1
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Weaver MR, Shkoruta D, Pellegatta M, Berti C, Palmisano M, Ferguson S, Hurley E, French J, Patel S, Belin S, Selbach M, Paul FE, Sim F, Poitelon Y, Feltri ML. The STRIPAK complex is required for radial sorting and laminin receptor expression in Schwann cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620661. [PMID: 39554194 PMCID: PMC11565846 DOI: 10.1101/2024.10.30.620661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to radially sort, ensheath, and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are novel Rac1 interactors. We show that, similar to Rac1-null Schwann cells, Schwann cell specific ablation of striatin-3 causes defects in lamellipodia formation. In addition, conditional Schwann cell knockout of multiple striatin proteins presents a severe delay in radial sorting. Finally, we demonstrate here that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in Hippo pathway regulation, phosphorylation of the Hippo pathway effectors YAP and TAZ, and expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a novel Rac1 interactor, show that striatin proteins are required for peripheral nervous system development, and reveal a role for Rac1 in regulation of the Hippo pathway in Schwann cells.
Collapse
|
3
|
Melrose J. Dystroglycan-HSPG interactions provide synaptic plasticity and specificity. Glycobiology 2024; 34:cwae051. [PMID: 39223703 PMCID: PMC11368572 DOI: 10.1093/glycob/cwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
AIM This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the βDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, NSW 2065, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
5
|
Okuma H, Hord JM, Chandel I, Venzke D, Anderson ME, Walimbe AS, Joseph S, Gastel Z, Hara Y, Saito F, Matsumura K, Campbell KP. N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on α-dystroglycan and prevents muscular dystrophy. eLife 2023; 12:e82811. [PMID: 36723429 PMCID: PMC9917425 DOI: 10.7554/elife.82811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high affinity to ECM proteins with LG domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that protein O-mannose kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150-250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in an ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions (ECs) or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.
Collapse
Affiliation(s)
- Hidehiko Okuma
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Jeffrey M Hord
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Ishita Chandel
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - David Venzke
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Mary E Anderson
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Ameya S Walimbe
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Zeita Gastel
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| | - Yuji Hara
- Department Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of ShizuokaShizuokaJapan
| | - Fumiaki Saito
- Department of Neurology, School of Medicine, Teikyo UniversityTokyoJapan
| | - Kiichiro Matsumura
- Department of Neurology, School of Medicine, Teikyo UniversityTokyoJapan
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of IowaIowa CityUnited States
| |
Collapse
|
6
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
7
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
8
|
Abstract
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
Collapse
Affiliation(s)
- Carla Taveggia
- Axo-Glial Interaction Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy;
| | - M. Laura Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
Rikitake M, Hata J, Iida M, Seki F, Ito R, Komaki Y, Yamada C, Yoshimaru D, Okano HJ, Shirakawa T. Analysis of Brain Structure and Neural Organization in Dystrophin-Deficient Model Mice with Magnetic Resonance Imaging at 7 T. Open Neuroimag J 2022. [DOI: 10.2174/18744400-v15-e2202040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Dystrophin strengthens muscle cells; however, in muscular dystrophy, dystrophin is deficient due to an abnormal sugar chain. This abnormality occurs in skeletal muscle and in brain tissue.
Objective:
This study aimed to non-invasively analyze the neural organization of the brain in muscular dystrophy. We used a mouse model of muscular dystrophy to study whether changes in brain structure and neurodegeneration following dystrophin deficiency can be assessed by 7T magnetic resonance imaging.
Methods:
C57BL/10-mdx (X chromosome-linked muscular dystrophy) mice were used as the dystrophic mouse model and healthy mice were used as controls. Ventricular enlargement is one of the most common brain malformations in dystrophin-deficient patients. Therefore, we examined whether ventricular enlargement was observed in C57BL/10-mdx using transverse-relaxation weighted images. Brain parenchyma analysis was performed using diffusion MRI with diffusion tensor images and neurite orientation dispersion and density imaging. Parenchymal degeneration was assessed in terms of directional diffusion, nerve fiber diffusion, and dendritic scattering density.
Results:
For the volume of brain ventricles analyzed by T2WI, the average size was 1.5 times larger in mdx mice compared to control mice. In the brain parenchyma, a significant difference (p < 0.05) was observed in parameters indicating disturbances in the direction of nerve fibers and dendritic scattering density in the white matter region.
Conclusion:
Our results show that changes in brain structure due to dystrophin deficiency can be assessed in detail without tissue destruction by combining diffusion tensor images and neurite orientation dispersion and density imaging analyses.
Collapse
|
10
|
Abstract
Morphological transitions are typically attributed to the actions of proteins and lipids. Largely overlooked in membrane shape regulation is the glycocalyx, a pericellular membrane coat that resides on all cells in the human body. Comprised of complex sugar polymers known as glycans as well as glycosylated lipids and proteins, the glycocalyx is ideally positioned to impart forces on the plasma membrane. Large, unstructured polysaccharides and glycoproteins in the glycocalyx can generate crowding pressures strong enough to induce membrane curvature. Stress may also originate from glycan chains that convey curvature preference on asymmetrically distributed lipids, which are exploited by binding factors and infectious agents to induce morphological changes. Through such forces, the glycocalyx can have profound effects on the biogenesis of functional cell surface structures as well as the secretion of extracellular vesicles. In this review, we discuss recent evidence and examples of these mechanisms in normal health and disease.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA; ,
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA; , .,Field of Biomedical Engineering and Field of Biophysics, Cornell University, Ithaca, New York 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| |
Collapse
|
11
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
12
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
13
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
14
|
Jayakody H, Zarei S, Nguyen H, Dalton J, Chen K, Hudgins L, Day J, Withrow K, Pandya A, Teasley J, Dobyns WB, Mathews KD, Moore SA. Cobblestone Malformation in LAMA2 Congenital Muscular Dystrophy (MDC1A). J Neuropathol Exp Neurol 2021; 79:998-1010. [PMID: 32827036 PMCID: PMC7445049 DOI: 10.1093/jnen/nlaa062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 11/27/2022] Open
Abstract
Congenital muscular dystrophy type 1A (MDC1A) is caused by recessive variants in laminin α2 (LAMA2). Patients have been found to have white matter signal abnormalities on magnetic resonance imaging (MRI) but rarely structural brain abnormalities. We describe the autopsy neuropathology in a 17-year-old with white matter signal abnormalities on brain MRI. Dystrophic pathology was observed in skeletal muscle, and the sural nerve manifested a mild degree of segmental demyelination and remyelination. A diffuse, bilateral cobblestone appearance, and numerous points of fusion between adjacent gyri were apparent on gross examination of the cerebrum. Brain histopathology included focal disruptions of the glia limitans associated with abnormal cerebral cortical lamination or arrested cerebellar granule cell migration. Subcortical nodular heterotopia was present within the cerebellar hemispheres. Sampling of the centrum semiovale revealed no light microscopic evidence of leukoencephalopathy. Three additional MDC1A patients were diagnosed with cobblestone malformation on brain MRI. Unlike the autopsied patient whose brain had a symmetric distribution of cobblestone pathology, the latter patients had asymmetric involvement, most severe in the occipital lobes. These cases demonstrate that cobblestone malformation may be an important manifestation of the brain pathology in MDC1A and can be present even when patients have a structurally normal brain MRI.
Collapse
Affiliation(s)
- Himali Jayakody
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa.,Department of Neurology, The University of Iowa, Iowa City, Iowa
| | - Sanam Zarei
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa.,Department of Neurology, The University of Iowa, Iowa City, Iowa
| | - Huy Nguyen
- Department of Pathology, The University of Iowa, Iowa City, Iowa
| | - Joline Dalton
- The University of Minnesota, Minneapolis, Minnesota.,Department of Neurology, Stanford University, Palo Alto, California
| | - Kelly Chen
- Department of Pediatrics, Stanford University, Palo Alto, California
| | | | - John Day
- The University of Minnesota, Minneapolis, Minnesota
| | - Kara Withrow
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Arti Pandya
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Jean Teasley
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - William B Dobyns
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Katherine D Mathews
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa.,Department of Neurology, The University of Iowa, Iowa City, Iowa
| | - Steven A Moore
- Department of Pathology, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
16
|
Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy. PLoS Genet 2020; 16:e1008826. [PMID: 32453729 PMCID: PMC7274486 DOI: 10.1371/journal.pgen.1008826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/05/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan–laminin complex and demarcated by “the glial dome.” In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG. Hearing loss (HL) is one of the most common sensory impairments and heterogeneous disorders in humans. Up to 60% of HL cases are caused by genetic factors, and approximately 30% of genetic HL cases are syndromic. Although 400–700 genetic syndromes are associated with sensorineural HL (SNHL), caused due to problems in the nerve pathways from the cochlea to the brain, only about 45 genes are known to be associated with syndromic HL. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. MD-dystroglycanopathy (MD-DG), caused by aberrant glycosylation of α-dystroglycan, is an MD subtype with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes (at least 18), no comprehensive study has investigated SNHL in MD-DG. Here, we found that hearing impairment was associated with abnormal myelination of the peripheral segment of the cochlear nerve caused by impaired dystrophin–dystroglycan complex in two mouse models (type 3 and 6) of MD-DG and in patients (type 4) with MD-DG. This is the first comprehensive study investigating SNHL in MD-DG. Our findings may provide new insights into understanding the pathogenic characteristics and mechanisms underlying inherited syndromic hearing impairment.
Collapse
|
17
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
18
|
Previtali SC, Zambon AA. LAMA2 Neuropathies: Human Findings and Pathomechanisms From Mouse Models. Front Mol Neurosci 2020; 13:60. [PMID: 32390798 PMCID: PMC7190814 DOI: 10.3389/fnmol.2020.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Merosin deficient Congenital Muscular Dystrophy (MDC1A), or LAMA2-related muscular dystrophy (LAMA2-RD), is a recessive disorder resulting from mutations in the LAMA2 gene, encoding for the alpha-2 chain of laminin-211. The disease is predominantly characterized by progressive muscular dystrophy affecting patient motor function and reducing life expectancy. However, LAMA2-RD also comprises a developmentally-associated dysmyelinating neuropathy that contributes to the disease progression, in addition to brain abnormalities; the latter often underappreciated. In this brief review, we present data supporting the impact of peripheral neuropathy in the LAMA2-RD phenotype, including both mouse models and human studies. We discuss the molecular mechanisms underlying nerve abnormalities and involved in the laminin-211 pathway, which affects axon sorting, ensheathing and myelination. We conclude with some final considerations of consequences on nerve regeneration and potential therapeutic strategies.
Collapse
Affiliation(s)
- Stefano Carlo Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
19
|
Otani Y, Ohno N, Cui J, Yamaguchi Y, Baba H. Upregulation of large myelin protein zero leads to Charcot-Marie-Tooth disease-like neuropathy in mice. Commun Biol 2020; 3:121. [PMID: 32170207 PMCID: PMC7070019 DOI: 10.1038/s42003-020-0854-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy mainly caused by gene mutation of peripheral myelin proteins including myelin protein zero (P0, MPZ). Large myelin protein zero (L-MPZ) is an isoform of P0 that contains an extended polypeptide synthesized by translational readthrough at the C-terminus in tetrapods, including humans. The physiological role of L-MPZ and consequences of an altered L-MPZ/P0 ratio in peripheral myelin are not known. To clarify this, we used genome editing to generate a mouse line (L-MPZ mice) that produced L-MPZ instead of P0. Motor tests and electrophysiological, immunohistological, and electron microscopy analyses show that homozygous L-MPZ mice exhibit CMT-like phenotypes including thin and/or loose myelin, increased small-caliber axons, and disorganized axo-glial interactions. Heterozygous mice show a milder phenotype. These results highlight the importance of an appropriate L-MPZ/P0 ratio and show that aberrant readthrough of a myelin protein causes neuropathy.
Collapse
Affiliation(s)
- Yoshinori Otani
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jingjing Cui
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
20
|
Zhang J, Yang X, Zhou Y, Fox H, Xiong H. Direct contacts of microglia on myelin sheath and Ranvier's node in the corpus callosum in rats. J Biomed Res 2019; 33:192-200. [PMID: 30403198 PMCID: PMC6551421 DOI: 10.7555/jbr.32.20180019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the recent years, it has been found that microglia pseudopodia contact synapses, detect sick ones and prune them, even in adult animals. Myelinated nerves also carry out plasticity in which microglia remove myelin debris by phagocytosis. However, it remains unknown whether microglia explore structures on nerve fibers, such as Ranvier's node (RN) or myelin sheath, before they become debris. By double or triple staining RNs or myelin sheathes and microglia in healthy rat corpus callosum, this study unveiled direct contacts of microglia pseudopodia with RNs and with para- and inter-nodal myelin sheathes, which was then verified by electron microscopic observations. Our data indicated that microglia also explore unmyelinated nerve fibers. Furthermore, we used the animals with matured white matter; therefore, microglia may be actively involved in plasticity of matured white matter tracts as it does for synapse pruning, instead of only passively phagocytize myelin debris.
Collapse
Affiliation(s)
- Jingdong Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xinglong Yang
- Department of Clinical and Scientific Training, Affiliated Hospital to Academy of Military Medicine Sciences, Beijing 100071, China
| | - You Zhou
- Center for Biotechnology, University of Nebraska at Lincoln, School of Veterinary Medicine and Biomedical Sciences, Lincoln, NE 68588, USA
| | - Howard Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Arostegui MC, Quinn TP, Seeb LW, Seeb JE, McKinney GJ. Retention of a chromosomal inversion from an anadromous ancestor provides the genetic basis for alternative freshwater ecotypes in rainbow trout. Mol Ecol 2019; 28:1412-1427. [DOI: 10.1111/mec.15037] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Martin C. Arostegui
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Thomas P. Quinn
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| |
Collapse
|
22
|
Lindenmaier LB, Parmentier N, Guo C, Tissir F, Wright KM. Dystroglycan is a scaffold for extracellular axon guidance decisions. eLife 2019; 8:42143. [PMID: 30758284 PMCID: PMC6395066 DOI: 10.7554/elife.42143] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.
Collapse
Affiliation(s)
| | - Nicolas Parmentier
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Fadel Tissir
- Institiute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
23
|
Nodal Dynamics after In Vivo Rescue of βIV Spectrin Expression. J Neurosci 2019; 39:15-17. [PMID: 30602540 DOI: 10.1523/jneurosci.2149-18.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022] Open
|
24
|
Bekku Y, Oohashi T. Under the ECM Dome: The Physiological Role of the Perinodal Extracellular Matrix as an Ion Diffusion Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:107-122. [DOI: 10.1007/978-981-32-9636-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Nickolls AR, Bönnemann CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech 2018; 11:11/12/dmm035931. [PMID: 30578246 PMCID: PMC6307911 DOI: 10.1242/dmm.035931] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dystroglycan is a cell membrane protein that binds to the extracellular matrix in a variety of mammalian tissues. The α-subunit of dystroglycan (αDG) is heavily glycosylated, including a special O-mannosyl glycoepitope, relying upon this unique glycosylation to bind its matrix ligands. A distinct group of muscular dystrophies results from specific hypoglycosylation of αDG, and they are frequently associated with central nervous system involvement, ranging from profound brain malformation to intellectual disability without evident morphological defects. There is an expanding literature addressing the function of αDG in the nervous system, with recent reports demonstrating important roles in brain development and in the maintenance of neuronal synapses. Much of these data are derived from an increasingly rich array of experimental animal models. This Review aims to synthesize the information from such diverse models, formulating an up-to-date understanding about the various functions of αDG in neurons and glia of the central and peripheral nervous systems. Where possible, we integrate these data with our knowledge of the human disorders to promote translation from basic mechanistic findings to clinical therapies that take the neural phenotypes into account. Summary: Dystroglycan is a ubiquitous matrix receptor linked to brain and muscle disease. Unraveling the functions of this protein will inform basic and translational research on neural development and muscular dystrophies.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Shimada E, Ahsan FM, Nili M, Huang D, Atamdede S, TeSlaa T, Case D, Yu X, Gregory BD, Perrin BJ, Koehler CM, Teitell MA. PNPase knockout results in mtDNA loss and an altered metabolic gene expression program. PLoS One 2018; 13:e0200925. [PMID: 30024931 PMCID: PMC6053217 DOI: 10.1371/journal.pone.0200925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/05/2018] [Indexed: 01/10/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is an essential mitochondria-localized exoribonuclease implicated in multiple biological processes and human disorders. To reveal role(s) for PNPase in mitochondria, we established PNPase knockout (PKO) systems by first shifting culture conditions to enable cell growth with defective respiration. Interestingly, PKO established in mouse embryonic fibroblasts (MEFs) resulted in the loss of mitochondrial DNA (mtDNA). The transcriptional profile of PKO cells was similar to rho0 mtDNA deleted cells, with perturbations in cholesterol (FDR = 6.35 x 10-13), lipid (FDR = 3.21 x 10-11), and secondary alcohol (FDR = 1.04x10-12) metabolic pathway gene expression compared to wild type parental (TM6) MEFs. Transcriptome analysis indicates processes related to axonogenesis (FDR = 4.49 x 10-3), axon development (FDR = 4.74 x 10-3), and axonal guidance (FDR = 4.74 x 10-3) were overrepresented in PKO cells, consistent with previous studies detailing causative PNPase mutations in delayed myelination, hearing loss, encephalomyopathy, and chorioretinal defects in humans. Overrepresentation analysis revealed alterations in metabolic pathways in both PKO and rho0 cells. Therefore, we assessed the correlation of genes implicated in cell cycle progression and total metabolism and observed a strong positive correlation between PKO cells and rho0 MEFs compared to TM6 MEFs. We quantified the normalized biomass accumulation rate of PKO clones at 1.7% (SD ± 2.0%) and 2.4% (SD ± 1.6%) per hour, which was lower than TM6 cells at 3.3% (SD ± 3.5%) per hour. Furthermore, PKO in mouse inner ear hair cells caused progressive hearing loss that parallels human familial hearing loss previously linked to mutations in PNPase. Combined, our study reports that knockout of a mitochondrial nuclease results in mtDNA loss and suggests that mtDNA maintenance could provide a unifying connection for the large number of biological activities reported for PNPase.
Collapse
Affiliation(s)
- Eriko Shimada
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Fasih M. Ahsan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mahta Nili
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dian Huang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tara TeSlaa
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dana Case
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Perrin
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Carla M. Koehler
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael A. Teitell
- Molecular Biology Institute Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
27
|
Him A, Onger ME, Delibas B. Periferik Sinir Rejenerasyonu ve Kök Hücre Tedavileri. ACTA ACUST UNITED AC 2018. [DOI: 10.31832/smj.404819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury. J Neurosci 2018; 38:4243-4258. [PMID: 29626165 DOI: 10.1523/jneurosci.3119-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Collagen XIII occurs as both a transmembrane-bound and a shed extracellular protein and is able to regulate the formation and function of neuromuscular synapses. Its absence results in myasthenia: presynaptic and postsynaptic defects at the neuromuscular junction (NMJ), leading to destabilization of the motor nerves, muscle regeneration and atrophy. Mutations in COL13A1 have recently been found to cause congenital myasthenic syndrome, characterized by fatigue and chronic muscle weakness, which may be lethal. We show here that muscle defects in collagen XIII-deficient mice stabilize in adulthood, so that the disease is not progressive until very late. Sciatic nerve crush was performed to examine how the lack of collagen XIII or forced expression of its transmembrane form affects the neuromuscular synapse regeneration and functional recovery following injury. We show that collagen XIII-deficient male mice are unable to achieve complete NMJ regeneration and functional recovery. This is mainly attributable to presynaptic defects that already existed in the absence of collagen XIII before injury. Shedding of the ectodomain is not required, as the transmembrane form of collagen XIII alone fully rescues the phenotype. Thus, collagen XIII could serve as a therapeutic agent in cases of injury-induced PNS regeneration and functional recovery. We conclude that intrinsic alterations at the NMJ in Col13a1-/- mice contribute to impaired and incomplete NMJ regeneration and functional recovery after peripheral nerve injury. However, such alterations do not progress once they have stabilized in early adulthood, emphasizing the role of collagen XIII in NMJ maturation.SIGNIFICANCE STATEMENT Collagen XIII is required for gaining and maintaining the normal size, complexity, and functional capacity of neuromuscular synapses. Loss-of-function mutations in COL13A1 cause congenital myasthenic syndrome 19, characterized by postnatally progressive muscle fatigue, which compromises patients' functional capacity. We show here in collagen XIII-deficient mice that the disease stabilizes in adulthood once the NMJs have matured. This study also describes a relevant contribution of the altered NMJ morphology and function to neuromuscular synapses, and PNS regeneration and functional recovery in collagen XIII-deficient mice after peripheral nerve injury. Correlating the animal model data on collagen XIII-associated congenital myasthenic syndrome, it can be speculated that neuromuscular connections in congenital myasthenic syndrome patients are not able to fully regenerate and restore normal functionality if exposed to peripheral nerve injury.
Collapse
|
29
|
Bang ML, Vainshtein A, Yang HJ, Eshed-Eisenbach Y, Devaux J, Werner HB, Peles E. Glial M6B stabilizes the axonal membrane at peripheral nodes of Ranvier. Glia 2018; 66:801-812. [PMID: 29282769 PMCID: PMC5812800 DOI: 10.1002/glia.23285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Glycoprotein M6B and the closely related proteolipid protein regulate oligodendrocyte myelination in the central nervous system, but their role in the peripheral nervous system is less clear. Here we report that M6B is located at nodes of Ranvier in peripheral nerves where it stabilizes the nodal axolemma. We show that M6B is co-localized and associates with gliomedin at Schwann cell microvilli that are attached to the nodes. Developmental analysis of sciatic nerves, as well as of myelinating Schwann cells/dorsal root ganglion neurons cultures, revealed that M6B is already present at heminodes, which are considered the precursors of mature nodes of Ranvier. However, in contrast to gliomedin, which accumulates at heminodes with or prior to Na+ channels, we often detected Na+ channel clusters at heminodes without any associated M6B, indicating that it is not required for initial channel clustering. Consistently, nodal cell adhesion molecules (NF186, NrCAM), ion channels (Nav1.2 and Kv7.2), cytoskeletal proteins (AnkG and βIV spectrin), and microvilli components (pERM, syndecan3, gliomedin), are all present at both heminodes and mature nodes of Ranvier in Gpm6b null mice. Using transmission electron microscopy, we show that the absence of M6B results in progressive appearance of nodal protrusions of the nodal axolemma, that are often accompanied by the presence of enlarged mitochondria. Our results reveal that M6B is a Schwann cell microvilli component that preserves the structural integrity of peripheral nodes of Ranvier.
Collapse
Affiliation(s)
- Marie L Bang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hyun-Jeong Yang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jerome Devaux
- Aix-Marseille University, CNRS, CRN2M-UMR 7286, Marseille, France
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Ackerman SD, Luo R, Poitelon Y, Mogha A, Harty BL, D'Rozario M, Sanchez NE, Lakkaraju AKK, Gamble P, Li J, Qu J, MacEwan MR, Ray WZ, Aguzzi A, Feltri ML, Piao X, Monk KR. GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J Exp Med 2018; 215:941-961. [PMID: 29367382 PMCID: PMC5839751 DOI: 10.1084/jem.20161714] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin-a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"-as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin.
Collapse
Affiliation(s)
- Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA
| | - Yannick Poitelon
- Departments of Biochemistry and Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Breanne L Harty
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Mitchell D'Rozario
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas E Sanchez
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| | | | - Paul Gamble
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Wilson Zachary Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
31
|
Poitelon Y, Matafora V, Silvestri N, Zambroni D, McGarry C, Serghany N, Rush T, Vizzuso D, Court FA, Bachi A, Wrabetz L, Feltri ML. A dual role for Integrin α6β4 in modulating hereditary neuropathy with liability to pressure palsies. J Neurochem 2018; 145:245-257. [PMID: 29315582 DOI: 10.1111/jnc.14295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
Peripheral myelin protein 22 (PMP22) is a component of compact myelin in the peripheral nervous system. The amount of PMP22 in myelin is tightly regulated, and PMP22 over or under-expression cause Charcot-Marie-Tooth 1A (CMT1A) and Hereditary Neuropathy with Pressure Palsies (HNPP). Despite the importance of PMP22, its function remains largely unknown. It was reported that PMP22 interacts with the β4 subunit of the laminin receptor α6β4 integrin, suggesting that α6β4 integrin and laminins may contribute to the pathogenesis of CMT1A or HNPP. Here we asked if the lack of α6β4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP22 and β4 integrin may not interact directly in myelinating Schwann cells, however, ablating β4 integrin delays the formation of tomacula, a characteristic feature of HNPP. In contrast, ablation of integrin β4 worsens nerve conduction velocities and non-compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.
Collapse
Affiliation(s)
- Yannick Poitelon
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, USA.,Department of Biochemistry, University at Buffalo, Buffalo, New York, USA
| | - Vittoria Matafora
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy
| | | | - Desirée Zambroni
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy
| | - Claire McGarry
- Department of Biochemistry, University at Buffalo, Buffalo, New York, USA
| | - Nora Serghany
- Department of Biochemistry, University at Buffalo, Buffalo, New York, USA
| | - Thomas Rush
- Department of Biochemistry, University at Buffalo, Buffalo, New York, USA
| | - Domenica Vizzuso
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy
| | - Felipe A Court
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy.,Center for Integrative Biology, Universidad Mayor de Chile, Santiago, Chile
| | - Angela Bachi
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, USA.,Department of Biochemistry, University at Buffalo, Buffalo, New York, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy.,Department of Neurology, University at Buffalo, Buffalo, New York, USA
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, USA.,Department of Biochemistry, University at Buffalo, Buffalo, New York, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy.,Department of Neurology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
32
|
Sciandra F, Scicchitano BM, Signorino G, Bigotti MG, Tavazzi B, Lombardi F, Bozzi M, Sica G, Giardina B, Blaess S, Brancaccio A. Evaluation of the effect of a floxed Neo cassette within the dystroglycan (Dag1) gene. BMC Res Notes 2017; 10:601. [PMID: 29157305 PMCID: PMC5696793 DOI: 10.1186/s13104-017-2926-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Dystroglycan (DG) is an adhesion complex formed by two subunits, α-DG and β-DG. In skeletal muscle, DG is part of the dystrophin-glycoprotein complex that is crucial for sarcolemma stability and it is involved in a plethora of muscular dystrophy phenotypes. Due to the important role played by DG in skeletal muscle stability as well as in a wide variety of other tissues including brain and the peripheral nervous system, it is essential to investigate its genetic assembly and transcriptional regulation. RESULTS Herein, we analyze the effect of the insertion of a floxed neomycin (Neo) cassette within the 3' portion of the universally conserved IG1-intron of the DG gene (Dag1). We analyzed the transcription level of Dag1 and the expression of the DG protein in skeletal muscle of targeted mice compared to wild-type and we did not find any alterations that might be attributed to the gene targeting. However, we found an increase of the cross-sectional areas of tibialis anterior that might have some physiological significance that needs to be assessed in the future. Moreover, in targeted mice the skeletal muscle morphology and its regeneration capacity after injury did not show any evident alterations. We confirmed that the targeting of Dag1 with a floxed Neo-cassette did not produce any gross undesired effects.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giulia Signorino
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Barbara Tavazzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Lombardi
- Istituto di Clinica delle Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (CNR), c/o Università Cattolica del Sacro Cuore, Rome, Italy
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD UK
| |
Collapse
|
33
|
Palmieri V, Bozzi M, Signorino G, Papi M, De Spirito M, Brancaccio A, Maulucci G, Sciandra F. α-Dystroglycan hypoglycosylation affects cell migration by influencing β-dystroglycan membrane clustering and filopodia length: A multiscale confocal microscopy analysis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2182-2191. [DOI: 10.1016/j.bbadis.2017.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 12/26/2022]
|
34
|
Jones JCR, Kam CY, Harmon RM, Woychek AV, Hopkinson SB, Green KJ. Intermediate Filaments and the Plasma Membrane. Cold Spring Harb Perspect Biol 2017; 9:9/1/a025866. [PMID: 28049646 DOI: 10.1101/cshperspect.a025866] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A variety of intermediate filament (IF) types show intricate association with plasma membrane proteins, including receptors and adhesion molecules. The molecular basis of linkage of IFs to desmosomes at sites of cell-cell interaction and hemidesmosomes at sites of cell-matrix adhesion has been elucidated and involves IF-associated proteins. However, IFs also interact with focal adhesions and cell-surface molecules, including dystroglycan. Through such membrane interactions, it is well accepted that IFs play important roles in the establishment and maintenance of tissue integrity. However, by organizing cell-surface complexes, IFs likely regulate, albeit indirectly, signaling pathways that are key to tissue homeostasis and repair.
Collapse
Affiliation(s)
- Jonathan C R Jones
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Chen Yuan Kam
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Robert M Harmon
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Alexandra V Woychek
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Susan B Hopkinson
- The School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Kathleen J Green
- Departments of Dermatology and Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
35
|
Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc Natl Acad Sci U S A 2016; 114:E191-E199. [PMID: 28003466 DOI: 10.1073/pnas.1619553114] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used stimulated emission depletion (STED) superresolution microscopy to analyze the nanoscale organization of 12 glial and axonal proteins at the nodes of Ranvier of teased sciatic nerve fibers. Cytoskeletal proteins of the axon (betaIV spectrin, ankyrin G) exhibit a high degree of one-dimensional longitudinal order at nodal gaps. In contrast, axonal and glial nodal adhesion molecules [neurofascin-186, neuron glial-related cell adhesion molecule (NrCAM)] can arrange in a more complex, 2D hexagonal-like lattice but still feature a ∼190-nm periodicity. Such a lattice-like organization is also found for glial actin. Sodium and potassium channels exhibit a one-dimensional periodicity, with the Nav channels appearing to have a lower degree of organization. At paranodes, both axonal proteins (betaII spectrin, Caspr) and glial proteins (neurofascin-155, ankyrin B) form periodic quasi-one-dimensional arrangements, with a high degree of interdependence between the position of the axonal and the glial proteins. The results indicate the presence of mechanisms that finely align the cytoskeleton of the axon with the one of the Schwann cells, both at paranodal junctions (with myelin loops) and at nodal gaps (with microvilli). Taken together, our observations reveal the importance of the lateral organization of proteins at the nodes of Ranvier and pave the way for deeper investigations of the molecular ultrastructural mechanisms involved in action potential propagation, the formation of the nodes, axon-glia interactions, and demyelination diseases.
Collapse
|
36
|
Griggs RB, Yermakov LM, Susuki K. Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 2016; 116:77-87. [PMID: 27717670 DOI: 10.1016/j.neures.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022]
Abstract
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria. Disruption of excitable domains and altered distribution of functional elements in CNS axons is associated with demyelinating diseases such as multiple sclerosis, and is likely a mechanism common to other neurological disorders. This review will provide a brief overview of the molecular structure of the AIS and nodes of Ranvier, as well as the distribution of mitochondria in myelinated axons. In addition, this review highlights important structural and functional changes within myelinated CNS axons that are associated with neurological dysfunction.
Collapse
Affiliation(s)
- Ryan B Griggs
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.
| |
Collapse
|
37
|
Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: A review. Mol Aspects Med 2016; 51:115-24. [PMID: 27421908 DOI: 10.1016/j.mam.2016.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 02/08/2023]
Abstract
α-Dystroglycanopathy, an autosomal recessive disease, is associated with the development of a variety of diseases, including muscular dystrophy. In humans, α-dystroglycanopathy includes various types of congenital muscular dystrophy such as Fukuyama type congenital muscular dystrophy (FCMD), muscle eye brain disease (MEB), and the Walker Warburg syndrome (WWS), and types of limb girdle muscular dystrophy 2I (LGMD2I). α-Dystroglycanopathy share a common etiology, since it is invariably caused by gene mutations that are associated with the O-mannose glycosylation pathway of α-dystroglycan (α-DG). α-DG is a central member of the dystrophin glycoprotein complex (DGC) family in peripheral membranes, and the proper glycosylation of α-DG is essential for it to bind to extracellular matrix proteins, such as laminin, to cell components. The disruption of this ligand-binding is thought to result in damage to cell membrane integration, leading to the development of muscular dystrophy. Clinical manifestations of α-dystroglycanopathy frequently include mild to severe alterations in the central nervous system and optical manifestations in addition to muscular dystrophy. Eighteen causative genes for α-dystroglycanopathy have been identified to date, and it is likely that more will be reported in the near future. These findings have stimulated extensive and energetic investigations in this research field, and novel glycosylation pathways have been implicated in the process. At the same time, the use of gene therapy, antisense therapy, and enzymatic supplementation have been evaluated as therapeutic possibilities for some types of α-dystroglycanopathy. Here we review the molecular and clinical findings associated with α-dystroglycanopathy and the development of therapeutic approaches, by comparing the approaches with the development of Duchenne muscular dystrophy.
Collapse
|
38
|
Wang L, Sanford MT, Xin Z, Lin G, Lue TF. Role of Schwann cells in the regeneration of penile and peripheral nerves. Asian J Androl 2016; 17:776-82. [PMID: 25999359 PMCID: PMC4577590 DOI: 10.4103/1008-682x.154306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Schwann cells (SCs) are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED). Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1) the origin and development of SCs in the peripheral and penile nerve system; (2) Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3) how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4) and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED.
Collapse
Affiliation(s)
| | | | | | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA,
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA,
| |
Collapse
|
39
|
Abstract
Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina 27701;
| |
Collapse
|
40
|
Freeman SA, Desmazières A, Fricker D, Lubetzki C, Sol-Foulon N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell Mol Life Sci 2016; 73:723-35. [PMID: 26514731 PMCID: PMC4735253 DOI: 10.1007/s00018-015-2081-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Sean A Freeman
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Anne Desmazières
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Desdemona Fricker
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| | - Catherine Lubetzki
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Nathalie Sol-Foulon
- ICM-GHU Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127, 75013, Paris, France.
- Inserm U1127, 75013, Paris, France.
- CNRS UMR7225, 75013, Paris, France.
| |
Collapse
|
41
|
Ciszek BP, Khan AA, Dang H, Slade GD, Smith S, Bair E, Maixner W, Zolnoun D, Nackley AG. MicroRNA expression profiles differentiate chronic pain condition subtypes. Transl Res 2015; 166:706-720.e11. [PMID: 26166255 PMCID: PMC4656098 DOI: 10.1016/j.trsl.2015.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023]
Abstract
Chronic pain is a significant health care problem, ineffectively treated because of its unclear etiology and heterogeneous clinical presentation. Emerging evidence demonstrates that microRNAs (miRNAs) regulate the expression of pain-relevant genes, yet little is known about their role in chronic pain. Here, we evaluate the relationship among pain, psychological characteristics, plasma cytokines, and whole blood miRNAs in 22 healthy controls (HCs); 33 subjects with chronic pelvic pain (vestibulodynia, VBD); and 23 subjects with VBD and irritable bowel syndrome (VBD + IBS). VBD subjects were similar to HCs in self-reported pain, psychological profiles, and remote bodily pain. VBD + IBS subjects reported decreased health and function; and an increase in headaches, somatization, and remote bodily pain. Furthermore, VBD subjects exhibited a balance in proinflammatory and anti-inflammatory cytokines, whereas VBD + IBS subjects failed to exhibit a compensatory increase in anti-inflammatory cytokines. VBD subjects differed from controls in expression of 10 miRNAs of predicted importance for pain and estrogen signaling. VBD + IBS subjects differed from controls in expression of 11 miRNAs of predicted importance for pain, cell physiology, and insulin signaling. miRNA expression was correlated with pain-relevant phenotypes and cytokine levels. These results suggest that miRNAs represent a valuable tool for differentiating VBD subtypes (localized pain with apparent peripheral neurosensory disruption vs widespread pain with a central sensory contribution) that may require different treatment approaches.
Collapse
Affiliation(s)
- Brittney P Ciszek
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Asma A Khan
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Hong Dang
- Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC
| | - Gary D Slade
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Shad Smith
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Eric Bair
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - William Maixner
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Denniz Zolnoun
- Pelvic Pain Center, University of North Carolina, Chapel Hill, NC
| | - Andrea G Nackley
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
42
|
The scales and tales of myelination: using zebrafish and mouse to study myelinating glia. Brain Res 2015; 1641:79-91. [PMID: 26498880 DOI: 10.1016/j.brainres.2015.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin, the lipid-rich sheath that insulates axons to facilitate rapid conduction of action potentials, is an evolutionary innovation of the jawed-vertebrate lineage. Research efforts aimed at understanding the molecular mechanisms governing myelination have primarily focused on rodent models; however, with the advent of the zebrafish model system in the late twentieth century, the use of this genetically tractable, yet simpler vertebrate for studying myelination has steadily increased. In this review, we compare myelinating glial cell biology during development and regeneration in zebrafish and mouse and enumerate the advantages and disadvantages of using each model to study myelination. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|
43
|
Abstract
Myelin is essential for rapid and efficient action potential propagation in vertebrates. However, the molecular mechanisms regulating myelination remain incompletely characterized. For example, even before myelination begins in the PNS, Schwann cells must radially sort axons to form 1:1 associations. Schwann cells then ensheathe and wrap axons, and establish polarized, subcellular domains, including apical and basolateral domains, paranodes, and Schmidt-Lanterman incisures. Intriguingly, polarity proteins, such as Pals1/Mpp5, are highly enriched in some of these domains, suggesting that they may regulate the polarity of Schwann cells and myelination. To test this, we generated mice with Schwann cells and oligodendrocytes that lack Pals1. During early development of the PNS, Pals1-deficient mice had impaired radial sorting of axons, delayed myelination, and reduced nerve conduction velocities. Although myelination and conduction velocities eventually recovered, polyaxonal myelination remained a prominent feature of adult Pals1-deficient nerves. Despite the enrichment of Pals1 at paranodes and incisures of control mice, nodes of Ranvier and paranodes were unaffected in Pals1-deficient mice, although we measured a significant increase in the number of incisures. As in other polarized cells, we found that Pals1 interacts with Par3 and loss of Pals1 reduced levels of Par3 in Schwann cells. In the CNS, loss of Pals1 affected neither myelination nor the establishment of polarized membrane domains. These results demonstrate that Schwann cells and oligodendrocytes use distinct mechanisms to control their polarity, and that radial sorting in the PNS is a key polarization event that requires Pals1. Significance statement: This paper reveals the role of the canonical polarity protein Pals1 in radial sorting of axons by Schwann cells. Radial sorting is essential for efficient and proper myelination and is disrupted in some types of congenital muscular dystrophy.
Collapse
|
44
|
Jensen BS, Willer T, Saade DN, Cox MO, Mozaffar T, Scavina M, Stefans VA, Winder TL, Campbell KP, Moore SA, Mathews KD. GMPPB-Associated Dystroglycanopathy: Emerging Common Variants with Phenotype Correlation. Hum Mutat 2015; 36:1159-63. [PMID: 26310427 DOI: 10.1002/humu.22898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 11/11/2022]
Abstract
Mutations in GDP-mannose pyrophosphorylase B (GMPPB), a catalyst for the formation of the sugar donor GDP-mannose, were recently identified as a cause of muscular dystrophy resulting from abnormal glycosylation of α-dystroglycan. In this series, we report nine unrelated individuals with GMPPB-associated dystroglycanopathy. The most mildly affected subject has normal strength at 25 years, whereas three severely affected children presented in infancy with intellectual disability and epilepsy. Muscle biopsies of all subjects are dystrophic with abnormal immunostaining for glycosylated α-dystroglycan. This cohort, together with previously published cases, allows preliminary genotype-phenotype correlations to be made for the emerging GMPPB common variants c.79G>C (p.D27H) and c.860G>A (p.R287Q). We observe that c.79G>C (p.D27H) is associated with a mild limb-girdle muscular dystrophy phenotype, whereas c.860G>A (p.R287Q) is associated with a relatively severe congenital muscular dystrophy typically involving brain development. Sixty-six percent of GMPPB families to date have one of these common variants.
Collapse
Affiliation(s)
- Braden S Jensen
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Tobias Willer
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Dimah N Saade
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mary O Cox
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Tahseen Mozaffar
- Departments of Neurology and Orthopaedic Surgery, University of California, Irvine, California
| | - Mena Scavina
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Vikki A Stefans
- Departments of Pediatrics and Physical Medicine and Rehabilitation, University of Arkansas for Medical Sciences College of Medicine, Little Rock, Arkansas
| | - Thomas L Winder
- Invitae Corp, San Francisco, California.,Prevention Genetics, Marshfield, Wisconsin
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Katherine D Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
45
|
Rasband MN, Peles E. The Nodes of Ranvier: Molecular Assembly and Maintenance. Cold Spring Harb Perspect Biol 2015; 8:a020495. [PMID: 26354894 DOI: 10.1101/cshperspect.a020495] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).
Collapse
Affiliation(s)
- Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
Domi T, Porrello E, Velardo D, Capotondo A, Biffi A, Tonlorenzi R, Amadio S, Ambrosi A, Miyagoe-Suzuki Y, Takeda S, Ruegg MA, Previtali SC. Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A. Skelet Muscle 2015; 5:30. [PMID: 26347253 PMCID: PMC4560053 DOI: 10.1186/s13395-015-0055-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022] Open
Abstract
Background Merosin-deficient congenital muscular dystrophy type-1A (MDC1A) is characterized by progressive muscular dystrophy and dysmyelinating neuropathy caused by mutations of the α2 chain of laminin-211, the predominant laminin isoform of muscles and nerves. MDC1A has no available treatment so far, although preclinical studies showed amelioration of the disease by the overexpression of miniagrin (MAG). MAG reconnects orphan laminin-211 receptors to other laminin isoforms available in the extracellular matrix of MDC1A mice. Methods Mesoangioblasts (MABs) are vessel-associated progenitors that can form the skeletal muscle and have been shown to restore defective protein levels and motor skills in animal models of muscular dystrophies. As gene therapy in humans still presents challenging technical issues and limitations, we engineered MABs to overexpress MAG to treat MDC1A mouse models, thus combining cell to gene therapy. Results MABs synthesize and secrete only negligible amount of laminin-211 either in vitro or in vivo. MABs engineered to deliver MAG and injected in muscles of MDC1A mice showed amelioration of muscle histology, increased expression of laminin receptors in muscle, and attenuated deterioration of motor performances. MABs did not enter the peripheral nerves, thus did not affect the associated peripheral neuropathy. Conclusions Our study demonstrates the potential efficacy of combining cell with gene therapy to treat MDC1A. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0055-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teuta Domi
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Emanuela Porrello
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Daniele Velardo
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Alessia Capotondo
- Tiget and Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Biffi
- Tiget and Division of Regenerative Medicine, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rossana Tonlorenzi
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Stefano Amadio
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | | | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira, Tokyo Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira, Tokyo Japan
| | | | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
47
|
Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:635792. [PMID: 26380289 PMCID: PMC4561298 DOI: 10.1155/2015/635792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/11/2015] [Indexed: 01/24/2023]
Abstract
In skeletal muscle, dystroglycan (DG) is the central component of the dystrophin-glycoprotein complex (DGC), a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1) have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others) model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.
Collapse
|
48
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
49
|
Restoration of Functional Glycosylation of α-Dystroglycan in FKRP Mutant Mice Is Associated with Muscle Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2025-37. [DOI: 10.1016/j.ajpath.2015.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
|
50
|
Yurchenco PD. Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function. CURRENT TOPICS IN MEMBRANES 2015; 76:1-30. [PMID: 26610910 DOI: 10.1016/bs.ctm.2015.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies on extracellular matrix proteins, cells, and genetically modified animals have converged to reveal mechanisms of basement membrane self-assembly as mediated by γ1 subunit-containing laminins, the focus of this chapter. The basic model is as follows: A member of the laminin family adheres to a competent cell surface and typically polymerizes followed by laminin binding to the extracellular adaptor proteins nidogen, perlecan, and agrin. Assembly is completed by the linking of nidogen and heparan sulfates to type IV collagen, allowing it to form a second stabilizing network polymer. The assembled matrix provides structural support, anchoring the extracellular matrix to the cytoskeleton, and acts as a signaling platform. Heterogeneity of function is created in part by the isoforms of laminin that vary in their ability to polymerize and to interact with integrins, dystroglycan, and other receptors. Mutations in laminin subunits, affecting expression or LN domain-specific functions, are a cause of human diseases that include those of muscle, nerve, brain, and kidney.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|