1
|
Qu H, Liu Y, Connolly JJ, Mentch FD, Kao C, Hakonarson H. Risk of Alzheimer's disease in Down syndrome: Insights gained by multi-omics. Alzheimers Dement 2025; 21:e14604. [PMID: 40207399 PMCID: PMC11982707 DOI: 10.1002/alz.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025]
Abstract
Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). The integration of genomics, transcriptomics, epigenomics, proteomics, and metabolomics enables unprecedented understanding of DS-AD, offering a detailed picture of this complex issue. The vast -omics data also present challenges that reflect the complexity of genetic information flow. These studies nonetheless reveal critical mechanisms behind AD risk, including unique observations in DS that differ from those seen in the general population and familial dominant AD. In addition, the correlations between the AD polygenic risk score and proteins related to female infertility and autoimmune thyroiditis corroborate clinical observations. Metabolomic data reveal disrupted metabolic networks, offering prospects for a dynamic score to create specialized nutritional interventions. By adopting a multidimensional perspective with integrated reductionism, the evolving landscape presents an opportunity to identify promising directions for developing precision strategies to mitigate the impact of AD in the DS population. HIGHLIGHTS: Individuals with Down syndrome (DS) are highly susceptible to Alzheimer's disease (AD). DS-AD is characterized by its polygenic nature, extending beyond chromosome 21 with significant contributions from various chromosomes. DS-AD also presents unique features that differ from those observed in the general population and familial dominant AD. Our review consolidates key findings from genomics, transcriptomics, epigenomics, proteomics, and metabolomics, providing a comprehensive view of the molecular mechanisms underlying DS-AD. We highlight promising research directions to further elucidate the pathogenesis of DS-AD.
Collapse
Affiliation(s)
- Hui‐Qi Qu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Yichuan Liu
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - John J. Connolly
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Frank D. Mentch
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Charlly Kao
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, The Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Pulmonary MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| |
Collapse
|
2
|
Duffy AS, Eyo UB. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Glia 2025; 73:232-250. [PMID: 39568399 DOI: 10.1002/glia.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.
Collapse
Affiliation(s)
- Abigayle S Duffy
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Kang M, Yoon SH, Kang M, Park SP, Song WS, Kim J, Lee S, Park DH, Song JM, Kim B, Park KH, Joe EH, Woo HG, Park SH, Kaang BK, Han D, Lee YS, Kim MH, Suh YH. Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation. Cell Rep 2025; 44:115155. [PMID: 39808524 DOI: 10.1016/j.celrep.2024.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses. We demonstrate that Cd99l2 inversely regulates the expression of immediate-early genes (IEGs), including Arc, Egr1, and c-Fos, by inhibiting the activity of the transcription factors CREB and SRF. Neuronal inactivation increases the transport of Cd99l2 to the cell surface from recycling endosomes, thereby enhancing Cd99l2-mediated inhibitory signaling. Additionally, Cd99l2 knockout mice exhibit impaired excitatory synaptic transmission and plasticity in the hippocampus, along with deficits in spatial memory and contextual fear conditioning. Based on these findings, we propose that neuronal Cd99l2 functions as a synaptic cell adhesion molecule that inversely controls neuronal activation.
Collapse
Affiliation(s)
- Minji Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Sang Ho Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Minkyung Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Seung Pyo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Woo Seok Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jungho Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Seungha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Jae-Man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Beomsue Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Kyung Hee Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Seong Hoe Park
- Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Dohyun Han
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, South Korea.
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, South Korea.
| | - Myoung-Hwan Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul 03080, South Korea; Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, South Korea.
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea.
| |
Collapse
|
4
|
Ning L, Shen R, Xie B, Jiang Y, Geng X, Dong W. AMPA receptors in Alzheimer disease: Pathological changes and potential therapeutic targets. J Neuropathol Exp Neurol 2024; 83:895-906. [PMID: 39235983 DOI: 10.1093/jnen/nlae093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Alzheimer disease (AD) is a prevalent neurodegenerative disorder that affects synapses and leads to progressive cognitive decline. The role of N-methyl-D-aspartic acid (NMDA) receptors in the pathogenesis of AD is well-established as they contribute to excitotoxicity and neurodegeneration in the pathological process of extrasynaptic glutamate concentration. However, the therapeutic potential of the NMDA receptor antagonist memantine in rescuing synaptic damage is limited. Research indicates that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors also play a significant role in AD. Abnormal transcription, expression, and localization of AMPA receptors lead to synaptic dysfunction and damage, contributing to early cognitive impairment in AD patients. Understanding the impact of AMPA receptors on AD pathogenesis and exploring the potential for the development of AMPA receptor-targeting drugs are crucial. This review aims to consolidate recent research findings on AMPA receptors in AD, elucidate the current state of AMPA receptor research and lay the foundation for future basic research and drug development.
Collapse
Affiliation(s)
- Luying Ning
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Rongjing Shen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Lee PJ, Sun Y, Soares AR, Fai C, Picciotto MR, Guo JU. Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions. Mol Cell 2024; 84:3967-3978.e8. [PMID: 39317199 PMCID: PMC11490368 DOI: 10.1016/j.molcel.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024]
Abstract
While many mRNAs contain more than one translation initiation site (TIS), the functions of most alternative TISs and their corresponding protein isoforms (proteoforms) remain undetermined. Here, we showed that alternative usage of CUG and AUG TISs in neuronal pentraxin receptor (NPR) mRNA produced two proteoforms, of which the ratio was regulated by RNA secondary structure and neuronal activity. Downstream AUG initiation truncated the N-terminal transmembrane domain and produced a secreted NPR proteoform sufficient in promoting synaptic clustering of AMPA-type glutamate receptors. Mutations that altered the ratio of NPR proteoforms reduced AMPA receptors in parvalbumin-positive interneurons and affected learning behaviors in mice. In addition to NPR, upstream AUU-initiated N-terminal extension of C1q-like synaptic organizers anchored these otherwise secreted factors to the membrane. Together, these results uncovered the plasticity of N-terminal signal sequences regulated by alternative TIS usage as a potentially widespread mechanism in diversifying protein localization and functions.
Collapse
Affiliation(s)
- Paul Jongseo Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Caroline Fai
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Pascual-Caro C, de Juan-Sanz J. Monitoring of activity-driven trafficking of endogenous synaptic proteins through proximity labeling. PLoS Biol 2024; 22:e3002860. [PMID: 39466808 PMCID: PMC11542813 DOI: 10.1371/journal.pbio.3002860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
To enable transmission of information in the brain, synaptic vesicles fuse to presynaptic membranes, liberating their content and exposing transiently a myriad of vesicular transmembrane proteins. However, versatile methods for quantifying the synaptic translocation of endogenous proteins during neuronal activity remain unavailable, as the fast dynamics of synaptic vesicle cycling difficult specific isolation of trafficking proteins during such a transient surface exposure. Here, we developed a novel approach using synaptic cleft proximity labeling to capture and quantify activity-driven trafficking of endogenous synaptic proteins at the synapse. We show that accelerating cleft biotinylation times to match the fast dynamics of vesicle exocytosis allows capturing endogenous proteins transiently exposed at the synaptic surface during neural activity, enabling for the first time the study of the translocation of nearly every endogenous synaptic protein. As proof-of-concept, we further applied this technology to obtain direct evidence of the surface translocation of noncanonical trafficking proteins, such as ATG9A and NPTX1, which had been proposed to traffic during activity but for which direct proof had not yet been shown. The technological advancement presented here will facilitate future studies dissecting the molecular identity of proteins exocytosed at the synapse during activity, helping to define the molecular machinery that sustains neurotransmission in the mammalian brain.
Collapse
Affiliation(s)
- Carlos Pascual-Caro
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jaime de Juan-Sanz
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
7
|
Mialon M, Patrash L, Weinreb A, Özkan E, Bessereau JL, Pinan-Lucarre B. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611427. [PMID: 39314492 PMCID: PMC11418930 DOI: 10.1101/2024.09.05.611427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
Collapse
|
8
|
Sumino A, Sumikama T, Zhao Y, Flechsig H, Umeda K, Kodera N, Konno H, Hattori M, Shibata M. High-Speed Atomic Force Microscopy Reveals Fluctuations and Dimer Splitting of the N-Terminal Domain of GluA2 Ionotropic Glutamate Receptor-Auxiliary Subunit Complex. ACS NANO 2024; 18:25018-25035. [PMID: 39180186 DOI: 10.1021/acsnano.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors (AMPARs) enable rapid excitatory synaptic transmission by localizing to the postsynaptic density of glutamatergic spines. AMPARs possess large extracellular N-terminal domains (NTDs), which are crucial for AMPAR clustering at synaptic sites. However, the dynamics of NTDs and the molecular mechanism governing their synaptic clustering remain elusive. Here, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the conformational dynamics of NTDs in the GluA2 subunit complexed with TARP γ2 in lipid environments. HS-AFM videos of GluA2-γ2 in the resting and activated/open states revealed fluctuations in NTD dimers. Conversely, in the desensitized/closed state, the two NTD dimers adopted a separated conformation with less fluctuation. Notably, we observed individual NTD dimers transitioning into monomers, with extended monomeric states in the activated/open state. Molecular dynamics simulations provided further support, confirming the energetic stability of the monomeric NTD states within lipids. This NTD-dimer splitting resulted in subunit exchange between the receptors and increased the number of interaction sites with synaptic protein neuronal pentraxin 1 (NP1). Moreover, our HS-AFM studies revealed that NP1 forms a ring-shaped octamer through N-terminal disulfide bonds and binds to the tip of the NTD. These findings suggest a molecular mechanism in which NP1, upon forming an octamer, is secreted into the synaptic region and binds to the tip of the GluA2 NTD, thereby bridging and clustering multiple AMPARs. Thus, our findings illuminate the critical role of NTD dynamics in the synaptic clustering of AMPARs and contribute valuable insights into the fundamental processes of synaptic transmission.
Collapse
Affiliation(s)
- Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Yangpu District, Shanghai 200438, China
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
9
|
Nilsson J, Pichet Binette A, Palmqvist S, Brum WS, Janelidze S, Ashton NJ, Spotorno N, Stomrud E, Gobom J, Zetterberg H, Brinkmalm A, Blennow K, Hansson O. Cerebrospinal fluid biomarker panel for synaptic dysfunction in a broad spectrum of neurodegenerative diseases. Brain 2024; 147:2414-2427. [PMID: 38325331 PMCID: PMC11224614 DOI: 10.1093/brain/awae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Synaptic dysfunction and degeneration is likely the key pathophysiology for the progression of cognitive decline in various dementia disorders. Synaptic status can be monitored by measuring synaptic proteins in CSF. In this study, both known and new synaptic proteins were investigated and compared as potential biomarkers of synaptic dysfunction, particularly in the context of Alzheimer's disease (AD). Seventeen synaptic proteins were quantified in CSF using two different targeted mass spectrometry assays in the prospective Swedish BioFINDER-2 study. The study included 958 individuals, characterized as having mild cognitive impairment (MCI, n = 205), AD dementia (n = 149) and a spectrum of other neurodegenerative diseases (n = 171), in addition to cognitively unimpaired individuals (CU, n = 443). Synaptic protein levels were compared between diagnostic groups and their associations with cognitive decline and key neuroimaging measures (amyloid-β-PET, tau-PET and cortical thickness) were assessed. Among the 17 synaptic proteins examined, 14 were specifically elevated in the AD continuum. SNAP-25, 14-3-3 zeta/delta, β-synuclein, and neurogranin exhibited the highest discriminatory accuracy in differentiating AD dementia from controls (areas under the curve = 0.81-0.93). SNAP-25 and 14-3-3 zeta/delta also had the strongest associations with tau-PET, amyloid-β-PET and cortical thickness at baseline and were associated with longitudinal changes in these imaging biomarkers [β(standard error, SE) = -0.056(0.0006) to 0.058(0.005), P < 0.0001]. SNAP-25 was the strongest predictor of progression to AD dementia in non-demented individuals (hazard ratio = 2.11). In contrast, neuronal pentraxins were decreased in all neurodegenerative diseases (except for Parkinson's disease), and NPTX2 showed the strongest associations with subsequent cognitive decline [longitudinal Mini-Mental State Examination: β(SE) = 0.57(0.1), P ≤ 0.0001; and mPACC: β(SE) = 0.095(0.024), P ≤ 0.001] across the AD continuum. Interestingly, utilizing a ratio of the proteins that displayed higher levels in AD, such as SNAP-25 or 14-3-3 zeta/delta, over NPTX2 improved the biomarkers' associations with cognitive decline and brain atrophy. We found 14-3-3 zeta/delta and SNAP-25 to be especially promising as synaptic biomarkers of pathophysiological changes in AD. Neuronal pentraxins were identified as general indicators of neurodegeneration and associated with cognitive decline across various neurodegenerative dementias. Cognitive decline and brain atrophy were best predicted by ratios of SNAP-25/NPTX2 and 14-3-3 zeta/delta/NPTX2.
Collapse
Affiliation(s)
- Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 211 46 Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 211 46 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 211 46 Malmö, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RX, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 211 46 Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 211 46 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
- Fluid Biomarker Laboratory, UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75646 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230036, P.R. China
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 211 46 Malmö, Sweden
- Memory Clinic, Skåne University Hospital, 205 02 Malmö, Sweden
| |
Collapse
|
10
|
Zhou HH, Tang YL, Xu TH, Cheng B. C-reactive protein: structure, function, regulation, and role in clinical diseases. Front Immunol 2024; 15:1425168. [PMID: 38947332 PMCID: PMC11211361 DOI: 10.3389/fimmu.2024.1425168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
C-reactive protein (CRP) is a plasma protein that is evolutionarily conserved, found in both vertebrates and many invertebrates. It is a member of the pentraxin superfamily, characterized by its pentameric structure and calcium-dependent binding to ligands like phosphocholine (PC). In humans and various other species, the plasma concentration of this protein is markedly elevated during inflammatory conditions, establishing it as a prototypical acute phase protein that plays a role in innate immune responses. This feature can also be used clinically to evaluate the severity of inflammation in the organism. Human CRP (huCRP) can exhibit contrasting biological functions due to conformational transitions, while CRP in various species retains conserved protective functions in vivo. The focus of this review will be on the structural traits of CRP, the regulation of its expression, activate complement, and its function in related diseases in vivo.
Collapse
Affiliation(s)
- Hai-Hong Zhou
- Centre for Translational Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
- Centre for Translational Medicine, Gansu Provincial Cancer Hospital, Lanzhou, China
- Centre for Translational Medicine, Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou, China
| | - Yu-Long Tang
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian-Hao Xu
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bin Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Zhou J, Li X, Wang X, Yang Y, Nai A, Shi H, Zhao J, Zhang J, Ding S, Han Y, Liu Q, Zhang L, Chen T, Liu B, Yue W, Lv L, Li W. Levels of neuronal pentraxin 2 in plasma is associated with cognitive function in patients with schizophrenia. Psychopharmacology (Berl) 2024; 241:865-874. [PMID: 38191677 DOI: 10.1007/s00213-023-06515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
RATIONALE The precise diagnosis and treatment of cognitive impairment remains a major challenge in the field of schizophrenia (SCZ) research. Synaptic dysfunction and loss are thought to be closely related to the occurrence and development of SCZ and may be involved in cognitive dysfunction. OBJECTIVES The purpose of this study was to investigate whether neuronal pentraxins (NPTXs) plays a role in the etiology of SCZ and provide evidence of its possible therapeutic value a new target for drug development. METHODS We recruited 275 participants, of whom 148 were SCZ from psychiatric hospital and 127 healthy control (HC) subjects from communities. Plasma concentrations of NPTXs were measured in HC and SCZ at baseline and after 8 weeks of antipsychotic treatment. The MATRICS Cognitive Consensus Battery was used to evaluate cognitive function. Furthermore, the brain is parcellated into 246 subregions using the Brainnetome atlas, and we extracted regional white matter volumes from magnetic resonance images of the SCZ groups. RESULTS Plasma NPTX2 levels were significantly lower in SCZ compared with HC subjects, but were significantly raised in SCZ after 8 weeks of antipsychotic treatment compared to baseline. In addition, baseline plasma NPTX2 levels were positively correlated with cognitive performance. CONCLUSIONS These findings indicate that NPTX2 may reveal novel aspects of disease etiology and act as a promising target for new drug development.
Collapse
Affiliation(s)
- Jiahui Zhou
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiaojing Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiujuan Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Aoyang Nai
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jianhong Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shuang Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong Han
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Tengfei Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| |
Collapse
|
12
|
Saijo Y, Nagoshi N, Kawai M, Kitagawa T, Suematsu Y, Ozaki M, Shinozaki M, Kohyama J, Shibata S, Takeuchi K, Nakamura M, Yuzaki M, Okano H. Human-induced pluripotent stem cell-derived neural stem/progenitor cell ex vivo gene therapy with synaptic organizer CPTX for spinal cord injury. Stem Cell Reports 2024; 19:383-398. [PMID: 38366597 PMCID: PMC10937157 DOI: 10.1016/j.stemcr.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
The transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise in spinal cord injury (SCI) model animals. Establishing a functional synaptic connection between the transplanted and host neurons is crucial for motor function recovery. To boost therapeutic outcomes, we developed an ex vivo gene therapy aimed at promoting synapse formation by expressing the synthetic excitatory synapse organizer CPTX in hiPSC-NS/PCs. Using an immunocompromised transgenic rat model of SCI, we evaluated the effects of transplanting CPTX-expressing hiPSC-NS/PCs using histological and functional analyses. Our findings revealed a significant increase in excitatory synapse formation at the transplantation site. Retrograde monosynaptic tracing indicated extensive integration of transplanted neurons into the surrounding neuronal tracts facilitated by CPTX. Consequently, locomotion and spinal cord conduction significantly improved. Thus, ex vivo gene therapy targeting synapse formation holds promise for future clinical applications and offers potential benefits to individuals with SCI.
Collapse
Affiliation(s)
- Yusuke Saijo
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yu Suematsu
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Ozaki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, Aichi Medical University School of Medicine, 1-1 Yazago-Karimata, Nagakute, Aichi 430-1195, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
13
|
Hruska-Plochan M, Wiersma VI, Betz KM, Mallona I, Ronchi S, Maniecka Z, Hock EM, Tantardini E, Laferriere F, Sahadevan S, Hoop V, Delvendahl I, Pérez-Berlanga M, Gatta B, Panatta M, van der Bourg A, Bohaciakova D, Sharma P, De Vos L, Frontzek K, Aguzzi A, Lashley T, Robinson MD, Karayannis T, Mueller M, Hierlemann A, Polymenidou M. A model of human neural networks reveals NPTX2 pathology in ALS and FTLD. Nature 2024; 626:1073-1083. [PMID: 38355792 PMCID: PMC10901740 DOI: 10.1038/s41586-024-07042-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
Collapse
Affiliation(s)
| | - Vera I Wiersma
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Katharina M Betz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Izaskun Mallona
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- MaxWell Biosystems AG, Zurich, Switzerland
| | - Zuzanna Maniecka
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Hock
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Florent Laferriere
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Vanessa Hoop
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Beatrice Gatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Panatta
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Puneet Sharma
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- NCCR RNA and Disease Technology Platform, Bern, Switzerland
| | - Laura De Vos
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological diseases, Department of Movement Disorders, UCL Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Martin Mueller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
14
|
Li Q. Pituitary-immune bidirectional crosstalk under systemic inflammation. PLoS Biol 2023; 21:e3002440. [PMID: 38113236 PMCID: PMC10729977 DOI: 10.1371/journal.pbio.3002440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The pituitary gland responds to and modulates immune stress through the hypothalamus-pituitary-adrenal axis. A new study in PLOS Biology reveals unconventional bidirectional communication between hormone-producing cells and the immune system upon systemic inflammation.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Neuroscience, Department of Genetics, Hope Center for Neurological Disorders, Center for Brain Immunology and Glia, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
15
|
Yan T, Wang R, Yao J, Luo M. Single-cell transcriptomic analysis reveals rich pituitary-Immune interactions under systemic inflammation. PLoS Biol 2023; 21:e3002403. [PMID: 38109308 PMCID: PMC10727439 DOI: 10.1371/journal.pbio.3002403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/26/2023] [Indexed: 12/20/2023] Open
Abstract
The pituitary represents an essential hub in the hypothalamus-pituitary-adrenal (HPA) axis. Pituitary hormone-producing cells (HPCs) release several hormones to regulate fundamental bodily functions under normal and stressful conditions. It is well established that the pituitary endocrine gland modulates the immune system by releasing adrenocorticotropic hormone (ACTH) in response to neuronal activation in the hypothalamus. However, it remains unclear how systemic inflammation regulates the transcriptomic profiles of pituitary HPCs. Here, we performed single-cell RNA-sequencing (scRNA-seq) of the mouse pituitary and revealed that upon inflammation, all major pituitary HPCs respond robustly in a cell type-specific manner, with corticotropes displaying the strongest reaction. Systemic inflammation also led to the production and release of noncanonical bioactive molecules, including Nptx2 by corticotropes, to modulate immune homeostasis. Meanwhile, HPCs up-regulated the gene expression of chemokines that facilitated the communication between the HPCs and immune cells. Together, our study reveals extensive interactions between the pituitary and immune system, suggesting multifaceted roles of the pituitary in mediating the effects of inflammation on many aspects of body physiology.
Collapse
Affiliation(s)
- Ting Yan
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Ruiyu Wang
- Chinese Institute for Brain Research, Beijing, China
- National Institute of Biological Sciences (NIBS), Beijing, China
- PTN Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Jingfei Yao
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, China
- National Institute of Biological Sciences (NIBS), Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing, China
- New Cornerstone Science Laboratory, Shenzhen, China
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Roh SE, Xiao M, Delgado A, Kwak C, Savonenko A, Bakker A, Kwon HB, Worley P. Sleep and circadian rhythm disruption by NPTX2 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559408. [PMID: 37808783 PMCID: PMC10557648 DOI: 10.1101/2023.09.26.559408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Sleep and circadian rhythm disruption (SCRD) is commonly observed in aging, especially in individuals who experience progressive cognitive decline to mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, precise molecular mechanisms underlying the association between SCRD and aging are not fully understood. Orexin A is a well-characterized "sleep neuropeptide" that is expressed in hypothalamic neurons and evokes wake behavior. The importance of Orexin is exemplified in narcolepsy where it is profoundly down-regulated. Interestingly, the synaptic immediate early gene NPTX2 is co-expressed in Orexin neurons and is similarly reduced in narcolepsy. NPTX2 is also down-regulated in CSF of some cognitively normal older individuals and predicts the time of transition from normal cognition to MCI. The association between Orexin and NPTX2 is further evinced here where we observe that Orexin A and NPTX2 are highly correlated in CSF of cognitively normal aged individuals and raises the question of whether SCRD that are typically attributed to Orexin A loss of function may be modified by concomitant NPTX2 down-regulation. Is NPTX2 an effector of sleep or simply a reporter of orexin-dependent SCRD? To address this question, we examined NPTX2 KO mice and found they retain Orexin expression in the brain and so provide an opportunity to examine the specific contribution of NPTX2 to SCRD. Our results reveal that NPTX2 KO mice exhibit a disrupted circadian onset time, coupled with increased activity during the sleep phase, suggesting difficulties in maintaining states. Sleep EEG indicates distinct temporal allocation shifts across vigilance states, characterized by reduced wake and increased NREM time. Evident sleep fragmentation manifests through alterations of event occurrences during Wake and NREM, notably during light transition periods, in conjunction with an increased frequency of sleep transitions in NPTX2 KO mice, particularly between Wake and NREM. EEG spectral analysis indicated significant shifts in power across various frequency bands in the wake, NREM, and REM states, suggestive of disrupted neuronal synchronicity. An intriguing observation is the diminished occurrence of sleep spindles, one of the earliest measures of human sleep disruption, in NPTX2 KO mice. These findings highlight the effector role of NPTX2 loss of function as an instigator of SCRD and a potential mediator of sleep disruption in aging.
Collapse
Affiliation(s)
- Seung-Eon Roh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meifang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ana Delgado
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chuljung Kwak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alena Savonenko
- Department of Neuroanatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Rothschadl MJ, Sathyanesan M, Newton SS. Synergism of Carbamoylated Erythropoietin and Insulin-like Growth Factor-1 in Immediate Early Gene Expression. Life (Basel) 2023; 13:1826. [PMID: 37763230 PMCID: PMC10532867 DOI: 10.3390/life13091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Trophic factors are secreted proteins that can modulate neuronal integrity, structure, and function. Previous preclinical studies have shown synergistic effects on decreasing apoptosis and improving behavioral performance after stroke when combining two such trophic factors, erythropoietin (EPO) and insulin-like growth factor-1 (IGF-1). However, EPO can elevate the hematocrit level, which can be life-threatening for non-anemic individuals. A chemically engineered derivative of EPO, carbamoylated EPO (CEPO), does not impact hematological parameters but retains neurotrophic effects similar to EPO. To obtain insight into CEPO and IGF-1 combination signaling, we examined immediate early gene (IEG) expression after treatment with CEPO, IGF-1, or CEPO + IGF-1 in rat pheochromocytoma (PC-12) cells and found that combining CEPO and IGF-1 produced a synergistic increase in IEG expression. An in vivo increase in the protein expression of Npas4 and Nptx2 was also observed in the rat hippocampus. We also examined which kinase signaling pathways might be mediating these effects and found that while AKT inhibition did not alter the pattern of IEG expression, both ERK and JAK2 inhibition significantly decreased IEG expression. These results begin to define the molecular effects of combining CEPO and IGF-1 and indicate the potential for these trophic factors to produce positive, synergistic effects.
Collapse
Affiliation(s)
| | | | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (M.J.R.); (M.S.)
| |
Collapse
|
18
|
Nakayama M, Nishimura O, Nishimura Y, Kitaichi M, Kuraku S, Sone M, Hama C. Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig. J Neurosci 2023; 43:3989-4004. [PMID: 37117011 PMCID: PMC10255049 DOI: 10.1523/jneurosci.2243-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
The presentation of nicotinic acetylcholine receptors (nAChRs) on synaptic membranes is crucial for generating cholinergic circuits, some of which are associated with memory function and neurodegenerative disorders. Although the physiology and structure of nAChR, a cation channel comprising five subunits, have been extensively studied, little is known about how the receptor levels in interneuronal synapses are determined and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices and intracellular proteins. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts in the brain. Only the loss of function of Dα5 among the 10 nAChR subunits suppressed hig mutant phenotypes in both male and female flies. Dα5 behaved as a lethal factor when Hig was defective; loss of Dα5 in hig mutants rescued lethality, upregulating Dα6 synaptic levels. By contrast, levels of Dα5, Dα6, and Dα7 subunits were all reduced in hig mutants. These three subunits have distinct properties for interaction with Hig or trafficking, as confirmed by chimeric subunit experiments. Notably, the chimeric Dα5 protein, which has the extracellular sequences that display no positive interaction with Hig, exhibited abnormal distribution and lethality even in the presence of Hig. We propose that the sequestering subunit Dα5 functions by reducing synaptic levels of nAChR through internalization, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.SIGNIFICANCE STATEMENT Because the cholinergic synapse is one of the major synapses that generate various brain functions, numerous studies have sought to reveal the physiology and structure of the nicotinic acetylcholine receptor (nAChR). However, little is known about how synaptic levels of nAChR are controlled and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts. Our data indicate that Dα5 functions in reducing synaptic levels of nAChR, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.
Collapse
Affiliation(s)
- Minoru Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Yuhi Nishimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Miwa Kitaichi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Masaki Sone
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Chihiro Hama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
19
|
Nilsson J, Cousins KAQ, Gobom J, Portelius E, Chen-Plotkin A, Shaw LM, Grossman M, Irwin DJ, Trojanowski JQ, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel of synaptic dysfunction in Alzheimer's disease and other neurodegenerative disorders. Alzheimers Dement 2023; 19:1775-1784. [PMID: 36239248 PMCID: PMC10102247 DOI: 10.1002/alz.12809] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/21/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
| | - Katheryn AQ Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
20
|
Greguske EA, Maroto AF, Borrajo M, Palou A, Gut M, Esteve-Codina A, Barrallo-Gimeno A, Llorens J. Decreased expression of synaptic genes in the vestibular ganglion of rodents following subchronic ototoxic stress. Neurobiol Dis 2023; 182:106134. [PMID: 37100209 DOI: 10.1016/j.nbd.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons. Here, we used this paradigm to study the global changes in gene expression in vestibular ganglia using RNA-seq. Comparative gene ontology and pathway analyses of the data from both model species indicated a robust downregulation of terms related to synapses, including presynaptic and postsynaptic functions. Manual analyses of the most significantly downregulated transcripts identified genes with expressions related to neuronal activity, modulators of neuronal excitability, and transcription factors and receptors that promote neurite growth and differentiation. For choice selected genes, the mRNA expression results were replicated by qRT-PCR, validated spatially by RNA-scope, or were demonstrated to be associated with decreased expression of the corresponding protein. We conjectured that decreased synaptic input or trophic support on the ganglion neurons from the HC was triggering these expression changes. To support this hypothesis, we demonstrated decreased expression of BDNF mRNA in the vestibular epithelium after subchronic ototoxicity and also downregulated expression of similarly identified genes (e.g Etv5, Camk1g, Slc17a6, Nptx2, Spp1) after HC ablation with another ototoxic compound, allylnitrile. We conclude that vestibular ganglion neurons respond to decreased input from HCs by decreasing the strength of all their synaptic contacts, both as postsynaptic and presynaptic players.
Collapse
Affiliation(s)
- Erin A Greguske
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain
| | - Alberto F Maroto
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain
| | - Mireia Borrajo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona, Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Catalunya, Spain; Institut de Neurociènces, Universitat de Barcelona, Barcelona, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 l'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
21
|
Nugent M, Pierre MS, Brown A, Nassar S, Parmar P, Kitase Y, Duck SA, Pinto C, Jantzie L, Fung C, Chavez-Valdez R. Sexual Dimorphism in the Closure of the Hippocampal Postnatal Critical Period of Synaptic Plasticity after Intrauterine Growth Restriction: Link to Oligodendrocyte and Glial Dysregulation. Dev Neurosci 2023; 45:234-254. [PMID: 37019088 PMCID: PMC12105909 DOI: 10.1159/000530451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Intrauterine growth restriction (IUGR) resulting from hypertensive disease of pregnancy (HDP) leads to sexually dimorphic hippocampal-dependent cognitive and memory impairment in humans. In our translationally relevant mouse model of IUGR incited by HDP, we have previously shown that the synaptic development in the dorsal hippocampus including GABAergic development, NPTX2+ excitatory synaptic formation, axonal myelination, and perineural net (PNN) formation were perturbed by IUGR at adolescent equivalence in humans (P40). The persistence of these disturbances through early adulthood and the potential upstream mechanisms are currently unknown. Thus, we hypothesized that NPTX2+ expression, PNN formation, axonal myelination, all events closing synaptic development in the hippocampus, will be persistently perturbed, particularly affecting IUGR female mice through P60 given the fact that they had worse short-term recognition memory in this model. We additionally hypothesized that such sexual dimorphism is linked to persistent glial dysregulation. We induced IUGR by a micro-osmotic pump infusion of a potent vasoconstrictor U-46619, a thromboxane A2-analog, in the last week of the C57BL/6 mouse gestation to precipitate HDP. Sham-operated mice were used as controls. At P60, we assessed hippocampal and hemispheric volumes, NPTX2 expression, PNN formation, as well as myelin basic protein (MBP), Olig2, APC/CC1, and M-NF expression. We also evaluated P60 astrocytic (GFAP) reactivity and microglial (Iba1 and TMEM119) activation using immunofluorescent-immunohistochemistry and Imaris morphological analysis plus cytokine profiling using Meso Scale Discovery platform. IUGR offspring continued to have smaller hippocampal volumes at P60 not related to changes in hemisphere volume. NPTX2+ puncta counts and volumes were decreased in IUGR hippocampal CA subregions of female mice compared to sex-matched shams. Intriguingly, NPTX2+ counts and volumes were concurrently increased in the dentate gyrus (DG) subregion. PNN volumes were smaller in CA1 and CA3 of IUGR female mice along with PNN intensity in CA3 but they had larger volumes in the CA3 of IUGR male mice. The myelinated axon (MBP+) areas, volumes, and lengths were all decreased in the CA1 of IUGR female mice compared to sex-matched shams, which correlated with a decrease in Olig2 nuclear expression. No decrease in the number of APC/CC1+ mature oligodendrocytes was identified. We noted an increase in M-NF expression in the mossy fibers connecting DG to CA3 only in IUGR female mice. Reactive astrocytes denoted by GFAP areas, volumes, lengths, and numbers of branching were increased in IUGR female CA1 but not in IUGR male CA3 compared to sex-matched shams. Lastly, activated microglia were only detected in IUGR female CA1 and CA3 subregions. We detected no difference in the cytokine profile between sham and IUGR adult mice of either sex. Collectively, our data support a sexually dimorphic impaired closure of postnatal critical period of synaptic plasticity in the hippocampus of young adult IUGR mice with greater effects on females. A potential mechanism supporting such dimorphism may include oligodendrocyte dysfunction in IUGR females limiting myelination, allowing axonal overgrowth followed by a reactive glial-mediated synaptic pruning.
Collapse
Affiliation(s)
- Michael Nugent
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark St. Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley Brown
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Salma Nassar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Pritika Parmar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Charles Pinto
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Lauren Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Zhou J, Wade SD, Graykowski D, Xiao MF, Zhao B, Giannini LAA, Hanson JE, van Swieten JC, Sheng M, Worley PF, Dejanovic B. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci Transl Med 2023; 15:eadf0141. [PMID: 36989373 PMCID: PMC10467038 DOI: 10.1126/scitranslmed.adf0141] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)-mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.
Collapse
Affiliation(s)
- Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Sarah D. Wade
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | | | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Binhui Zhao
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Lucia A. A. Giannini
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, 3015 GD, Netherlands
| | | | - John C. van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, 3015 GD, Netherlands
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | | |
Collapse
|
23
|
Extracellular matrix and synapse formation. Biosci Rep 2023; 43:232259. [PMID: 36503961 PMCID: PMC9829651 DOI: 10.1042/bsr20212411] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is a complex molecular network distributed throughout the extracellular space of different tissues as well as the neuronal system. Previous studies have identified various ECM components that play important roles in neuronal maturation and signal transduction. ECM components are reported to be involved in neurogenesis, neuronal migration, and axonal growth by interacting or binding to specific receptors. In addition, the ECM is found to regulate synapse formation, the stability of the synaptic structure, and synaptic plasticity. Here, we mainly reviewed the effects of various ECM components on synapse formation and briefly described the related diseases caused by the abnormality of several ECM components.
Collapse
|
24
|
PTX3 structure determination using a hybrid cryoelectron microscopy and AlphaFold approach offers insights into ligand binding and complement activation. Proc Natl Acad Sci U S A 2022; 119:e2208144119. [PMID: 35939690 PMCID: PMC9388099 DOI: 10.1073/pnas.2208144119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pattern recognition molecules (PRMs) form an important part of innate immunity, where they facilitate the response to infections and damage by triggering processes such as inflammation. The pentraxin family of soluble PRMs comprises long and short pentraxins, with the former containing unique N-terminal regions unrelated to other proteins or each other. No complete high-resolution structural information exists about long pentraxins, unlike the short pentraxins, where there is an abundance of both X-ray and cryoelectron microscopy (cryo-EM)-derived structures. This study presents a high-resolution structure of the prototypical long pentraxin, PTX3. Cryo-EM yielded a 2.5-Å map of the C-terminal pentraxin domains that revealed a radically different quaternary structure compared to other pentraxins, comprising a glycosylated D4 symmetrical octameric complex stabilized by an extensive disulfide network. The cryo-EM map indicated α-helices that extended N terminal of the pentraxin domains that were not fully resolved. AlphaFold was used to predict the remaining N-terminal structure of the octameric PTX3 complex, revealing two long tetrameric coiled coils with two hinge regions, which was validated using classification of cryo-EM two-dimensional averages. The resulting hybrid cryo-EM/AlphaFold structure allowed mapping of ligand binding sites, such as C1q and fibroblast growth factor-2, as well as rationalization of previous biochemical data. Given the relevance of PTX3 in conditions ranging from COVID-19 prognosis, cancer progression, and female infertility, this structure could be used to inform the understanding and rational design of therapies for these disorders and processes.
Collapse
|
25
|
Göverti D, Büyüklüoğlu N, Kaya H, Yüksel RN, Yücel Ç, Göka E. Neuronal pentraxin-2 (NPTX2) serum levels during an acute psychotic episode in patients with schizophrenia. Psychopharmacology (Berl) 2022; 239:2585-2591. [PMID: 35482070 DOI: 10.1007/s00213-022-06147-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuronal pentraxin-2 (NPTX2, an immediate-early gene), which regulates synapse activity and neuroplasticity, plays an essential role in the neurodevelopmental process. NPTX2 possibly enhances the accumulation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptors (AMPAR) on the postsynaptic membranes and stimulates excitatory synaptogenesis. We aimed to evaluate the plasma concentrations of NPTX2 of patients with schizophrenia in acute psychotic episodes compared with matched community-based controls. METHODS Ninety-three (93) patients diagnosed with schizophrenia according to DSM-5 and 83 healthy controls were included. The patients, all of which were in acute psychotic episodes, were recruited from the inpatient clinic. The patients were assessed by the Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression- Severity (CGIS) scale, whereas the healthy subjects were evaluated with Structured Clinical Interview for DSM-5 (SCID-5) to exclude any major psychiatric diagnoses. RESULTS NPTX2 serum concentrations were significantly higher in the schizophrenia group (p < 0.001). NPTX2 levels negatively correlated with age (p = 0.004) and PANSS-positive symptom scores (p < 0.001). The most determinant factors in predicting the change in NPTX2 levels were PANSS-positive symptom and general psychopathology scores. CONCLUSIONS We conclude that NPTX2 could be involved in schizophrenia pathophysiology and valuable as a synapse-derived and glutamate-related biomarker. Further studies in larger samples assessing NPTX2 levels in remitted schizophrenia patients and combining neuroimaging techniques and cognitive evaluations with blood samples are needed.
Collapse
Affiliation(s)
- Diğdem Göverti
- Department of Psychiatry, University of Health Sciences, Erenkoy Mental Health and Neurologic Disorders Training and Research Hospital, Istanbul, Turkey.
| | - Nihan Büyüklüoğlu
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Hasan Kaya
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Rabia Nazik Yüksel
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Çiğdem Yücel
- Department of Biochemistry, University of Health Sciences, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Erol Göka
- Department of Psychiatry, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
26
|
Barman B, Kushwaha A, Thakur MK. Muscarinic Acetylcholine Receptors-Mediated Activation of PKC Restores the Hippocampal Immediate Early Gene Expression and CREB Phosphorylation in Scopolamine-Induced Amnesic Mice. Mol Neurobiol 2022; 59:5722-5733. [DOI: 10.1007/s12035-022-02940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
|
27
|
Starodubtseva NL, Eldarov C, Kirtbaya AR, Balashova EN, Gryzunova AS, Ionov OV, Zubkov VV, Silachev DN. Recent advances in diagnostics of neonatal hypoxic ischemic encephalopathy. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prognosis in neonatal hypoxic ischemic encephalopathy (HIE) depends on early differential diagnosis for justified administration of emergency therapeutic hypothermia. The moment of therapy initiation directly affects the long-term neurological outcome: the earlier the commencement, the better the prognosis. This review analyzes recent advances in systems biology that facilitate early differential diagnosis of HIE as a pivotal complement to clinical indicators. We discuss the possibilities of clinical translation for proteomic, metabolomic and extracellular vesicle patterns characteristic of HIE and correlations with severity and prognosis. Identification and use of selective biomarkers of brain damage in neonates during the first hours of life is hindered by systemic effects of hypoxia. Chromatography– mass spectrometry blood tests allow analyzing hundreds and thousands of metabolites in a small biological sample to identify characteristic signatures of brain damage. Clinical use of advanced analytical techniques will facilitate the accurate and timely diagnosis of HIE for enhanced management.
Collapse
Affiliation(s)
- NL Starodubtseva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - ChM Eldarov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - AR Kirtbaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - EN Balashova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - AS Gryzunova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - OV Ionov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VV Zubkov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - DN Silachev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
28
|
Bice AR, Xiao Q, Kong J, Yan P, Rosenthal ZP, Kraft AW, Smith KP, Wieloch T, Lee JM, Culver JP, Bauer AQ. Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. eLife 2022; 11:e68852. [PMID: 35723585 PMCID: PMC9333991 DOI: 10.7554/elife.68852] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia.
Collapse
Affiliation(s)
- Annie R Bice
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| | - Qingli Xiao
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Justin Kong
- Department of Biology, Washington University in St. LouisSaint LouisUnited States
| | - Ping Yan
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Andrew W Kraft
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Karen P Smith
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Jin-Moo Lee
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Joseph P Culver
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| |
Collapse
|
29
|
Vadászi H, Kiss B, Micsonai A, Schlosser G, Szaniszló T, Kovács RÁ, Györffy BA, Kékesi KA, Goto Y, Uzonyi B, Liliom K, Kardos J. Competitive inhibition of the classical complement pathway using exogenous single-chain C1q recognition proteins. J Biol Chem 2022; 298:102113. [PMID: 35690144 PMCID: PMC9270254 DOI: 10.1016/j.jbc.2022.102113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Complement component 1q (C1q) is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway (CP). In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs which comprised the globular interaction recognition parts of mouse C1q (gC1q) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an E. coli expression system, and their structure and capabilities to bind known CP activators were validated by mass spectrometry, analytical size exclusion chromatography, analytical ultracentrifugation, circular dichroism spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- MTA ELTE Lendu¨let Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szaniszló
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Réka Á Kovács
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs A Györffy
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary; Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Barbara Uzonyi
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
30
|
Bousiges O, Blanc F. Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23126371. [PMID: 35742814 PMCID: PMC9223587 DOI: 10.3390/ijms23126371] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. Only one third of patients are correctly diagnosed due to the clinical similarity mainly with Alzheimer’s disease (AD). In this review, we evaluate the interest of different biomarkers: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage (i.e., MCI). MIBG SPECT with decreased cardiac sympathetic activity, perfusion SPECT with occipital hypoperfusion, FDG PET with occipital hypometabolism and cingulate island signs are of interest at the dementia stage but with a lower validity. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routines is not demonstrated. Concerning CSF biomarkers, many studies have already examined the relevance of AD biomarkers but also alpha-synuclein assays in DLB, so we will focus as comprehensively as possible on other biomarkers (especially those that do not appear to be directly related to synucleinopathy) that may be of interest in the differential diagnosis between AD and DLB. Furthermore, we would like to highlight the growing interest in CSF synuclein RT-QuIC, which seems to be an excellent discrimination tool but its application in clinical routine remains to be demonstrated, given the non-automation of the process.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
- Correspondence:
| | - Frédéric Blanc
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
31
|
van der Ende EL, Bron EE, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Wilke C, Synofzik M, Heller C, Swift IJ, Sogorb-Esteve A, Bouzigues A, Borroni B, Sanchez-Valle R, Moreno F, Graff C, Laforce R, Galimberti D, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Rowe JB, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Pijnenburg YAL, Sorbi S, Zetterberg H, Niessen WJ, Rohrer JD, Klein S, van Swieten JC, Venkatraghavan V, Seelaar H. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain 2022; 145:1805-1817. [PMID: 34633446 PMCID: PMC9166533 DOI: 10.1093/brain/awab382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014 Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 17176 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 17176 Solna, Sweden
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Université Laval, G1Z 1J4 Québec, Canada
| | - Daniela Galimberti
- Centro Dino Ferrari, University of Milan, 20122 Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, ON M4N 3M5 Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, ON N6A 3K7 London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - James B Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, CB2 0SZ Cambridge, UK
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, 3801 Montreal, Québec, Canada
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, SW7 2AZ London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, 45 147 Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center, Location VU University Medical Center Amsterdam Neuroscience, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 405 30 Mölndal, Sweden
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vikram Venkatraghavan
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
32
|
Coutelier M, Jacoupy M, Janer A, Renaud F, Auger N, Saripella GV, Ancien F, Pucci F, Rooman M, Gilis D, Larivière R, Sgarioto N, Valter R, Guillot-Noel L, Le Ber I, Sayah S, Charles P, Nümann A, Pauly MG, Helmchen C, Deininger N, Haack TB, Brais B, Brice A, Trégouët DA, El Hachimi KH, Shoubridge EA, Durr A, Stevanin G. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain 2022; 145:1519-1534. [PMID: 34788392 DOI: 10.1093/brain/awab407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 11/14/2022] Open
Abstract
With more than 40 causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3:c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole-exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3:c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p.E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p.E327G substitution, located at the interface between monomers. On the contrary, the p.G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.
Collapse
Affiliation(s)
- Marie Coutelier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Maxime Jacoupy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandre Janer
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Flore Renaud
- CNRS UMR 9019, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Nicolas Auger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Ganapathi-Varma Saripella
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
| | - François Ancien
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Dimitri Gilis
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Nicolas Sgarioto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Rémi Valter
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Léna Guillot-Noel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Sabrina Sayah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Perrine Charles
- Department of Genetics, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Astrid Nümann
- Department of Neurology, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Martje G Pauly
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
| | - Natalie Deininger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - David-Alexandre Trégouët
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
- Université de Bordeaux, INSERM U1219, Bordeaux Population Health Research Center, 33076 Bordeaux, France
| | - Khalid H El Hachimi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| |
Collapse
|
33
|
Liu F, Bao Y, Qiu B, Mao J, Liao X, Huang H, Zhang A, Zhang G, Qi S, Mei F. Identification of Novel Cerebrospinal Fluid Biomarkers for Cognitive Decline in Aneurysmal Subarachnoid Hemorrhage: A Proteomic Approach. Front Cell Neurosci 2022; 16:861425. [PMID: 35602555 PMCID: PMC9120969 DOI: 10.3389/fncel.2022.861425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Cognitive impairment commonly occurs in aneurysmal subarachnoid hemorrhage (aSAH) survivors. Cerebrospinal fluid (CSF) biomarkers have been proven useful in several central neurological disorders. No such diagnostic biomarkers are available for predicting cognitive impairment after aSAH to date. Here, we aimed to identify novel CSF biomarkers for cognitive deficits after aSAH using an in-depth proteomic approach. Methods We applied mass spectrometry with data independent acquisition (DIA) quantification to identify biomarker candidates in CSF samples from a well-characterized cohort comprising patients with impaired cognition (n = 9) and patients with intact cognition (n = 9). The potential biological processes and signaling pathways associated with differential proteins were analyzed using R software. The candidates were further validated in a larger independent cohort (n = 40) using ELISA. The diagnostic utility of these proteins was investigated by using receiver operating characteristic curve analysis. Results In total, we identified 628 proteins. The discovery cohort revealed that 115 proteins were differentially expressed in cognitive impairment patients compared to patients with intact cognition (P < 0.05). Independent cohort replication confirmed NCAM2, NPTXR, NRXN2, RELN, and CNTN2 as sensitive and specific candidate biomarkers for disorders of cognition. Lower CSF levels of all biomarker candidates, except RELN, were associated with more pronounced cognitive decline. Conclusion We identified and validated five CSF biomarkers for cognitive impairment in aSAH patients. These particular proteins have important predictive and discriminative potential for cognitive impairment in aSAH and could be potential targets for early disease intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fen Mei
- *Correspondence: Songtao Qi Fen Mei
| |
Collapse
|
34
|
Kanehisa K, Koga K, Maejima S, Shiraishi Y, Asai K, Shiratori-Hayashi M, Xiao MF, Sakamoto H, Worley PF, Tsuda M. Neuronal pentraxin 2 is required for facilitating excitatory synaptic inputs onto spinal neurons involved in pruriceptive transmission in a model of chronic itch. Nat Commun 2022; 13:2367. [PMID: 35501343 PMCID: PMC9061767 DOI: 10.1038/s41467-022-30089-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/14/2022] [Indexed: 11/08/2022] Open
Abstract
An excitatory neuron subset in the spinal dorsal horn (SDH) that expresses gastrin-releasing peptide receptors (GRPR) is critical for pruriceptive transmission. Here, we show that glutamatergic excitatory inputs onto GRPR+ neurons are facilitated in mouse models of chronic itch. In these models, neuronal pentraxin 2 (NPTX2), an activity-dependent immediate early gene product, is upregulated in the dorsal root ganglion (DRG) neurons. Electron microscopy reveals that NPTX2 is present at presynaptic terminals connected onto postsynaptic GRPR+ neurons. NPTX2-knockout prevents the facilitation of synaptic inputs to GRPR+ neurons, and repetitive scratching behavior. DRG-specific NPTX2 expression rescues the impaired behavioral phenotype in NPTX2-knockout mice. Moreover, ectopic expression of a dominant-negative form of NPTX2 in DRG neurons reduces chronic itch-like behavior in mice. Our findings indicate that the upregulation of NPTX2 expression in DRG neurons contributes to the facilitation of glutamatergic inputs onto GRPR+ neurons under chronic itch-like conditions, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Kensho Kanehisa
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Sho Maejima
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, 130-17 Kashino, Ushimado, Setouchi, 701-4303, Japan
| | - Yuto Shiraishi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Konatsu Asai
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miho Shiratori-Hayashi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mei-Fang Xiao
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, 130-17 Kashino, Ushimado, Setouchi, 701-4303, Japan
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
Deppe J, Deininger N, Lingor P, Haack TB, Haslinger B, Deschauer M. A Novel NPTX1 de novo Variant in a Late-Onset Ataxia Patient. Mov Disord 2022; 37:1319-1321. [PMID: 35285082 DOI: 10.1002/mds.28985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jonas Deppe
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Natalie Deininger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Bernhard Haslinger
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
36
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
37
|
Cervantes González A, Belbin O. Fluid markers of synapse degeneration in synucleinopathies. J Neural Transm (Vienna) 2022; 129:187-206. [PMID: 35147800 DOI: 10.1007/s00702-022-02467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
The abnormal accumulation of α-synuclein in the brain is a common feature of Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and synucleinopathies that present with overlapping but distinct clinical symptoms that include motor and cognitive deficits. Synapse degeneration is the crucial neuropathological event in these synucleinopathies and the neuropathological correlate of connectome dysfunction. The cognitive and motor deficits resulting from the connectome dysfunction are currently measured by scalar systems that are limited in their sensitivity and largely subjective. Ideally, a marker of synapse degeneration would correlate with measures of cognitive or motor impairment, and could therefore be used as a more objective, surrogate biomarker of the core clinical features of these diseases. Furthermore, an objective surrogate biomarker that can detect and monitor the progression of synapse degeneration would improve patient management and clinical trial design, and could provide a measure of therapeutic response. Here, we review the published findings relating to candidate biomarkers of synapse degeneration in PD, PDD, DLB, and MSA patient-derived biofluids and discuss the findings in the context of the mechanisms associated with α-synuclein-mediated synapse degeneration. Understanding these mechanisms is essential not only for discovery of biomarkers, but also to improve our understanding of the earliest changes in disease pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Alba Cervantes González
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
38
|
Pineles B, Mani A, Sura L, Rossignol C, Albayram M, Weiss MD, Goetzl L. Neuronal exosome proteins: novel biomarkers for predicting neonatal response to therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed 2022; 107:60-64. [PMID: 34021027 DOI: 10.1136/archdischild-2020-321096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Central nervous system (CNS) derived exosomes can be purified from peripheral blood and have been used widely in adult neurological disease. Application to neonatal neurological disease deserves investigation in the setting of hypoxic-ischaemic encephalopathy (HIE). DESIGN Observational cohort. SETTING Level III neonatal intensive care unit. PARTICIPANTS Term/near-term neonates undergoing therapeutic hypothermia (TH) for HIE. INTERVENTIONS Blood samples were collected at 0-6, 12, 24, 48 and 96 hours of life. MAIN OUTCOMES AND MEASURES CNS exosomes were purified from serum using previously described methods. Biomarker protein levels were quantified using standard ELISA methods and normalised to exosome marker CD-81. The slope of change for biomarker levels was calculated for each time interval. Our primary outcome was MRI basal ganglia/watershed score of ≥3. RESULTS 26 subjects were included (umbilical artery pH range 6.6-7.29; 35% seizures). An increasing MRI injury score was significantly associated with decreasing levels of synaptopodin between 0-6 and 12 hours (p=0.03) and increasing levels of lipocalin-2 (NGAL) between 12 and 48 hours (p<0.0001). Neuronal pentraxin was not significant. The negative predictive values for increasing synaptopodin and decreasing NGAL was 70.0% and 90.9%, respectively. CONCLUSIONS AND RELEVANCE Our results indicate that CNS exosome cargo has the potential to act as biomarkers of the severity of brain injury and response to TH as well as quantify pharmacological response to neuroactive therapeutic/adjuvant agents. Rigorous prospective trials are critical to evaluate potential clinical use of exosome biomarkers.
Collapse
Affiliation(s)
- Beth Pineles
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Livia Sura
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Candace Rossignol
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Mehmet Albayram
- Department of Radiology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Michael David Weiss
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
39
|
St. Pierre M, Rastogi N, Brown A, Parmar P, Lechner C, Fung C, Chavez-Valdez R. Intrauterine Growth Restriction Disrupts the Postnatal Critical Period of Synaptic Plasticity in the Mouse Dorsal Hippocampus in a Model of Hypertensive Disease of Pregnancy. Dev Neurosci 2022; 44:214-232. [PMID: 34933306 PMCID: PMC9209574 DOI: 10.1159/000521611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Intrauterine growth restriction (IUGR) from hypertensive disease of pregnancy complicates up to 10% of all pregnancies. Significant hippocampal-dependent cognitive and memory impairments as well as neuropsychiatric disorders have been linked to IUGR. Because disturbance of the hippocampal critical period (CPd) of synaptic plasticity leads to impairments similar to those described in IUGR human offspring, we hypothesized that IUGR would perturb the CPd of synaptic plasticity in the mouse hippocampus in our model. METHODS IUGR was produced by a micro-osmotic pump infusion of the potent vasoconstrictor U-46619, a thromboxane A2-agonist, at embryonic day 12.5 in C57BL/6J mouse dams to precipitate hypertensive disease of pregnancy and IUGR. Sham-operated mice acted as controls. At P10, P18, and P40, we assessed astrogliosis using GFAP-IHC. In dorsal CA1 and CA3 subfields, we assessed the immunoreactivities (IR) (IF-IHC) to (i) parvalbumin (PV) and glutamate decarboxylase (GAD) 65/67, involved in CPd onset; (ii) PSA-NCAM that antagonizes CPd onset; (iii) NPTX2, necessary for excitatory synapse formation and engagement of CPd; and (iv) MBP and WFA, staining perineural nets (PNNs), marking CPd closure. ImageJ/Fiji and IMARIS were used for image processing and SPSS v24 for statistical analysis. RESULTS Although PV+ interneuron numbers and IR intensity were unchanged, development of GAD65/67+ synaptic boutons was accelerated at P18 IUGR mice and inversely correlated with decreased expression of PSA-NCAM in the CA of P18 IUGR mice at P18. NPTX2+ puncta and total volume were persistently decreased in the CA3 pyramidal and radiatum layers of IUGR mice from P18 to P40. At P40, axonal myelination (MBP+) in CA3 of IUGR mice was decreased and correlated with NPTX2 deficits. Lastly, the volume and integrity of the PNNs in the dorsal CA was disrupted in IUGR mice at P40. DISCUSSION/CONCLUSION IUGR disrupts the molecular and structural initiation, consolidation, and closure of the CPd of synaptic plasticity in the mouse hippocampus in our model, which may explain the learning and memory deficits observed in juvenile IUGR mice and the cognitive disorders seen in human IUGR offspring. The mechanistic links warrant further investigation, to identify therapeutic targets to prevent neurodevelopmental deficits in patients affected by IUGR.
Collapse
Affiliation(s)
- Mark St. Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine. Baltimore, MD
| | - Neetika Rastogi
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD
| | - Ashley Brown
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Pritika Parmar
- Department of Neurosciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD
| | - Charles Lechner
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine. Baltimore, MD
| | - Camille Fung
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine. Baltimore, MD,Corresponding author: Dr. Raul Chavez-Valdez. Associate Professor. Department of Pediatrics, Division of Neonatology, Johns Hopkins Hospital, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA. Telephone: (410) 955-7156,
| |
Collapse
|
40
|
Xiao MF, Roh SE, Zhou J, Chien CC, Lucey BP, Craig MT, Hayes LN, Coughlin JM, Leweke FM, Jia M, Xu D, Zhou W, Conover Talbot C, Arnold DB, Staley M, Jiang C, Reti IM, Sawa A, Pelkey KA, McBain CJ, Savonenko A, Worley PF. A biomarker-authenticated model of schizophrenia implicating NPTX2 loss of function. SCIENCE ADVANCES 2021; 7:eabf6935. [PMID: 34818031 PMCID: PMC8612534 DOI: 10.1126/sciadv.abf6935] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Schizophrenia is a polygenetic disorder whose clinical onset is often associated with behavioral stress. Here, we present a model of disease pathogenesis that builds on our observation that the synaptic immediate early gene NPTX2 is reduced in cerebrospinal fluid of individuals with recent onset schizophrenia. NPTX2 plays an essential role in maintaining excitatory homeostasis by adaptively enhancing circuit inhibition. NPTX2 function requires activity-dependent exocytosis and dynamic shedding at synapses and is coupled to circadian behavior. Behavior-linked NPTX2 trafficking is abolished by mutations that disrupt select activity-dependent plasticity mechanisms of excitatory neurons. Modeling NPTX2 loss of function results in failure of parvalbumin interneurons in their adaptive contribution to behavioral stress, and animals exhibit multiple neuropsychiatric domains. Because the genetics of schizophrenia encompasses diverse proteins that contribute to excitatory synapse plasticity, the identified vulnerability of NPTX2 function can provide a framework for assessing the impact of genetics and the intersection with stress.
Collapse
Affiliation(s)
- Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Eon Roh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chun-Che Chien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan P. Lucey
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael T. Craig
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lindsay N. Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M. Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F. Markus Leweke
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Youth Mental Health Team, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Min Jia
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - C. Conover Talbot
- Transcriptomics and Deep Sequencing Core Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Don B. Arnold
- Department of Biology, Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Melissa Staley
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cindy Jiang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irving M. Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenneth A. Pelkey
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Chris J. McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Dulewicz M, Kulczyńska-Przybik A, Słowik A, Borawska R, Mroczko B. Neurogranin and Neuronal Pentraxin Receptor as Synaptic Dysfunction Biomarkers in Alzheimer's Disease. J Clin Med 2021; 10:jcm10194575. [PMID: 34640593 PMCID: PMC8509697 DOI: 10.3390/jcm10194575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
Synaptic loss and dysfunction are one of the earliest signs of neurodegeneration associated with cognitive decline in Alzheimer’s disease (AD). It seems that by assessing proteins related to synapses, one may reflect their dysfunction and improve the understanding of neurobiological processes in the early stage of the disease. To our best knowledge, this is the first study that analyzes the CSF concentrations of two synaptic proteins together, such as neurogranin (Ng) and neuronal pentraxins receptor (NPTXR) in relation to neurochemical dementia biomarkers in Alzheimer’s disease. Methods: Ng, NPTXR and classical AD biomarkers concentrations were measured in the CSF of patients with AD and non-demented controls (CTRL) using an enzyme-linked immunosorbent assay (ELISA) and Luminex xMAP technology. Results: The CSF level of Ng was significantly higher, whereas the NPTXR was significantly lower in the AD patients than in cognitively healthy controls. As a first, we calculated the NPTXR/Ng ratio as an indicator of synaptic disturbance. The patients with AD presented a significantly decreased NPTXR/Ng ratio. The correlation was observed between both proteins in the AD and the whole study group. Furthermore, the relationship between the Ng level and pTau181 was found in the AD group of patients. Conclusions: The Ng and NPTXR concentrations in CSF are promising synaptic dysfunction biomarkers reflecting pathological changes in AD.
Collapse
Affiliation(s)
- Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Correspondence:
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Krakow, Poland;
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (R.B.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
43
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
44
|
Matthews PM, Pinggera A, Kampjut D, Greger IH. Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology 2021; 197:108709. [PMID: 34271020 DOI: 10.1016/j.neuropharm.2021.108709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system. Their signaling properties and abundance at synapses are both crucial determinants of synapse efficacy and plasticity, and are therefore under sophisticated control. Unique to this ionotropic glutamate receptor (iGluR) is the abundance of interacting proteins that contribute to its complex regulation. These include transient interactions with the receptor cytoplasmic tail as well as the N-terminal domain locating to the synaptic cleft, both of which are involved in AMPAR trafficking and receptor stabilization at the synapse. Moreover, an array of transmembrane proteins operate as auxiliary subunits that in addition to receptor trafficking and stabilization also substantially impact AMPAR gating and pharmacology. Here, we provide an overview of the catalogue of AMPAR interacting proteins, and how they contribute to the complex biology of this central glutamate receptor.
Collapse
Affiliation(s)
- Peter M Matthews
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Domen Kampjut
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
45
|
Schwendt M, Knackstedt LA. Extinction vs. Abstinence: A Review of the Molecular and Circuit Consequences of Different Post-Cocaine Experiences. Int J Mol Sci 2021; 22:ijms22116113. [PMID: 34204090 PMCID: PMC8200945 DOI: 10.3390/ijms22116113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The intravenous cocaine self-administration model is widely used to characterize the neurobiology of cocaine seeking. When studies are aimed at understanding relapse to cocaine-seeking, a post-cocaine abstinence period is imposed, followed by “relapse” tests to assess the ability of drug-related stimuli (“primes”) to evoke the resumption of the instrumental response previously made to obtain cocaine. Here, we review the literature on the impact of post-cocaine abstinence procedures on neurobiology, finding that the prelimbic and infralimbic regions of the prefrontal cortex are recruited by extinction training, and are not part of the relapse circuitry when extinction training does not occur. Pairing cocaine infusions with discrete cues recruits the involvement of the NA, which together with the dorsal striatum, is a key part of the relapse circuit regardless of abstinence procedures. Differences in molecular adaptations in the NA core include increased expression of GluN1 and glutamate receptor signaling partners after extinction training. AMPA receptors and glutamate transporters are similarly affected by abstinence and extinction. Glutamate receptor antagonists show efficacy at reducing relapse following extinction and abstinence, with a modest increase in efficacy of compounds that restore glutamate homeostasis after extinction training. Imaging studies in humans reveal cocaine-induced adaptations that are similar to those produced after extinction training. Thus, while instrumental extinction training does not have face validity, its use does not produce adaptations distinct from human cocaine users.
Collapse
Affiliation(s)
- Marek Schwendt
- Psychology Department, University of Florida, Gainesville, FL 32611, USA;
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32611, USA
| | - Lori A. Knackstedt
- Psychology Department, University of Florida, Gainesville, FL 32611, USA;
- Center for Addiction Research and Education, University of Florida, Gainesville, FL 32611, USA
- Correspondence: ; Tel.: +1-352-273-2185
| |
Collapse
|
46
|
Lantz CL, Quinlan EM. High-Frequency Visual Stimulation Primes Gamma Oscillations for Visually Evoked Phase Reset and Enhances Spatial Acuity. Cereb Cortex Commun 2021; 2:tgab016. [PMID: 33997786 PMCID: PMC8110461 DOI: 10.1093/texcom/tgab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022] Open
Abstract
The temporal frequency of sensory stimulation is a decisive factor in the plasticity of perceptual detection thresholds. However, surprisingly little is known about how distinct temporal parameters of sensory input differentially recruit activity of neuronal circuits in sensory cortices. Here we demonstrate that brief repetitive visual stimulation induces long-term plasticity of visual responses revealed 24 h after stimulation and that the location and generalization of visual response plasticity is determined by the temporal frequency of the visual stimulation. Brief repetitive low-frequency stimulation (2 Hz) is sufficient to induce a visual response potentiation that is expressed exclusively in visual cortex layer 4 and in response to a familiar stimulus. In contrast, brief, repetitive high-frequency stimulation (HFS, 20 Hz) is sufficient to induce a visual response potentiation that is expressed in all cortical layers and transfers to novel stimuli. HFS induces a long-term suppression of the activity of fast-spiking interneurons and primes ongoing gamma oscillatory rhythms for phase reset by subsequent visual stimulation. This novel form of generalized visual response enhancement induced by HFS is paralleled by an increase in visual acuity, measured as improved performance in a visual detection task.
Collapse
Affiliation(s)
- Crystal L Lantz
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
47
|
Haseloff RF, Trudel S, Birke R, Schümann M, Krause E, Gomila C, Heard JM, Blasig IE, Ausseil J. Surrogate Cerebrospinal Fluid Biomarkers for Assessing the Efficacy of Gene Therapy in Hurler Syndrome. Front Neurol 2021; 12:640547. [PMID: 34054689 PMCID: PMC8155356 DOI: 10.3389/fneur.2021.640547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of the lysosomal hydroxylase alpha-l-iduronidase (IDUA). The resulting accumulation of dermatan and heparan sulfate induces intellectual disabilities and pre-mature death, and only a few treatment options are available. In a previous study, we demonstrated the feasibility, safety, and efficacy of gene therapy by injecting recombinant adeno-associated viral vector serotype (AAV)2/5-IDUA into the brain of a canine model of MPS I. We report on a quantitative proteomic analysis of control dogs and untreated dogs with MPS I cerebrospinal fluid (CSF) that had been collected throughout the study in the MPS I dogs. Mass spectrometry (MS) analysis identified numerous proteins present at altered levels in MPS I CSF samples. Quantitative immunoblotting, performed on CSF from healthy controls, untreated MPS I dogs, and MPS I dogs early treated and late treated by gene therapy, confirmed the MS data for a subset of proteins with higher abundance (neuronal pentraxin 1, chitinase 3-like 1, monocyte differentiation antigen CD14, and insulin-like growth factor-binding protein 2). Scoring of the results shows that the expression levels of these proteins are close to those of the control group for dogs that underwent gene therapy early in life but not for older treated animals. Our results disclose four novel predictive biomarker candidates that might be valuable in monitoring the course of the neurological disease in MPS patients at diagnosis, during clinical follow-up, and after treatment.
Collapse
Affiliation(s)
- Reiner F Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Stephanie Trudel
- INSERM U1043, Centre de Physiopathologie de Toulouse-Purpan, Université Toulouse III Paul Sabatier, Toulouse, France.,Service de Biochimie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Ramona Birke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Michael Schümann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Cathy Gomila
- INSERM U1088, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Ingolf E Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jérôme Ausseil
- INSERM U1043, Centre de Physiopathologie de Toulouse-Purpan, Université Toulouse III Paul Sabatier, Toulouse, France.,Service de Biochimie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
48
|
Libiger O, Shaw LM, Watson MH, Nairn AC, Umaña KL, Biarnes MC, Canet-Avilés RM, Jack CR, Breton YA, Cortes L, Chelsky D, Spellman DS, Baker SA, Raghavan N, Potter WZ. Longitudinal CSF proteomics identifies NPTX2 as a prognostic biomarker of Alzheimer's disease. Alzheimers Dement 2021; 17:1976-1987. [PMID: 33984181 PMCID: PMC9222372 DOI: 10.1002/alz.12353] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Introduction: Biomarkers that reflect pathologic processes affecting neuronal function during preclinical and early stages of Alzheimer's disease (AD) are needed to aid drug development. Methods: A targeted, stable isotope, quantitative mass spectrometry‐based investigation of longitudinal changes in concentrations of previously identified candidate biomarkers was performed in cerebrospinal fluid (CSF) of Alzheimer's Disease Neuroimaging Initiative participants who were classified as cognitively normal (CN; n = 76) or with mild cognitive impairment (MCI; n = 111) at baseline. Results: Of the candidate biomarkers, the CSF concentration of neuronal pentraxin 2 (NPTX2), a protein involved in synaptic function, exhibited rates of change that were significantly different between three comparison groups (i.e., CN vs. MCI participants; AD pathology positive vs. negative defined by phosphorylated tau181/amyloid beta1‐42 ratio; and clinical progressors vs. non‐progressors). The rate of change of NPTX2 also significantly correlated with declining cognition. Discussion: CSF NPTX2 concentration is a strong prognostic biomarker candidate of accelerated cognitive decline with potential use as a therapeutic target.
Collapse
Affiliation(s)
- Ondrej Libiger
- Janssen Research and Development, San Diego, California, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Angus C Nairn
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly L Umaña
- Foundation for the National Institutes of Health, North Bethesda, Maryland, USA
| | - Michael C Biarnes
- Foundation for the National Institutes of Health, North Bethesda, Maryland, USA
| | - Rosa M Canet-Avilés
- Foundation for the National Institutes of Health, North Bethesda, Maryland, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Susan A Baker
- Janssen Research and Development, Titusville, New Jersey, USA
| | | | | | | | | |
Collapse
|
49
|
Nilsson J, Gobom J, Sjödin S, Brinkmalm G, Ashton NJ, Svensson J, Johansson P, Portelius E, Zetterberg H, Blennow K, Brinkmalm A. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12179. [PMID: 33969172 PMCID: PMC8087978 DOI: 10.1002/dad2.12179] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Synaptic dysfunction and degeneration is one of the earliest events in Alzheimer's disease (AD) and the best correlate of cognitive decline. Thus, identification and validation of biomarkers reflecting synaptic degeneration to be used as prognostic biomarkers are greatly needed. METHOD Solid-phase extraction and parallel reaction monitoring mass spectrometry were used to quantify 17 synaptic proteins in CSF, in two cross-sectional studies including AD (n = 52) and controls (n = 37). RESULTS Increased concentrations of beta-synuclein, gamma-synuclein, neurogranin, phosphatidylethanolamine-binding protein 1, and 14-3-3 proteins were observed in AD patients compared to controls, while neuronal pentraxin-2 and neuronal pentraxin receptor were decreased. DISCUSSION We have established a method with a novel panel of synaptic proteins as biomarkers of synaptic dysfunction. The results indicate that several of the proteins included in the panel may serve as synaptic biomarkers for AD.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Johan Gobom
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Simon Sjödin
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Nicholas J. Ashton
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS FoundationLondonUK
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of MedicineThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Per Johansson
- Department of Internal Medicine and Clinical Nutrition, Institute of MedicineThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden
- Department of Clinical SciencesLund UniversityLundSweden
| | - Erik Portelius
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Ann Brinkmalm
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| |
Collapse
|
50
|
Wang JY, Li XY, Li HJ, Liu JW, Yao YG, Li M, Xiao X, Luo XJ. Integrative Analyses Followed by Functional Characterization Reveal TMEM180 as a Schizophrenia Risk Gene. Schizophr Bull 2021; 47:1364-1374. [PMID: 33768244 PMCID: PMC8379544 DOI: 10.1093/schbul/sbab032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent large-scale integrative analyses (including Transcriptome-Wide Association Study [TWAS] and Summary-data-based Mendelian Randomization [SMR]) have identified multiple genes whose cis-regulated expression changes may confer risk of schizophrenia. Nevertheless, expression quantitative trait loci (eQTL) data and genome-wide associations used for integrative analyses were mainly from populations of European ancestry, resulting in potential missing of pivotal biological insights in other continental populations due to population heterogeneity. Here we conducted TWAS and SMR integrative analyses using blood eQTL (from 162 subjects) and GWAS data (22 778 cases and 35 362 controls) of schizophrenia in East Asian (EAS) populations. Both TWAS (P = 2.89 × 10-14) and SMR (P = 6.04 × 10-5) analyses showed that decreased TMEM180 mRNA expression was significantly associated with risk of schizophrenia. We further found that TMEM180 was significantly down-regulated in the peripheral blood of schizophrenia cases compared with controls (P = 8.63 × 10-4 in EAS sample), and its expression was also significantly lower in the brain tissues of schizophrenia cases compared with controls (P = 1.87 × 10-5 in European sample from PsychENCODE). Functional explorations suggested that Tmem180 knockdown affected neurodevelopment, ie, proliferation and differentiation of neural stem cells. RNA sequencing showed that pathways regulated by Tmem180 were significantly enriched in brain development and synaptic transmission. In conclusion, our study provides convergent lines of evidence for the involvement of TMEM180 in schizophrenia, and highlights the potential and importance of resource integration and sharing at this big data era in bio-medical research.
Collapse
Affiliation(s)
- Jun-Yang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiao-Yan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,To whom correspondence should be addressed; Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; tel: +86-871-68125413, fax: +86-871-68125413, e-mail:
| |
Collapse
|