1
|
Murakami K, Kikugawa S, Kobayashi Y, Uehara S, Suzuki T, Kato H, Udagawa N, Nakamura Y. Olfactomedin-like protein OLFML1 inhibits Hippo signaling and mineralization in osteoblasts. Biochem Biophys Res Commun 2018; 505:419-425. [PMID: 30266405 DOI: 10.1016/j.bbrc.2018.09.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
Congenital scoliosis is a lateral curvature of the spine that is due to the presence of vertebral anomalies. Although genetic and environmental factors are involved in the pathogenesis of congenital scoliosis, the specific cause of only a small number of individuals has been identified to date. We identified a de novo missense mutation in the olfactomedin-like 1 (OLFML1) gene by whole-exome sequencing of a patient with congenital scoliosis. Then, we carried out further functional investigation in mice. An assessment of the tissue distribution of Olfml1 revealed it to be prominently expressed in developing skeletal tissues, specifically osteoblasts. Short hairpin RNA-mediated knockdown of Olfml1 in osteoblasts induced the translocation of Yes-associated protein (YAP) transcriptional coactivator from the cytoplasm to the nucleus, which accelerated the Hippo signaling pathway to promote osteoblast mineralization. In contrast, experimentally induced gain of function of Olfml1 retained YAP in the cytoplasm. There appears to exist a novel cell-autonomous mechanism by which osteoblasts avoid excess mineralization through Olfml1. Our results also indicate that mutation of OLFML1 leads to impaired osteoblast differentiation and abnormal development of bone tissue.
Collapse
Affiliation(s)
- Kohei Murakami
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan; Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Shingo Kikugawa
- DNA Chip Research Inc., 1-15-1 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Takako Suzuki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
2
|
Piras IS, Mills G, Llaci L, Naymik M, Ramsey K, Belnap N, Balak CD, Jepsen WM, Szelinger S, Siniard AL, Lewis CR, LaFleur M, Richholt RF, De Both MD, Avela K, Rangasamy S, Craig DW, Narayanan V, Järvelä I, Huentelman MJ, Schrauwen I. Exploring genome-wide DNA methylation patterns in Aicardi syndrome. Epigenomics 2017; 9:1373-1386. [PMID: 28967789 DOI: 10.2217/epi-2017-0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM To explore differential DNA methylation (DNAm) in Aicardi syndrome (AIC), a severe neurodevelopmental disorder with largely unknown etiology. PATIENTS & METHODS We characterized DNAm in AIC female patients and parents using the Illumina 450 K array. Differential DNAm was assessed using the local outlier factor algorithm, and results were validated via qPCR in a larger set of AIC female patients, parents and unrelated young female controls. Functional epigenetic modules analysis was used to detect pathways integrating both genome-wide DNAm and RNA-seq data. RESULTS & CONCLUSION We detected differential methylation patterns in AIC patients in several neurodevelopmental and/or neuroimmunological networks. These networks may be part of the underlying pathogenic mechanisms involved in the disease.
Collapse
Affiliation(s)
- Ignazio S Piras
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Gabrielle Mills
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Lorida Llaci
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Marcus Naymik
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Newell Belnap
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Chris D Balak
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Wayne M Jepsen
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Szabolcs Szelinger
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Ashley L Siniard
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Candace R Lewis
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Madison LaFleur
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Ryan F Richholt
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Matt D De Both
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Kristiina Avela
- Department of Clinical Genetics, Helsinki University Hospital, Meilahdentie 2, FI-00029 Helsinki, Finland
| | - Sampathkumar Rangasamy
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - David W Craig
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,University of Southern California, Keck School of Medicine, Department of Translational Genomics, Los Angeles, NRT 1450 Biggy Street, CA 90033, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Haartmaninkatu 8, 00251 Helsinki, Finland
| | - Matthew J Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA
| | - Isabelle Schrauwen
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Neurogenomics Division, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, USA.,Center for Statistical Genetics, Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Matsubara Y, Hirasawa T, Egawa S, Hattori A, Suganuma T, Kohara Y, Nagai T, Tamura K, Kuratani S, Kuroiwa A, Suzuki T. Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods. Nat Ecol Evol 2017; 1:1392-1399. [PMID: 29046533 DOI: 10.1038/s41559-017-0247-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/22/2017] [Indexed: 11/09/2022]
Abstract
Elucidating how body parts from different primordia are integrated during development is essential for understanding the nature of morphological evolution. In tetrapod evolution, while the position of the hindlimb has diversified along with the vertebral formula, the mechanism responsible for this coordination has not been well understood. However, this synchronization suggests the presence of an evolutionarily conserved developmental mechanism that coordinates the positioning of the hindlimb skeleton derived from the lateral plate mesoderm with that of the sacral vertebrae derived from the somites. Here we show that GDF11 secreted from the posterior axial mesoderm is a key factor in the integration of sacral vertebrae and hindlimb positioning by inducing Hox gene expression in two different primordia. Manipulating the onset of GDF11 activity altered the position of the hindlimb in chicken embryos, indicating that the onset of Gdf11 expression is responsible for the coordinated positioning of the sacral vertebrae and hindlimbs. Through comparative analysis with other vertebrate embryos, we also show that each tetrapod species has a unique onset timing of Gdf11 expression, which is tightly correlated with the anteroposterior levels of the hindlimb bud. We conclude that the evolutionary diversity of hindlimb positioning resulted from heterochronic shifts in Gdf11 expression, which led to coordinated shifts in the sacral-hindlimb unit along the anteroposterior axis.
Collapse
Affiliation(s)
- Yoshiyuki Matsubara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Ayumi Hattori
- Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku Sendai, 980-8575, Japan
| | - Takaya Suganuma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuhei Kohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tatsuya Nagai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | | | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
4
|
Anholt RRH. Olfactomedin proteins: central players in development and disease. Front Cell Dev Biol 2014; 2:6. [PMID: 25364714 PMCID: PMC4206993 DOI: 10.3389/fcell.2014.00006] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022] Open
Abstract
Olfactomedin proteins are characterized by a conserved domain of \texorpdfstring~\textasciitilde250 amino acids corresponding to the olfactomedin archetype first discovered in olfactory neuroepithelium. They arose early in evolution and occur throughout the animal kingdom. In mice and humans olfactomedin proteins comprise a diverse array of glycoproteins, many of which are critical for early development and functional organization of the nervous system as well as hematopoiesis. Olfactomedin domains appear to facilitate protein-protein interactions, intercellular interactions, and cell adhesion. Several members of the family have been implicated in various common diseases, notably myocilin in glaucoma and OLFM4 in cancer. This review highlights this important, hitherto understudied family of proteins.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
5
|
Rodríguez-Sánchez IP, Garza-Rodríguez ML, Mohamed-Noriega K, Voruganti VS, Tejero ME, Delgado-Enciso I, Pérez-Ibave DC, Schlabritz-Loutsevitch NE, Mohamed-Noriega J, Martinez-Fierro ML, Reséndez-Pérez D, Cole SA, Cavazos-Adame H, Comuzzie AG, Mohamed-Hamsho J, Barrera-Saldaña HA. Olfactomedin-like 3 (OLFML3) gene expression in baboon and human ocular tissues: cornea, lens, uvea, and retina. J Med Primatol 2013; 42:105-11. [PMID: 23398349 DOI: 10.1111/jmp.12037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Olfactomedin-like is a family of polyfunctional polymeric glycoproteins. This family has at least four members. One member of this family is OLFML3, which is preferentially expressed in placenta but is also detected in other adult tissues including the liver and heart. However, its orthologous rat gene is expressed in the iris, sclera, trabecular meshwork, retina, and optic nerve. METHODS OLFML3 messenger amplification was performed by RT-PCR from human and baboon ocular tissues. The products were cloned and sequenced. RESULTS We report OLFML3 expression in human and baboon eye. The full coding DNA sequence has 1221 bp, from which an open reading frame of 406 amino acid was obtained. The baboon OLFML3 gene nucleotidic sequence has 98% and amino acidic 99% similarity with humans. CONCLUSIONS OLFML3 gene expression in human and baboon ocular tissues and its high similarity make the baboon a powerful model to deduce the physiological and/or metabolic function of this protein in the eye.
Collapse
Affiliation(s)
- I P Rodríguez-Sánchez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rangachari K, Jeyalaxmi J, Eswari Pandaranayaka PJ, Prasanthi N, Sundaresan P, Krishnadas SR, Krishnaswamy S. Significance of G-X-W motif in the myocilin olfactomedin domain. J Ocul Biol Dis Infor 2011; 4:154-8. [DOI: 10.1007/s12177-012-9089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022] Open
|
7
|
Menaa F, Braghini CA, Vasconcellos JPCD, Menaa B, Costa VP, Figueiredo ESD, Melo MBD. Keeping an eye on myocilin: a complex molecule associated with primary open-angle glaucoma susceptibility. Molecules 2011; 16:5402-21. [PMID: 21709622 PMCID: PMC6264709 DOI: 10.3390/molecules16075402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 02/04/2023] Open
Abstract
MYOC encodes a secretary glycoprotein of 504 amino acids named myocilin. MYOC is the first gene to be linked to juvenile open-angle glaucoma (JOAG) and some forms of adult-onset primary open-angle glaucoma (POAG). The gene was identified as an up-regulated molecule in cultured trabecular meshwork (TM) cells after treatment with dexamethasone and was originally referred to as trabecular meshwork-inducible glucocorticoid response (TIGR). Elevated intraocular pressure (IOP), due to decreased aqueous outflow, is the strongest known risk factor for POAG. Increasing evidence showed that the modulation of the wild-type (wt) myocilin protein expression is not causative of glaucoma while some misfolded and self-assembly aggregates of mutated myocilin may be associated with POAG in related or unrelated populations. The etiology of the disease remains unclear. Consequently, a better understanding of the molecular mechanisms underlyingPOAG is required to obtain early diagnosis, avoid potential disease progression, and develop new therapeutic strategies. In the present study, we review and discuss the most relevant studies regarding structural characterizations, expressions, molecular interactions, putative functions of MYOC gene and/or its corresponding protein in POAG etiology.
Collapse
Affiliation(s)
- Farid Menaa
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas-SP 13083-875, Brazil; (C.A.B.); (M.B.D.M.)
- Author to whom correspondence should be addressed; ; or ; Tel.: +55-19-3521-1138; Fax: +55-19-3521-1089
| | - Carolina Ayumi Braghini
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas-SP 13083-875, Brazil; (C.A.B.); (M.B.D.M.)
| | - Jose Paulo Cabral De Vasconcellos
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas-SP 13083-888, Brazil; (J.P.C.D.V.); (V.P.C.); (E.S.D.F.)
| | - Bouzid Menaa
- Department of Chemistry and Nanobiotechnology, Fluorotronics, Inc., San Diego, CA 92081, USA; (B.M.)
| | - Vital Paulino Costa
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas-SP 13083-888, Brazil; (J.P.C.D.V.); (V.P.C.); (E.S.D.F.)
| | - Eugênio Santana De Figueiredo
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas-SP 13083-888, Brazil; (J.P.C.D.V.); (V.P.C.); (E.S.D.F.)
| | - Monica Barbosa De Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas-SP 13083-875, Brazil; (C.A.B.); (M.B.D.M.)
| |
Collapse
|
8
|
Martinez AF, Muenke M, Arcos-Burgos M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:1-10. [PMID: 21184579 PMCID: PMC4101183 DOI: 10.1002/ajmg.b.31137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/28/2010] [Indexed: 12/24/2022]
Abstract
The findings of a recent study associate LPHN3, a member of the latrophilin family, with an increased risk of developing attention deficit/hyperactivity disorder (ADHD), the most common psychiatric disorder in childhood and adolescence. Latrophilins comprise a new family of G protein-coupled receptors of unknown native physiological function that mediate the neurotoxic effects of α-latrotoxin, a potent toxin found in black widow spider venom. This receptor-toxin interaction has helped to elucidate the mechanistic aspects of neurotransmitter and hormone release in vertebrates. Such unprecedented discovery points to a new direction in the assessment of ADHD and suggest that further study of this receptor family may provide novel insights into the etiology and treatment of ADHD and other related psychiatric conditions.
Collapse
Affiliation(s)
| | | | - Mauricio Arcos-Burgos
- Correspondence to: Dr. Mauricio Arcos-Burgos, M.D., Ph.D., National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B209, Bethesda, MD 20892.
| |
Collapse
|
9
|
Abstract
It is well documented that mutations in the MYOCILIN gene may lead to juvenile- and adult-onset primary open-angle glaucoma. However, the functions of wild-type myocilin are still not well understood. To study the functions of human myocilin and its two proteolytic fragments, these proteins were expressed in HEK293 cells. Conditioned medium from myocilin-expressing cells, as well as purified myocilin, induced the formation of stress fibers in primary cultures of human trabecular meshwork or NIH 3T3 cells. Stress fiber-inducing activity of myocilin was blocked by antibodies against myocilin, as well as secreted inhibitors of Wnt signaling, secreted Frizzled-related protein 1 (sFRP1) or sFRP3, and beta-catenin small interfering RNA. Interaction of myocilin with sFRP1, sFRP3, and several Frizzled receptors was confirmed by immunoprecipitation experiments and by binding of myocilin to the surface of cells expressing cysteine-rich domains of different Frizzled and sFRPs. Treatment of NIH 3T3 cells with myocilin and its fragments induced intracellular redistribution of beta-catenin and its accumulation on the cellular membrane but did not induce nuclear accumulation of beta-catenin. Overexpression of myocilin in the eye angle tissues of transgenic mice stimulated accumulation of beta-catenin in these tissues. Myocilin and Wnt proteins may perform redundant functions in the mammalian eye, since myocilin modulates Wnt signaling by interacting with components of this signaling pathway.
Collapse
|
10
|
Robust Stability of the Embryonic Axial Pattern Requires a Secreted Scaffold for Chordin Degradation. Cell 2008; 134:854-65. [DOI: 10.1016/j.cell.2008.07.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/30/2008] [Accepted: 07/02/2008] [Indexed: 11/15/2022]
|
11
|
Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. J Neurosci 2008; 28:7900-10. [PMID: 18667622 DOI: 10.1523/jneurosci.0617-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Olfactomedin 1 (Olfm1) is a secreted glycoprotein belonging to a family of olfactomedin domain-containing proteins. It is involved in the regulation of neural crest production in chicken and promotes neuronal differentiation in Xenopus. Here, we investigate the functions of Olfm1 in zebrafish eye development. Overexpression of full-length Olfm1, and especially its BMY form lacking the olfactomedin domain, increased the thickness of the optic nerve and produced a more extended projection field in the optic tectum compared with control embryos. In contrast, injection of olfm1-morpholino oligonucleotide (Olfm1-MO) reduced the eye size, inhibited optic nerve extension, and increased the number of apoptotic cells in the retinal ganglion cell and inner nuclear layers. Overexpression of full-length Olfm1 increased the lateral separation of the expression domains of eye-field markers, rx3 and six3. The Olfm1-MO had the opposite effect. These data suggest that zebrafish Olfm1 may play roles in the early eye determination, differentiation, optic nerve extension, and branching of the retinal ganglion cell axon terminals, with the N-terminal region of Olfm1 being critical for these effects. Injection of RNA encoding WIF-1, a secreted inhibitor of Wnt signaling, caused changes in the expression pattern of rx3 similar to those observed after Olfm1-MO injection. Simultaneous overexpression of WIF-1 and Olfm1 abolished the WIF-1 effect. Physical interaction of WIF-1 and Olfm1 was demonstrated by coimmunoprecipitation experiments. We concluded that Olfm1 serves as a modulator of Wnt signaling.
Collapse
|
12
|
Wan B, Zhou YB, Zhang X, Zhu H, Huo K, Han ZG. hOLFML1, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro. FEBS Lett 2008; 582:3185-92. [DOI: 10.1016/j.febslet.2008.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 01/21/2023]
|
13
|
Liu W, Liu Y, Zhu J, Wright E, Ding I, Rodgers GP. Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clin Cancer Res 2008; 14:1041-9. [PMID: 18281536 DOI: 10.1158/1078-0432.ccr-07-4125] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE hGC-1 (human granulocyte colony-stimulating factor-stimulated clone 1) is a gastrointestinal protein that is a member of the olfactomedin glycoprotein family. Its biological function remains poorly understood. Aberrant expression of hGC-1 in some human carcinomas has been recently reported. The purpose of this study was to examine hGC-1 expression in colon carcinoma and explore the relationship between hGC-1 expression and the clinicopathologic features of patients with colon cancer. EXPERIMENTAL DESIGN The expression of hGC-1 in colon adenocarcinoma tissues was examined by dot-blot analysis, in situ hybridization, and immunohistochemistry. The association of hGC-1 expression pattern with patient differentiation grade, tumor stage, metastasis, and survival were examined. To further investigate the involvement of hGC-1 in colon cancer progression, human colon carcinoma (HT-29) cells overexpressing hGC-1 were established and cell proliferation, adhesion, and migration were studied. RESULTS Compared with normal colon mucosa, the up-regulation of hGC-1 was more frequently detected in more differentiated colon cancers, whereas down-regulation or no expression was associated with poorly differentiated colon cancers. Interestingly, hGC-1 down-regulation was also found in late tumor-node-metastasis stage, metastasis, and in patients with shorter survival. The morphology and cortical actin distribution of HT-29 cells were altered by hGC-1 overexpression. However, this did not change cell proliferation, but decreased cell adhesion and migration. CONCLUSION Our findings indicate that hGC-1 is involved in colon cancer adhesion and metastasis, and that hGC-1 may be a useful marker for tumor differentiation and progression of human colon carcinoma.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, Digestive Disease Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
14
|
Hillier BJ, Vacquier VD. Structural features and functional domains of amassin-1, a cell-binding olfactomedin protein. Biochem Cell Biol 2008; 85:552-62. [PMID: 17901897 DOI: 10.1139/o07-055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amassin-1 mediates a rapid cell adhesion that tightly adheres sea urchin coelomocytes (body cavity immunocytes) together. Three major structural regions exist in amassin-1: a short beta region, 3 coiled coils, and an olfactomedin domain. Amassin-1 contains 8 disulfide-bonded cysteines that, upon reduction, render it inactive. Truncated forms of recombinant amassin-1 were expressed and purified from Pichia pastoris and their disulfide bonding and biological activities investigated. Expressed alone, the olfactomedin domain contained 2 intramolecular disulfide bonds, existed in a monomeric state, and inhibited amassin-1-mediated clotting of coelomocytes by a calcium-dependent cell-binding activity. The N-terminal beta region, containing 3 cysteines, was not required for clotting activity. The coiled coils may dimerize amassin-1 in a parallel orientation through a homodimerizing disulfide bond. Neither amassin-1 fragments that were disulfide-linked as dimers or that were engineered to exist as dimers induced coelomocytes clotting. Clotting required higher multimeric states of amassin-1, possibly tetramers, which occurred through the N-terminal beta region and (or) the first segment of coiled coils.
Collapse
Affiliation(s)
- Brian J Hillier
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | |
Collapse
|
15
|
Olfactomedin-2 mediates development of the anterior central nervous system and head structures in zebrafish. Mech Dev 2007; 125:167-81. [PMID: 18037275 DOI: 10.1016/j.mod.2007.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/06/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022]
Abstract
Olfactomedins comprise a diverse family of secreted glycoproteins, which includes noelin, tiarin, pancortin and gliomedin, implicated in development of the nervous system, and the glaucoma-associated protein myocilin. Here we show in zebrafish that olfactomedin-2 (OM2) is a developmentally regulated gene, and that knockdown of protein expression by morpholino antisense oligonucleotides leads to perturbations of nervous system development. Interference with OM2 expression results in impaired development of branchiomotor neurons, specific disruption of the late phase branchiomotor axon guidance, and affects development of the caudal pharyngeal arches, olfactory pits, eyes and optic tectum. Effects of OM2 knockdown on eye development are likely associated with Pax6 signaling in developing eyes, as Pax6.1 and Pax6.2 mRNA expression patterns are altered in the eyes of OM2 morphants. The specific absence of most cartilaginous structures in the pharyngeal arches indicates that the observed craniofacial phenotypes may be due to perturbed differentiation of cranial neural crest cells. Our studies show that this member of the olfactomedin protein family is an important regulator of development of the anterior nervous system.
Collapse
|
16
|
Liu W, Zhu J, Cao L, Rodgers GP. Expression of hGC-1 is correlated with differentiation of gastric carcinoma. Histopathology 2007; 51:157-65. [PMID: 17650212 DOI: 10.1111/j.1365-2559.2007.02763.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS The human G-CSF-stimulated clone-1 (hGC-1) gene encodes a 510-amino acid olfactomedin-related glycoprotein whose exact in vivo localization and function still remain elusive. The aim of this study was to demonstrate hGC-1 protein localization in the normal human gastrointestinal tract and to explore further a potential relationship between hGC-1 expression and gastric carcinoma. METHODS AND RESULTS A specific hGC-1 polyclonal antibody raised against purified hGC-1 protein was developed and characterized. Using immunohistochemistry, it was demonstrated that hGC-1 is expressed in the oesophagus, stomach, small intestine and colon. The expression pattern of hGC-1 protein in 173 cases of gastric carcinoma was investigated and a striking correlation was demonstrated between hGC-1 expression and histological type and differentiation of gastric carcinoma. Enhanced hGC-1 expression was more frequently seen in intestinal-type adenocarcinoma, whereas loss of expression tended to occur in the diffuse type. hGC-1 was highly expressed in well or moderately differentiated cancers and was remarkably reduced or lost in poorly differentiated or undifferentiated tumours. CONCLUSIONS These investigations have defined for the first time the expression pattern of hGC-1 in the normal human gastrointestinal tract and provide a novel and sensitive marker for the differentiation of gastric carcinoma.
Collapse
Affiliation(s)
- W Liu
- Molecular and Clinical Hematology Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
17
|
Maertens B, Hopkins D, Franzke CW, Keene DR, Bruckner-Tuderman L, Greenspan DS, Koch M. Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of ranvier formation. J Biol Chem 2007; 282:10647-59. [PMID: 17293346 DOI: 10.1074/jbc.m611339200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gliomedin, which has been implicated as a major player in genesis of the nodes of Ranvier, contains two collagenous domains and an olfactomedin-like domain and belongs to the group of type II transmembrane collagens that includes collagens XIII and XVII and ectodysplasin A. One characteristic of this protein family is that constituent proteins can exist in both transmembrane and soluble forms. Recently, gliomedin expressed at the tips of Schwann cell microvilli was found to bind axonal adhesion molecules neurofascin and NrCAM in interactions essential for Na(+)-channel clustering at the nodes of Ranvier in myelinating peripheral nerves. Interestingly, exogenously added olfactomedin domain was found to have the same effect as intact gliomedin. Here we analyze the tissue form of gliomedin and demonstrate that the molecule not only exists as full-length gliomedin but also as a soluble form shed from the cell surface in a furin-dependent manner. In addition, gliomedin can be further proteolytically processed by bone morphogenetic protein 1/Tolloid-like enzymes, resulting in release of the olfactomedin domain from the collagen domains. Interestingly, the later cleavage induces formation of higher order, insoluble molecular aggregates that may play important roles in Na(+)-channel clustering.
Collapse
Affiliation(s)
- Barbara Maertens
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee HS, Tomarev SI. Optimedin induces expression of N-cadherin and stimulates aggregation of NGF-stimulated PC12 cells. Exp Cell Res 2006; 313:98-108. [PMID: 17054946 PMCID: PMC1831829 DOI: 10.1016/j.yexcr.2006.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 10/24/2022]
Abstract
Optimedin, also known as olfactomedin 3, belongs to a family of olfactomedin domain-containing proteins. It is expressed in neural tissues and Pax6 is involved in the regulation of its promoter. To study possible effects of optimedin on the differentiation of neural cells, we produced stably transfected PC12 cell lines expressing optimedin under a tetracycline-inducible promoter. Cells expressing high levels of optimedin showed higher growth rates and stronger adhesion to the collagen extracellular matrix as compared with control PC12 cells. After stimulation with nerve growth factor (NGF), optimedin-expressing cells demonstrated elevated levels of N-cadherin, beta-catenin, alpha-catenin and occludin as compared with stimulated, control PC12 cells. Expression of optimedin induced Ca(2+)-dependent aggregation of NGF-stimulated PC12 cells and this aggregation was blocked by the expression of N-cadherin siRNA. Expression of optimedin also changed the organization of the actin cytoskeleton and inhibited neurite outgrowth in NGF-stimulated PC12 cells. We suggest that expression of optimedin stimulates the formation of adherent and tight junctions on the cell surface and this may play an important role in the differentiation of the brain and retina through the modulation of cytoskeleton organization, cell-cell adhesion and migration.
Collapse
Affiliation(s)
| | - Stanislav I. Tomarev
- * Corresponding author: Stanislav I. Tomarev, Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, Bldg. 7, Room 103, MSC 0704, Bethesda, MD 20892-0704, USA: Tel.: 301-496-8524; Fax: 301-496-8760; E-mail:
| |
Collapse
|
19
|
Koide T, Hayata T, Cho KWY. Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase. Development 2006; 133:2395-405. [PMID: 16687448 DOI: 10.1242/dev.02393] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholesterol regulates Hedgehog (Hh) signaling during early vertebrate development. Smith-Lemli-Opitz syndrome (SLOS) is caused by defects in 7-dehydrocholesterol reductase (DHCR7), an enzyme catalyzing the final step of cholesterol biosynthesis. Many developmental malformations attributed to SLOS occur in tissues and organs where Hh signaling is required for development, but the precise role of DHCR7 deficiency in this disease remains murky. We report that DHCR7 and Sonic Hedgehog (Shh) are co-expressed during midline development in Xenopus embryos. DHCR7 has previously been implicated to function as a positive regulator of Hh signaling that acts to regulate the cholesterol adduction of Hh ligand or to affect Hh signaling in the responding cell. We present gain- and loss-of-function analyses suggesting that DHCR7 functions as a negative regulator of Hh signaling at the level or downstream of Smoothened (Smo) and affects intracellular Hh signaling. Our analysis also raises the possibility that the human condition SLOS is caused not only by disruption of the enzymatic role of DHCR7 as a reductase in cholesterol biosynthesis, but may also involve defects in DHCR7 resulting in derepression of Shh signaling.
Collapse
Affiliation(s)
- Tetsuya Koide
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
20
|
Anteroposterior and Dorsoventral Patterning. Dev Neurobiol 2006. [DOI: 10.1007/0-387-28117-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Liu W, Chen L, Zhu J, Rodgers GP. The glycoprotein hGC-1 binds to cadherin and lectins. Exp Cell Res 2006; 312:1785-97. [PMID: 16566923 DOI: 10.1016/j.yexcr.2006.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 12/13/2022]
Abstract
Human granulocyte colony stimulating factor stimulated clone-1 (hGC-1, also known as GW112, OLM4, and hOlfD) is an olfactomedin-related glycoprotein of unknown function. We performed a series of biochemical studies to characterize its function. Using hGC-1 purified from baculovirus Sf9 cells we demonstrated that hGC-1 is a secreted glycoprotein containing N-linked carbohydrate chains and forms disulfide-bonded multimers. It binds to cell surfaces and to the locutions ricinus communis agglutinin I, concanavalin A and wheat germ agglutinin. Purified hGC-1 enhanced NIH3T3 and 293T/17 cell spreading and attachment, as did hGC-1-enriched culture supernatants of 293T/17 cells transfected with an hGC-1 expression vector. Coimmunoprecipitation studies demonstrated that hGC-1 interacts with cadherin in 293T/17 cells. This interaction depends on the C-terminal olfactomedin domain, but does not require the five well-conserved cysteine residues. However, cysteine residues at 83, 85, 246 and 437 are essential for secretion, and cysteine 226 is critical for hGC-1 multimer formation. Our studies demonstrated that hGC-1, an extracellular matrix glycoprotein, facilitates cell adhesion. Its potential interaction with endogenous cell surface lectins and cadherin may mediate this function.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bldg.10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
22
|
von Schalburg KR, McCarthy SP, Rise ML, Hutson JC, Davidson WS, Koop BF. Expression of morphogenic genes in mature ovarian and testicular tissues: Potential stem-cell niche markers and patterning factors. Mol Reprod Dev 2006; 73:142-52. [PMID: 16224774 DOI: 10.1002/mrd.20359] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Morphogens are developmental regulators that modulate different tissue patterning, proliferation, differentiation, or remodeling processes in embryonic and adult tissues. Morphogens may also evoke specific regulatory programs in stem cells. Some of the morphogens involved in these processes have been characterized, while others remain unidentified. A microarray containing 3,557 salmonid cDNAs was used to compare the transcriptomes of rainbow trout precocious ovary at three different stages during second year (June, August, and October) with a reference (June normal ovary) transcriptome. During this study, we detected morphogen transcript hybridizations to salmonid elements and the study was enlarged to investigate these activities in various developmental stages of both ovary and testis. Genes from diverse development regulator families such as Anterior gradient-2, BMP, Epimorphin, Flightless, Frizzled, Notch, Tiarin, Twisted gastrulation, and Wnt were demonstrated to be expressed in the adult trout gonads. In mice or rats, expression of mammalian bmp-4, epimorphin, flightless, twisted gastrulation, and GW112 transcripts were localized to cell types isolated from the developed ovary and testis. Comparisons of salmonid and mammalian morphogens at the amino acid residue level show high similarities, suggesting functional conservation. This report provides evidence for local regulation by various morphogens and their potential to control distinct programs of gene expression in the gametes and their accessory cells during gametogenesis.
Collapse
|
23
|
Sakuragi M, Sasai N, Ikeya M, Kawada M, Onai T, Katahira T, Nakamura H, Sasai Y. Functional analysis of chick ONT1 reveals distinguishable activities among olfactomedin-related signaling factors. Mech Dev 2006; 123:114-23. [PMID: 16412616 DOI: 10.1016/j.mod.2005.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 11/23/2022]
Abstract
The Olfactomedin family is a relatively new class of extracellular proteins. Two family members have been shown to play roles in the early development of ectodermal tissues: Noelin enhances neural crest generation in chick and Tiarin promotes dorsal neural specification in Xenopus. In this study, we introduce a novel member of the Olfactomedin family, ONT1. In the early chick embryo, ONT1 expression first appears at Hensen's node and subsequently in the axial and paraxial mesoderm. When the neural tube closes, strong expression of ONT1 is transiently found in the roof plate region from the rostral midbrain to the hindbrain. Overexpression of ONT1 in these regions prolongs the generation of neural crest cells in a manner similar to that of Noelin. Interestingly, ONT1 and Noelin have opposing effects on the expression of the migrating neural crest marker HNK-1 in the chick: they, respectively, cause suppression and ectopic induction of this marker. Differential activities among Olfactomedin-related factors are further examined in Xenopus. Microinjection of ONT1 mRNA into the Xenopus embryo expands the expression domain of the neural crest marker FoxD3 at the neurula stage whereas overexpression of Tiarin or Noelin suppresses FoxD3. ONT1 exhibits no dorsalizing effects on the Xenopus neural tube, which contrasts with the strong dorsalizing activity seen for Tiarin. Thus, distinct Olfactomedin-related factors evoke qualitatively different phenotypes even in the same experimental systems, suggesting that Olfactomedin family uses multiple response systems to mediate its signals in embryogenesis.
Collapse
Affiliation(s)
- Makoto Sakuragi
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hillier BJ, Sundaresan V, Stout CD, Vacquier VD. Expression, purification, crystallization and preliminary X-ray analysis of the olfactomedin domain from the sea urchin cell-adhesion protein amassin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:16-9. [PMID: 16511251 PMCID: PMC2150939 DOI: 10.1107/s1744309105038996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/23/2005] [Indexed: 11/10/2022]
Abstract
A family of animal proteins is emerging which contain a conserved protein motif known as an olfactomedin (OLF) domain. Novel extracellular protein-protein interactions occur through this domain. The OLF-family member amassin, from the sea urchin Strongylocentrotus purpuratus, has previously been identified to mediate a rapid cell-adhesion event resulting in a large aggregation of coelomocytes, the circulating immune cells. In this work, heterologous expression and purification of the OLF domain from amassin was carried out and initial crystallization trials were performed. A native data set has been collected, extending to 2.7 A under preliminary cryoconditions, using an in-house generator. This work leads the way to the determination of the first structure of an OLF domain.
Collapse
Affiliation(s)
- Brian J Hillier
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | |
Collapse
|
25
|
Moreno TA, Bronner-Fraser M. Noelins modulate the timing of neuronal differentiation during development. Dev Biol 2005; 288:434-47. [PMID: 16289448 DOI: 10.1016/j.ydbio.2005.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/09/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Noelins comprise a family of extracellular proteins with proposed roles in neural and neural crest development. Here, we show that a previously uncharacterized family member, Noelin-4, functions to maintain neural precursors in an undifferentiated state and biases ectoderm toward a neural fate. We show that Noelin-4 is induced by the neurogenic genes X-ngnr-1 and XNeuroD. Over-expression of Noelin-4 causes expansion of the neural plate at the expense of neural crest and epidermis. Although there is an apparent increase in the neural precursor pool, no increase was noted in differentiated neurons. Later, derivatives such as the neural tube and retina appear enlarged. We show biochemically that Noelin-4 protein is glycosylated and secreted and that it interacts with Noelin-1, an isoform previously found to promote differentiation in neuralized animal caps. Accordingly, the neural precursor expansion activity of Noelin-4 is reversed by co-expression of Noelin-1. Our finding that Noelin isoforms can bind to and antagonize one another suggests that interacting Noelin isoforms may play a role in regulating timing of differentiation.
Collapse
Affiliation(s)
- Tanya A Moreno
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
26
|
Furutani Y, Manabe RI, Tsutsui K, Yamada T, Sugimoto N, Fukuda S, Kawai J, Sugiura N, Kimata K, Hayashizaki Y, Sekiguchi K. Identification and characterization of photomedins: novel olfactomedin-domain-containing proteins with chondroitin sulphate-E-binding activity. Biochem J 2005; 389:675-84. [PMID: 15836428 PMCID: PMC1180717 DOI: 10.1042/bj20050120] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We screened more than 60000 RIKEN mouse cDNAs for novel ECM (extracellular matrix) proteins by extensive computational screening followed by recombinant expression and immunohistochemical characterization. We identified two novel olfactomedin-family proteins characterized by the presence of tandem CXCXCX9C motifs in the N-terminal region, a coiled-coil domain and an olfactomedin domain in the C-terminal region. These proteins, named photomedin-1 and photomedin-2, were secreted as disulphide-bonded dimers (photomedin-1) or oligomers/multimers (photomedin-2) with O-linked carbohydrate chains, although photomedin-1 was proteolytically processed in the middle of the molecule after secretion. In the retina, photomedin-1 was selectively expressed in the outer segment of photoreceptor cells and photomedin-2 was expressed in all retinal neurons. Among a panel of ECM components, including glycosaminoglycans, photomedins preferentially bound to chondroitin sulphate-E and heparin. These results, together, indicate that photomedins are novel olfactomedin-domain-containing extracellular proteins capable of binding to proteoglycans containing these glycosaminoglycan chains.
Collapse
Affiliation(s)
- Yutaka Furutani
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ri-ichiroh Manabe
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ko Tsutsui
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Tomiko Yamada
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Nagisa Sugimoto
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Shiro Fukuda
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Jun Kawai
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Nobuo Sugiura
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- ∥Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo 207-0021, Japan
| | - Koji Kimata
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshihide Hayashizaki
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Kiyotoshi Sekiguchi
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
- ¶Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Abstract
The Optimedin gene, also known as Olfactomedin 3, encodes an olfactomedin domain-containing protein. There are two major splice variants of the Optimedin mRNA, Optimedin A and Optimedin B, transcribed from different promoters. The expression pattern of the Optimedin A variant in the eye and brain overlaps with that for Pax6, which encodes a protein containing the paired and homeobox DNA-binding domains. The Pax6 gene plays a critical role for the development of eyes, central nervous system, and endocrine glands. The proximal promoter of the Optimedin A variant contains a putative Pax6 binding site in position -86/-70. Pax6 binds this site through the paired domain in vitro as judged by electrophoretic mobility shift assay. Mutations in this site eliminate Pax6 binding as well as stimulation of the Optimedin promoter activity by Pax6 in transfection experiments. Pax6 occupies the binding site in the proximal promoter in vivo as demonstrated by the chromatin immunoprecipitation assay. Altogether these results identify the Optimedin gene as a downstream target regulated by Pax6. Although the function of optimedin is still not clear, it is suggested to be involved in cell-cell adhesion and cell attachment to the extracellular matrix. Pax6 regulation of Optimedin in the eye and brain may directly affect multiple developmental processes, including cell migration and axon growth.
Collapse
Affiliation(s)
- Oleg Grinchuk
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892-0704, USA
| | | | | | | |
Collapse
|
28
|
Zeng LC, Han ZG, Ma WJ. Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Lett 2005; 579:5443-53. [PMID: 16212957 DOI: 10.1016/j.febslet.2005.08.064] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/20/2005] [Accepted: 08/23/2005] [Indexed: 11/19/2022]
Abstract
The categorization of genes by structural distinctions relevant to biological characteristics is very important for understanding of gene functions and predicting functional implications of uncharacterized genes. It was absolutely necessary to deploy an effective and efficient strategy to deal with the complexity of the large olfactomedin-like (OLF) gene family sharing sequence similarity but playing diversified roles in many important biological processes, as the simple highest-hit homology analysis gave incomprehensive results and led to inappropriate annotation for some uncharacterized OLF members. In light of evolutionary information that may facilitate the classification of the OLF family and proper association of novel OLF genes with characterized homologs, we performed phylogenetic analysis on all 116 OLF proteins currently available, including two novel members cloned by our group. The OLF family segregated into seven subfamilies and members with similar domain compositions or functional properties all fell into relevant subfamilies. Furthermore, our Northern blot analysis and previous studies revealed that the typical human OLF members in each subfamily exhibited tissue-specific expression patterns, which in turn supported the segregation of the OLF subfamilies with functional divergence. Interestingly, the phylogenetic tree topology for the OLF domains alone was almost identical with that of the full-length tree representing the unique phylogenetic feature of full-length OLF proteins and their particular domain compositions. Moreover, each of the major functional domains of OLF proteins kept the same phylogenetic feature in defining similar topology of the tree. It indicates that the OLF domain and the various domains in flanking non-OLF regions have coevolved and are likely to be functionally interdependent. Expanded by a plausible gene duplication and domain couplings scenario, the OLF family comprises seven evolutionarily and functionally distinct subfamilies, in which each member shares similar structural and functional characteristics including the composition of coevolved and interdependent domains. The phylogenetically classified and preliminarily assessed subfamily framework may greatly facilitate the studying on the OLF proteins. Furthermore, it also demonstrated a feasible and reliable strategy to categorize novel genes and predict the functional implications of uncharacterized proteins based on the comprehensive phylogenetic classification of the subfamilies and their relevance to preliminary functional characteristics.
Collapse
Affiliation(s)
- Ling-Chun Zeng
- Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University
| | | | | |
Collapse
|
29
|
Matsuo-Takasaki M, Matsumura M, Sasai Y. An essential role of Xenopus Foxi1a for ventral specification of the cephalic ectoderm during gastrulation. Development 2005; 132:3885-94. [PMID: 16079156 DOI: 10.1242/dev.01959] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During gastrulation in Xenopus, the head ectoderm is subdivided into the central nervous system (CNS) anlage (neural plate) and the non-CNS ectoderm (i.e. epidermis, placodes and neural crest). The winged-helix transcription factor Xfoxi1a is one of the earliest markers for the preplacodal region at the mid-neurula stage. Interestingly, before the establishment of the preplacodal region, Xfoxi1a expression is detected in the entire cephalic non-neural ectoderm at the mid- and late gastrula stages. The present study focuses on the role of Xfoxi1a particularly at the gastrula stages. The early Xfoxi1a expression in the anteroventral ectoderm is dependent on Bmp signals and suppressed by Wnt signals. Inhibition of Xfoxi1a activities by injection of antisense oligonucleotides leads to suppression of non-CNS ectodermal markers (e.g. keratin) and expansion of the anterior expression domain of the CNS marker Sox2. Conversely, misexpression of Xfoxi1a suppresses Sox2 and induces keratin in the anterior neural plate. In the animal cap, Xfoxi1a overexpression antagonizes the neuralizing activity of Chordin (Chd). Studies using an inducible Xfoxi1a construct (GR-Xfoxi1a) show that the ventralizing function of Xfoxi1a is confined to the gastrula stage. Thus, Xfoxi1a is an essential regulator of ventral specification of the early head ectoderm during gastrulation.
Collapse
Affiliation(s)
- Mami Matsuo-Takasaki
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | |
Collapse
|
30
|
Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, Spiegel I, Bermingham JR, Peles E. Gliomedin Mediates Schwann Cell-Axon Interaction and the Molecular Assembly of the Nodes of Ranvier. Neuron 2005; 47:215-29. [PMID: 16039564 DOI: 10.1016/j.neuron.2005.06.026] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/16/2005] [Accepted: 06/26/2005] [Indexed: 01/06/2023]
Abstract
Accumulation of Na(+) channels at the nodes of Ranvier is a prerequisite for saltatory conduction. In peripheral nerves, clustering of these channels along the axolemma is regulated by myelinating Schwann cells through a yet unknown mechanism. We report the identification of gliomedin, a glial ligand for neurofascin and NrCAM, two axonal immunoglobulin cell adhesion molecules that are associated with Na+ channels at the nodes of Ranvier. Gliomedin is expressed by myelinating Schwann cells and accumulates at the edges of each myelin segment during development, where it aligns with the forming nodes. Eliminating the expression of gliomedin by RNAi, or the addition of a soluble extracellular domain of neurofascin to myelinating cultures, which caused the redistribution of gliomedin along the internodes, abolished node formation. Furthermore, a soluble gliomedin induced nodal-like clusters of Na+ channels in the absence of Schwann cells. We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier.
Collapse
MESH Headings
- Age Factors
- Amino Acid Sequence
- Animals
- Ankyrins/metabolism
- Axons/metabolism
- Blotting, Northern/methods
- Blotting, Western/methods
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Compartmentation
- Cells, Cultured
- Chlorocebus aethiops
- Claudins
- Cloning, Molecular/methods
- Cytoskeletal Proteins
- Fluorescent Antibody Technique/methods
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- Humans
- Macromolecular Substances/immunology
- Macromolecular Substances/metabolism
- Membrane Proteins/metabolism
- Microfilament Proteins/metabolism
- Microscopy, Immunoelectron/methods
- Myelin Basic Protein/metabolism
- Myelin-Associated Glycoprotein/metabolism
- Neurofilament Proteins/metabolism
- Phosphoproteins/metabolism
- Protein Binding/physiology
- Protein Structure, Tertiary
- Ranvier's Nodes/metabolism
- Ranvier's Nodes/ultrastructure
- Rats
- Receptors, Peptide/metabolism
- S100 Proteins/metabolism
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Sciatic Nerve/growth & development
- Sciatic Nerve/metabolism
- Sodium Channels/metabolism
- Spectrin/metabolism
- Transfection/methods
Collapse
Affiliation(s)
- Yael Eshed
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Goldwich A, Baulmann DC, Ohlmann A, Flügel-Koch C, Schöcklmann H, Tamm ER. Myocilin is expressed in the glomerulus of the kidney and induced in mesangioproliferative glomerulonephritis. Kidney Int 2005; 67:140-51. [PMID: 15610237 DOI: 10.1111/j.1523-1755.2005.00064.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Myocilin is a 55 to 57 kD secreted glycoprotein and member of the olfactomedin protein family. It is expressed in high amounts in the outflow tissues of the aqueous humor in the eye where it is supposed to contribute to outflow resistance. Myocilin is mutated in some forms of primary open angle glaucoma and affected patients show very high intraocular pressures because of an increase in resistance to aqueous humor outflow. To obtain information, if myocilin may play a comparable role in other tissues with transendothelial fluid flow, we investigated its expression in the rat kidney. METHODS The expression of myocilin in the normal rat kidney and its changes during mesangioproliferative glomerulonephritis were investigated by immunohistochemistry, one- and two-dimensional gel electrophoresis with Western blotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Myocilin and its mRNA were detected in isolated glomeruli. Immunohistochemistry showed specific labeling of glomerular cells, while tubular and interstitial regions were essentially negative. Double staining with the podocyte-specific markers synaptopodin and ezrin indicated that myocilin-positive cells were predominately podocytes. During mesangioproliferative glomerulonephritis, an induction of myocilin immunoreactivity was observed. Labeling for myocilin was now observed in activated mesangial cells and areas of glomerular sclerosis. In parallel cell culture experiments, mRNA for myocilin was detected in cultured murine podocytes and rat mesangial cells. CONCLUSION Myocilin is expressed in podocytes of the kidney and induced in mesangial cells during experimental mesangioproliferative glomerulonephritis. The specific function of myocilin in the kidney is not clear, but in a parallel to functions of other olfactomedin proteins, it might have a role in cell-cell adhesion and/or signaling processes.
Collapse
Affiliation(s)
- Andreas Goldwich
- Department of Anatomy, Molecular Anatomy and Embryology, University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Sato T, Sasai N, Sasai Y. Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm. Development 2005; 132:2355-63. [PMID: 15843410 DOI: 10.1242/dev.01823] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the presumptive neural crest area of the Xenopus gastrula, even prior to the onset of the expression of the early bona fide neural crest marker genes Foxd3 and Slug. Misexpression of both Pax3 and Zic1 together efficiently induces ectopic neural crest differentiation in the ventral ectoderm, whereas overexpression of either one of them only expands the expression of neural crest markers within the dorsolateral ectoderm. The induction of neural crest differentiation by Pax3 and Zic1 requires Wnt signaling. Loss-of-function studies in vivo and in the animal cap show that co-presence of Pax3 and Zic1 is essential for the initiation of neural crest differentiation. Thus, co-activation of Pax3 and Zic1, in concert with Wnt, plays a decisive role for early neural crest determination in the correct place of the Xenopus ectoderm.
Collapse
Affiliation(s)
- Takahiko Sato
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | |
Collapse
|
33
|
Cornesse Y, Pieler T, Hollemann T. Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus. Dev Biol 2005; 277:296-315. [PMID: 15617676 DOI: 10.1016/j.ydbio.2004.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 09/08/2004] [Accepted: 09/09/2004] [Indexed: 11/16/2022]
Abstract
The integration of multiple signaling pathways is a key issue in several aspects of embryonic development. In this context, extracellular inhibitors of secreted growth factors play an important role, which is to antagonize specifically the activity of the corresponding signaling molecule. We provide evidence that the Hedgehog-interacting protein (Hip) from Xenopus, previously described as a Hedgehog-specific antagonist in the mouse, interferes with Wnt-8 and eFgf/Fgf-8 signaling pathways as well. To address the function of Hip during early embryonic development, we performed gain- and loss-of-function studies in the frog. Overexpression of Xhip or mHip1 resulted in a dramatic increase of retinal structures and larger olfactory placodes primarily at the expense of other brain tissues. Furthermore, loss of Xhip function resulted in a suppression of olfactory and lens placode formation. Therefore, the localized expression of Xhip may counteract certain overlapping signaling activities, which inhibit the induction of distinct sensory placodes.
Collapse
Affiliation(s)
- Yvonne Cornesse
- Department of Developmental Biochemistry, Institute of Biochemistry and Molecular Cell Biology, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
34
|
Ando K, Nagano T, Nakamura A, Konno D, Yagi H, Sato M. Expression and characterization of disulfide bond use of oligomerized A2-Pancortins: Extracellular matrix constituents in the developing brain. Neuroscience 2005; 133:947-57. [PMID: 15927402 DOI: 10.1016/j.neuroscience.2005.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/04/2005] [Accepted: 03/09/2005] [Indexed: 11/19/2022]
Abstract
The region-specific characteristics of the extracellular matrix are crucial for diverse functions in the brain. Pancortins/neuron-specific olfactomedin-related glycoproteins are components of the extracellular matrix. They comprise four alternatively spliced variants, Pancortin-1 to -4, which share a common portion, the B part, in the middle of their structure, have two pairs of alternatively spliced 5' regions, A1 and A2, and 3' regions, C1 and C2. Here we demonstrate that in mice, Pancortin-3 (A2-B-C1) and Pancortin-4 (A2-B-C2), which we have grouped together the A2-Pancortins, were transcribed early during the development of the brain in a region specific manner and were expressed very stably in vivo. They are N-glycosylated and secreted. Furthermore, we examined their ontogenetical expression profiles in the developing thalamus using antiserum against the common B region, since transient expressions of their mRNAs were notable there. In the developing thalami, they lasted long in oligomerized form even after the transcription of their mRNAs decreased to an undetectable level. Further analyses revealed that cysteine residues that are located in the common B part are important for homo- and hetero-oligomer formation of A2-Pancortins. When we substituted cysteine residues 45 and 47 with serine residues in that common B part, oligomerization of the A2-Pancortins was highly disturbed.
Collapse
Affiliation(s)
- K Ando
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Fukui, 910-1193 Japan
| | | | | | | | | | | |
Collapse
|
35
|
Zeng LC, Liu F, Zhang X, Zhu ZD, Wang ZQ, Han ZG, Ma WJ. hOLF44, a secreted glycoprotein with distinct expression pattern, belongs to an uncharacterized olfactomedin-like subfamily newly identified by phylogenetic analysis. FEBS Lett 2004; 571:74-80. [PMID: 15280020 DOI: 10.1016/j.febslet.2004.06.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/23/2004] [Accepted: 06/24/2004] [Indexed: 11/17/2022]
Abstract
Secreted proteins are indispensable for the development and differentiation of multicellular organisms. Cloning and characterization of novel or hypothetical genes encoding these proteins are therefore inviting great incentives. Using bioinformatics tools and experimental approaches, we isolated and characterized a human secreted glycoprotein, hOLF44, which contains a highly conserved olfactomedin-like (OLF) domain in the C-terminal. However, phylogenetic analysis revealed that hOLF44 is not clustered into any of the OLF subfamilies containing characterized members, and obviously falls into a newly identified uncharacterized OLF subfamily. Western blot analysis showed that hOLF44 protein is robustly secreted from the transfected COS-7 cells. Expression levels of hOLF44 mRNA are abundant in placenta, moderate in liver and heart, whereas fairly weak in other tissues examined. Immunohistochemical study on human term placenta demonstrated that hOLF44 is mainly localized extracellularly surrounding the syncytiotrophoblastic cells and very rarely expressed in the maternal decidua layer. These results suggest that hOLF44 may have matrix-related function involved in human placental and embryonic development, or play a similar role in other physiological processes. The further functional characterization of hOLF44 may provide insights into a better understanding of the newly identified OLF subfamily.
Collapse
Affiliation(s)
- Ling-Chun Zeng
- Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Rosenbauer F, Wagner K, Zhang P, Knobeloch KP, Iwama A, Tenen DG. pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood 2004; 103:4294-301. [PMID: 14962908 DOI: 10.1182/blood-2003-08-2688] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transcription factor PU.1 (Spi-1) is a well-characterized regulator of myeloid and lymphoid development. However, its role in mature functional cells is poorly studied. Here we report the characterization of the novel murine gene pDP4 (PU.1 difference product 4), which is absent from fetal livers of PU.1-deficient mice. pDP4 is transcribed as a single 3.2-kb mRNA with a 1518-base pair open reading frame encoded by 5 exons on chromosome 14. pDP4 expression is strongest in small intestine and bone marrow, in which it is expressed predominately in mature neutrophils. Interestingly, however, pDP4 expression is markedly down-regulated in neutrophils of the peripheral blood and peritoneum. The pDP4 gene encodes a secreted 57-kDa glycoprotein with an olfactomedin-like C-terminus. PU.1 binds to a functional site within the pDP4 promoter, and pDP4 expression in myeloid cells is strictly dependent on PU.1 and the presence of this site. In conclusion, we have identified a novel PU.1-regulated extracellular glycoprotein of the olfactomedin-like family with a possible role in neutrophilic trafficking.
Collapse
Affiliation(s)
- Frank Rosenbauer
- Harvard Institutes of Medicine, Harvard Medical School, Rm 954, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The tremendous complexity of the adult forebrain makes it a challenging task to elucidate how this structure forms during embryonic development. Nevertheless, we are beginning to understand how a simple epithelial sheet of ectoderm gives rise to the labyrinthine network of cells that constitutes the functional forebrain. Here, we discuss early events in forebrain development--those that lead to the establishment of the anterior neural plate and the regional subdivision of this territory into the different domains of the prospective forebrain.
Collapse
Affiliation(s)
- Stephen W. Wilson
- Department of Anatomy and Developmental Biology University College London Gower Street London WC1E 6BT United Kingdom
| | - Corinne Houart
- MRC Centre for Developmental Neurobiology 4th Floor, New Hunt’s House King’s College London, Guy’s Campus London SE1 1UL United Kingdom
| |
Collapse
|
38
|
Hino J, Nishimatsu SI, Nagai T, Matsuo H, Kangawa K, Nohno T. Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos. Dev Biol 2003; 260:138-57. [PMID: 12885561 DOI: 10.1016/s0012-1606(03)00223-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) and their antagonists are involved in the axial patterning of vertebrate embryos. We report that both BMP-3b and BMP-3 dorsalize Xenopus embryos, but act as dissimilar antagonists within the BMP family. BMP-3b injected into Xenopus embryos triggered secondary head formation in an autonomous manner, whereas BMP-3 induced aberrant tail formation. At the molecular level, BMP-3b antagonized nodal-like proteins and ventralizing BMPs, whereas BMP-3 antagonized only the latter. These differences are due to divergence of their pro-domains. Less BMP-3b than BMP-3 precursor is proteolytically processed in embryos. BMP-3b protein associated with a monomeric form of Xnrl, a nodal-like protein, whereas BMP-3 did not. These molecular features are consistent with their expression profiles during Xenopus development. XBMP-3b is expressed in the prechordal plate, while xBMP-3 is expressed in the notochord. Using antisense morpholino oligonucleotides, we found that the depletion of both xBMP-3b and cerberus, a head inducer, caused headless Xenopus embryos, whereas the depletion of both xBMP-3 and cerberus affected the size of the somite. These results revealed that xBMP-3b and cerberus are essential for head formation regulated by the Spemann organizer, and that xBMP-3b and perhaps xBMP-3 are involved in the axial patterning of Xenopus embryos.
Collapse
Affiliation(s)
- Jun Hino
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Hillier BJ, Vacquier VD. Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. J Cell Biol 2003; 160:597-604. [PMID: 12591917 PMCID: PMC2173732 DOI: 10.1083/jcb.200210053] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sea urchins have a fluid-filled body cavity, the coelom, containing four types of immunocytes called coelomocytes. Within minutes after coelomic fluid is removed from the body cavity, a massive cell-cell adhesion of coelomocytes occurs. This event is referred to as clotting. Clotting is thought to be a defense mechanism against loss of coelomic fluid if the body wall is punctured, and it may also function in the cellular encapsulation of foreign material and microbes. Here we show that this intercoelomocyte adhesion is mediated by amassin, a coelomic plasma protein with a relative molecular mass (Mr) of 75 kD. Amassin forms large disulfide-bonded aggregates that adhere coelomocytes to each other. One half of the amassin protein comprises an olfactomedin (OLF) domain. Structural predictions show that amassin and other OLF domain-containing vertebrate proteins share a common architecture. This suggests that other proteins of the OLF family may function in intercellular adhesion. These findings are the first to demonstrate a function for a protein of the OLF family.
Collapse
Affiliation(s)
- Brian J Hillier
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
40
|
Bally-Cuif L, Hammerschmidt M. Induction and patterning of neuronal development, and its connection to cell cycle control. Curr Opin Neurobiol 2003; 13:16-25. [PMID: 12593978 DOI: 10.1016/s0959-4388(03)00015-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nervous tissue is derived from early embryonic ectoderm, which also gives rise to epidermal derivatives such as skin. The progression from naive ectoderm to differentiated postmitotic neurons involves multiple steps, two of which are crucial in shaping the final neurogenesis pattern. First, is the identification of the neural plate by the process of neural induction. Second, is the selection of a restricted number of sites within the neural plate where neurogenesis, the process leading to final differentiation of neural precursors, is initiated. Recent findings point to the existence of positive inducers of the neural state, whereas, neurogenesis initiation sites appear to be largely defined by inhibition. However, both neural induction and the initiation of neurogenesis appear to be connected to cell cycle control systems that govern whether stem cell maintenance and cell proliferation, or cell specification and differentiation, take place.
Collapse
Affiliation(s)
- Laure Bally-Cuif
- Zebrafish Neurogenetics Junior Research Group, Institute of Virology, Technical University-Munich, Trogerstrasse 4b, D-81675, Munich, Germany.
| | | |
Collapse
|
41
|
Abstract
Noelins are secreted glycoproteins with important developmental functions in frogs and birds. Here, we present the expression pattern of the mouse homolog of Noelin-1/2 at E8-10 of development and compare this pattern to other vertebrates. Expression was observed in the neural plate and neural crest, as well as in the cranial ganglia. Later, expression is prominent in brain tissue and in the zone of polarizing activity in the limb.
Collapse
Affiliation(s)
- Tanya A Moreno
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
42
|
Crowning glory. Nat Rev Neurosci 2002. [DOI: 10.1038/nrn798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Abstract
The patterning of the CNS relies on the interaction of multiple signaling molecules such as Sonic Hedgehog, Wnts, and BMPs and their antagonists Chordin and Noggin. The identification of the secreted molecule Tiarin (Tsuda et al., 2002, this issue of Neuron), produced by the nonneural ectoderm at border of the anterior and lateral neural plate, now introduces a novel signaling pathway participating in CNS development.
Collapse
Affiliation(s)
- Oliver Wessely
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
44
|
Tomarev SI, Nakaya N. In-vitro study of the activity of ciprofloxacin alone and in combination against strains of Pseudomonas aeruginosa with multiple antibiotic resistance. J Antimicrob Chemother 1986; 40:122-38. [PMID: 19554483 DOI: 10.1007/s12035-009-8076-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/14/2009] [Indexed: 01/25/2023] Open
Abstract
Ciprofloxacin appears to have useful activity against Pseudomonas aeruginosa. We have studied its in-vitro activity against ten strains of Ps. aeruginosa with multiple antibiotic resistance. We have confirmed that ciprofloxacin is very active against Ps. aeruginosa with minimal inhibitory concentrations ranging from 0.07 to 0.7 mg/l. Killing curves show ciprofloxacin to be rapidly bactericidal with no regrowth after 24 h. Checkerboard studies with ciprofloxacin in combination with gentamicin, azlocillin and ceftazidime show no consistent interaction. These studies suggest that ciprofloxacin should prove a useful antibiotic in treating infections caused by multiresistant Ps. aeruginosa.
Collapse
Affiliation(s)
- Stanislav I Tomarev
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, 5635 Fishers Lane, Room 1124, Bethesda, MD, 20892, USA.
| | | |
Collapse
|