karagogeos D. Differential modulation of the juxtaparanodal complex in Multiple Sclerosis. Mol Cell Neurosci 2015; 67:93-103. [DOI: 10.1016/j.mcn.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
|
23
|
Huijbers MG, Querol LA, Niks EH, Plomp JJ, van der Maarel SM, Graus F, Dalmau J, Illa I, Verschuuren JJ. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur J Neurol 2015; 22:1151-61. [PMID: 26032110 DOI: 10.1111/ene.12758] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
At least 13 different disease entities affecting the central nervous system, peripheral nervous system and connective tissue of the skin or kidneys are associated with immunoglobulin G4 (IgG4) immune reactivity. IgG4 has always been considered a benign, non-inflammatory subclass of IgG, in contrast to the well-known complement-activating pro-inflammatory IgG1 subclass. A comprehensive review of these IgG4 autoimmune disorders reveals striking similarities in epitope binding and human leukocyte antigen (HLA) associations. Mechanical interference of extracellular ligand-receptor interactions by the associated IgG4 antibodies seems to be the common/converging disease mechanism in these disorders.
Collapse
Affiliation(s)
- M G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - L A Querol
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - E H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - S M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - F Graus
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - J Dalmau
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - I Illa
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - J J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Shi R, Page JC, Tully M. Molecular mechanisms of acrolein-mediated myelin destruction in CNS trauma and disease. Free Radic Res 2015; 49:888-95. [PMID: 25879847 DOI: 10.3109/10715762.2015.1021696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelin is a critical component of the nervous system facilitating efficient propagation of electrical signals and thus communication between the central and peripheral nervous systems and the organ systems that they innervate throughout the body. In instances of neurotrauma and neurodegenerative disease, injury to myelin is a prominent pathological feature responsible for conduction deficits, and leaves axons vulnerable to damage from noxious compounds. Although the pathological mechanisms underlying myelin loss have yet to be fully characterized, oxidative stress (OS) appears to play a prominent role. Specifically, acrolein, a neurotoxic aldehyde that is both a product and an instigator of OS, has been observed in studies to elicit demyelination through calcium-independent and -dependent mechanisms and also by affecting glutamate uptake and promoting excitotoxicity. Furthermore, pharmacological scavenging of acrolein has demonstrated a neuroprotective effect in animal disease models, by conserving myelin's structural integrity and alleviating functional deficits. This evidence indicates that acrolein may be a key culprit of myelin damage while acrolein scavenging could potentially be a promising therapeutic approach for patients suffering from nervous system trauma and disease.
Collapse
Affiliation(s)
- R Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University , West Lafayette, IN , USA
| | | | | |
Collapse
|
25
|
Neurofascin 140 is an embryonic neuronal neurofascin isoform that promotes the assembly of the node of Ranvier. J Neurosci 2015; 35:2246-54. [PMID: 25653379 DOI: 10.1523/jneurosci.3552-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rapid nerve conduction in myelinated nerves requires the clustering of voltage-gated sodium channels at nodes of Ranvier. The Neurofascin (Nfasc) gene has a unique role in node formation because it encodes glial and neuronal isoforms of neurofascin (Nfasc155 and Nfasc186, respectively) with key functions in assembling the nodal macromolecular complex. A third neurofascin, Nfasc140, has also been described; however, neither the cellular origin nor function of this isoform was known. Here we show that Nfasc140 is a neuronal protein strongly expressed during mouse embryonic development. Expression of Nfasc140 persists but declines during the initial stages of node formation, in contrast to Nfasc155 and Nfasc186, which increase. Nevertheless, Nfasc140, like Nfasc186, can cluster voltage-gated sodium channels (Nav) at the developing node of Ranvier and can restore electrophysiological function independently of Nfasc155 and Nfasc186. This suggests that Nfasc140 complements the function of Nfasc155 and Nfasc186 in initial stages of the assembly and stabilization of the nodal complex. Further, Nfasc140 is reexpressed in demyelinated white matter lesions of postmortem brain tissue from human subjects with multiple sclerosis. This expands the critical role of the Nfasc gene in the function of myelinated axons and reveals further redundancy in the mechanisms required for the formation of this crucial structure in the vertebrate nervous system.
Collapse
|
26
|
Dumas L, Heitz-Marchaland C, Fouquet S, Suter U, Livet J, Moreau-Fauvarque C, Chédotal A. Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow. Glia 2014; 63:699-717. [PMID: 25530205 DOI: 10.1002/glia.22779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/08/2014] [Indexed: 11/12/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system. Multiple markers are available to analyze the populations of oligodendroglial cells and their precursors during development and in pathological conditions. However, the behavior of oligodendrocytes remains poorly characterized in vivo, especially at the level of individual cells. Studying this aspect has been impaired so far by the lack of suitable methods for visualizing single oligodendrocytes, their processes, and their interactions during myelination. Here, we have used multicolor labeling technology to single-out simultaneously many individual oligodendrocytes in the postnatal mouse optic nerve. This method is based on Brainbow, a transgenic system for stochastic expression of multiple fluorescent protein genes through Cre-lox recombination, previously used for visualizing axons and neurons. We used tamoxifen-inducible recombination in myelinating cells of Brainbow transgenic mice to obtain multicolor labeling of oligodendrocytes. We show that the palette of colors expressed by labeled oligodendrocytes is tamoxifen dependent, with the highest doses producing the densest and most colorful labeling. At low doses of tamoxifen, the morphology of single or small clusters of fluorescent oligodendrocytes can be studied during postnatal development and in adult. Internodes are labeled to their extremities, revealing nodes of Ranvier. The new mouse model presented here opens new possibilities to explore the organization and development of the oligodendrocyte network with single-cell resolution.
Collapse
Affiliation(s)
- Laura Dumas
- INSERM, UMRS_U968, Institut de la Vision, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Tian C, Wang K, Ke W, Guo H, Shu Y. Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front Cell Neurosci 2014; 8:297. [PMID: 25294986 PMCID: PMC4172021 DOI: 10.3389/fncel.2014.00297] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/04/2014] [Indexed: 11/13/2022] Open
Abstract
Studies in rodents revealed that selective accumulation of Na+ channel subtypes at the axon initial segment (AIS) determines action potential (AP) initiation and backpropagation in cortical pyramidal cells (PCs); however, in human cortex, the molecular identity of Na+ channels distributed at PC axons, including the AIS and the nodes of Ranvier, remains unclear. We performed immunostaining experiments in human cortical tissues removed surgically to cure brain diseases. We found strong immunosignals of Na+ channels and two channel subtypes, NaV1.2 and NaV1.6, at the AIS of human cortical PCs. Although both channel subtypes were expressed along the entire AIS, the peak immunosignals of NaV1.2 and NaV1.6 were found at proximal and distal AIS regions, respectively. Surprisingly, in addition to the presence of NaV1.6 at the nodes of Ranvier, NaV1.2 was also found in a subpopulation of nodes in the adult human cortex, different from the absence of NaV1.2 in myelinated axons in rodents. NaV1.1 immunosignals were not detected at either the AIS or the nodes of Ranvier of PCs; however, they were expressed at interneuron axons with different distribution patterns. Further experiments revealed that parvalbumin-positive GABAergic axon cartridges selectively innervated distal AIS regions with relatively high immunosignals of NaV1.6 but not the proximal NaV1.2-enriched compartments, suggesting an important role of axo-axonic cells in regulating AP initiation in human PCs. Together, our results show that both NaV1.2 and NaV1.6 (but not NaV1.1) channel subtypes are expressed at the AIS and the nodes of Ranvier in adult human cortical PCs, suggesting that these channel subtypes control neuronal excitability and signal conduction in PC axons.
Collapse
Affiliation(s)
- Cuiping Tian
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences Shanghai, China
| | - Kaiyan Wang
- Department of Neurology, Huashan Hospital, Fudan University Shanghai, China
| | - Wei Ke
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| | - Hui Guo
- Department of Neurosurgery, Shanghai Quyang Hospital, Tongji University Shanghai, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, School of Brain and Cognitive Sciences, Beijing Normal University Beijing, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University Beijing, China
| |
Collapse
|
28
|
Abstract
Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. βIV Spectrin, ankyrin G, and, to a lesser extent, the β1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node.
Collapse
|
29
|
Myocilin is involved in NgR1/Lingo-1-mediated oligodendrocyte differentiation and myelination of the optic nerve. J Neurosci 2014; 34:5539-51. [PMID: 24741044 DOI: 10.1523/jneurosci.4731-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myocilin is a secreted glycoprotein that belongs to a family of olfactomedin domain-containing proteins. Although myocilin is detected in several ocular and nonocular tissues, the only reported human pathology related to mutations in the MYOCILIN gene is primary open-angle glaucoma. Functions of myocilin are poorly understood. Here we demonstrate that myocilin is a mediator of oligodendrocyte differentiation and is involved in the myelination of the optic nerve in mice. Myocilin is expressed and secreted by optic nerve astrocytes. Differentiation of optic nerve oligodendrocytes is delayed in Myocilin-null mice. Optic nerves of Myocilin-null mice contain reduced levels of several myelin-associated proteins including myelin basic protein, myelin proteolipid protein, and 2'3'-cyclic nucleotide 3'-phosphodiesterase compared with those of wild-type littermates. This leads to reduced myelin sheath thickness of optic nerve axons in Myocilin-null mice compared with wild-type littermates, and this difference is more pronounced at early postnatal stages compared with adult mice. Myocilin also affects differentiation of oligodendrocyte precursors in vitro. Its addition to primary cultures of differentiating oligodendrocyte precursors increases levels of tested markers of oligodendrocyte differentiation and stimulates elongation of oligodendrocyte processes. Myocilin stimulation of oligodendrocyte differentiation occurs through the NgR1/Lingo-1 receptor complex. Myocilin physically interacts with Lingo-1 and may be considered as a Lingo-1 ligand. Myocilin-induced elongation of oligodendrocyte processes may be mediated by activation of FYN and suppression of RhoA GTPase.
Collapse
|
30
|
Labasque M, Hivert B, Nogales-Gadea G, Querol L, Illa I, Faivre-Sarrailh C. Specific contactin N-glycans are implicated in neurofascin binding and autoimmune targeting in peripheral neuropathies. J Biol Chem 2014; 289:7907-18. [PMID: 24497634 DOI: 10.1074/jbc.m113.528489] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell adhesion molecules (CAMs) play a crucial role in the formation of the nodes of Ranvier and in the rapid propagation of the nerve impulses along myelinated axons. These CAMs are the targets of autoimmunity in inflammatory neuropathies. We recently showed that a subgroup of patients with aggressive chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) shows autoantibodies to contactin (1). The complex of contactin·Caspr·neurofascin-155 (NF155) enables the formation of paranodal junctions, suggesting that antibody attack against paranodes may participate in the severity of CIDP. In the present study, we mapped the molecular determinants of contactin targeted by the autoantibodies. In three patients, immunoreactivity was directed against the Ig domains of contactin and was dependent on N-glycans. The serum of one patient was selectively directed against contactin bearing mannose-rich N-glycans. Strikingly, the oligomannose type sugars of contactin are required for association with its glial partner NF155 (2). To investigate precisely the role of contactin N-glycans, we have mutated each of the nine consensus N-glycosylation sites independently. We found that the mutation of three sites (N467Q/N473Q/N494Q) in Ig domain 5 of contactin prevented soluble NF155-Fc binding. In contrast, these mutations did not abolish cis-association with Caspr. Next, we showed that the cluster of N-glycosylation sites (Asn-467, Asn-473, and Asn-494) was required for immunoreactivity in one patient. Using cell aggregation assays, we showed that the IgGs from the four CIDP patients prevented adhesive interaction between contactin·Caspr and NF155. Importantly, we showed that the anti-contactin autoantibodies induced alteration of paranodal junctions in myelinated neuronal culture. These results strongly suggest that antibodies to CAMs may be pathogenic and induce demyelination via functional blocking activity.
Collapse
Affiliation(s)
- Marilyne Labasque
- From Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille-UMR7286, 13344 Marseille, France
| | | | | | | | | | | |
Collapse
|
31
|
New insights into the roles of the contactin cell adhesion molecules in neural development. ADVANCES IN NEUROBIOLOGY 2014; 8:165-94. [PMID: 25300137 DOI: 10.1007/978-1-4614-8090-7_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vertebrates, the contactin (CNTN) family of neural cell recognition molecules includes six related cell adhesion molecules that play non-overlapping roles in the formation and maintenance of the nervous system. CNTN1 and CNTN2 are the prototypical members of the family and have been involved, through cis- and trans-interactions with distinct cell adhesion molecules, in neural cell migration, axon guidance, and the organization of myelin subdomains. In contrast, the roles of CNTN3-6 are less well characterized although the generation of null mice and the recent identification of a common extracellular binding partner have considerably advanced our grasp of their physiological roles in particular as they relate to the wiring of sensory tissues. In this review, we aim to present a summary of our current understanding of CNTN functions and give an overview of the challenges that lie ahead in understanding the roles these proteins play in nervous system development and maintenance.
Collapse
|
32
|
Abstract
This review, focused on demyelination in multiple sclerosis, is divided in two parts. The first part addresses the many and not exclusive mechanisms leading to demyelination in the central nervous system. Although the hypothesis that a primary oligodendrocyte or myelin injury induces a secondary immune response in the central nervous system is still a matter of debate, most recent advances underline the influence of a primary immune response against myelin antigen(s), with a diversity of potential targets. Whereas multiple sclerosis was long considered as a T cell-mediated disease, the role of B lymphocytes is now increasingly recognized, and the influence of antibodies on tissue damage actively investigated. The second part of the review describes the axonal consequences of demyelination. Segmental demyelination results in conduction block or slowing of conduction through adaptative responses, notably related to modifications in the distribution of voltage gated sodium channels along the denuded axon. If demyelination persists, these changes, as well as the loss of trophic and metabolic support, will lead to irreversible axonal damage and loss. In this respect, favouring early myelin repair, during a window of time when axonal damage is still reversible, might pave the way for neuroprotection.
Collapse
Affiliation(s)
- Catherine Lubetzki
- Correspondence to: Professeur Catherine Lubetzki, CRICM, UPMC/Inserm UMR_S975, GH Pitié-Salpêtrière, Bâtiment ICM, 47 Bld de l'Hôpital, 75651 Paris cedex 13, France. Tel: + 33-01-57-27-44-65
| | | |
Collapse
|
33
|
Faivre-Sarrailh C, Devaux JJ. Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases. Front Cell Neurosci 2013; 7:196. [PMID: 24194699 PMCID: PMC3810605 DOI: 10.3389/fncel.2013.00196] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Specific cell adhesion molecules (CAMs) are dedicated to the formation of axo-glial contacts at the nodes of Ranvier of myelinated axons. They play a central role in the organization and maintenance of the axonal domains: the node, paranode, and juxtaparanode. In particular, CAMs are essential for the accumulation of voltage-gated sodium channels at the nodal gap that ensures the rapid and saltatory propagation of the action potentials (APs). The mechanisms regulating node formation are distinct in the central and peripheral nervous systems, and recent studies have highlighted the relative contribution of paranodal junctions and nodal extracellular matrix. In addition, CAMs at the juxtaparanodal domains mediate the clustering of voltage-gated potassium channels which regulate the axonal excitability. In several human pathologies, the axo-glial contacts are altered leading to disruption of the nodes of Ranvier or mis-localization of the ion channels along the axons. Node alterations and the failure of APs to propagate correctly from nodes to nodes along the axons both contribute to the disabilities in demyelinating diseases. This article reviews the mechanisms regulating the association of the axo-glial complexes and the role of CAMs in inherited and acquired neurological diseases.
Collapse
|
34
|
Ma QH, Xiang T, Yang ZZ, Zhang X, Taylor J, Xiao ZC. Abnormal myelination in the spinal cord of PTPα-knockout mice. Cell Adh Migr 2013; 7:370-6. [PMID: 23934023 DOI: 10.4161/cam.25652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PTPα interacts with F3/contactin to form a membrane-spanning co-receptor complex to transduce extracellular signals to Fyn tyrosine kinase. As both F3 and Fyn regulate myelination, we investigated a role for PTPα in this process. Here, we report that both oligodendrocytes and neurons express PTPα that evenly distributes along myelinated axons of the spinal cord. The ablation of PTPα in vivo leads to early formation of transverse bands that are mainly constituted by F3 and Caspr along the axoglial interface. Notably, PTPα deficiency facilitates abnormal myelination and pronouncedly increases the number of non-landed oligodendrocyte loops at shortened paranodes in the spinal cord. Small axons, which are normally less myelinated, have thick myelin sheaths in the spinal cord of PTPα-null animals. Thus, PTPα may be involved in the formation of axoglial junctions and ensheathment in small axons during myelination of the spinal cord.
Collapse
Affiliation(s)
- Quan-Hong Ma
- The Key Laboratory of Stem Cell and Regenerative Medicine; Institute of Molecular and Clinical Medicine; Kunming Medical College; Kunming, China; Institute of Neuroscience; Soochow University; Suzhou, China
| | | | | | | | | | | |
Collapse
|
35
|
Buttermore ED, Thaxton CL, Bhat MA. Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res 2013; 91:603-22. [PMID: 23404451 DOI: 10.1002/jnr.23197] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 01/17/2023]
Abstract
Over a century ago, Ramon y Cajal first proposed the idea of a directionality involved in nerve conduction and neuronal communication. Decades later, it was discovered that myelin, produced by glial cells, insulated axons with periodic breaks where nodes of Ranvier (nodes) form to allow for saltatory conduction. In the peripheral nervous system (PNS), Schwann cells are the glia that can either individually myelinate the axon from one neuron or ensheath axons of many neurons. In the central nervous system (CNS), oligodendrocytes are the glia that myelinate axons from different neurons. Review of more recent studies revealed that this myelination created polarized domains adjacent to the nodes. However, the molecular mechanisms responsible for the organization of axonal domains are only now beginning to be elucidated. The molecular domains in myelinated axons include the axon initial segment (AIS), where various ion channels are clustered and action potentials are initiated; the node, where sodium channels are clustered and action potentials are propagated; the paranode, where myelin loops contact with the axolemma; the juxtaparanode (JXP), where delayed-rectifier potassium channels are clustered; and the internode, where myelin is compactly wrapped. Each domain contains a unique subset of proteins critical for the domain's function. However, the roles of these proteins in axonal domain organization are not fully understood. In this review, we highlight recent advances on the molecular nature and functions of some of the components of each axonal domain and their roles in axonal domain organization and maintenance for proper neuronal communication.
Collapse
Affiliation(s)
- Elizabeth D Buttermore
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
36
|
Abstract
A peripheral nerve trunk is composed of nerve fascicles supported in a fibrous collagenous sheath and defined by concentric layers of cells (the perineurium) that separate the contents (the endoneurium) from its fibrous collagen support (the epineurium). In the endoneurium are myelinated and unmyelinated fibers that are axons combined with their supporting Schwann cells to provide physical and electrical connections with end-organs such as muscle fibers and sensory endings. Axons are tubular neuronal extensions with a cytoskeleton of neurotubules and tubulin along which organelles and proteins can travel between the neuronal cell body and the axon terminal. During development some axons enlarge and are covered by a chain of Schwann cells each associated with just one axon. As the axons grow in diameter, the Schwann cells wrap round them to produce a myelin sheath. This consists of many layers of compacted Schwann cell membrane plus some additional proteins. Adjacent myelin segments connect at highly specialized structures, the nodes of Ranvier. Myelin insulates the axon so that the nerve impulse can jump from one node to the next. The region adjacent to the node, the paranodal segment, is the site of myelin terminations on the axolemma. There are connections here between the Schwann cell and the axon via a complex chain of proteins. The Schwann cell cytoplasm in the adjacent segment, the juxtaparanode, contains most of the Schwann cell mitochondria. In addition to the node, continuity of myelin lamellae is broken at intervals along the internode by helical regions of decompaction known as Schmidt-Lanterman incisures; these are seen as paler conical segments in suitably stained microscopical preparations and provide a pathway between the adaxonal and abaxonal cytoplasm. Smaller axons without a myelin sheath conduct very much more slowly and have a more complex relationship with their supporting Schwann cells that has important implications for repair.
Collapse
Affiliation(s)
- Rosalind King
- Department of Clinical Neurosciences, Institute of Neurology, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
37
|
Farrar MA, Park SB, Lin CSY, Kiernan MC. Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability. J Physiol 2013; 591:273-86. [PMID: 23006483 PMCID: PMC3630785 DOI: 10.1113/jphysiol.2012.240820] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/19/2012] [Indexed: 11/08/2022] Open
Abstract
While substantial alterations in myelination and axonal growth have been described during maturation, their interactions with the configuration and activity of axonal membrane ion channels to achieve impulse conduction have not been fully elucidated. The present study utilized axonal excitability techniques to compare the changes in nerve function across healthy infants, children, adolescents and adults. Multiple excitability indices (stimulus-response curve, strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle) combined with conventional neurophysiological measures were investigated in 57 subjects (22 males, 35 females; age range 0.46-24 years), stimulating the median motor nerve at the wrist. Maturational changes in conduction velocity were paralleled by significant alterations in multiple excitability parameters, similarly reaching steady values in adolescence. Maturation was accompanied by reductions in threshold (P < 0.005) and rheobase (P = 0.001); depolarizing and hyperpolarizing electrotonus progressively reduced (P < 0.001), or 'fanned-in'; resting current-threshold slope increased (P < 0.0001); accommodation to depolarizing currents prolonged (P < 0.0001); while greater threshold changes in refractoriness (P = 0.001) and subexcitability (P < 0.01) emerged. Taken together, the present findings suggest that passive membrane conductances and the activity of K(+) conductances decrease with formation of the axo-glial junction and myelination. In turn, these functional alterations serve to enhance the efficiency and speed of impulse conduction concurrent with the acquisition of motor skills during childhood, and provide unique insight into the evolution of postnatal human peripheral nerve function. Significantly, these findings bring the dynamics of axonal development to the clinical domain and serve to further illuminate pathophysiological mechanisms that occur during development.
Collapse
Affiliation(s)
- Michelle A Farrar
- Neuroscience Research Australia, Barker St, Randwick, Sydney, NSW 2031, Australia
| | | | | | | |
Collapse
|
38
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
39
|
Chang KJ, Rasband MN. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. CURRENT TOPICS IN MEMBRANES 2013; 72:159-92. [PMID: 24210430 DOI: 10.1016/b978-0-12-417027-8.00005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells. They can be subdivided into at least two structurally and functionally distinct domains: somatodendritic and axonal domains. The somatodendritic domain receives and integrates upstream input signals, and the axonal domain generates and relays outputs in the form of action potentials to the downstream target. Demand for quick response to the harsh surroundings prompted evolution to equip vertebrates' neurons with a remarkable glia-derived structure called myelin. Not only Insulating the axon, myelinating glia also rearrange the axonal components and elaborate functional subdomains along the axon. Proper functioning of all theses domains and subdomains is vital for a normal, efficient nervous system.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
40
|
Fuhrmann-Stroissnigg H, Noiges R, Descovich L, Fischer I, Albrecht DE, Nothias F, Froehner SC, Propst F. The light chains of microtubule-associated proteins MAP1A and MAP1B interact with α1-syntrophin in the central and peripheral nervous system. PLoS One 2012; 7:e49722. [PMID: 23152929 PMCID: PMC3496707 DOI: 10.1371/journal.pone.0049722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/17/2012] [Indexed: 12/24/2022] Open
Abstract
Microtubule-associated proteins of the MAP1 family (MAP1A, MAP1B, and MAP1S) share, among other features, a highly conserved COOH-terminal domain approximately 125 amino acids in length. We conducted a yeast 2-hybrid screen to search for proteins interacting with this domain and identified α1-syntrophin, a member of a multigene family of adapter proteins involved in signal transduction. We further demonstrate that the interaction between the conserved COOH-terminal 125-amino acid domain (which is located in the light chains of MAP1A, MAP1B, and MAP1S) and α1-syntrophin is direct and occurs through the pleckstrin homology domain 2 (PH2) and the postsynaptic density protein 95/disk large/zonula occludens-1 protein homology domain (PDZ) of α1-syntrophin. We confirmed the interaction of MAP1B and α1-syntrophin by co-localization of the two proteins in transfected cells and by co-immunoprecipitation experiments from mouse brain. In addition, we show that MAP1B and α1-syntrophin partially co-localize in Schwann cells of the murine sciatic nerve during postnatal development and in the adult. However, intracellular localization of α1-syntrophin and other Schwann cell proteins such as ezrin and dystrophin-related protein 2 (DRP2) and the localization of the axonal node of Ranvier-associated protein Caspr1/paranodin were not affected in MAP1B null mice. Our findings add to a growing body of evidence that classical MAPs are likely to be involved in signal transduction not only by directly modulating microtubule function, but also through their interaction with signal transduction proteins.
Collapse
Affiliation(s)
- Heike Fuhrmann-Stroissnigg
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Rainer Noiges
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Luise Descovich
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Irmgard Fischer
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Douglas E. Albrecht
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Fatiha Nothias
- INSERM U952, CNRS UMR 7224, Université Pierre et Marie Curie (UPMC) - Paris-06, Paris, France
| | - Stanley C. Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Friedrich Propst
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Vienna, Austria
- * E-mail:
| |
Collapse
|
41
|
Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci U S A 2012; 109:18120-5. [PMID: 23074245 DOI: 10.1073/pnas.1216398109] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the contactin-associated protein 2 (CNTNAP2) gene encoding CASPR2, a neurexin-related cell-adhesion molecule, predispose to autism, but the function of CASPR2 in neural circuit assembly remains largely unknown. In a knockdown survey of autism candidate genes, we found that CASPR2 is required for normal development of neural networks. RNAi-mediated knockdown of CASPR2 produced a cell-autonomous decrease in dendritic arborization and spine development in pyramidal neurons, leading to a global decline in excitatory and inhibitory synapse numbers and a decrease in synaptic transmission without a detectable change in the properties of these synapses. Our data suggest that in addition to the previously described role of CASPR2 in mature neurons, where CASPR2 organizes nodal microdomains of myelinated axons, CASPR2 performs an earlier organizational function in developing neurons that is essential for neural circuit assembly and operates coincident with the time of autism spectrum disorder (ASD) pathogenesis.
Collapse
|
42
|
Abstract
Myelination organizes axons into distinct domains that allow nerve impulses to propagate in a saltatory manner. The edges of the myelin sheath are sealed at the paranodes by axon-glial junctions that have a crucial role in organizing the axonal cytoskeleton. Here we propose a model in which the myelinated axons depend on the axon-glial junctions to stabilize the cytoskeletal transition at the paranodes. Thus paranodal regions are likely to be particularly susceptible to damage induced by demyelinating diseases such as multiple sclerosis.
Collapse
|
43
|
Einheber S, Bhat MA, Salzer JL. Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of ranvier. ACTA ACUST UNITED AC 2012; 2:165-74. [PMID: 17460780 PMCID: PMC1855224 DOI: 10.1017/s1740925x06000275] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region.
Collapse
Affiliation(s)
- Steven Einheber
- Hunter College School of Health Sciences, 425 E 25th Street, New York, NY 10010, USA.
| | | | | |
Collapse
|
44
|
Devaux JJ, Odaka M, Yuki N. Nodal proteins are target antigens in Guillain-Barré syndrome. J Peripher Nerv Syst 2012; 17:62-71. [PMID: 22462667 DOI: 10.1111/j.1529-8027.2012.00372.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurofascin-186 (NF186), neuronal cell adhesion molecule (NrCAM), and gliomedin are adhesion molecules playing a central role in the formation of nodes of Ranvier. In Guillain-Barré syndrome (GBS), immune attack toward the nodes may participate in the disabilities. Autoantibodies to NF186 and gliomedin have been detected in a rat model of GBS. Here, we investigated the prevalence of antibodies against nodal adhesion molecules in patients with GBS or chronic inflammatory demyelinating polyneuropathy (CIDP). Sera from 100 GBS patients, 50 CIDP patients, 80 disease controls, and 50 healthy controls were tested for their ability to bind the nodes of Ranvier. To characterize the antigens, we performed cell binding assays against NF186, gliomedin, contactin, and NrCAM. We found that 43% of patients with GBS and 30% of patients with CIDP showed IgG fixation at nodes or paranodes. In eight patients with GBS or CIDP, we identified that IgG antibodies recognized the native extracellular domain of NF186, gliomedin, or contactin. Also, 29 patients showed IgM against nodal adhesion molecules. However, we did not detect IgM fixation at nodes or paranodes. Antibodies to gliomedin or NF186 were mostly detected in demyelinating and axonal GBS, respectively. The adsorption of the antibodies to their soluble antigens abolished IgG deposition at nodes and paranodes in nerves, indicating these were specific to NF186, gliomedin, and contactin. In conclusion, gliomedin, NF186, and contactin are novel target antigens in GBS. At nodes, additional epitopes are also the targets of IgG. These results suggest that antibody attack against nodal antigens participates in the etiology of GBS.
Collapse
Affiliation(s)
- Jérôme J Devaux
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CNRS, Aix-Marseille University, Boulevard Pierre Dramard, Marseille, France.
| | | | | |
Collapse
|
45
|
Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons. Brain Struct Funct 2012; 218:1005-16. [DOI: 10.1007/s00429-012-0443-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023]
|
46
|
Devaux JJ. Antibodies to gliomedin cause peripheral demyelinating neuropathy and the dismantling of the nodes of Ranvier. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1402-13. [PMID: 22885108 DOI: 10.1016/j.ajpath.2012.06.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/15/2012] [Accepted: 06/20/2012] [Indexed: 11/18/2022]
Abstract
Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are conditions that affect peripheral nerves. The mechanisms that underlie demyelination in these neuropathies are unknown. Recently, we demonstrated that the node of Ranvier is the primary site of the immune attack in patients with GBS and CIDP. In particular, GBS patients have antibodies against gliomedin and neurofascin, two adhesion molecules that play a crucial role in the formation of nodes of Ranvier. We demonstrate that immunity toward gliomedin, but not neurofascin, induced a progressive neuropathy in Lewis rats characterized by conduction defects and demyelination in spinal nerves. The clinical symptoms closely followed the titers of anti-gliomedin IgG and were associated with an important deposition of IgG at nodes. Furthermore, passive transfer of antigliomedin IgG induced a severe demyelinating condition and conduction loss. In both active and passive models, the immune attack at nodes occasioned the loss of the nodal clusters for gliomedin, neurofascin-186, and voltage-gated sodium channels. These results indicate that primary immune reaction against gliomedin, a peripheral nervous system adhesion molecule, can be responsible for the initiation or progression of the demyelinating form of GBS. Furthermore, these autoantibodies affect saltatory propagation by dismantling nodal organization and sodium channel clusters. Antibodies reactive against nodal adhesion molecules thus likely participate in the pathologic process of GBS and CIDP.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Cell Adhesion Molecules, Neuronal/immunology
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Humans
- Immunity/immunology
- Immunization
- Immunization, Passive
- Immunoglobulin G/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/pathology
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology
- Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/pathology
- Ranvier's Nodes/immunology
- Ranvier's Nodes/pathology
- Rats
- Rats, Inbred Lew
- Spinal Nerve Roots/pathology
Collapse
Affiliation(s)
- Jérôme J Devaux
- National Center for Scientific Research (CNRS), Aix-Marseille University, Marseille, France.
| |
Collapse
|
47
|
Bernard F, Moreau-Fauvarque C, Heitz-Marchaland C, Zagar Y, Dumas L, Fouquet S, Lee X, Shao Z, Mi S, Chédotal A. Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination. Glia 2012; 60:1590-604. [DOI: 10.1002/glia.22378] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/05/2012] [Indexed: 11/09/2022]
|
48
|
Unmyelinated nerve fibers in the human dental pulp express markers for myelinated fibers and show sodium channel accumulations. BMC Neurosci 2012; 13:29. [PMID: 22429267 PMCID: PMC3323891 DOI: 10.1186/1471-2202-13-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/19/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The dental pulp is a common source of pain and is used to study peripheral inflammatory pain mechanisms. Results show most fibers are unmyelinated, yet recent findings in experimental animals suggest many pulpal afferents originate from fibers that are myelinated at more proximal locations. Here we use the human dental pulp and confocal microscopy to examine the staining relationships of neurofilament heavy (NFH), a protein commonly expressed in myelinated afferents, with other markers to test the possibility that unmyelinated pulpal afferents originate from myelinated axons. Other staining relationships studied included myelin basic protein (MBP), protein gene product (PGP) 9.5 to identify all nerve fibers, tyrosine hydroxylase (TH) to identify sympathetic fibers, contactin-associated protein (caspr) to identify nodal sites, S-100 to identify Schwann cells and sodium channels (NaChs). RESULTS Results show NFH expression in most PGP9.5 fibers except those with TH and include the broad expression of NFH in axons lacking MBP. Fibers with NFH and MBP show NaCh clusters at nodal sites as expected, but surprisingly, NaCh accumulations are also seen in unmyelinated fibers with NFH, and in fibers with NFH that lack Schwann cell associations. CONCLUSIONS The expression of NFH in most axons suggests a myelinated origin for many pulpal afferents, while the presence of NaCh clusters in unmyelinated fibers suggests an inherent capacity for the unmyelinated segments of myelinated fibers to form NaCh accumulations. These findings have broad implications on the use of dental pulp to study pain mechanisms and suggest possible novel mechanisms responsible for NaCh cluster formation and neuronal excitability.
Collapse
|
49
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
50
|
Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci 2012; 31:17736-51. [PMID: 22131434 DOI: 10.1523/jneurosci.1482-11.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The plt (pale tremor) mouse carries a null mutation in the Fig4(Sac3) gene that results in tremor, hypopigmentation, spongiform degeneration of the brain, and juvenile lethality. FIG4 is a ubiquitously expressed phosphatidylinositol 3,5-bisphosphate phosphatase that regulates intracellular vesicle trafficking along the endosomal-lysosomal pathway. In humans, the missense mutation FIG4(I41T) combined with a FIG4 null allele causes Charcot-Marie-Tooth 4J disease, a severe form of peripheral neuropathy. Here we show that Fig4 null mice exhibit a dramatic reduction of myelin in the brain and spinal cord. In the optic nerve, smaller-caliber axons lack myelin sheaths entirely, whereas many large- and intermediate-caliber axons are myelinated but show structural defects at nodes of Ranvier, leading to delayed propagation of action potentials. In the Fig4 null brain and optic nerve, oligodendrocyte (OL) progenitor cells are present at normal abundance and distribution, but the number of myelinating OLs is greatly compromised. The total number of axons in the Fig4 null optic nerve is not reduced. Developmental studies reveal incomplete myelination rather than elevated cell death in the OL linage. Strikingly, there is rescue of CNS myelination and tremor in transgenic mice with neuron-specific expression of Fig4, demonstrating a non-cell-autonomous function of Fig4 in OL maturation and myelin development. In transgenic mice with global overexpression of the human pathogenic FIG4 variant I41T, there is rescue of the myelination defect, suggesting that the CNS of CMT4J patients may be protected from myelin deficiency by expression of the FIG4(I41T) mutant protein.
Collapse
|