1
|
Brunner J, Arszovszki A, Tarcsay G, Szabadics J. Axons compensate for biophysical constraints of variable size to uniformize their action potentials. PLoS Biol 2024; 22:e3002929. [PMID: 39621771 PMCID: PMC11637306 DOI: 10.1371/journal.pbio.3002929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/12/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024] Open
Abstract
Active conductances tune the kinetics of axonal action potentials (APs) to support specialized functions of neuron types. However, the temporal characteristics of voltage signals strongly depend on the size of neuronal structures, as capacitive and resistive effects slow down voltage discharges in the membranes of small elements. Axonal action potentials are particularly sensitive to these inherent biophysical effects because of the large diameter variabilities within individual axons, potentially implying bouton size-dependent synaptic effects. However, using direct patch-clamp recordings and voltage imaging in small hippocampal axons in acute slices from rat brains, we demonstrate that AP shapes remain uniform within the same axons, even across an order of magnitude difference in caliber. Our results show that smaller axonal structures have more Kv1 potassium channels that locally re-accelerate AP repolarization and contribute to size-independent APs, while they do not preclude the plasticity of AP shapes. Thus, size-independent axonal APs ensure consistent digital signals for each synapse within axons of same types.
Collapse
Affiliation(s)
- János Brunner
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | | | - Gergely Tarcsay
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - János Szabadics
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
3
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
4
|
Lysenkov SP, Muzhenya DV, Tuguz AR, Urakova TU, Shumilov DS, Thakushinov IA, Thakushinov RA, Tatarkova EA, Urakova DM. Cholinergic deficiency in the cholinergic system as a pathogenetic link in the formation of various syndromes in COVID-19. CHINESE J PHYSIOL 2023; 66:1-13. [PMID: 36814151 DOI: 10.4103/cjop.cjop-d-22-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
According to recent data, several mechanisms of viral invasion of the central nervous system (CNS) have been proposed, one of which is both direct penetration of the virus through afferent nerve fibers and damage to the endothelium of cerebral vessels. It has been proven that the SARS-CoV-2 virus affects pathologically not only the human cardiorespiratory system but is also associated with a wide range of neurological diseases, cerebrovascular accidents, and neuromuscular pathologies. However, the observed post-COVID symptom complex in patients, manifested in the form of headache, "fog in the head," high temperature, muscle weakness, lowering blood pressure, does it make us think about the pathophysiological mechanisms that contribute to the development of this clinical picture? One possible explanation is a disruption in the signaling of the acetylcholine system (AChS) in the body. Viral invasions, and in particular COVID-19, can negatively affect the work of the AChS, disrupting its coordination activities. Therefore, the main goal of this literature review is to analyze the information and substantiate the possible mechanisms for the occurrence of post-COVID syndrome in people who have had COVID-19 from the standpoint of AChS dysfunctions.
Collapse
Affiliation(s)
- Sergey Petrovich Lysenkov
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | | | - Aminat Ramazanovna Tuguz
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Tamara Ur'evna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| | - Dmitriy Sergeevich Shumilov
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | | | | | - Elena Anatolevna Tatarkova
- FSBEI HE "Adyghe State University", Immunogenetic Laboratory of the Research Institute of Complex Problems, Maikop, Republic of Adygeya, Russia
| | - Diana Muratovna Urakova
- FSBEI HE "Maikop State Technological University", Medical Institute, Maikop, Republic of Adygeya, Russia
| |
Collapse
|
5
|
Koroleva KS, Svitko SO, Nurmieva DA, Gafurov OS, Buglinina AD, Sitdikova GF. Effects of Nitric Oxide on the Electrical Activity of the Rat Trigeminal Nerve and Mast Cell Morphology. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Spiers JG, Steinert JR. Nitrergic modulation of ion channel function in regulating neuronal excitability. Channels (Austin) 2021; 15:666-679. [PMID: 34802368 PMCID: PMC8632290 DOI: 10.1080/19336950.2021.2002594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) signaling in the brain provides a wide range of functional properties in response to neuronal activity. NO exerts its effects through different signaling pathways, namely, through the canonical soluble guanylyl cyclase-mediated cGMP production route and via post-translational protein modifications. The latter pathways comprise cysteine S-nitrosylation and 3-nitrotyrosination of distinct tyrosine residues. Many ion channels are targeted by one or more of these signaling routes, which leads to their functional regulation under physiological conditions or facilities their dysfunction leading to channelopathies in many pathologies. The resulting alterations in ion channel function changes neuronal excitability, synaptic transmission, and action potential propagation. Transient and activity-dependent NO production mediates reversible ion channel modifications via cGMP and S-nitrosylation signaling, whereas more pronounced and longer-term NO production during conditions of elevated oxidative stress leads to increasingly cumulative and irreversible protein 3-nitrotyrosination. The complexity of this regulation and vast variety of target ion channels and their associated functional alterations presents a challenging task in assessing and understanding the role of NO signaling in physiology and disease.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Joern R Steinert
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Functional Postnatal Maturation of the Medial Olivocochlear Efferent-Outer Hair Cell Synapse. J Neurosci 2020; 40:4842-4857. [PMID: 32430293 DOI: 10.1523/jneurosci.2409-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
The organ of Corti, the auditory mammalian sensory epithelium, contains two types of mechanotransducer cells, inner hair cells (IHCs) and outer hair cells (OHCs). IHCs are involved in conveying acoustic stimuli to the CNS, while OHCs are implicated in the fine tuning and amplification of sounds. OHCs are innervated by medial olivocochlear (MOC) cholinergic efferent fibers. The functional characteristics of the MOC-OHC synapse during maturation were assessed by electrophysiological and pharmacological methods in mouse organs of Corti at postnatal day 11 (P11)-P13, hearing onset in altricial rodents, and at P20-P22 when the OHCs are morphologically and functionally mature. Synaptic currents were recorded in whole-cell voltage-clamped OHCs while electrically stimulating the MOC fibers. A progressive increase in the number of functional MOC-OHC synapses, as well as in their strength and efficacy, was observed between P11-13 and P20-22. At hearing onset, the MOC-OHC synapse presented facilitation during MOC fibers high-frequency stimulation that disappeared at mature stages. In addition, important changes were found in the VGCC that are coupled to transmitter release. Ca2+ flowing in through L-type VGCCs contribute to trigger ACh release together with P/Q- and R-type VGCCs at P11-P13, but not at P20-P22. Interestingly, N-type VGCCs were found to be involved in this process at P20-P22, but not at hearing onset. Moreover, the degree of compartmentalization of calcium channels with respect to BK channels and presynaptic release components significantly increased from P11-P13 to P20-P22. These results suggest that the MOC-OHC synapse is immature at the onset of hearing.SIGNIFICANCE STATEMENT The functional expression of both VGCCs and BK channels, as well as their localization with respect to the presynaptic components involved in transmitter release, are key elements in determining synaptic efficacy. In this work, we show dynamic changes in the expression of VGCCs and Ca2+-dependent BK K+ channels coupled to ACh release at the MOC-OHC synapse and their shift in compartmentalization during postnatal maturation. These processes most likely set the short-term plasticity pattern and reliability of the MOC-OHC synapse on high-frequency activity.
Collapse
|
8
|
Armstrong WE, Foehring RC, Kirchner MK, Sladek CD. Electrophysiological properties of identified oxytocin and vasopressin neurones. J Neuroendocrinol 2019; 31:e12666. [PMID: 30521104 PMCID: PMC7251933 DOI: 10.1111/jne.12666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
To understand the contribution of intrinsic membrane properties to the different in vivo firing patterns of oxytocin (OT) and vasopressin (VP) neurones, in vitro studies are needed, where stable intracellular recordings can be made. Combining immunochemistry for OT and VP and intracellular dye injections allows characterisation of identified OT and VP neurones, and several differences between the two cell types have emerged. These include a greater transient K+ current that delays spiking to stimulus onset, and a higher Na+ current density leading to greater spike amplitude and a more stable spike threshold, in VP neurones. VP neurones also show a greater incidence of both fast and slow Ca2+ -dependent depolarising afterpotentials, the latter of which summate to plateau potentials and contribute to phasic bursting. By contrast, OT neurones exhibit a sustained outwardly rectifying potential (SOR), as well as a consequent depolarising rebound potential, not found in VP neurones. The SOR makes OT neurones more susceptible to spontaneous inhibitory synaptic inputs and correlates with a longer period of spike frequency adaptation in these neurones. Although both types exhibit prominent Ca2+ -dependent afterhyperpolarising potentials (AHPs) that limit firing rate and contribute to bursting patterns, Ca2+ -dependent AHPs in OT neurones selectively show significant increases during pregnancy and lactation. In OT neurones, but not VP neurones, AHPs are highly dependent on the constitutive presence of the second messenger, phosphatidylinositol 4,5-bisphosphate, which permissively gates N-type channels that contribute the Ca2+ during spike trains that activates the AHP. By contrast to the intrinsic properties supporting phasic bursting in VP neurones, the synchronous bursting of OT neurones has only been demonstrated in vitro in cultured hypothalamic explants and is completely dependent on synaptic transmission. Additional differences in Ca2+ channel expression between the two neurosecretory terminal types suggests these channels are also critical players in the differential release of OT and VP during repetitive spiking, in addition to their importance to the potentials controlling firing patterns.
Collapse
Affiliation(s)
- William E Armstrong
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Matthew K Kirchner
- Department of Anatomy & Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Celia D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
9
|
Dason JS, Allen AM, Vasquez OE, Sokolowski MB. Distinct functions of a cGMP-dependent protein kinase in nerve terminal growth and synaptic vesicle cycling. J Cell Sci 2019; 132:jcs.227165. [DOI: 10.1242/jcs.227165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/26/2019] [Indexed: 01/20/2023] Open
Abstract
Sustained neurotransmission requires the tight coupling of synaptic vesicle (SV) exocytosis and endocytosis. The mechanisms underlying this coupling are poorly understood. We tested the hypothesis that a cGMP-dependent protein kinase (PKG), encoded by the foraging (for) gene in Drosophila melanogaster, is critical for this process using a for null mutant, genomic rescues, and tissue specific rescues. We uncoupled FOR's exocytic and endocytic functions in neurotransmission using a temperature-sensitive shibire mutant in conjunction with fluorescein-assisted light inactivation of FOR. We discovered a dual role for presynaptic FOR, where FOR inhibits SV exocytosis during low frequency stimulation by negatively regulating presynaptic Ca2+ levels and maintains neurotransmission during high frequency stimulation by facilitating SV endocytosis. Additionally, glial FOR negatively regulated nerve terminal growth through TGF-β signaling and this developmental effect was independent from FOR's effects on neurotransmission. Overall, FOR plays a critical role in coupling SV exocytosis and endocytosis, thereby balancing these two components to maintain sustained neurotransmission.
Collapse
Affiliation(s)
- Jeffrey S. Dason
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Aaron M. Allen
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Present Address: Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR Oxford, UK
| | - Oscar E. Vasquez
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Marla B. Sokolowski
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
10
|
Otis JM, Fitzgerald MK, Yousuf H, Burkard JL, Drake M, Mueller D. Prefrontal Neuronal Excitability Maintains Cocaine-Associated Memory During Retrieval. Front Behav Neurosci 2018; 12:119. [PMID: 29962941 PMCID: PMC6010542 DOI: 10.3389/fnbeh.2018.00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/28/2018] [Indexed: 11/13/2022] Open
Abstract
Presentation of drug-associated cues provokes craving and drug seeking, and elimination of these associative memories would facilitate recovery from addiction. Emotionally salient memories are maintained during retrieval, as particular pharmacologic or optogenetic perturbations of memory circuits during retrieval, but not after, can induce long-lasting memory impairments. For example, in rats, inhibition of noradrenergic beta-receptors, which control intrinsic neuronal excitability, in the prelimbic medial prefrontal cortex (PL-mPFC) can cause long-term memory impairments that prevent subsequent cocaine-induced reinstatement. The physiologic mechanisms that allow noradrenergic signaling to maintain drug-associated memories during retrieval, however, are unclear. Here we combine patch-clamp electrophysiology ex vivo and behavioral neuropharmacology in vivo to evaluate the mechanisms that maintain drug-associated memory during retrieval in rats. Consistent with previous studies, we find that cocaine experience increases the intrinsic excitability of pyramidal neurons in PL-mPFC. In addition, we now find that this intrinsic plasticity positively predicts the retrieval of a cocaine-induced conditioned place preference (CPP) memory, suggesting that such plasticity may contribute to drug-associated memory retrieval. In further support of this, we find that pharmacological blockade of a cAMP-dependent signaling cascade, which allows noradrenergic signaling to elevate neuronal excitability, is required for memory maintenance during retrieval. Thus, inhibition of PL-mPFC neuronal excitability during memory retrieval not only leads to long-term deficits in the memory, but this memory deficit provides protection against subsequent cocaine-induced reinstatement. These data reveal that PL-mPFC intrinsic neuronal excitability maintains a cocaine-associated memory during retrieval and suggest a unique mechanism whereby drug-associated memories could be targeted for elimination.
Collapse
Affiliation(s)
- James M Otis
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Michael K Fitzgerald
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jake L Burkard
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Matthew Drake
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Basic Sciences, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
11
|
McMahon SM, Chang CW, Jackson MB. Multiple cytosolic calcium buffers in posterior pituitary nerve terminals. ACTA ACUST UNITED AC 2016; 147:243-54. [PMID: 26880753 PMCID: PMC4772375 DOI: 10.1085/jgp.201511525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/06/2016] [Indexed: 01/03/2023]
Abstract
Researchers have measured the ability of nerve terminals to buffer Ca2+ entering in response to electrical activity to better understand plasticity of hormone release. Cytosolic Ca2+ buffers bind to a large fraction of Ca2+ as it enters a cell, shaping Ca2+ signals both spatially and temporally. In this way, cytosolic Ca2+ buffers regulate excitation-secretion coupling and short-term plasticity of release. The posterior pituitary is composed of peptidergic nerve terminals, which release oxytocin and vasopressin in response to Ca2+ entry. Secretion of these hormones exhibits a complex dependence on the frequency and pattern of electrical activity, and the role of cytosolic Ca2+ buffers in controlling pituitary Ca2+ signaling is poorly understood. Here, cytosolic Ca2+ buffers were studied with two-photon imaging in patch-clamped nerve terminals of the rat posterior pituitary. Fluorescence of the Ca2+ indicator fluo-8 revealed stepwise increases in free Ca2+ after a series of brief depolarizing pulses in rapid succession. These Ca2+ increments grew larger as free Ca2+ rose to saturate the cytosolic buffers and reduce the availability of Ca2+ binding sites. These titration data revealed two endogenous buffers. All nerve terminals contained a buffer with a Kd of 1.5–4.7 µM, and approximately half contained an additional higher-affinity buffer with a Kd of 340 nM. Western blots identified calretinin and calbindin D28K in the posterior pituitary, and their in vitro binding properties correspond well with our fluorometric analysis. The high-affinity buffer washed out, but at a rate much slower than expected from diffusion; washout of the low-affinity buffer could not be detected. This work has revealed the functional impact of cytosolic Ca2+ buffers in situ in nerve terminals at a new level of detail. The saturation of these cytosolic buffers will amplify Ca2+ signals and may contribute to use-dependent facilitation of release. A difference in the buffer compositions of oxytocin and vasopressin nerve terminals could contribute to the differences in release plasticity of these two hormones.
Collapse
Affiliation(s)
- Shane M McMahon
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| | - Che-Wei Chang
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705 Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| | - Meyer B Jackson
- Biophysics PhD Program, Department of Neuroscience, and Physiology PhD Program, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
12
|
Motahari AA, Sahraei H, Meftahi GH. Role of Nitric Oxide on Dopamine Release and Morphine-Dependency. Basic Clin Neurosci 2016; 7:283-290. [PMID: 27872689 PMCID: PMC5102557 DOI: 10.15412/j.bcn.03070401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The catastrophic effects of opioids use on public health and the economy are documented clearly in numerous studies. Repeated morphine administration can lead to either a decrease (tolerance) or an increase (sensitization) in its behavioral and rewarding effects. Morphine-induced sensitization is a major problem and plays an important role in abuse of the opioid drugs. Studies reported that morphine may exert its effects by the release of nitric oxide (NO). NO is a potent neuromodulator, which is produced by nitric oxide synthase (NOS). However, the exact role of NO in the opioid-induced sensitization is unknown. In this study, we reviewed the role of NO on opioid-induced sensitization in 2 important, rewarding regions of the brain: nucleus accumbens and ventral tegmentum. In addition, we focused on the contribution of NO on opioid-induced sensitization in the limbic system.
Collapse
Affiliation(s)
- Amir Arash Motahari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Deng PY, Klyachko VA. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J Physiol 2015; 594:83-97. [PMID: 26427907 DOI: 10.1113/jp271031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/29/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Single-channel recordings in CA3 pyramidal neurons revealed that large-conductance calcium-activated K(+) (BK) channel open probability was reduced by loss of fragile X mental retardation protein (FMRP) and that FMRP acts on BK channels by modulating the channel's gating kinetics. Fmr1/BKβ4 double knockout mice were generated to genetically upregulate BK channel activity in the absence of FMRP. Deletion of the BKβ4 subunit alleviated reduced BK channel open probability via increasing BK channel open frequency, but not through prolonging its open duration. Genetic upregulation of BK channel activity via deletion of BKβ4 normalized action potential duration, excessive glutamate release and short-term synaptic plasticity during naturalistic stimulus trains in excitatory hippocampal neurons in the absence of FMRP. Genetic upregulation of BK channel activity via deletion of BKβ4 was sufficient to normalize excessive epileptiform activity in an in vitro model of seizure activity in the hippocampal circuit in the absence of FMRP. Loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), yet the mechanisms underlying the pathophysiology of FXS are incompletely understood. Recent studies identified important new functions of FMRP in regulating neural excitability and synaptic transmission via both translation-dependent mechanisms and direct interactions of FMRP with a number of ion channels in the axons and presynaptic terminals. Among these presynaptic FMRP functions, FMRP interaction with large-conductance calcium-activated K(+) (BK) channels, specifically their auxiliary β4 subunit, regulates action potential waveform and glutamate release in hippocampal and cortical pyramidal neurons. Given the multitude of ion channels and mechanisms that mediate presynaptic FMRP actions, it remains unclear, however, to what extent FMRP-BK channel interactions contribute to synaptic and circuit defects in FXS. To examine this question, we generated Fmr1/β4 double knockout (dKO) mice to genetically upregulate BK channel activity in the absence of FMRP and determine its ability to normalize multilevel defects caused by FMRP loss. Single-channel analyses revealed that FMRP loss reduced BK channel open probability, and this defect was compensated in dKO mice. Furthermore, dKO mice exhibited normalized action potential duration, glutamate release and short-term dynamics during naturalistic stimulus trains in hippocampal pyramidal neurons. BK channel upregulation was also sufficient to correct excessive seizure susceptibility in an in vitro model of seizure activity in hippocampal slices. Our studies thus suggest that upregulation of BK channel activity normalizes multi-level deficits caused by FMRP loss.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Departments of Cell Biology and Physiology, Biomedical Engineering, CIMED, Washington University, St Louis, MO, USA
| | - Vitaly A Klyachko
- Departments of Cell Biology and Physiology, Biomedical Engineering, CIMED, Washington University, St Louis, MO, USA
| |
Collapse
|
14
|
Kimitsuki T. Nitric oxide influences potassium currents in inner hair cells isolated from guinea-pig cochlea. Auris Nasus Larynx 2015; 42:360-4. [DOI: 10.1016/j.anl.2015.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/06/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
|
15
|
Kosakai K, Tsujiuchi Y, Yoshino M. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain. JOURNAL OF INSECT PHYSIOLOGY 2015; 78:26-32. [PMID: 25934217 DOI: 10.1016/j.jinsphys.2015.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca(2+) channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca(2+) channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca(2+) channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca(2+) channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca(2+) influx through these Ca(2+) channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.
Collapse
Affiliation(s)
- Kumiko Kosakai
- Tokyo Gakugei University Senior High School, Tokyo 154-0002, Japan
| | - Yuuki Tsujiuchi
- Department of Biology, Tokyo Gakugei University, Tokyo 184-8501, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo 184-8501, Japan.
| |
Collapse
|
16
|
Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin treatment. Brain Res 2015; 1618:212-21. [PMID: 26054303 DOI: 10.1016/j.brainres.2015.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/16/2022]
Abstract
To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development.
Collapse
|
17
|
Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 2015; 22:486-504. [PMID: 24735331 PMCID: PMC4323017 DOI: 10.1089/ars.2014.5884] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. RECENT ADVANCES Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. CRITICAL ISSUES The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. FUTURE DIRECTIONS Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics.
Collapse
Affiliation(s)
- Nikita Gamper
- 1 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
18
|
Barmashenko G, Buttgereit J, Herring N, Bader M, Ozcelik C, Manahan-Vaughan D, Braunewell KH. Regulation of hippocampal synaptic plasticity thresholds and changes in exploratory and learning behavior in dominant negative NPR-B mutant rats. Front Mol Neurosci 2014; 7:95. [PMID: 25520616 PMCID: PMC4249455 DOI: 10.3389/fnmol.2014.00095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning.
Collapse
Affiliation(s)
- Gleb Barmashenko
- Guest Group, In vitro-Electrophysiology Laboratory, Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany ; Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | - Jens Buttgereit
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité Medical Faculty Berlin, Germany ; Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Neil Herring
- Max Delbrück Center for Molecular Medicine Berlin, Germany ; Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre - BHF Centre of Research Excellence, University of Oxford Oxford, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine Berlin, Germany
| | - Cemil Ozcelik
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité Medical Faculty Berlin, Germany ; Max Delbrück Center for Molecular Medicine Berlin, Germany
| | | | - Karl H Braunewell
- Guest Group, In vitro-Electrophysiology Laboratory, Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
19
|
Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience 2014; 256:271-81. [DOI: 10.1016/j.neuroscience.2013.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
|
20
|
Hoshi T, Pantazis A, Olcese R. Transduction of voltage and Ca2+ signals by Slo1 BK channels. Physiology (Bethesda) 2013; 28:172-89. [PMID: 23636263 DOI: 10.1152/physiol.00055.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca2+ -and voltage-gated K+ channels are activated by an increase in intracellular Ca2+ concentration and/or depolarization. The channel activation mechanism is well described by an allosteric model encompassing the gate, voltage sensors, and Ca2+ sensors, and the model is an excellent framework to understand the influences of auxiliary β and γ subunits and regulatory factors such as Mg2+. Recent advances permit elucidation of structural correlates of the biophysical mechanism.
Collapse
Affiliation(s)
- T Hoshi
- Department of Physiology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
21
|
Hardingham N, Dachtler J, Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 2013; 7:190. [PMID: 24198758 PMCID: PMC3813972 DOI: 10.3389/fncel.2013.00190] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/05/2013] [Indexed: 11/13/2022] Open
Abstract
Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex.
Collapse
Affiliation(s)
| | | | - Kevin Fox
- School of Biosciences, Cardiff UniversityCardiff, UK
| |
Collapse
|
22
|
Kyle BD, Hurst S, Swayze RD, Sheng J, Braun AP. Specific phosphorylation sites underlie the stimulation of a large conductance, Ca(2+)-activated K(+) channel by cGMP-dependent protein kinase. FASEB J 2013; 27:2027-38. [PMID: 23407708 DOI: 10.1096/fj.12-223669] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Smooth muscle contractility and neuronal excitability are regulated by large conductance, Ca(2+)-activated K(+) (BKCa) channels, the activity of which can be increased after modulation by type I cGMP-dependent protein kinase (cGKI) via nitric oxide (NO)/cGMP signaling. Our study focused on identifying key phosphorylation sites within the BKCa channel underlying functional enhancement of channel activity by cGKI. BKCa channel phosphorylation by cGKIα was characterized biochemically using radiolabeled ATP, and regulation of channel activity by NO/cGMP signaling was quantified in rat aortic A7r5 smooth muscle cells by cell-attached patch-clamp recording. Serine to alanine substitutions at 3 of 6 putative cGKI phosphorylation sites (Ser691, Ser873, and Ser1112) in the BKCa α subunit individually reduced direct channel phosphorylation by 25-60% and blocked BKCa activation by either an NO donor or a membrane-permeable cGMP by 80-100%. Acute inhibition of cGKI prevented stimulus-evoked enhancement of BKCa channel activity. Our data further suggest that augmentation of BKCa activity by NO/cGMP/cGKI signaling requires phosphorylation at all 3 sites and is independent of elevations in [Ca(2+)]i. Phosphorylation of 3 specific Ser residues within the murine BKCa α subunit by cGKIα accounts for the enhanced BKCa channel activity induced by elevated [cGMP]i in situ.
Collapse
Affiliation(s)
- Barry D Kyle
- Department of Physiology and Pharmacology and the Libin Cardiovascular Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
23
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
24
|
Stojilkovic SS, Kretschmannova K, Tomić M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol 2012; 24:1183-200. [PMID: 22564128 PMCID: PMC3421050 DOI: 10.1111/j.1365-2826.2012.02335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. We review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process.
Collapse
Affiliation(s)
- S S Stojilkovic
- Sections on Cellular Signalling and Endocrinology and Genetics, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
25
|
Abstract
The cardinal symptom of migraine is headache pain. In this paper we review the neurobiology of this pain as it is currently understood. In recent years, we discovered that the network of neurons that sense pain signals from the dura changes rapidly during the course of a single migraine attack and that the treatment of an attack is a moving target. We found that if the pain is not stopped within 10-20 minutes after it starts, the first set of neurons in the network, those located in the trigeminal ganglion, undergo molecular changes that make them hypersensitive to the changing pressure inside the head, which explains why migraine headache throbs and is worsened by bending over and sneezing. We found that if the pain is not stopped within 60-120 minutes, the second group of neurons in the network, those located in the spinal trigeminal nucleus, undergoes molecular changes that convert them from being dependent on sensory signals they receive from the dura by the first set of neurons, into an independent state in which they themselves become the pain generator of the headache. When this happens, patients notice that brushing their hair, taking a shower, touching their periorbital skin, shaving, wearing earrings, etc become painful, a condition called cutaneous allodynia. Based on this scenario, we showed recently that the success rate of rendering migraine patients pain-free increased dramatically if medication was given before the establishment of cutaneous allodynia and central sensitization. The molecular shift from activity-dependent to activity-independent central sensitization together with our recent conclusion that triptans have the ability to disrupt communications between peripheral and central trigeminovascular neurons (rather than inhibiting directly peripheral or central neurons) explain their clinical effects. Both our clinical and pre-clinical findings of the last five years point to possible short- and long-term advantages in using an early-treatment approach in the treatment of acute migraine attacks.
Collapse
Affiliation(s)
- Rami Burstein
- Departments of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
26
|
Nasif FJ, Hu XT, Ramirez OA, Perez MF. Inhibition of neuronal nitric oxide synthase prevents alterations in medial prefrontal cortex excitability induced by repeated cocaine administration. Psychopharmacology (Berl) 2011; 218:323-30. [PMID: 21125397 DOI: 10.1007/s00213-010-2105-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/18/2010] [Indexed: 01/06/2023]
Abstract
RATIONALE The medial prefrontal cortex (mPFC), a forebrain region that regulates cognitive function and reward-motivated behaviors, has been implicated in the neuropathological mechanisms of drug addiction and withdrawal. In cocaine-abstinent human addicts, neuronal activity of the mPFC is increased in response to cocaine re-exposure or drug-associated cues. Additionally, repeated cocaine exposure alters the membrane properties and ion channel function of mPFC pyramidal neurons in drug-withdrawn rats, leading to an increased firing in response to excitatory stimuli. Nitric oxide (NO), a diffusible neuromodulator of neuronal excitability, may play a role in initiating and maintaining behavioral effects of psychostimulants. However, the role of NO in the mechanisms by which cocaine affects membrane excitability is not well clarified. OBJECTIVES In this study, we attempted to determine whether inhibition of neuronal nitric oxide synthase (nNOS) altered the changes induced by repeated cocaine exposure and withdrawal. METHODS Visualized whole-cell current clamp recordings in brain slices containing the mPFC of rats administered (once per day for 5 days) with either vehicle (10% Cremophor EL in saline 0.9%), cocaine (15 mg/kg, i.p.), or cocaine and the nNOS inhibitor 7-NI (50 mg/kg, i.p.) were employed. RESULTS We found that nNOS inhibition prevented cocaine sensitization and the increased membrane excitability of pyramidal cells, evidenced by an increased number of evoked spikes and reductions in inward rectification observed after short-term withdrawal from cocaine. CONCLUSIONS These findings suggest that NO plays an important role in chronic cocaine-induced deregulation of the mPFC activity that may contribute to the development of behavioral sensitization and cocaine withdrawal.
Collapse
Affiliation(s)
- Fernando J Nasif
- Departamento de Farmacología, Facultad de Ciencias Químicas, UNC, IFEC, CONICET, Haya de la Torre y Medina Allende s/n, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
27
|
Hartung H, Threlfell S, Cragg SJ. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 2011; 36:1811-22. [PMID: 21508928 PMCID: PMC3154099 DOI: 10.1038/npp.2011.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviors including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on the frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber microelectrodes in mouse NAc in slices following stimuli spanning a full range of DA neuron firing frequencies (1-100 Hz). NO donors 3-morpholinosydnonimine hydrochloride (SIN-1) or z-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1,2-diolate (PAPA/NONOate) enhanced DA release with increasing stimulus frequency. This NO-mediated enhancement of frequency sensitivity of DA release was not prevented by inhibition of soluble guanylyl cyclase (sGC), DA transporters, or large conductance Ca(2+)-activated K(+) channels, and did not require glutamatergic or GABAergic input. However, experiments to identify whether frequency-dependent NO effects were mediated via changes in powerful acetylcholine-DA interactions revealed multiple components to NO modulation of DA release. In the presence of a nicotinic receptor antagonist (dihydro-β-erythroidine), NO donors increased DA release in a frequency-independent manner. These data suggest that NO in the NAc can modulate DA release through multiple GC-independent neuronal mechanisms whose net outcome varies depending on the activity in DA neurons and accumbal cholinergic interneurons. In the presence of accumbal acetylcholine, NO promotes the sensitivity of DA release to presynaptic activation, but with reduced acetylcholine input, NO will promote DA release in an activity-independent manner through a direct action on dopaminergic terminals.
Collapse
Affiliation(s)
- Henrike Hartung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK [2] Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK [3] Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Sarah Threlfell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK,Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 2011; 41:281-93. [PMID: 21640185 DOI: 10.1016/j.jchemneu.2011.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 11/22/2022]
Abstract
The serotonin (5HT) system of the brain is involved in many CNS functions including sensory perception, stress responses and psychological disorders such as anxiety and depression. Of the nine 5HT nuclei located in the mammalian brain, the dorsal raphe nucleus (DRN) has the most extensive forebrain connectivity and is implicated in the manifestation of stress-related psychological disturbances. Initial investigations of DRN efferent connections failed to acknowledge the rostrocaudal and mediolateral organization of the nucleus or its neurochemical heterogeneity. More recent studies have focused on the non-5HT contingent of DRN cells and have revealed an intrinsic intranuclear organization of the DRN which has specific implications for sensory signal processing and stress responses. Of particular interest are spatially segregated subsets of nitric oxide producing neurons that are activated by stressors and that have unique efferent projection fields. In this regard, both the midline and lateral wing subregions of the DRN have emerged as prominent loci for future investigation of nitric oxide function and modulation of sensory- and stressor-related signals in the DRN and coinciding terminal fields.
Collapse
|
29
|
Presynaptic resurgent Na+ currents sculpt the action potential waveform and increase firing reliability at a CNS nerve terminal. J Neurosci 2010; 30:15479-90. [PMID: 21084604 DOI: 10.1523/jneurosci.3982-10.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal and nerve terminal action potentials often display a depolarizing after potential (DAP). However, the underlying mechanism that generates the DAP, and its impact on firing patterns, are poorly understood at axon terminals. Here, we find that at calyx of Held nerve terminals in the rat auditory brainstem the DAP is blocked by low doses of externally applied TTX or by the internal dialysis of low doses of lidocaine analog QX-314. The DAP is thus generated by a voltage-dependent Na(+) conductance present after the action potential spike. Voltage-clamp recordings from the calyx terminal revealed the expression of a resurgent Na(+) current (I(NaR)), the amplitude of which increased during early postnatal development. The calyx of Held also expresses a persistent Na(+) current (I(NaP)), but measurements of calyx I(NaP) together with computer modeling indicate that the fast deactivation time constant of I(NaP) minimizes its contribution to the DAP. I(NaP) is thus neither sufficient nor necessary to generate the calyx DAP, whereas I(NaR) by itself can generate a prominent DAP. Dialysis of a small peptide fragment of the auxiliary β4 Na(+) channel subunit into immature calyces (postnatal day 5-6) induced an increase in I(NaR) and a larger DAP amplitude, and enhanced the spike-firing precision and reliability of the calyx terminal. Our results thus suggest that an increase of I(NaR) during postnatal synaptic maturation is a critical feature that promotes precise and resilient high-frequency firing.
Collapse
|
30
|
Moenter SM. Identified GnRH neuron electrophysiology: a decade of study. Brain Res 2010; 1364:10-24. [PMID: 20920482 DOI: 10.1016/j.brainres.2010.09.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/27/2022]
Abstract
Over the past decade, the existence of transgenic mouse models in which reporter genes are expressed under the control of the gonadotropin-releasing hormone (GnRH) promoter has made possible the electrophysiological study of these cells. Here, we review the intrinsic and synaptic properties of these cells that have been revealed by these approaches, with a particular regard to burst generation. Advances in our understanding of neuromodulation of GnRH neurons and synchronization of this network are also discussed.
Collapse
Affiliation(s)
- Suzanne M Moenter
- Department of Molecular and Integrative Physiology, 7725 Med Sci II, 1301 E Catherine St., Ann Arbor, MI 48109-5622, USA.
| |
Collapse
|
31
|
BK channels play a counter-adaptive role in drug tolerance and dependence. Proc Natl Acad Sci U S A 2010; 107:16360-5. [PMID: 20798347 DOI: 10.1073/pnas.1005439107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disturbance of neural activity by sedative drugs has been proposed to trigger a homeostatic response that resists unfavorable changes in net cellular excitability, leading to tolerance and dependence. The Drosophila slo gene encodes a BK-type Ca(2+)-activated K(+) channel implicated in functional tolerance to alcohol and volatile anesthetics. We hypothesized that increased expression of BK channels induced by these drugs constitutes the homeostatic adaptation conferring resistance to sedative drugs. In contrast to the dogmatic view that BK channels act as neural depressants, we show that drug-induced slo expression enhances excitability by reducing the neuronal refractory period. Although this neuroadaptation directly counters some effects of anesthetics, it also causes long-lasting enhancement of seizure susceptibility, a common symptom of drug withdrawal. These data provide a possible mechanism for the long-standing counter-adaptive theory for drug tolerance in which homeostatic adaptations triggered by drug exposure to produce drug tolerance become counter-adaptive after drug clearance and result in symptoms of dependence.
Collapse
|
32
|
Hu W, Zhang M, Czéh B, Flügge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 2010; 35:1693-707. [PMID: 20357756 PMCID: PMC3055473 DOI: 10.1038/npp.2010.31] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stress facilitates the development of psychiatric disorders in vulnerable individuals. It affects physiological functions of hippocampal excitatory neurons, but little is known about the impact of stress on the GABAergic network. Here, we studied the effects of stress and a synthetic glucocorticoid on hippocampal GABAergic neurotransmission and network function focusing on two perisomatic interneurons, the parvalbumin (PV)- and the cholecystokinin (CCK)-positive neurons. In acute hippocampal slices of rat, application of the potent glucocorticoid receptor (GR) agonist dexamethasone (DEX) caused a rapid increase in spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons. This effect was mediated by a nongenomic GR that evoked nitric oxide (NO) release from pyramidal neurons. Retrograde NO signaling caused the augmentation of GABA release from the interneurons and increased CCK release, which in turn further enhanced the activity of the PV-positive cells. Interestingly, chronic restraint stress also resulted in increased sIPSCs in CA1 pyramidal neurons that were Ca(2+)-dependent and an additional DEX application elicited no further effect. Concomitantly, chronic stress reduced the number of PV-immunoreactive cells and impaired rhythmic sIPSCs originating from the PV-positive neurons. In contrast, the CCK-positive neurons remained unaffected. We therefore propose that, in addition to the immediate effect, the sustained activation of nongenomic GRs during chronic stress injures the PV neuron network and results in an imbalance in perisomatic inhibition mediated by the PV and CCK interneurons. This stress-induced dysfunctional inhibitory network may in turn impair rhythmic oscillations and thus lead to cognitive deficits that are common in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Wen Hu
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Mingyue Zhang
- Department of Neurophysiology, Center of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, Westfälische Wilhelms University, Münster, Germany
| | - Boldizsár Czéh
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gabriele Flügge
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany. Tel: +49-551-3851133, Fax: +49-551-3851307, E-mail:
| | - Weiqi Zhang
- Department of Neurophysiology, Center of Physiology and Pathophysiology, University of Göttingen, Göttingen, Germany,DFG Research Center Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, Westfälische Wilhelms University, Münster, Germany,Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster, Germany, Tel: +49-251-8356610, Fax: +49-251-8357128, E-mail:
| |
Collapse
|
33
|
Bagdy G, Riba P, Kecskeméti V, Chase D, Juhász G. Headache-type adverse effects of NO donors: vasodilation and beyond. Br J Pharmacol 2010; 160:20-35. [PMID: 20331608 DOI: 10.1111/j.1476-5381.2010.00643.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although nitrate therapy, used in the treatment of cardiovascular disorders, is frequently associated with side-effects, mainly headaches, the summaries of product characteristics of nitrate-containing medicines do not report detailed description of headaches and even do not highlight the possibility of nitrate-induced migraine. Two different types of nitrate-induced headaches have been described: (i) immediate headaches that develop within the first hour of the application, are mild or medium severity without characteristic symptoms for migraine, and ease spontaneously; and (ii) delayed, moderate or severe migraine-type headaches (occurring mainly in subjects with personal or family history of migraine), that develop 3-6 h after the intake of nitrates, with debilitating, long-lasting symptoms including nausea, vomiting, photo- and/or phono-phobia. These two types of headaches are remarkably different, not only in their timing and symptoms, but also in the persons who are at risk. Recent studies provide evidence that the two headache types are caused by different mechanisms: immediate headaches are connected to vasodilation caused by nitric oxide (NO) release, while migraines are triggered by other actions such as the release of calcitonin gene-related peptide or glutamate, or changes in ion channel function mediated by cyclic guanosine monophosphate or S-nitrosylation. Migraines usually need anti-attack medication, such as triptans, but these drugs are contraindicated in most medical conditions that are treated using nitrates. In conclusion, these data recommend the correction of summaries of nitrate product characteristics, and also suggest a need to develop new types of anti-migraine drugs, effective in migraine attacks, that could be used in patients with risk for angina pectoris.
Collapse
Affiliation(s)
- G Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The majority of migraineurs seeking secondary or tertiary medical care experience throbbing pain and cutaneous allodynia during the course of migraine. Underlying the origin of these symptoms are peripheral and central trigeminovascular neurons, whose cell bodies are located in the trigeminal ganglion and the spinal dorsal horn, respectively. The development of throbbing in the initial phase of migraine is mediated by sensitization of peripheral trigeminovascular neurons, whereas the development of cutaneous allodynia later in the attack is propelled by sensitization of central trigeminovascular neurons which, unfortunately, are not equipped to respond to triptans directly. Triptans appear to act presynaptically in the dorsal horn, such as to inhibit signal transmission from peripheral to central trigeminovascular neurons. Reining in the central neurons using triptan treatment is possible as long as their excitability remains driven by incoming signals from the meninges, but not after they develop autonomous activity. Accordingly, attacks with allodynia can be effectively terminated, provided that the patient vigilantly resorts to triptan therapy before or soon after the onset of allodynia, but not after allodynia has become firmly established. On the other hand, allodynic patients who missed the critical window for effective triptan therapy can still be rendered pain-free using an intravenous infusion of non-steroidal anti-inflammatory drugs.
Collapse
|
35
|
Lee JJ. Nitric oxide modulation of GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:461-7. [PMID: 20054493 DOI: 10.4196/kjpp.2009.13.6.461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 11/15/2022]
Abstract
The auditory cortex (A1) encodes the acquired significance of sound for the perception and interpretation of sound. Nitric oxide (NO) is a gas molecule with free radical properties that functions as a transmitter molecule and can alter neural activity without direct synaptic connections. We used whole-cell recordings under voltage clamp to investigate the effect of NO on spontaneous GABAergic synaptic transmission in mechanically isolated rat auditory cortical neurons preserving functional presynaptic nerve terminals. GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) in the A1 were completely blocked by bicuculline. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP), reduced the GABAergic sIPSC frequency without affecting the mean current amplitude. The SNAP-induced inhibition of sIPSC frequency was mimicked by 8-bromoguanosine cyclic 3',5'-monophosphate, a membrane permeable cyclic-GMP analogue, and blocked by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a specific NO scavenger. Blockade of presynaptic K(+) channels by 4-aminopyridine, a K(+) channel blocker, increased the frequencies of GABAergic sIPSCs, but did not affect the inhibitory effects of SNAP. However, blocking of presynaptic Ca(2+) channels by Cd(2+), a general voltage-dependent Ca(2+) channel blocker, decreased the frequencies of GABAergic sIPSCs, and blocked SNAP-induced reduction of sIPSC frequency. These findings suggest that NO inhibits spontaneous GABA release by activation of cGMP-dependent signaling and inhibition of presynaptic Ca(2+) channels in the presynaptic nerve terminals of A1 neurons.
Collapse
Affiliation(s)
- Jong-Ju Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
36
|
Yuill KH, McNeish AJ, Kansui Y, Garland CJ, Dora KA. Nitric oxide suppresses cerebral vasomotion by sGC-independent effects on ryanodine receptors and voltage-gated calcium channels. J Vasc Res 2009; 47:93-107. [PMID: 19729956 PMCID: PMC4826747 DOI: 10.1159/000235964] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 02/09/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS In cerebral arteries, nitric oxide (NO) release plays a key role in suppressing vasomotion. Our aim was to establish the pathways affected by NO in rat middle cerebral arteries. METHODS In isolated segments of artery, isometric tension and simultaneous measurements of either smooth muscle membrane potential or intracellular [Ca(2+)] ([Ca(2+)](SMC)) changes were recorded. RESULTS In the absence of L-NAME, asynchronous propagating Ca(2+) waves were recorded that were sensitive to block with ryanodine, but not nifedipine. L-NAME stimulated pronounced vasomotion and synchronous Ca(2+) oscillations with close temporal coupling between membrane potential, tone and [Ca(2+)](SMC). If nifedipine was applied together with L-NAME, [Ca(2+)](SMC) decreased and synchronous Ca(2+) oscillations were lost, but asynchronous propagating Ca(2+) waves persisted. Vasomotion was similarly evoked by either iberiotoxin, or by ryanodine, and to a lesser extent by ODQ. Exogenous application of NONOate stimulated endothelium-independent hyperpolarization and relaxation of either L-NAME-induced or spontaneous arterial tone. NO-evoked hyperpolarization involved activation of BK(Ca) channels via ryanodine receptors (RYRs), with little involvement of sGC. Further, in whole cell mode, NO inhibited current through L-type voltage-gated Ca(2+) channels (VGCC), which was independent of both voltage and sGC. CONCLUSION NO exerts sGC-independent actions at RYRs and at VGCC, both of which normally suppress cerebral artery myogenic tone.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Dose-Response Relationship, Drug
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Guanylate Cyclase/antagonists & inhibitors
- Guanylate Cyclase/metabolism
- In Vitro Techniques
- Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
- Large-Conductance Calcium-Activated Potassium Channels/metabolism
- Male
- Membrane Potentials
- Middle Cerebral Artery/enzymology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Potassium Channel Blockers/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ryanodine Receptor Calcium Release Channel/drug effects
- Ryanodine Receptor Calcium Release Channel/metabolism
- Soluble Guanylyl Cyclase
- Time Factors
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Kathryn H Yuill
- Department of Pharmacy and Pharmacology, University of Bath, Bath
| | | | - Yasuo Kansui
- Department of Pharmacy and Pharmacology, University of Bath, Bath
| | | | - Kim A Dora
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Abstract
As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and/or postsynaptic locations. Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered. Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission, particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for its spectacular evolutionary success.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WCIE 6BT, UK.
| |
Collapse
|
38
|
Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R. Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 2008; 586:4209-23. [PMID: 18617565 DOI: 10.1113/jphysiol.2008.156083] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated the inhibitory role of the nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway on receptor-activated TRPC6 channels in both a heterologous expression system (HEK293 cells) and A7r5 vascular myocytes. Cationic currents due to TRPC6 expression were strongly suppressed (by approximately 70%) by a NO donor SNAP (100 microm) whether it was applied prior to muscarinic receptor stimulation with carbachol (CCh; 100 microm) or after G-protein activation with intracellular perfusion of GTPgammaS (100 microm). A similar extent of suppression was also observed with a membrane-permeable analogue of cGMP, 8Br-cGMP (100 microm). The inhibitory effects of SNAP and 8Br-cGMP on TRPC6 channel currents were strongly attenuated by the presence of inhibitors for guanylyl cyclase and PKG such as ODQ, KT5823 and DT3. Alanine substitution for the PKG phosphorylation candidate site at T69 but not at other sites (T14A, S28A, T193A, S321A) of TRPC6 similarly attenuated the inhibitory effects of SNAP and 8Br-cGMP. SNAP also significantly reduced single TRPC6 channel activity recorded in the inside-out configuration in a PKG-dependent manner. SNAP-induced PKG activation stimulated the incorporation of (32)P into wild-type and S321A-mutant TRPC6 proteins immunoprecipitated by TRPC6-specific antibody, but this was greatly attenuated in the T69A mutant. SNAP or 8Br-cGMP strongly suppressed TRPC6-like cation currents and membrane depolarization evoked by Arg(8)-vasopressin in A7r5 myocytes. These results strongly suggest that TRPC6 channels can be negatively regulated by the NO-cGMP-PKG pathway, probably via T69 phosphorylation of the N-terminal. This mechanism may be physiologically important in vascular tissues where NO is constantly released from vascular endothelial cells or nitrergic nerves.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 814 0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulate guanylyl cyclases by natriuretic peptides. The classical targets of cGMP are cGMP-dependent protein kinases (cGKs), cyclic nucleotide hydrolysing phosphodiesterases, and cyclic nucleotide-gated (CNG) cation channels. The NO/cGMP/cGK signalling cascade has been linked to the modulation of transmitter release and synaptic plasticity by numerous pharmacological and genetic studies. This review focuses on the role of NO as a retrograde messenger in long-term potentiation of transmitter release in the hippocampus. Presynaptic mechanisms of NO/cGMP/cGK signalling will be discussed with recently identified potential downstream components such as CaMKII, the vasodilator-stimulated phosphoprotein, and regulators of G protein signalling. NO has further been suggested to increase transmitter release through presynaptic clustering of a-synuclein. Alternative modes of NO/cGMP signalling resulting in inhibition of transmitter release and long-term depression of synaptic activity will also be addressed, as well as anterograde NO signalling in the cerebellum. Finally, emerging evidence for cGMP signalling through CNG channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels will be discussed.
Collapse
|
40
|
Zhang Z, Klyachko V, Jackson MB. Blockade of phosphodiesterase Type 5 enhances rat neurohypophysial excitability and electrically evoked oxytocin release. J Physiol 2007; 584:137-47. [PMID: 17690141 PMCID: PMC2277045 DOI: 10.1113/jphysiol.2007.139303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/06/2007] [Indexed: 11/08/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) acts specifically on cyclic guanosine monophosphate (cGMP) and terminates cGMP-mediated signalling. PDE5 has a well established role in vascular smooth muscle, where specific inhibitors of PDE5 such as sildenafil correct erectile dysfunction by augmenting cGMP-mediated vascular relaxation. However, the role of PDE5 outside of the vasculature has received little attention. The present study tested PDE5 inhibitors on the cGMP-mediated modulation of K(+) channels in the neurohypophysis (posterior pituitary). Photolysis of caged-cGMP enhanced current through Ca(2+)-activated K(+) channels, and this enhancement recovered in about 2 min. Sildenafil essentially eliminated this recovery, suggesting that the reversal of K(+) current enhancement depends on cGMP breakdown. Activation of nitric oxide synthase during trains of activity in pituitary nerve terminals enhances excitability. When trains of stimulation were applied at regular intervals, sildenafil enhanced the excitability of neurohypophysial nerve terminals and increased the action potential firing probability. T-1032, a compound with high specificity for PDE5 over PDE6, had a similar action. Voltage imaging in intact neurohypophysis with a voltage sensitive absorbance dye showed that T-1032 reduced the failure of propagating action potentials during trains of activity. This indicates that PDE5 activity limits action potential propagation in neurohypophysial axons. Immunoassay of oxytocin, a neuropeptide hormone secreted by the posterior pituitary, demonstrated that sildenafil increased electrically evoked release. Thus, PDE5 plays an important role in the regulation of neurohypophysial function, and blockade of this enzyme can enhance the use-dependent facilitation of neurohypophysial secretion.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Physiology, University of Wisconsin, Madison WI, USA
| | | | | |
Collapse
|
41
|
Armstrong WE. A neurohypophysial end game: spreading excitation with sildenafil. J Physiol 2007; 584:3. [PMID: 17717007 PMCID: PMC2277046 DOI: 10.1113/jphysiol.2007.143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- William E Armstrong
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Sciences Center, 855 Monroe Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
42
|
Szabadits E, Cserép C, Ludányi A, Katona I, Gracia-Llanes J, Freund TF, Nyíri G. Hippocampal GABAergic synapses possess the molecular machinery for retrograde nitric oxide signaling. J Neurosci 2007; 27:8101-11. [PMID: 17652601 PMCID: PMC6672734 DOI: 10.1523/jneurosci.1912-07.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) plays an important role in synaptic plasticity as a retrograde messenger at glutamatergic synapses. Here we describe that, in hippocampal pyramidal cells, neuronal nitric oxide synthase (nNOS) is also associated with the postsynaptic active zones of GABAergic symmetrical synapses terminating on their somata, dendrites, and axon initial segments in both mice and rats. The NO receptor nitric oxide-sensitive guanylyl cyclase (NOsGC) is present in the brain in two functional subunit compositions: alpha1beta1 and alpha2beta1. The beta1 subunit is expressed in both pyramidal cells and interneurons in the hippocampus. Using immunohistochemistry and in situ hybridization methods, we describe that the alpha1 subunit is detectable only in interneurons, which are always positive for beta1 subunit as well; however, pyramidal cells are labeled only for beta1 and alpha2 subunits. With double-immunofluorescent staining, we also found that most cholecystokinin- and parvalbumin-positive and smaller proportion of the somatostatin- and nNOS-positive interneurons are alpha1 subunit positive. We also found that the alpha1 subunit is present in parvalbumin- and cholecystokinin-positive interneuron terminals that establish synapses on somata, dendrites, or axon initial segments. Our results demonstrate that NOsGC, composed of alpha1beta1 subunits, is selectively expressed in different types of interneurons and is present in their presynaptic GABAergic terminals, in which it may serve as a receptor for NO produced postsynaptically by nNOS in the very same synapse.
Collapse
Affiliation(s)
- Eszter Szabadits
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary, and
| | - Csaba Cserép
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary, and
| | - Anikó Ludányi
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary, and
| | - István Katona
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary, and
| | - Javier Gracia-Llanes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Valencia, E-46100 Burjasot, Spain
| | - Tamás F. Freund
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary, and
| | - Gábor Nyíri
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary, and
| |
Collapse
|
43
|
Almanza A, Navarrete F, Vega R, Soto E. Modulation of voltage-gated Ca2+ current in vestibular hair cells by nitric oxide. J Neurophysiol 2006; 97:1188-95. [PMID: 17182910 DOI: 10.1152/jn.00849.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The structural elements of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway have been described in the vestibular peripheral system. However, the functions of NO in the vestibular endorgans are still not clear. We evaluated the action of NO on the Ca(2+) currents in hair cells isolated from the semicircular canal crista ampullaris of the rat (P14-P18) by using the whole cell and perforated-cell patch-clamp technique. The NO donors 3-morpholinosydnonimine (SIN-1), sodium nitroprusside (SNP), and (+/-)-(E)-4-ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexen-1-yl-nicotinamide (NOR-4) inhibited the Ca(2+) current in hair cells in a voltage-independent manner. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) prevented the inhibitory effect of SNP on the Ca(2+) current. The selective inhibitor of the soluble form of the enzyme guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), also decreased the SNP-induced inhibition of the Ca(2+) current. The membrane-permeant cGMP analogue 8-Br-cGMP mimicked the SNP effect. KT-5823, a specific inhibitor of cGMP-dependent protein kinase (PGK), prevented the inhibition of the Ca(2+) current by SNP and 8-Br-cGMP. In the presence of N-ethylmaleimide (NEM), a sulfhydryl alkylating agent that prevents the S-nitrosylation reaction, the SNP effect on the Ca(2+) current was significantly diminished. These results demonstrated that NO inhibits in a voltage-independent manner the voltage-activated Ca(2+) current in rat vestibular hair cells by the activation of a cGMP-signaling pathway and through a direct action on the channel protein by a S-nitrosylation reaction. The inhibition of the Ca(2+) current by NO may contribute to the regulation of the intracellular Ca(2+) concentration and hair-cell synaptic transmission.
Collapse
Affiliation(s)
- Angélica Almanza
- Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla 72000, Mexico
| | | | | | | |
Collapse
|
44
|
Straub VA, Grant J, O'Shea M, Benjamin PR. Modulation of serotonergic neurotransmission by nitric oxide. J Neurophysiol 2006; 97:1088-99. [PMID: 17135468 DOI: 10.1152/jn.01048.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) and serotonin (5-HT) are two neurotransmitters with important roles in neuromodulation and synaptic plasticity. There is substantial evidence for a morphological and functional overlap between these two neurotransmitter systems, in particular the modulation of 5-HT function by NO. Here we demonstrate for the first time the modulation of an identified serotonergic synapse by NO using the synapse between the cerebral giant cell (CGC) and the B4 neuron within the feeding network of the pond snail Lymnaea stagnalis as a model system. Simultaneous electrophysiological recordings from the pre- and postsynaptic neurons show that blocking endogenous NO production in the intact nervous system significantly reduces the B4 response to CGC activity. The blocking effect is frequency dependent and is strongest at low CGC frequencies. Conversely, bath application of the NO donor DEA/NONOate significantly enhances the CGC-B4 synapse. The modulation of the CGC-B4 synapse is mediated by the soluble guanylate cyclase (sGC)/cGMP pathway as demonstrated by the effects of the sGC antagonist 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). NO modulation of the CGC-B4 synapse can be mimicked in cell culture, where application of 5-HT puffs to isolated B4 neurons simulates synaptic 5-HT release. Bath application of diethylamine NONOate (DEA/NONOate) enhances the 5-HT induced response in the isolated B4 neuron. However, the cell culture experiment provided no evidence for endogenous NO production in either the CGC or B4 neuron suggesting that NO is produced by an alternative source. Thus we conclude that NO modulates the serotonergic CGC-B4 synapse by enhancing the postsynaptic 5-HT response.
Collapse
Affiliation(s)
- Volko A Straub
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
45
|
Oliver D, Taberner AM, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman MC. The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 2006; 26:6181-9. [PMID: 16763026 PMCID: PMC1806704 DOI: 10.1523/jneurosci.1047-06.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large-conductance voltage- and Ca(2+)-activated K+ channels (BKCa) are involved in shaping spiking patterns in many neurons. Less is known about their role in mammalian inner hair cells (IHCs), mechanosensory cells with unusually large BKCa currents. These currents may be involved in shaping the receptor potential, implying crucial importance for the properties of afferent auditory signals. We addressed the function of BKCa by recording sound-induced responses of afferent auditory nerve (AN) fibers from mice with a targeted deletion of the pore-forming alpha-subunit of BKCa (BKalpha(-/-)) and comparing these with voltage responses of current-clamped IHCs. BKCa-mediated currents in IHCs were selectively abolished in BKalpha(-/-), whereas cochlear physiology was essentially normal with respect to cochlear sensitivity and frequency tuning.BKalpha(-/-) AN fibers showed deteriorated precision of spike timing, measured as an increased variance of first spike latency in response to tone bursts. This impairment could be explained by a slowed voltage response in the presynaptic IHC resulting from the reduced K+ conductance in the absence of BKCa. Maximum spike rates of AN fibers were reduced nearly twofold in BKalpha(-/-), contrasting with increased voltage responses of IHCs. In addition to presynaptic changes, which may be secondary to a modest depolarization of BKalpha(-/-) IHCs, this reduction in AN rates suggests a role of BKCa in postsynaptic AN neurons, which was supported by increased refractory periods. In summary, our results indicate an essential role of IHC BKCa channels for precise timing of high-frequency cochlear signaling as well as a function of BKCa in the primary afferent neuron.
Collapse
Affiliation(s)
- Dominik Oliver
- Physiologisches Institut, Universität Freiburg, D-79104 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Andric SA, Kostic TS, Stojilkovic SS. Contribution of multidrug resistance protein MRP5 in control of cyclic guanosine 5'-monophosphate intracellular signaling in anterior pituitary cells. Endocrinology 2006; 147:3435-45. [PMID: 16614078 DOI: 10.1210/en.2006-0091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The energy-dependent cyclic nucleotide cellular efflux is operative in numerous eukaryotic cells and could be mediated by multidrug resistance proteins MRP4, MRP5, and MRP8. In pituitary cells, however, the operation of export pumps and their contribution to the control of intracellular cyclic nucleotide levels were not studied previously. Here we show that cellular efflux of cyclic nucleotides was detectable in normal and immortalized GH(3) pituitary cells under resting conditions and was enlarged after concurrent stimulation of cAMP and cGMP production with GHRH, corticotropin-releasing factor, vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and forskolin. In resting and stimulated cells, the efflux pumps transported the majority of de novo-produced cGMP, limiting its intracellular accumulation in a concentration range of 1-2 microm. In contrast, only a small fraction of cAMP was released and there was a time- and concentration-dependent accumulation of this messenger in the cytosol, ranging from 1-100 microm. Stimulation and inhibition of cGMP production alone did not affect cAMP efflux, suggesting the operation of two different transport pathways in pituitary cells. The rates of cAMP and cGMP effluxes were comparable, and both pathways were blocked by probenecid and progesterone. Pituitary cells expressed mRNA transcripts for MRP4, MRP5, and MRP8, whereas GH(3) cells expressed only transcripts for MRP5. Down-regulation of MRP5 expression in GH(3) cells decreased cGMP release without affecting cAMP efflux. These results indicate that cyclic nucleotide cellular efflux plays a critical role in elimination of intracellular cGMP but not cAMP in pituitary cells and that such selectivity is achieved by expression of MRP5.
Collapse
Affiliation(s)
- Silvana A Andric
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
47
|
Gonzalez-Iglesias AE, Jiang Y, Tomić M, Kretschmannova K, Andric SA, Zemkova H, Stojilkovic SS. Dependence of electrical activity and calcium influx-controlled prolactin release on adenylyl cyclase signaling pathway in pituitary lactotrophs. Mol Endocrinol 2006; 20:2231-46. [PMID: 16645040 DOI: 10.1210/me.2005-0363] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pituitary lactotrophs in vitro fire extracellular Ca2+-dependent action potentials spontaneously through still unidentified pacemaking channels, and the associated voltage-gated Ca2+influx (VGCI) is sufficient to maintain basal prolactin (PRL) secretion high and steady. Numerous plasma membrane channels have been characterized in these cells, but the mechanism underlying their pacemaking activity is still not known. Here we studied the relevance of cyclic nucleotide signaling pathways in control of pacemaking, VGCI, and PRL release. In mixed anterior pituitary cells, both VGCI-inhibitable and -insensitive adenylyl cyclase (AC) subtypes contributed to the basal cAMP production, and soluble guanylyl cyclase was exclusively responsible for basal cGMP production. Inhibition of basal AC activity, but not soluble guanylyl cyclase activity, reduced PRL release. In contrast, forskolin stimulated cAMP and cGMP production as well as pacemaking, VGCI, and PRL secretion. Elevation in cAMP and cGMP levels by inhibition of phosphodiesterase activity was also accompanied with increased PRL release. The AC inhibitors attenuated forskolin-stimulated cyclic nucleotide production, VGCI, and PRL release. The cell-permeable 8-bromo-cAMP stimulated firing of action potentials and PRL release and rescued hormone secretion in cells with inhibited ACs in an extracellular Ca2+-dependent manner, whereas 8-bromo-cGMP and 8-(4-chlorophenylthio)-2'-O-methyl-cAMP were ineffective. Protein kinase A inhibitors did not stop spontaneous and forskolin-stimulated pacemaking, VGCI, and PRL release. These results indicate that cAMP facilitates pacemaking, VGCI, and PRL release in lactotrophs predominantly in a protein kinase A- and Epac cAMP receptor-independent manner.
Collapse
Affiliation(s)
- Arturo E Gonzalez-Iglesias
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch/National Institute of Child Health and Human Development/National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Single-unit electrophysiological recording studies have examined the activity of sensory neurons in the trigeminal ganglion that innervate the intracranial meninges to better understand their possible role in headache. A key question is whether the meningeal sensory neurons are similar to nociceptive neurons in other tissues or, alternatively, whether they have unique properties that might be of significance for headache pathogenesis and drug therapy. Such studies have indeed found that the intracranial dura is innervated by neurons that exhibit properties characteristic of nociceptors in other tissues, including chemosensitivity and sensitization. This sensitization, consisting of an enhanced responsiveness to mechanical stimuli, might be relevant to symptoms that are characteristic of certain headaches that indicate the presence of an exaggerated intracranial mechanosensitivity. Studies that examined whether the anti-migraine agent sumatriptan might inhibit this sensitization (in addition to its well-known inhibition of neurotransmitter release) found that it had no inhibitory effect but rather produced a calcium-dependent discharge, which might account for the initial worsening of headache that can follow sumatriptan administration. In studies that examined the effects of vasodilator agents, nitroprusside produced mixed effects on mechanosensitivity, whereas calciton gene-related peptide (CGRP) had no effect on either spontaneous or mechanically evoked discharge. These results call into question the role of vasodilation in headache and suggest that the role of CGRP in headache may be through its action as a central neurotransmitter rather than through vasodilation and activation of meningeal nociceptors. In general, studies of meningeal sensory neurons have not found evidence of unique properties that distinguish them from nociceptive neurons in other tissues. Ultimately the distinctive clinical characteristics of headache may prove to be related not so much to any differences in the intrinsic molecular or cellular properties of the meningeal sensory neurons but rather to the distinctive properties of the tissue that they innervate.
Collapse
Affiliation(s)
- Andrew M Strassman
- Dept. of Anesthesia, DA-717, Beth Israel Deaconess Med. Ctr., 330 Brookline Ave., Boston, MA 02215, USA.
| | | |
Collapse
|
49
|
Liu YC, Wu SN. BAY 41‐2272, a potent activator of soluble guanylyl cyclase, stimulates calcium elevation and calcium‐activated potassium current in pituitary GH3cells. Clin Exp Pharmacol Physiol 2006; 32:1078-87. [PMID: 16445574 DOI: 10.1111/j.1440-1681.2005.04315.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of BAY 41-2272, a nitric oxide-independent activator of soluble guanylyl cyclase, on Ca2+ signalling and ion currents were investigated in pituitary GH3 cells. Intracellular Ca2+ concentrations ([Ca2+]i) in these cells were increased by BAY 41-2272. Removing extracellular Ca2+ abolished the BAY 41-2272-induced increase in [Ca2+]i. After [Ca2+]i was elevated by BAY 41-2272 (300 nmol/L), subsequent application of 1-benzyl-3-(5'-hydroxymethyl-2'-furyl) indazole (YC-1; 1 micromol/L) did not increase [Ca2+]i further. In whole-cell recordings, BAY 41-2272 reversibly stimulated Ca2+-activated K+ current (I(K(Ca))) with an EC50 of 225 +/- 8 nmol/L. At 3 micromol/L, BAY 41-2272 slightly and significantly decreased L-type Ca2+ current. In the cell-attached configuration, BAY 41-2272 (300 nmol/L) enhanced the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels. After BK(Ca) channel activity was stimulated by spermine NONOate (30 micromol/L) or YC-1 (10 micromol/L) in cell-attached patches, subsequent application of BAY 41-2272 (300 nmol/L) further increased the channel open probability. In the inside-out configuration, BAY 41-2272 applied to the intracellular surface of excised patches enhanced BK(Ca) channel activity. Unlike 1 micromol/L paxilline, 1H-[1,2,4]oxadiazolol-[4,3a] quinoxalin-1-one (ODQ; 10 micromol/L) or heme (10 micromol/L) had no effect on BAY 41-2272-stimulated channel activity. BAY 41-2272 caused no shift in the activation curve of BK(Ca) channels; however, it did increase the Ca2+ sensitivity of these channels. At 300 nmol/L, BAY 41-2272 reduced the firing rate of spontaneous action potentials stimulated by thyrotropin-releasing hormone (10 micromol/L). The BK(Ca) channel activity was also enhanced by 300 nmol/L BAY 41-2272 in neuroblastoma IMR-32 cells. Therefore, the BAY 41-2272-induced increase in [Ca2+]i is primarily explained by an increase in Ca2+ influx. The BAY 41-2272-mediated simulation of IK(Ca) may result from direct activation of BKCa channels and indirectly as a result of elevated [Ca2+]i.
Collapse
Affiliation(s)
- Yen-Chin Liu
- Department of Anaesthesiology, National Cheng-Kung University Medical College, Tainan, Taiwan
| | | |
Collapse
|
50
|
Han NLR, Ye JS, Yu ACH, Sheu FS. Differential mechanisms underlying the modulation of delayed-rectifier K+ channel in mouse neocortical neurons by nitric oxide. J Neurophysiol 2006; 95:2167-78. [PMID: 16421196 DOI: 10.1152/jn.01185.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The modulatory effects of nitric oxide (NO) on voltage-dependent K+ channels are intricate. In our present study, the augmentation and reduction of K+ currents by NO donor S-nitro-N-acetylpenicillamine (SNAP) and pure dissolved NO was observed in dissociated neurons from mice neocortex with both whole cell and cell-attached patch clamp. By using a specific electrochemical sensor, the critical concentrations of NO that increased or reduced the channel activities were accurately quantified. Low concentrations of SNAP (20 microM) or NO solution (0.1 microM) enhanced whole cell delayed rectifier K+ -current (IK) and left the fast inactivating A current (IA) unchanged. However, high concentrations of SNAP (100 microM) and NO (0.5 microM) reduced both IK and IA currents. In cell-attached experiments, a significant increase in channel open probability (NP0) was observed when using low concentrations of SNAP or NO. High concentrations of SNAP or NO dramatically decreased NP0. The increase in channel activities by low concentrations of SNAP was abolished in the presence of either inhibitors of soluble guaylate cyclase or inhibitors of cGMP-dependent protein kinase G, suggesting a link to the NO-cGMP signaling cascade. The reduction of channel activities by high concentrations of SNAP was reversed by the reducing agent dithiothreitol, implying a redox reaction mechanism. Thus both NO-cGMP signaling and a redox mechanism are involved in the modulation of IK channel activity for neuron excitability.
Collapse
Affiliation(s)
- Nian-Lin R Han
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|