1
|
Zheng M, Bao N, Wang Z, Song C, Jin Y. Alternative splicing in autism spectrum disorder: Recent insights from mechanisms to therapy. Asian J Psychiatr 2025; 108:104501. [PMID: 40273800 DOI: 10.1016/j.ajp.2025.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Alternative splicing (AS) is a vital and highly dynamic RNA regulatory mechanism that allows a single gene to generate multiple mRNA and protein isoforms. Dysregulation of AS has been identified as a key contributor to the pathogenesis of autism spectrum disorders (ASD). A comprehensive understanding of aberrant splicing mechanisms and their functional consequences in ASD can help uncover the molecular basis of the disorder and facilitate the development of therapeutic strategies. This review focuses on the major aberrant splicing events and key splicing regulators associated with ASD, highlighting their roles in linking defective splicing to ASD pathogenesis. In addition, a discussion of how emerging technologies, such as long-read sequencing, single-cell sequencing, spatial transcriptomics and CRISPR-Cas systems are offering novel insights into the role and mechanisms of AS in ASD is presented. Finally, the RNA splicing-based therapeutic strategies are evaluated, emphasizing their potential to address unmet clinical needs in ASD treatment.
Collapse
Affiliation(s)
- Mixue Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Nengcheng Bao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhechao Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chao Song
- Department of Developmental and Behavioral Pediatrics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou 310052, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
de León-López CAM, Carretero-Rey M, Khan ZU. AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases. Cell Mol Neurobiol 2025; 45:14. [PMID: 39841263 PMCID: PMC11754374 DOI: 10.1007/s10571-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity. Homeostatic scaling up and scaling down, which are additional types of plasticity similar to LTP and LTD, are also regulated by the insertion and removal of GluA1-containing AMPA receptors from the synaptic surface. The trafficking of AMPA receptors is an intricate process assisted by various proteins. Furthermore, AMPA receptors are critical for the formation and consolidation of various types of memory, and alterations in their function are intimately associated with cognitive dysfunction in aging and several neurological and psychiatric diseases. In this review, we will provide an overview of the current understanding of how AMPA receptors regulate various forms of synaptic plasticity, their contribution to memory functions, and their role in aging and brain diseases.
Collapse
Affiliation(s)
- Cristina A Muñoz de León-López
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga, Spain
| | - Marta Carretero-Rey
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga, Spain
| | - Zafar U Khan
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
- Department of Medicine, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga, Spain.
- CIBERNED, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Chase J, Li JJ, Lin WC, Tai LH, Castro F, Collins AGE, Wilbrecht L. Genetic changes linked to two different syndromic forms of autism enhance reinforcement learning in adolescent male but not female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633099. [PMID: 39868311 PMCID: PMC11760717 DOI: 10.1101/2025.01.15.633099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autism Spectrum Disorder (ASD) is characterized by restricted and repetitive behaviors and social differences, both of which may manifest, in part, from underlying differences in corticostriatal circuits and reinforcement learning. Here, we investigated reinforcement learning in mice with mutations in either Tsc2 or Shank3, both high-confidence ASD risk genes associated with major syndromic forms of ASD. Using an odor-based two-alternative forced choice (2AFC) task, we tested adolescent mice of both sexes and found male Tsc2 and Shank3B heterozygote (Het) mice showed enhanced learning performance compared to their wild type (WT) siblings. No gain of function was observed in females. Using a novel reinforcement learning (RL) based computational model to infer learning rate as well as policy-level task engagement and disengagement, we found that the gain of function in males was driven by an enhanced positive learning rate in both Tsc2 and Shank3B Het mice. The gain of function in Het males was absent when mice were trained with a probabilistic reward schedule. These findings in two ASD mouse models reveal a convergent learning phenotype that shows similar sensitivity to sex and environmental uncertainty. These data can inform our understanding of both strengths and challenges associated with autism, while providing further evidence that sex and experience of uncertainty modulate autism-related phenotypes. Significance Statement Reinforcement learning is a foundational form of learning that is widely used in behavioral interventions for autism. Here, we measured reinforcement learning in adolescent mice carrying genetic mutations linked to two different syndromic forms of autism. We found that males showed strengths in reinforcement learning compared to their wild type siblings, while females showed no differences. This gain of function in males was no longer observed when uncertainty was introduced into the reward schedule for correct choices. These findings support a model in which diverse genetic changes interact with sex to generate common phenotypes underlying autism. Our data further support the idea that autism risk genes may produce strengths as well as challenges in behavioral function.
Collapse
Affiliation(s)
- Juliana Chase
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720
| | - Jing-Jing Li
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720
| | - Wan Chen Lin
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720
| | - Lung-Hao Tai
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720
| | - Fernanda Castro
- Current address: Cellular & Molecular Pharmacology, University of California, San Francisco, Mission Bay, CA 94143
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720
| | - Anne GE Collins
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720
| | - Linda Wilbrecht
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720
| |
Collapse
|
4
|
Aomine Y, Shimo Y, Sakurai K, Abe M, Macpherson T, Ozawa T, Hikida T. Sex-dependent differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice. J Neurochem 2025; 169:e16227. [PMID: 39289039 DOI: 10.1111/jnc.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported to act as a cognitive enhancer in both human subjects and experimental animals. However, its effects in animal studies have not always been consistent, and sex differences have been identified in the effects of nicotine on several behaviors. Specifically, the role that sex plays in modulating the effects of nicotine on discrimination learning and cognitive flexibility in rodents is still unclear. Here, we evaluated sex-dependent differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various doses (0.125, 0.25, and 0.5 mg/kg) on visual discrimination (VD) learning and reversal (VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved performance in the VDR, but not the VD, task, while 0.5 mg/kg nicotine significantly worsened performance in the VD, but not VDR task in female mice. Furthermore, 0.25 mg/kg nicotine significantly worsened performance in the VD and VDR task only in female mice. Next, to investigate the cellular mechanisms that underlie the sex difference in the effects of nicotine on cognition, transcriptomic analyses were performed focusing on the medial prefrontal cortex tissue samples from male and female mice that had received continuous administration of nicotine for 3 or 18 days. As a result of pathway enrichment analysis and protein-protein interaction analysis using gene sets of differentially expressed genes, decreased expression of postsynaptic-related genes in males and increased expression of innate immunity-related genes in females were identified as possible molecular mechanisms related to sex differences in the effects of nicotine on cognition in discrimination learning and cognitive flexibility. Our result suggests that nicotine modulates cognitive function in a sex-dependent manner by alternating the expression of specific gene sets in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Suita, Japan
| | - Yuto Shimo
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mayuka Abe
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
5
|
Fischer I, Shohat S, Leichtmann-Bardoogo Y, Nayak R, Wiener G, Rosh I, Shemen A, Tripathi U, Rokach M, Bar E, Hussein Y, Castro AC, Chen G, Soffer A, Schokoroy-Trangle S, Elad-Sfadia G, Assaf Y, Schroeder A, Monteiro P, Stern S, Maoz BM, Barak B. Shank3 mutation impairs glutamate signaling and myelination in ASD mouse model and human iPSC-derived OPCs. SCIENCE ADVANCES 2024; 10:eadl4573. [PMID: 39392881 PMCID: PMC11468907 DOI: 10.1126/sciadv.adl4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by social and neurocognitive impairments, with mutations of the SHANK3 gene being prominent in patients with monogenic ASD. Using the InsG3680 mouse model with a Shank3 mutation seen in humans, we revealed an unknown role for Shank3 in postsynaptic oligodendrocyte (OL) features, similar to its role in neurons. This was shown by impaired molecular and physiological glutamatergic traits of InsG3680-derived primary OL cultures. In vivo, InsG3680 mice exhibit significant reductions in the expression of key myelination-related transcripts and proteins, along with deficits in myelin ultrastructure, white matter, axonal conductivity, and motor skills. Last, we observed significant impairments, with clinical relevance, in induced pluripotent stem cell-derived OLs from a patient with the InsG3680 mutation. Together, our study provides insight into Shank3's role in OLs and reveals a mechanism of the crucial connection of myelination to ASD pathology.
Collapse
Affiliation(s)
- Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Shohat
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Leichtmann-Bardoogo
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gal Wiener
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviram Shemen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ana Carolina Castro
- Department of Biomedicine–Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Gal Chen
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion, Haifa, Israel
| | - Adi Soffer
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy-Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad-Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Patricia Monteiro
- Department of Biomedicine–Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ben M. Maoz
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
- The School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Colom M, Kraev I, Stramek AK, Loza IB, Rostron CL, Heath CJ, Dommett EJ, Singer BF. Conditioning- and reward-related dendritic and presynaptic plasticity of nucleus accumbens neurons in male and female sign-tracker rats. Eur J Neurosci 2024; 60:5694-5717. [PMID: 39193632 DOI: 10.1111/ejn.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
For a subset of individuals known as sign-trackers, discrete Pavlovian cues associated with rewarding stimuli can acquire incentive properties and exert control over behaviour. Because responsiveness to cues is a feature of various neuropsychiatric conditions, rodent models of sign-tracking may prove useful for exploring the neurobiology of individual variation in psychiatric vulnerabilities. Converging evidence points towards the involvement of dopaminergic neurotransmission in the nucleus accumbens core (NAc) in the development of sign-tracking, yet whether this phenotype is associated with specific accumbal postsynaptic properties is unknown. Here, we examined dendritic spine structural organisation, as well as presynaptic and postsynaptic markers of activity, in the NAc core of male and female rats following a Pavlovian-conditioned approach procedure. In contrast to our prediction that cue re-exposure would increase spine density, experiencing the discrete lever-cue without reward delivery resulted in lower spine density than control rats for which the lever was unpaired with reward during training; this effect was tempered in the most robust sign-trackers. Interestingly, this same behavioural test (lever presentation without reward) resulted in increased levels of a marker of presynaptic activity (synaptophysin), and this effect was greatest in female rats. Whilst some behavioural differences were observed in females during initial Pavlovian training, final conditioning scores did not differ from males and were unaffected by the oestrous cycle. This work provides novel insights into how conditioning impacts the neuronal plasticity of the NAc core, whilst highlighting the importance of studying the behaviour and neurobiology of both male and female rats.
Collapse
Affiliation(s)
- Morgane Colom
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Agata K Stramek
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Iwona B Loza
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Claire L Rostron
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Eleanor J Dommett
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- King's College, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Bryan F Singer
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
- School of Psychology, Sussex Neuroscience, Sussex Addiction Research and Intervention Centre, University of Sussex, Brighton, UK
| |
Collapse
|
8
|
Lai W, Zhao Y, Chen Y, Dai Z, Chen R, Niu Y, Chen X, Chen S, Huang G, Shan Z, Zheng J, Hu Y, Chen Q, Gong S, Kang S, Guo H, Ma X, Song Y, Xia K, Wang J, Zhou L, So KF, Wang K, Qiu S, Zhang L, Chen J, Shi L. Autism patient-derived SHANK2B Y29X mutation affects the development of ALDH1A1 negative dopamine neuron. Mol Psychiatry 2024; 29:3180-3194. [PMID: 38704506 PMCID: PMC11449796 DOI: 10.1038/s41380-024-02578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.
Collapse
Affiliation(s)
- Wanjing Lai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yingying Zhao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalan Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Zhenzhu Dai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ruhai Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yimei Niu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Xiaoxia Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Shuting Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Guanqun Huang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ziyun Shan
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajun Zheng
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingpei Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Siyi Gong
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Sai Kang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Youqiang Song
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Jie Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Li Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
| | - Jiekai Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China.
| | - Lingling Shi
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China.
- Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu, 226019, China.
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| |
Collapse
|
9
|
Afzal S, Dürrast N, Hassan I, Soleimanpour E, Tsai PL, Dieterich DC, Fendt M. Probing cognitive flexibility in Shank2-deficient mice: Effects of D-cycloserine and NMDAR signaling hub dynamics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111051. [PMID: 38849086 DOI: 10.1016/j.pnpbp.2024.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Neurodevelopmental disorders such as autism spectrum disorder (ASD) have a heterogeneous etiology but are largely associated with genetic factors. Robust evidence from recent human genetic studies has linked mutations in the Shank2 gene to idiopathic ASD. Modeling these Shank2 mutations in animal models recapitulates behavioral changes, e.g. impaired social interaction and repetitive behavior of ASD patients. Shank2-deficient mice exhibit NMDA receptor (NMDAR) hypofunction and associated behavioral deficits. Of note, NMDARs are strongly implicated in cognitive flexibility. Their hypofunction, e.g. observed in schizophrenia, or their pharmacological inhibition leads to impaired cognitive flexibility. However, the association between Shank2 mutations and cognitive flexibility is poorly understood. Using Shank2-deficient mice, we explored the role of Shank2 in cognitive flexibility measured by the attentional set shifting task (ASST) and whether ASST performance in Shank2-deficient mice can be modulated by treatment with the partial NMDAR agonist D-cycloserine (DCS). Furthermore, we investigated the effects of Shank2 deficiency, ASST training, and DCS treatment on the expression level of NMDAR signaling hub components in the orbitofrontal cortex (OFC), including NMDAR subunits (GluN2A, GluN2B, GluN2C), phosphoglycerate dehydrogenase and serine racemase. Surprisingly, Shank2 deficiency did not affect ASST performance or alter the expression of the investigated NMDAR signaling hub components. Importantly, however, DCS significantly improved ASST performance, demonstrating that positive NMDAR modulation facilitates cognitive flexibility. Furthermore, DCS increased the expression of GluN2A in the OFC, but not that of other NMDAR signaling hub components. Our findings highlight the potential of DCS as a pharmacological intervention to improve cognitive flexibility impairments downstream of NMDAR modulation and substantiate the key role of NMDAR in cognitive flexibility.
Collapse
Affiliation(s)
- Samia Afzal
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Nora Dürrast
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Iman Hassan
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Pei-Ling Tsai
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
10
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 recognition landscape reveals incomplete divergence of paralogous EVH1 domains. Protein Sci 2024; 33:e5094. [PMID: 38989636 PMCID: PMC11237882 DOI: 10.1002/pro.5094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of short linear motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. This expanded our understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alejandra Ramos
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Amy E. Keating
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
11
|
Lu WH, Chang TT, Chang YM, Liu YH, Lin CH, Suen CS, Hwang MJ, Huang YS. CPEB2-activated axonal translation of VGLUT2 mRNA promotes glutamatergic transmission and presynaptic plasticity. J Biomed Sci 2024; 31:69. [PMID: 38992696 PMCID: PMC11241979 DOI: 10.1186/s12929-024-01061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Tzu-Tung Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yi-Hsiang Liu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Chia-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, 11529, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, 11529, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
12
|
Hassani Nia F, Woike D, Bento I, Niebling S, Tibbe D, Schulz K, Hirnet D, Skiba M, Hönck HH, Veith K, Günther C, Scholz T, Bierhals T, Driemeyer J, Bend R, Failla AV, Lohr C, Alai MG, Kreienkamp HJ. Structural deficits in key domains of Shank2 lead to alterations in postsynaptic nanoclusters and to a neurodevelopmental disorder in humans. Mol Psychiatry 2024; 29:1683-1697. [PMID: 36450866 PMCID: PMC11371640 DOI: 10.1038/s41380-022-01882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn2+-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(-2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn2+-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn2+ binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn2+. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | - Stephan Niebling
- EMBL Hamburg, c/o DESY, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kristina Schulz
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Hirnet
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Matilda Skiba
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | | | | | - Tasja Scholz
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Joenna Driemeyer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Renee Bend
- Prevention Genetics, Marshfield, WI, USA
| | - Antonio Virgilio Failla
- UKE microscopic imaging facility (umif), University Medical Center Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Maria Garcia Alai
- EMBL Hamburg, c/o DESY, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Singer A, Ramos A, Keating AE. Elaboration of the Homer1 Recognition Landscape Reveals Incomplete Divergence of Paralogous EVH1 Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576863. [PMID: 38645240 PMCID: PMC11030225 DOI: 10.1101/2024.01.23.576863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Short sequences that mediate interactions with modular binding domains are ubiquitous throughout eukaryotic proteomes. Networks of Short Linear Motifs (SLiMs) and their corresponding binding domains orchestrate many cellular processes, and the low mutational barrier to evolving novel interactions provides a way for biological systems to rapidly sample selectable phenotypes. Mapping SLiM binding specificity and the rules that govern SLiM evolution is fundamental to uncovering the pathways regulated by these networks and developing the tools to manipulate them. We used high-throughput screening of the human proteome to identify sequences that bind to the Enabled/VASP homology 1 (EVH1) domain of the postsynaptic density scaffolding protein Homer1. In doing so, we expanded current understanding of the determinants of Homer EVH1 binding preferences and defined a new motif that can facilitate the discovery of additional Homer-mediated interactions. Interestingly, the Homer1 EVH1 domain preferentially binds to sequences containing an N-terminally overlapping motif that is bound by the paralogous family of Ena/VASP actin polymerases, and many of these sequences can bind to EVH1 domains from both protein families. We provide evidence from orthologous EVH1 domains in pre-metazoan organisms that the overlap in human Ena/VASP and Homer binding preferences corresponds to an incomplete divergence from a common Ena/VASP ancestor. Given this overlap in binding profiles, promiscuous sequences that can be recognized by both families either achieve specificity through extrinsic regulatory strategies or may provide functional benefits via multi-specificity. This may explain why these paralogs incompletely diverged despite the accessibility of further diverged isoforms.
Collapse
Affiliation(s)
- Avinoam Singer
- MIT Department of Biology, Cambridge, Massachusetts, USA
| | | | - Amy E. Keating
- MIT Department of Biology, Cambridge, Massachusetts, USA
- MIT Department of Biological Engineering, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Chang CS, Chen CL, Chen RS, Chen HC, Chen CY, Chung CY, Wu KPH, Wu CY, Lin KC. Synergistic efficacy of repetitive peripheral magnetic stimulation on central intermittent theta burst stimulation for upper limb function in patients with stroke: a double-blinded, randomized controlled trial. J Neuroeng Rehabil 2024; 21:49. [PMID: 38589875 PMCID: PMC11000298 DOI: 10.1186/s12984-024-01341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Non-invasive techniques such as central intermittent theta burst stimulation (iTBS) and repetitive peripheral magnetic stimulation (rPMS) have shown promise in improving motor function for patients with stroke. However, the combined efficacy of rPMS and central iTBS has not been extensively studied. This randomized controlled trial aimed to investigate the synergistic effects of rPMS and central iTBS in patients with stroke. METHOD In this study, 28 stroke patients were randomly allocated to receive either 1200 pulses of real or sham rPMS on the radial nerve of the affected limb, followed by 1200 pulses of central iTBS on the ipsilesional hemisphere. The patients received the intervention for 10 sessions over two weeks. The primary outcome measures were the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and the Action Research Arm Test (ARAT). Secondary outcomes for activities and participation included the Functional Independence Measure-Selfcare (FIM-Selfcare) and the Stroke Impact Scale (SIS). The outcome measures were assessed before and after the intervention. RESULTS Both groups showed significant improvement in FMA-UE and FIM-Selfcare after the intervention (p < 0.05). Only the rPMS + iTBS group had significant improvement in ARAT-Grasp and SIS-Strength and activity of daily living (p < 0.05). However, the change scores in all outcome measures did not differ between two groups. CONCLUSIONS Overall, the study's findings suggest that rPMS may have a synergistic effect on central iTBS to improve grasp function and participation. In conclusion, these findings highlight the potential of rPMS as an adjuvant therapy for central iTBS in stroke rehabilitation. Further large-scale studies are needed to fully explore the synergistic effects of rPMS on central iTBS. TRIAL REGISTRATION This trial was registered under ClinicalTrials.gov ID No.NCT04265365, retrospectively registered, on February 11, 2020.
Collapse
Affiliation(s)
- Chi-Shou Chang
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Ling Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan.
- Graduate Institute of Early Intervention, Chang Gung University, Taoyuan City, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Xiamen, China.
| | - Rou-Shayn Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Hsieh-Ching Chen
- Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Chung-Yao Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Ying Chung
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Early Intervention, Chang Gung University, Taoyuan City, Taiwan
| | - Katie Pei-Hsuan Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Yi Wu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Keh-Chung Lin
- School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Occupational Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, 17, F4, Xu-Zhou Road, Taipei, Taiwan
| |
Collapse
|
15
|
Borreca A, Mantovani C, Desiato G, Corradini I, Filipello F, Elia CA, D'Autilia F, Santamaria G, Garlanda C, Morini R, Pozzi D, Matteoli M. Loss of interleukin 1 signaling causes impairment of microglia- mediated synapse elimination and autistic-like behaviour in mice. Brain Behav Immun 2024; 117:493-509. [PMID: 38307446 DOI: 10.1016/j.bbi.2024.01.221] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.
Collapse
Affiliation(s)
- Antonella Borreca
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cristina Mantovani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Irene Corradini
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Chiara Adriana Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca D'Autilia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giulia Santamaria
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Davide Pozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| | - Michela Matteoli
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
16
|
Woike D, Tibbe D, Hassani Nia F, Martens V, Wang E, Barsukov I, Kreienkamp HJ. The Shank/ProSAP N-Terminal (SPN) Domain of Shank3 Regulates Targeting to Postsynaptic Sites and Postsynaptic Signaling. Mol Neurobiol 2024; 61:693-706. [PMID: 37656313 PMCID: PMC10861631 DOI: 10.1007/s12035-023-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Members of the Shank family of postsynaptic scaffold proteins (Shank1-3) link neurotransmitter receptors to the actin cytoskeleton in dendritic spines through establishing numerous interactions within the postsynaptic density (PSD) of excitatory synapses. Large Shank isoforms carry at their N-termini a highly conserved domain termed the Shank/ProSAP N-terminal (SPN) domain, followed by a set of Ankyrin repeats. Both domains are involved in an intramolecular interaction which is believed to regulate accessibility for additional interaction partners, such as Ras family G-proteins, αCaMKII, and cytoskeletal proteins. Here, we analyze the functional relevance of the SPN-Ank module; we show that binding of active Ras or Rap1a to the SPN domain can differentially regulate the localization of Shank3 in dendrites. In Shank1 and Shank3, the linker between the SPN and Ank domains binds to inactive αCaMKII. Due to this interaction, both Shank1 and Shank3 exert a negative effect on αCaMKII activity at postsynaptic sites in mice in vivo. The relevance of the SPN-Ank intramolecular interaction was further analyzed in primary cultured neurons; here, we observed that in the context of full-length Shank3, a closed conformation of the SPN-Ank tandem is necessary for proper clustering of Shank3 on the head of dendritic spines. Shank3 variants carrying Ank repeats which are not associated with the SPN domain lead to the atypical formation of postsynaptic clusters on dendritic shafts, at the expense of clusters in spine-like protrusions. Our data show that the SPN-Ank tandem motif contributes to the regulation of postsynaptic signaling and is also necessary for proper targeting of Shank3 to postsynaptic sites. Our data also suggest how missense variants found in autistic patients which alter SPN and Ank domains affect the synaptic function of Shank3.
Collapse
Affiliation(s)
- Daniel Woike
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Debora Tibbe
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Victoria Martens
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Emily Wang
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hans-Jürgen Kreienkamp
- Institute for Human Genetics, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
17
|
Mellios N, Papageorgiou G, Gorgievski V, Maxson G, Hernandez M, Otero M, Varangis M, Dell'Orco M, Perrone-Bizzozero N, Tzavara E. Regulation of neuronal circHomer1 biogenesis by PKA/CREB/ERK-mediated pathways and effects of glutamate and dopamine receptor blockade. RESEARCH SQUARE 2024:rs.3.rs-3547375. [PMID: 38260249 PMCID: PMC10802743 DOI: 10.21203/rs.3.rs-3547375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.
Collapse
|
18
|
Xu YP, Zhang J, Mei X, Wu Y, Jiao W, Wang YH, Zhang AQ. Ablation of Shank1 Protects against 6-OHDA-induced Cytotoxicity via PRDX3-mediated Inhibition of ER Stress in SN4741 Cells. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:402-410. [PMID: 36797610 DOI: 10.2174/1871527322666230216124156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 02/18/2023]
Abstract
BACKGROUND Postsynaptic density (PSD) is an electron-dense structure that contains various scaffolding and signaling proteins. Shank1 is a master regulator of the synaptic scaffold located at glutamatergic synapses, and has been proposed to be involved in multiple neurological disorders. METHODS In this study, we investigated the role of shank1 in an in vitro Parkinson's disease (PD) model mimicked by 6-OHDA treatment in neuronal SN4741 cells. The expression of related molecules was detected by western blot and immunostaining. RESULTS We found that 6-OHDA significantly increased the mRNA and protein levels of shank1 in SN4741 cells, but the subcellular distribution was not altered. Knockdown of shank1 via small interfering RNA (siRNA) protected against 6-OHDA treatment, as evidenced by reduced lactate dehydrogenase (LDH) release and decreased apoptosis. The results of RT-PCR and western blot showed that knockdown of shank1 markedly inhibited the activation of endoplasmic reticulum (ER) stress associated factors after 6-OHDA exposure. In addition, the downregulation of shank1 obviously increased the expression of PRDX3, which was accompanied by the preservation of mitochondrial function. Mechanically, downregulation of PRDX3 via siRNA partially prevented the shank1 knockdowninduced protection against 6-OHDA in SN4741 cells. CONCLUSION In summary, the present study has provided the first evidence that the knockdown of shank1 protects against 6-OHDA-induced ER stress and mitochondrial dysfunction through activating the PRDX3 pathway.
Collapse
Affiliation(s)
- Ye-Ping Xu
- Department of Nursing, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Jing Zhang
- Department of Nursing, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xue Mei
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Yan Wu
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Wei Jiao
- Department of Nursing, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Yu-Hai Wang
- Department of Neurosurgery, Wuxi Taihu Hospital, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Ai-Qin Zhang
- Department of Nursing, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
19
|
He LW, Guo XJ, Zhao C, Rao JS. Rehabilitation Training after Spinal Cord Injury Affects Brain Structure and Function: From Mechanisms to Methods. Biomedicines 2023; 12:41. [PMID: 38255148 PMCID: PMC10813763 DOI: 10.3390/biomedicines12010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal cord injury (SCI) is a serious neurological insult that disrupts the ascending and descending neural pathways between the peripheral nerves and the brain, leading to not only functional deficits in the injured area and below the level of the lesion but also morphological, structural, and functional reorganization of the brain. These changes introduce new challenges and uncertainties into the treatment of SCI. Rehabilitation training, a clinical intervention designed to promote functional recovery after spinal cord and brain injuries, has been reported to promote activation and functional reorganization of the cerebral cortex through multiple physiological mechanisms. In this review, we evaluate the potential mechanisms of exercise that affect the brain structure and function, as well as the rehabilitation training process for the brain after SCI. Additionally, we compare and discuss the principles, effects, and future directions of several rehabilitation training methods that facilitate cerebral cortex activation and recovery after SCI. Understanding the regulatory role of rehabilitation training at the supraspinal center is of great significance for clinicians to develop SCI treatment strategies and optimize rehabilitation plans.
Collapse
Affiliation(s)
- Le-Wei He
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing 100068, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (L.-W.H.); (X.-J.G.)
| |
Collapse
|
20
|
Woelfle S, Pedro MT, Wagner J, Schön M, Boeckers TM. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol 2023; 21:254. [PMID: 37953224 PMCID: PMC10641957 DOI: 10.1186/s12915-023-01712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Ulm University, Campus Günzburg, Lindenallee 2, 89312, Günzburg, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University and Universitäts- and Rehabilitationskliniken Ulm, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Deutsches Zentrum Für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|
21
|
Madugalle SU, Liau WS, Zhao Q, Li X, Gong H, Marshall PR, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove MRB, Davies JWA, Kim G, Rauch S, He C, Dickinson BC, Fulopova B, Fletcher LN, Williams SR, Spitale RC, Bredy TW. Synapse-Enriched m 6A-Modified Malat1 Interacts with the Novel m 6A Reader, DPYSL2, and Is Required for Fear-Extinction Memory. J Neurosci 2023; 43:7084-7100. [PMID: 37669863 PMCID: PMC10601377 DOI: 10.1523/jneurosci.0943-23.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Collapse
Affiliation(s)
| | - Wei-Siang Liau
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China 430071
- Medical Research Institute, Wuhan University, Wuhan, China 430014
| | - Hao Gong
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Paul R Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Ambika Periyakaruppiah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Esmi L Zajaczkowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Laura J Leighton
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Haobin Ren
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Mason R B Musgrove
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Joshua W A Davies
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Gwangmin Kim
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Simone Rauch
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Barbora Fulopova
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Lee N Fletcher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
22
|
Srivastava S, Sahin M, Buxbaum JD, Berry-Kravis E, Soorya LV, Thurm A, Bernstein JA, Asante-Otoo A, Bennett WE, Betancur C, Brickhouse TH, Passos Bueno MR, Chopra M, Christensen CK, Cully JL, Dies K, Friedman K, Gummere B, Holder JL, Jimenez-Gomez A, Kerins CA, Khan O, Kohlenberg T, Lacro RV, Levy LA, Levy T, Linnehan D, Loth E, Moshiree B, Neumeyer A, Paul SM, Phelan K, Persico A, Rapaport R, Rogers C, Saland J, Sethuram S, Shapiro J, Tarr PI, White KM, Wickstrom J, Williams KM, Winrow D, Wishart B, Kolevzon A. Updated consensus guidelines on the management of Phelan-McDermid syndrome. Am J Med Genet A 2023; 191:2015-2044. [PMID: 37392087 PMCID: PMC10524678 DOI: 10.1002/ajmg.a.63312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 07/02/2023]
Abstract
Phelan-McDermid syndrome (PMS) is a genetic condition caused by SHANK3 haploinsufficiency and characterized by a wide range of neurodevelopmental and systemic manifestations. The first practice parameters for assessment and monitoring in individuals with PMS were published in 2014; recently, knowledge about PMS has grown significantly based on data from longitudinal phenotyping studies and large-scale genotype-phenotype investigations. The objective of these updated clinical management guidelines was to: (1) reflect the latest in knowledge in PMS and (2) provide guidance for clinicians, researchers, and the general community. A taskforce was established with clinical experts in PMS and representatives from the parent community. Experts joined subgroups based on their areas of specialty, including genetics, neurology, neurodevelopment, gastroenterology, primary care, physiatry, nephrology, endocrinology, cardiology, gynecology, and dentistry. Taskforce members convened regularly between 2021 and 2022 and produced specialty-specific guidelines based on iterative feedback and discussion. Taskforce leaders then established consensus within their respective specialty group and harmonized the guidelines. The knowledge gained over the past decade allows for improved guidelines to assess and monitor individuals with PMS. Since there is limited evidence specific to PMS, intervention mostly follows general guidelines for treating individuals with developmental disorders. Significant evidence has been amassed to guide the management of comorbid neuropsychiatric conditions in PMS, albeit mainly from caregiver report and the experience of clinical experts. These updated consensus guidelines on the management of PMS represent an advance for the field and will improve care in the community. Several areas for future research are also highlighted and will contribute to subsequent updates with more refined and specific recommendations as new knowledge accumulates.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | | | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | - Afua Asante-Otoo
- Rehabilitation Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - William E. Bennett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Tegwyn H. Brickhouse
- Department of Dental Public Health & Policy, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Maria Rita Passos Bueno
- Departamento de Genética e Biologia Evolutiva, Centro de Estudos do Genoma Humano e Células-tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maya Chopra
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Celanie K. Christensen
- Division of Developmental Medicine, Department of Pediatrics, Riley Children’s Health, Indianapolis, IN, USA
- Division of Child Neurology, Department of Neurology, Riley Children’s Health, Indianapolis, IN, USA
| | - Jennifer L. Cully
- Department of Pediatrics, College of Medicine and Division of Dentistry and Orthodontics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kira Dies
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kate Friedman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - J. Lloyd Holder
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | - Carolyn A. Kerins
- Department of Pediatric Dentistry, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - Omar Khan
- National Institute of Neurological Disease and Stroke, Bethesda, MD, USA
| | | | - Ronald V. Lacro
- Department of Cardiology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Eva Loth
- Kings College London, London, UK
| | - Baharak Moshiree
- Department of Medicine, Wake Forest/Atrium Health, Charlotte, NC, USA
| | - Ann Neumeyer
- Lurie Center for Autism, Massachusetts General Hospital, Lexington MA, USA, Harvard Medical School, Boston, MA USA
| | - Scott M. Paul
- Rehabilitation Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, USA
| | - Antonio Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert Rapaport
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Jeffrey Saland
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swathi Sethuram
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | | | - Phillip I. Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kerry M. White
- Division of Developmental Medicine, Department of Pediatrics, Riley Children’s Health, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Riley Children’s Health, Indianapolis, IN, USA
| | - Jordan Wickstrom
- Sinai Rehabilitation Center, Lifebridge Health, Baltimore, MD, USA
| | - Kent M. Williams
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | | | | | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Transient hearing abnormalities precede social deficits in a mouse model of autism. Behav Brain Res 2023; 437:114149. [PMID: 36206820 DOI: 10.1016/j.bbr.2022.114149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022]
Abstract
Hearing abnormalities are important symptoms of autism spectrum disorders (ASDs), a neurological and developmental disorder. However, the characteristics of hearing abnormalities associated with ASD during development have not been fully investigated. We found that in Shank3B knockout mice (a high-confidence mouse model of ASD), transient hearing abnormalities can be found in auditory brainstem response, auditory cortical activity, as well as acoustic startle response. More importantly, all hearing abnormalities at 4 weeks were most prominent and preceded the onset of social deficits at 6 weeks. These hearing abnormalities gradually recovered with age. In addition, analysis of ABR data at 4 weeks using Support Vector Machine (SVM) can faithfully predict the genotype of mice with an accuracy of 85.71%. These findings not only revealed hearing changes in Shank3B knockout autistic-like mice during development, but also suggested that hearing abnormalities could potentially be used as an early and effective indicator of ASD risk.
Collapse
|
24
|
Drzewiecki CM, Brinks AS, Sellinger EP, Doshi AD, Koh JY, Juraska JM. Brief postnatal exposure to bisphenol A affects apoptosis and gene expression in the medial prefrontal cortex and social behavior in rats with sex specificity. Neurotoxicology 2023; 94:126-134. [PMID: 36442689 PMCID: PMC9839503 DOI: 10.1016/j.neuro.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Bisphenol A (BPA) is an endocrine disruptor found in polycarbonate plastics and exposure in humans is nearly ubiquitous and it has widespread effects on cognitive, emotional, and reproductive behaviors in both humans and animal models. In our laboratory we previously found that perinatal BPA exposure results in a higher number of neurons in the adult male rat prefrontal cortex (PFC) and less play in adolescents of both sexes. Here we examine changes in the rate of postnatal apoptosis in the rat prefrontal cortex and its timing with brief BPA exposure. Because an increased number of neurons in the PFC is a characteristic of a subtype of autism spectrum disorder, we tested social preference following brief BPA exposure and also expression of a small group of genes. Males and females were exposed to BPA from postnatal days (P) 6 through 8 or from P10 through 12. Both exposures significantly decreased indicators of cell death in the developing medial prefrontal cortex in male subjects only. Additionally, males exposed to BPA from P6 - 8 showed decreased social preference and decreased cortical expression of Shank3 and Homer1, two synaptic scaffolding genes that have been implicated in social deficits. There were no significant effects of BPA in the female subjects. These results draw attention to the negative consequences following brief exposure to BPA during early development.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Currently at California National Primate Research Center, University of California-Davis, Davis, CA, 95616, USA
| | - Amara S Brinks
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Elli P Sellinger
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Aditi D Doshi
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA; Currently at Department of Psychology, University of Illinois at Chicago, 1007W Harrison St, Chicago, IL 60607, USA
| | - Jessie Y Koh
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA
| | - Janice M Juraska
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Department of Psychology, University of Illinois at Urbana-Champaign, 603 E Daniel St, Champaign, IL, 61820, USA.
| |
Collapse
|
25
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
26
|
Bouquier N, Sakkaki S, Raynaud F, Hemonnot-Girard AL, Seube V, Compan V, Bertaso F, Perroy J, Moutin E. The Shank3 Venus/Venus knock in mouse enables isoform-specific functional studies of Shank3a. Front Neurosci 2022; 16:1081010. [PMID: 36570823 PMCID: PMC9773256 DOI: 10.3389/fnins.2022.1081010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Shank3 is a scaffolding protein essential for the organization and function of the glutamatergic postsynapse. Monogenic mutations in SHANK3 gene are among the leading genetic causes of Autism Spectrum Disorders (ASD). The multiplicity of Shank3 isoforms seems to generate as much functional diversity and yet, there are no tools to study endogenous Shank3 proteins in an isoform-specific manner. Methods In this study, we created a novel transgenic mouse line, the Shank3Venus/Venus knock in mouse, which allows to monitor the endogenous expression of the major Shank3 isoform in the brain, the full-length Shank3a isoform. Results We show that the endogenous Venus-Shank3a protein is localized in spines and is mainly expressed in the striatum, hippocampus and cortex of the developing and adult brain. We show that Shank3Venus/+ and Shank3Venus/Venus mice have no behavioral deficiency. We further crossed Shank3Venus/Venus mice with Shank3ΔC/ΔC mice, a model of ASD, to track the Venus-tagged wild-type copy of Shank3a in physiological (Shank3Venus/+) and pathological (Shank3Venus/ΔC) conditions. We report a developmental delay in brain expression of the Venus-Shank3a isoform in Shank3Venus/ΔC mice, compared to Shank3Venus/+ control mice. Conclusion Altogether, our results show that the Shank3Venus/Venus mouse line is a powerful tool to study endogenous Shank3a expression, in physiological conditions and in ASD.
Collapse
Affiliation(s)
- Nathalie Bouquier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Sakkaki
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Fabrice Raynaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France,PhyMedExp, Univ Montpellier, INSERM, CNRS, CHU de Montpellier, Montpellier, France
| | | | - Vincent Seube
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Federica Bertaso
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France,*Correspondence: Julie Perroy,
| | - Enora Moutin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France,Enora Moutin,
| |
Collapse
|
27
|
SHANK family on stem cell fate and development. Cell Death Dis 2022; 13:880. [PMID: 36257935 PMCID: PMC9579136 DOI: 10.1038/s41419-022-05325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
Abstract
SH3 and multiple ankyrin repeat domains protein (SHANK) 1, SHANK2, and SHANK3 encode a family of postsynaptic scaffolding proteins present at glutamatergic synapses and play a crucial role in synaptogenesis. In the past years, studies have provided a preliminary appreciation and understanding of the influence of the SHANK family in controlling stem cell fate. Here, we review the modulation of SHANK gene expression and their related signaling pathways, allowing for an in-depth understanding of the role of SHANK in stem cells. Besides, their role in governing stem cell self-renewal, proliferation, differentiation, apoptosis, and metabolism are explored in neural stem cells (NSCs), stem cells from apical papilla (SCAPs), and induced pluripotent stem cells (iPSCs). Moreover, iPSCs and embryonic stem cells (ESCs) have been utilized as model systems for analyzing their functions in terms of neuronal development. SHANK-mediated stem cell fate determination is an intricate and multifactorial process. This study aims to achieve a better understanding of the role of SHANK in these processes and their clinical applications, thereby advancing the field of stem cell therapy. This review unravels the regulatory role of the SHANK family in the fate of stem cells.
Collapse
|
28
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
29
|
Myers KR, Fan Y, McConnell P, Cooper JA, Zheng JQ. Actin capping protein regulates postsynaptic spine development through CPI-motif interactions. Front Mol Neurosci 2022; 15:1020949. [PMID: 36245917 PMCID: PMC9557104 DOI: 10.3389/fnmol.2022.1020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear. Capping protein (CP) is a major actin regulating protein that caps the barbed ends of actin filaments, and promotes the formation of dense branched actin networks. Knockdown of CP impairs the formation of mature spines, leading to an increase in the number of filopodia-like protrusions and defects in synaptic transmission. Here, we show that CP promotes the stabilization of dendritic protrusions, leading to the formation of stable mature spines. However, the localization and function of CP in dendritic spines requires interactions with proteins containing a capping protein interaction (CPI) motif. We found that the CPI motif-containing protein Twinfilin-1 (Twf1) also localizes to spines where it plays a role in CP spine enrichment. The knockdown of Twf1 leads to an increase in the density of filopodia-like protrusions and a decrease in the stability of dendritic protrusions, similar to CP knockdown. Finally, we show that CP directly interacts with Shank and regulates its spine accumulation. These results suggest that spatiotemporal regulation of CP in spines not only controls the actin dynamics underlying the formation of stable postsynaptic spine structures, but also plays an important role in the assembly of the postsynaptic apparatus underlying synaptic function.
Collapse
Affiliation(s)
- Kenneth R. Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yanjie Fan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Hsieh MY, Tuan LH, Chang HC, Wang YC, Chen CH, Shy HT, Lee LJ, Gau SSF. Altered synaptic protein expression, aberrant spine morphology, and impaired spatial memory in Dlgap2 mutant mice, a genetic model of autism spectrum disorder. Cereb Cortex 2022; 33:4779-4793. [PMID: 36169576 DOI: 10.1093/cercor/bhac379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
A microdeletion of approximately 2.4 Mb at the 8p23 terminal region has been identified in a Taiwanese autistic boy. Among the products transcribed/translated from genes mapped in this region, the reduction of DLGAP2, a postsynaptic scaffold protein, might be involved in the pathogenesis of autism spectrum disorder (ASD). DLGAP2 protein was detected in the hippocampus yet abolished in homozygous Dlgap2 knockout (Dlgap2 KO) mice. In this study, we characterized the hippocampal phenotypes in Dlgap2 mutant mice. Dlgap2 KO mice exhibited impaired spatial memory, indicating poor hippocampal function in the absence of DLGAP2. Aberrant expressions of postsynaptic proteins, including PSD95, SHANK3, HOMER1, GluN2A, GluR2, mGluR1, mGluR5, βCAMKII, ERK1/2, ARC, BDNF, were noticed in Dlgap2 mutant mice. Further, the spine density was increased in Dlgap2 KO mice, while the ratio of mushroom-type spines was decreased. We also observed a thinner postsynaptic density thickness in Dlgap2 KO mice at the ultrastructural level. These structural changes found in the hippocampus of Dlgap2 KO mice might be linked to impaired hippocampus-related cognitive functions such as spatial memory. Mice with Dlgap2 deficiency, showing signs of intellectual disability, a common co-occurring condition in patients with ASD, could be a promising animal model which may advance our understanding of ASD.
Collapse
Affiliation(s)
- Ming-Yen Hsieh
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chun Wang
- Department of Otolaryngology, Head and Neck Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
32
|
Early Changes in Transcriptomic Profiles in Synaptodendrosomes Reveal Aberrant Synaptic Functions in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23168888. [PMID: 36012153 PMCID: PMC9408306 DOI: 10.3390/ijms23168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative disorders characterized by the progressive decline of cognitive functions, and is closely associated with the dysfunction of synapses, which comprise the basic structure that mediates the communication between neurons. Although the protein architecture and machinery for protein translation at synapses are extensively studied, the impact that local changes in the mRNA reservoir have on AD progression is largely unknown. Here, we investigated the changes in transcriptomic profiles in the synaptodendrosomes purified from the cortices of AD mice at ages 3 and 6 months, a stage when early signatures of synaptic dysfunction are revealed. The transcriptomic profiles of synaptodendrosomes showed a greater number of localized differentially expressed genes (DEGs) in 6-month-old AD mice compared with mice 3 months of age. Gene Ontology (GO) analysis showed that these DEGs are majorly enriched in mitochondrial biogenesis and metabolic activity. More specifically, we further identified three representative DEGs in mitochondrial and metabolic pathways—Prnp, Cst3, and Cox6c—that regulate the dendritic spine density and morphology in neurons. Taken together, this study provides insights into the transcriptomic changes in synaptodendrosomes during AD progression, which may facilitate the development of intervention strategies targeting local translation to ameliorate the pathological progression of AD.
Collapse
|
33
|
Droogers WJ, Willems J, MacGillavry HD, de Jong APH. Duplex Labeling and Manipulation of Neuronal Proteins Using Sequential CRISPR/Cas9 Gene Editing. eNeuro 2022; 9:ENEURO.0056-22.2022. [PMID: 35851300 PMCID: PMC9333357 DOI: 10.1523/eneuro.0056-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
CRISPR/Cas9-mediated knock-in methods enable the labeling of individual endogenous proteins to faithfully determine their spatiotemporal distribution in cells. However, reliable multiplexing of knock-in events in neurons remains challenging because of cross talk between editing events. To overcome this, we developed conditional activation of knock-in expression (CAKE), allowing efficient, flexible, and accurate multiplex genome editing in rat neurons. To diminish cross talk, CAKE is based on sequential, recombinase-driven guide RNA (gRNA) expression to control the timing of genomic integration of each donor sequence. We show that CAKE is broadly applicable to co-label various endogenous proteins, including cytoskeletal proteins, synaptic scaffolds, ion channels and neurotransmitter receptor subunits. To take full advantage of CAKE, we resolved the nanoscale co-distribution of endogenous synaptic proteins using super-resolution microscopy, demonstrating that their co-organization depends on synapse size. Finally, we introduced inducible dimerization modules, providing acute control over synaptic receptor dynamics in living neurons. These experiments highlight the potential of CAKE to reveal new biological insight. Altogether, CAKE is a versatile method for multiplex protein labeling that enables the detection, localization, and manipulation of endogenous proteins in neurons.Significance StatementAccurate localization and manipulation of endogenous proteins is essential to unravel neuronal function. While labeling of individual proteins is achievable with existing gene editing techniques, methods to label multiple proteins in neurons are limiting. We introduce a new CRISPR/Cas9 strategy, CAKE, achieving faithful duplex protein labeling using sequential editing of genes. We use CAKE to visualize the co-localization of essential neuronal proteins, including cytoskeleton components, ion channels and synaptic scaffolds. Using super-resolution microscopy, we demonstrate that the co-organization of synaptic scaffolds and neurotransmitter receptors scales with synapse size. Finally, we acutely modulate the dynamics of synaptic receptors using labeling with inducible dimerization domains. Thus, CAKE mediates accurate duplex endogenous protein labeling and manipulation to address biological questions in neurons.
Collapse
Affiliation(s)
- Wouter J Droogers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Arthur P H de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
35
|
Liu Y, Tian X, Ke P, Gu J, Ma Y, Guo Y, Xu X, Chen Y, Yang M, Wang X, Xiao F. KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B. Neurosci Bull 2022; 38:841-856. [PMID: 35678994 PMCID: PMC9352834 DOI: 10.1007/s12264-022-00888-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanyuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| |
Collapse
|
36
|
Lutz AK, Bauer HF, Ioannidis V, Schön M, Boeckers TM. SHANK3 Antibody Validation: Differential Performance in Western Blotting, Immunocyto- and Immunohistochemistry. Front Synaptic Neurosci 2022; 14:890231. [PMID: 35734418 PMCID: PMC9207774 DOI: 10.3389/fnsyn.2022.890231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
SHANK3 is a scaffolding protein implicated in autism spectrum disorders (ASD). Its function at excitatory glutamatergic synapses has been studied for the last two decades, however, tissue-specific expression patterns as well as its subcellular localization need to be studied in further detail. Especially the close sequence homology of SHANK3 to its protein family members SHANK2 and SHANK1 raises the emerging need for specific antibodies that are validated for the desired methodology. With this study, we aim to validate a set of commercial as well as homemade SHANK3 antibodies in Western Blotting, and synaptic immunocyto- and immunohistochemistry. We found that only a small subset of the antibodies included in this study meet the criteria of quality and specificity. Therefore, we aim to share our findings on SHANK3 antibody validation but also raise awareness of the necessity of antibody specificity testing in the field.
Collapse
Affiliation(s)
- Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
- *Correspondence: Tobias M. Boeckers,
| |
Collapse
|
37
|
Lim HK, Yoon JH, Song M. Autism Spectrum Disorder Genes: Disease-Related Networks and Compensatory Strategies. Front Mol Neurosci 2022; 15:922840. [PMID: 35726297 PMCID: PMC9206533 DOI: 10.3389/fnmol.2022.922840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian brain comprises structurally and functionally distinct regions. Each of these regions has characteristic molecular mechanisms that mediate higher-order tasks, such as memory, learning, emotion, impulse, and motor control. Many genes are involved in neuronal signaling and contribute to normal brain development. Dysfunction of essential components of neural signals leads to various types of brain disorders. Autism spectrum disorder is a neurodevelopmental disorder characterized by social deficits, communication challenges, and compulsive repetitive behaviors. Long-term genetic studies have uncovered key genes associated with autism spectrum disorder, such as SH3 and multiple ankyrin repeat domains 3, methyl-CpG binding protein 2, neurexin 1, and chromodomain helicase DNA binding protein 8. In addition, disease-associated networks have been identified using animal models, and the understanding of the impact of these genes on disease susceptibility and compensation is deepening. In this review, we examine rescue strategies using key models of autism spectrum disorder.
Collapse
Affiliation(s)
- Hye Kyung Lim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
38
|
Chen QN, Ding XL, Guo XX, Zhou G, Guan JS. Suv39h1 regulates memory stability by inhibiting the expression of Shank1 in hippocampal newborn neurons. Eur J Neurosci 2022; 55:1424-1441. [PMID: 35181969 DOI: 10.1111/ejn.15626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
Adult newborn neurons are involved in memory encoding and extinction, but the neural mechanism is unclear. We found the adult newborn neurons at 4 weeks are recruited by learning and subjected to epigenetic regulations, consequently reducing their ability to be re-recruited later. After removal of the epigenetic blockage, Suv39h1 KO mice showed an increased recruiting number of aged newborn neurons and enhanced flexibility in learning tasks. Besides NRXN1, we found SHANK1, the synaptic scaffold protein, is one of the major targets of Suv39h1, regulating memory stability. Expression of Shank1 is transiently engaged to enhance synaptogenesis during learning and is strongly suppressed by Suv39h1 from 5 hours after learning. Exogenously overexpression of Shank1 in dentate gyrus increased the density of mushroom spines and decreased the persistency of old memories. Our study indicated the activity-regulated epigenetic modification in newly matured newborn neurons in hippocampus insulates temporally distinct experiences and stabilizes old memories.
Collapse
Affiliation(s)
- Qi-Nan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Lu Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiu-Xian Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gang Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
39
|
Vyas Y, Cheyne JE, Lee K, Jung Y, Cheung PY, Montgomery JM. Shankopathies in the Developing Brain in Autism Spectrum Disorders. Front Neurosci 2022; 15:775431. [PMID: 35002604 PMCID: PMC8727517 DOI: 10.3389/fnins.2021.775431] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The SHANK family of proteins play critical structural and functional roles in the postsynaptic density (PSD) at excitatory glutamatergic synapses. Through their multidomain structure they form a structural platform across the PSD for protein–protein interactions, as well as recruiting protein complexes to strengthen excitatory synaptic transmission. Mutations in SHANKs reflect their importance to synapse development and plasticity. This is evident in autism spectrum disorder (ASD), a neurodevelopmental disorder resulting in behavioural changes including repetitive behaviours, lack of sociability, sensory issues, learning, and language impairments. Human genetic studies have revealed ASD mutations commonly occur in SHANKs. Rodent models expressing these mutations display ASD behavioural impairments, and a subset of these deficits are rescued by reintroduction of Shank in adult animals, suggesting that lack of SHANK during key developmental periods can lead to permanent changes in the brain’s wiring. Here we explore the differences in synaptic function and plasticity from development onward in rodent Shank ASD models. To date the most explored brain regions, relate to the behavioural changes observed, e.g., the striatum, hippocampus, sensory, and prefrontal cortex. In addition, less-studied regions including the hypothalamus, cerebellum, and peripheral nervous system are also affected. Synaptic phenotypes include weakened but also strengthened synaptic function, with NMDA receptors commonly affected, as well as changes in the balance of excitation and inhibition especially in cortical brain circuits. The effects of shankopathies in activity-dependent brain wiring is an important target for therapeutic intervention. We therefore highlight areas of research consensus and identify remaining questions and challenges.
Collapse
Affiliation(s)
- Yukti Vyas
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pang Ying Cheung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
40
|
A recurrent SHANK1 mutation implicated in autism spectrum disorder causes autistic-like core behaviors in mice via downregulation of mGluR1-IP3R1-calcium signaling. Mol Psychiatry 2022; 27:2985-2998. [PMID: 35388181 PMCID: PMC9205781 DOI: 10.1038/s41380-022-01539-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022]
Abstract
The genetic etiology and underlying mechanism of autism spectrum disorder (ASD) remain elusive. SHANK family genes (SHANK1/2/3) are well known ASD-related genes. However, little is known about how SHANK missense mutations contribute to ASD. Here, we aimed to clarify the molecular mechanism of and the multilevel neuropathological features induced by Shank1 mutations in knock-in (KI) mice. In this study, by sequencing the SHANK1 gene in a cohort of 615 ASD patients and 503 controls, we identified an ASD-specific recurrent missense mutation, c.2621 G > A (p.R874H). This mutation demonstrated strong pathogenic potential in in vitro experiments, and we generated the corresponding Shank1 R882H-KI mice. Shank1 R882H-KI mice displayed core symptoms of ASD, namely, social disability and repetitive behaviors, without confounding comorbidities of abnormal motor function and heightened anxiety. Brain structural changes in the frontal cortex, hippocampus and cerebellar cortex were observed in Shank1 R882H-KI mice via structural magnetic resonance imaging. These key brain regions also showed severe and consistent downregulation of mGluR1-IP3R1-calcium signaling, which subsequently affected the release of intracellular calcium. Corresponding cellular structural and functional changes were present in Shank1 R882H-KI mice, including decreased spine size, reduced spine density, abnormal morphology of postsynaptic densities, and impaired hippocampal long-term potentiation and basal excitatory transmission. These findings demonstrate the causative role of SHANK1 in ASD and elucidate the underlying biological mechanism of core symptoms of ASD. We also provide a reliable model of ASD with core symptoms for future studies, such as biomarker identification and therapeutic intervention studies.
Collapse
|
41
|
Lutz AK, Pérez Arévalo A, Ioannidis V, Stirmlinger N, Demestre M, Delorme R, Bourgeron T, Boeckers TM. SHANK2 Mutations Result in Dysregulation of the ERK1/2 Pathway in Human Induced Pluripotent Stem Cells-Derived Neurons and Shank2(-/-) Mice. Front Mol Neurosci 2021; 14:773571. [PMID: 34899182 PMCID: PMC8662699 DOI: 10.3389/fnmol.2021.773571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
SHANK2 (ProSAP1) is a postsynaptic scaffolding protein of excitatory synapses in the central nervous system and implicated in the development of autism spectrum disorders (ASD). Patients with mutations in SHANK2 show autism-like behaviors, developmental delay, and intellectual disability. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying a heterozygous deletion of SHANK2 and from the unaffected parents. In patient hiPSCs and derived neurons SHANK2 mRNA and protein expression was reduced. During neuronal maturation, a reduction in growth cone size and a transient increase in neuronal soma size were observed. Neuronal proliferation was increased, and apoptosis was decreased in young and mature neurons. Additionally, mature patient hiPSC-derived neurons showed dysregulated excitatory signaling and a decrease of a broad range of signaling molecules of the ERK-MAP kinase pathway. These findings could be confirmed in brain samples from Shank2(−/−) mice, which also showed decreased mGluR5 and phospho-ERK1/2 expression. Our study broadens the current knowledge of SHANK2-related ASD. We highlight the importance of excitatory-inhibitory balance and mGluR5 dysregulation with disturbed downstream ERK1/2 signaling in ASD, which provides possible future therapeutic strategies for SHANK2-related ASD.
Collapse
Affiliation(s)
- Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | | | | | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm Site, Ulm, Germany
| |
Collapse
|
42
|
Reyes-Resina I, Samer S, Kreutz MR, Oelschlegel AM. Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Front Mol Neurosci 2021; 14:767384. [PMID: 34867190 PMCID: PMC8636908 DOI: 10.3389/fnmol.2021.767384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The role of sleep for brain function has been in the focus of interest for many years. It is now firmly established that sleep and the corresponding brain activity is of central importance for memory consolidation. Less clear are the underlying molecular mechanisms and their specific contribution to the formation of long-term memory. In this review, we summarize the current knowledge of such mechanisms and we discuss the several unknowns that hinder a deeper appreciation of how molecular mechanisms of memory consolidation during sleep impact synaptic function and engram formation.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sebastian Samer
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
43
|
Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54:2611-2631.e8. [PMID: 34758338 PMCID: PMC8585508 DOI: 10.1016/j.immuni.2021.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Sara Mancinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuliana Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marija Markicevic
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Christina Grimm
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Clara Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alberto Termanini
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20089 Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Graziella di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Valerio Zerbi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland; Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
44
|
Vallés AS, Barrantes FJ. Dendritic spine membrane proteome and its alterations in autistic spectrum disorder. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:435-474. [PMID: 35034726 DOI: 10.1016/bs.apcsb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
45
|
Fernández-Teruel A, Oliveras I, Cañete T, Rio-Álamos C, Tapias-Espinosa C, Sampedro-Viana D, Sánchez-González A, Sanna F, Torrubia R, González-Maeso J, Driscoll P, Morón I, Torres C, Aznar S, Tobeña A, Corda MG, Giorgi O. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci Biobehav Rev 2021; 131:597-617. [PMID: 34571119 DOI: 10.1016/j.neubiorev.2021.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022]
Abstract
The Roman High- (RHA) and Low-(RLA) avoidance rat lines/strains were generated through bidirectional selective breeding for rapid (RHA) vs. extremely poor (RLA) two-way active avoidance acquisition. Compared with RLAs and other rat strains/stocks, RHAs are characterized by increased impulsivity, deficits in social behavior, novelty-induced hyper-locomotion, impaired attentional/cognitive abilities, vulnerability to psychostimulant sensitization and drug addiction. RHA rats also exhibit decreased function of the prefrontal cortex (PFC) and hippocampus, increased functional activity of the mesolimbic dopamine system and a dramatic deficit of central metabotropic glutamate-2 (mGlu2) receptors (due to a stop codon mutation at cysteine 407 in Grm2 -cys407*-), along with increased density of 5-HT2A receptors in the PFC, alterations of several synaptic markers and increased density of pyramidal "thin" (immature) dendrític spines in the PFC. These characteristics suggest an immature brain of RHA rats, and are reminiscent of schizophrenia features like hypofrontality and disruption of the excitation/inhibition cortical balance. RHA rats represent a promising heuristic model of neurodevelopmental schizophrenia-relevant features and comorbidity with drug addiction vulnerability.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Rafael Torrubia
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Ignacio Morón
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behaviour (CIMCYC), University of Granada, Spain
| | - Carmen Torres
- Department of Psychology, University of Jaén, 23071, Jaén, Spain.
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Copenhagen University Hospital, 2400, Copenhagen, Denmark.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy.
| |
Collapse
|
46
|
Chronic Stress Induces Sex-Specific Functional and Morphological Alterations in Corticoaccumbal and Corticotegmental Pathways. Biol Psychiatry 2021; 90:194-205. [PMID: 33867113 DOI: 10.1016/j.biopsych.2021.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is part of a complex circuit controlling stress responses by sending projections to different limbic structures including the nucleus accumbens (NAc) and ventral tegmental area (VTA). However, the impact of chronic stress on NAc- and VTA-projecting mPFC neurons is still unknown, and the distinct contribution of these pathways to stress responses in males and females is unclear. METHODS Behavioral stress responses were induced by 21 days of chronic variable stress in male and female C57BL/6NCrl mice. An intersectional viral approach was used to label both pathways and assess the functional, morphological, and transcriptional adaptations in NAc- and VTA-projecting mPFC neurons in stressed males and females. Using chemogenetic approaches, we modified neuronal activity of NAc-projecting mPFC neurons to decipher their contribution to stress phenotypes. RESULTS Chronic variable stress induced depressive-like behaviors in males and females. NAc- and VTA-projecting mPFC neurons exhibited sex-specific functional, morphological, and transcriptional alterations. The functional changes were more severe in females in NAc-projecting mPFC neurons, while males exhibited more drastic reductions in dendritic complexity in VTA-projecting mPFC neurons after chronic variable stress. Finally, chemogenetic overactivation of the corticoaccumbal pathway triggered anxiety and behavioral despair in both sexes, while its inhibition rescued the phenotype only in females. CONCLUSIONS Our results suggest that stress responses in males and females result from pathway-specific changes in the activity of transcriptional programs controlling the morphological and synaptic properties of corticoaccumbal and corticotegmental pathways in a sex-specific fashion.
Collapse
|
47
|
Reshetnikov VV, Bondar NP. The Role of Stress-Induced Changes of Homer1 Expression in Stress Susceptibility. BIOCHEMISTRY (MOSCOW) 2021; 86:613-626. [PMID: 34225586 DOI: 10.1134/s0006297921060018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important component of the postsynaptic density: constitutively expressed long isoforms HOMER1b and HOMER1c bind to group I metabotropic glutamate receptors MGLUR1 (GRM1) and MGLUR5 and to other effector proteins, thereby forming a postsynaptic protein scaffold. Activation of the GLUR1-HOMER1b,c and/or GLUR5-HOMER1b,c complex regulates activity of the NMDA and AMPA receptors and Ca2+ homeostasis, thus modulating various types of synaptic plasticity. Dominant negative transcript Homer1a is formed as a result of activity-induced alternative termination of transcription. Expression of this truncated isoform in response to neuronal activation impairs interactions of HOMER1b,c with adaptor proteins, triggers ligand-independent signal transduction through MGLUR1 and/or MGLUR5, leads to suppression of the AMPA- and NMDA-mediated signal transmission, and thereby launches remodeling of the postsynaptic protein scaffold and inhibits long-term potentiation. The studies on animal models confirm that the HOMER1a-dependent remodeling most likely plays an important part in the stress susceptibility, whereas HOMER1a itself can be regarded as a neuroprotector. In this review article, we consider the effects of different stressors in various animal models on HOMER1 expression as well as impact of different HOMER1 variants on human behavior as well as structural and functional characteristics of the brain.
Collapse
Affiliation(s)
- Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
48
|
Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings. Genes (Basel) 2021; 12:genes12071053. [PMID: 34356069 PMCID: PMC8303619 DOI: 10.3390/genes12071053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in children and shows high heritability. However, how inherited variants contribute to ASD in multiplex families remains unclear. Using whole-genome sequencing (WGS) in a family with three affected children, we identified multiple inherited DNA variants in ASD-associated genes and pathways (RELN, SHANK2, DLG1, SCN10A, KMT2C and ASH1L). All are shared among the three children, except ASH1L, which is only present in the most severely affected child. The compound heterozygous variants in RELN, and the maternally inherited variant in SHANK2, are considered to be major risk factors for ASD in this family. Both genes are involved in neuron activities, including synaptic functions and the GABAergic neurotransmission system, which are highly associated with ASD pathogenesis. DLG1 is also involved in synapse functions, and KMT2C and ASH1L are involved in chromatin organization. Our data suggest that multiple inherited rare variants, each with a subthreshold and/or variable effect, may converge to certain pathways and contribute quantitatively and additively, or alternatively act via a 2nd-hit or multiple-hits to render pathogenicity of ASD in this family. Additionally, this multiple-hits model further supports the quantitative trait hypothesis of a complex genetic, multifactorial etiology for the development of ASDs.
Collapse
|
49
|
Umschweif G, Medrihan L, McCabe KA, Sagi Y, Greengard P. Activation of the p11/SMARCA3/Neurensin-2 pathway in parvalbumin interneurons mediates the response to chronic antidepressants. Mol Psychiatry 2021; 26:3350-3362. [PMID: 33723417 PMCID: PMC8505248 DOI: 10.1038/s41380-021-01059-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
The delayed behavioral response to chronic antidepressants depends on dynamic changes in the hippocampus. It was suggested that the antidepressant protein p11 and the chromatin remodeling factor SMARCA3 mediate this delayed response by inducing transcriptional changes in hippocampal neurons. However, what target genes are regulated by the p11/SMARCA3 complex to mediate the behavioral response to antidepressants, and what cell type mediates these molecular changes remain unknown. Here we report that the p11/SMARCA3 complex represses Neurensin-2 transcription in hippocampal parvalbumin-expressing interneurons after chronic treatment with Selective Serotonin Reuptake Inhibitors (SSRI). The behavioral response to antidepressants requires upregulation of p11, accumulation of SMARCA3 in the cell nucleus, and a consequent repression of Neurensin-2 transcription in these interneurons. We elucidate a functional role for p11/SMARCA3/Neurensin-2 pathway in regulating AMPA-receptor signaling in parvalbumin-expressing interneurons, a function that is enhanced by chronic treatment with SSRIs. These results link SSRIs to dynamic glutamatergic changes and implicate p11/SMARCA3/Neurensin-2 pathway in the development of more specific and efficient therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gali Umschweif
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Lucian Medrihan
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Kathryn A McCabe
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Yotam Sagi
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| |
Collapse
|
50
|
Lutz AK, Pfaender S, Incearap B, Ioannidis V, Ottonelli I, Föhr KJ, Cammerer J, Zoller M, Higelin J, Giona F, Stetter M, Stoecker N, Alami NO, Schön M, Orth M, Liebau S, Barbi G, Grabrucker AM, Delorme R, Fauler M, Mayer B, Jesse S, Roselli F, Ludolph AC, Bourgeron T, Verpelli C, Demestre M, Boeckers TM. Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles. Sci Transl Med 2021; 12:12/547/eaaz3267. [PMID: 32522805 DOI: 10.1126/scitranslmed.aaz3267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.
Collapse
Affiliation(s)
- Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Stefanie Pfaender
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Berra Incearap
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Valentin Ioannidis
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Ilaria Ottonelli
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Karl J Föhr
- Department of Anesthesiology, Ulm University Hospital, 89081 Ulm, Germany
| | - Judith Cammerer
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Marvin Zoller
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Julia Higelin
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Federica Giona
- CNR Neuroscience Institute, University of Milan, 20129 Milan, Italy.,BIOMETRA University of Milan, 20129 Milan, Italy
| | - Maximilian Stetter
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Nicole Stoecker
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | | | - Stefan Liebau
- Institute of Neuroanatomy and Developmental Biology, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Gotthold Barbi
- Institute for Human Genetics, Ulm University Hospital, 89081 Ulm, Germany
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, V94PH61 Limerick, Ireland.,Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland.,Health Research Institute (HRI), University of Limerick, V94T9PX Limerick, Ireland
| | - Richard Delorme
- Child and Adolescent Psychiatry Department, APHP, Robert-Debré Hospital, 750197 Paris, France
| | - Michael Fauler
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany
| | | | | | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Université Paris Diderot, Institut Pasteur, 75015 Paris, France
| | - Chiara Verpelli
- CNR Neuroscience Institute, University of Milan, 20129 Milan, Italy.,BIOMETRA University of Milan, 20129 Milan, Italy
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany. .,DZNE, Ulm Site, 89081 Ulm, Germany
| |
Collapse
|