1
|
Khatoon S, Kalam N. Mechanistic insight of curcumin: a potential pharmacological candidate for epilepsy. Front Pharmacol 2025; 15:1531288. [PMID: 39845785 PMCID: PMC11752882 DOI: 10.3389/fphar.2024.1531288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Recurrent spontaneous seizures with an extended epileptic discharge are the hallmarks of epilepsy. At present, there are several available anti-epileptic drugs (AEDs) in the market. Still no adequate treatment for epilepsy treatment is available. The main disadvantages of AEDs are their associated adverse effects. It is a challenge to develop new therapies that can reduce seizures by modulating the underlying mechanisms with no adverse effects. In the last decade, the neuromodulatory potential of phytoconstituents has sparked their usage in the treatment of central nervous system disorders. Curcumin is an active polyphenolic component that interacts at cellular and molecular levels. Curcumin's neuroprotective properties have been discovered in recent preclinical and clinical studies due to its immunomodulatory effects. Curcumin has the propensity to modulate signaling pathways involved in cell survival and manage oxidative stress, apoptosis, and inflammatory mechanisms. Further, curcumin can persuade epigenetic alterations, including histone modifications (acetylation/deacetylation), which are the changes responsible for the altered expression of genes facilitating the process of epileptogenesis. The bioavailability of curcumin in the brain is a concern that needs to be tackled. Therefore, nanonization has emerged as a novel drug delivery system to enhance the pharmacokinetics of curcumin. In the present review, we reviewed curcumin's modulatory effects on potential biomarkers involved in epileptogenesis including dendritic cells, T cell subsets, cytokines, chemokines, apoptosis mediators, antioxidant mechanisms, and cognition impairment. Also, we have discussed the nanocarrier systems for encapsulating curcumin, offering a promising approach to enhance bioavailability of curcumin.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Ben-Menachem E. Drug arrows in the quiver-antiseizure, antiepileptic and neuroprotective medication: Treatment and future aspects. A focused review. Seizure 2024:S1059-1311(24)00334-0. [PMID: 39694757 DOI: 10.1016/j.seizure.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Drug discovery for the treatment of epilepsy is entering a new era especially with the advancement of genetic therapies as disease modifying, antiepileptogenic therapies. Even new ideas about re-purposed medication with purposed epileptogenic properties have been suggested. The possibilities are enormous, and it is encouraging that so many ideas are flourishing. The focus of this review is to discuss where to concentrate efforts to improve the lives of people with epilepsy (PWE) with medical treatment, especially the elderly who have many challenges besides just seizures. Thus, the arrow needs to be not only focused on DRE patients, but to try to redirect the arrow to prevent the development of seizures before onset as well as preventing refractoriness at the very beginning herald by the first seizures.
Collapse
Affiliation(s)
- Elinor Ben-Menachem
- Department of Clinical Neuroscience and Physiology, Salgrenska Academy, Goteborg University Goteborg, Blå Stråket 5, Sweden.
| |
Collapse
|
3
|
Ildarabadi A, Mir Mohammad Ali SN, Rahmani F, Mosavari N, Pourbakhtyaran E, Rezaei N. Inflammation and oxidative stress in epileptic children: from molecular mechanisms to clinical application of ketogenic diet. Rev Neurosci 2024; 35:473-488. [PMID: 38347675 DOI: 10.1515/revneuro-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 06/02/2024]
Abstract
Childhood epilepsy affects up to 1 % of children. It has been shown that 30 % of patients are resistant to drug treatments, making further investigation of other potential treatment strategies necessary. One such approach is the ketogenic diet (KD) showing promising results and potential benefits beyond the use of current antiepileptic drugs. This study aims to investigate the effects of KD on inflammation and oxidative stress, as one of the main suggested mechanisms of neuroprotection, in children with epilepsy. This narrative review was conducted using the Medline and Google Scholar databases, and by searching epilepsy, drug-resistant epilepsy, child, children, ketogenic, ketogenic diet, diet, ketogenic, keto, ketone bodies (BHB), PUFA, gut microbiota, inflammation, inflammation mediators, neurogenic inflammation, neuroinflammation, inflammatory marker, adenosine modulation, mitochondrial function, MTOR pathway, Nrf2 pathway, mitochondrial dysfunction, PPARɣ, oxidative stress, ROS/RNS, and stress oxidative as keywords. Compelling evidence underscores inflammation and oxidative stress as pivotal factors in epilepsy, even in cases with genetic origins. The ketogenic diet effectively addresses these factors by reducing ROS and RNS, enhancing antioxidant defenses, improving mitochondrial function, and regulating inflammatory genes. Additionally, KD curbs pro-inflammatory cytokine and chemokine production by dampening NF-κB activation, inhibiting the NLRP3 inflammasome, increasing brain adenosine levels, mTOR pathway inhibition, upregulating PPARɣ expression, and promoting a healthy gut microbiota while emphasizing the consumption of healthy fats. KD could be considered a promising therapeutic intervention in patients with epilepsy particularly in drug-resistant epilepsy cases, due to its targeted approach addressing oxidative stress and inflammatory mechanisms.
Collapse
Affiliation(s)
- Azam Ildarabadi
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Seyedeh Nooshan Mir Mohammad Ali
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66502, USA
| | - Fatemeh Rahmani
- Department of Nutrition Science, Science and Research Branch, Faculty of Medical Science and Technology, Islamic Azad University, Shodada Hesarak Blvd, Tehran 1477893855, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Narjes Mosavari
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
| | - Elham Pourbakhtyaran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Department of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
| | - Nima Rezaei
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Dr. Qarib St, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Tehran 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Pour Sina St, Tehran 1461884513, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
4
|
Koh S, Lee DY, Cha JM, Kim Y, Kim HH, Yang HJ, Park RW, Choi JY. Association between pre-diagnostic serum uric acid levels in patients with newly diagnosed epilepsy and conversion rate to drug-resistant epilepsy within 5 years: A common data model analysis. Seizure 2024; 118:103-109. [PMID: 38669746 DOI: 10.1016/j.seizure.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
PURPOSE Drug-resistant epilepsy (DRE) poses a significant challenge in epilepsy management, and reliable biomarkers for identifying patients at risk of DRE are lacking. This study aimed to investigate the association between serum uric acid (UA) levels and the conversion rate to DRE. METHODS A retrospective cohort study was conducted using a common data model database. The study included patients newly diagnosed with epilepsy, with prediagnostic serum UA levels within a six-month window. Patients were categorized into hyperUA (≥7.0 mg/dL), normoUA (<7.0 and >2.0 mg/dL), and hypoUA (≤2.0 mg/dL) groups based on their prediagnostic UA levels. The outcome was the conversion rate to DRE within five years of epilepsy diagnosis. RESULTS The study included 5,672 patients with epilepsy and overall conversion rate to DRE was 19.4%. The hyperUA group had a lower DRE conversion rate compared to the normoUA group (HR: 0.81 [95% CI: 0.69-0.96]), while the hypoUA group had a higher conversion rate (HR: 1.88 [95% CI: 1.38-2.55]). CONCLUSIONS Serum UA levels have the potential to serve as a biomarker for identifying patients at risk of DRE, indicating a potential avenue for novel therapeutic strategies aimed at preventing DRE conversion.
Collapse
Affiliation(s)
- Seungyon Koh
- Department of Brain Science, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea; Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong Yun Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Kore; Department of Medical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea; Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Myung Cha
- Department of Gastroenterology, Gang Dong Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Yerim Kim
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hyung Hoi Kim
- Department of Laboratory Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Rae Woong Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Kore.
| | - Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Suwon 16499, Republic of Korea; Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Bilister Egilmez C, Azak Pazarlar B, Erdogan MA, Erbas O. N-acetyl cysteine: A new look at its effect on PTZ-induced convulsions. Epilepsy Res 2023; 193:107144. [PMID: 37116249 DOI: 10.1016/j.eplepsyres.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION/AIM Epilepsy is widely investigated as a common neurological disease requiring pharmacologically effective agents. N-acetyl cysteine (NAC), has become a remarkable molecule with its role in both antioxidant and glutaminergic modulation. There are many points and processes waiting to be revealed regarding the role of NAC in epilepsy. MATERIALS AND METHODS Pentylenetetrazole (PTZ) was administered to induce seizures in a total number of 48 Sprague-Dawley rats. 35 mg/kg PTZ dose as a sub-convulsive dose was administered to 24 animals to monitor EEG changes, while 70 mg/kg PTZ dose which was a convulsive dose was administered to 24 animals to determine seizure-related behavioral changes with the Racine's scale. 30 min before the seizure-induced procedure, NAC was administered at doses of 300 and 600 mg/kg as pretreatment to investigate anti-seizure and anti-oxidative effects. The spike percentage, the stage of convulsion, and the onset time of the first myoclonic jerk were evaluated to determine the anti-seizure effect. Furthermore, its effect on oxidative stress was determined by measuring both malondialdehyde (MDA) level and superoxide dismutase (SOD) enzyme activity. RESULTS There was a dose-dependent reduction in the seizure stage and prolonged onset time of the first myoclonic jerk in rats with NAC pretreatment. EEG recordings resulted in a dose-dependent decrease in spike percentages. Moreover, the same dose-dependent changes were observed in oxidative stress biomarkers, both 300 mg/kg NAC and 600 mg/kg decreased MDA levels and ameliorated SOD activity. CONCLUSION We can report that 300 mg/kg and 600 mg/kg doses of NAC are promising with their reducing effect on convulsions and have a beneficial effect by preventing oxidative stress. In addition, NAC has been also determined that this effect is dose-dependent. Detailed and comparative studies are needed on the convulsion-reducing effect of NAC in epilepsy.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Burcu Azak Pazarlar
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Bilim University, Istanbul, Turkey
| |
Collapse
|
6
|
Hammerschmidt TG, Encarnação M, Lamberty Faverzani J, de Fátima Lopes F, Poswar de Oliveira F, Fischinger Moura de Sousa C, Ribeiro I, Alves S, Giugliani R, Regla Vargas C. Molecular profile and peripheral markers of neurodegeneration in patients with Niemann-Pick type C: Decrease in Plasminogen Activator Inhibitor type 1 and Platelet-Derived Growth Factor type AA. Arch Biochem Biophys 2023; 735:109510. [PMID: 36608914 DOI: 10.1016/j.abb.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Niemann-Pick type C1 (NPC1) is a fatal inherited disease, caused by pathogenic variants in NPC1 gene, which leads to intracellular accumulation of non-esterified cholesterol and glycosphingolipids. This accumulation leads to a wide range of clinical manifestations, including neurological and cognitive impairment as well as psychiatric disorders. The pathophysiology of cerebral damage involves loss of Purkinje cells, synaptic disturbance, and demyelination. Miglustat, a reversible inhibitor of glucosylceramide synthase, is an approved treatment for NPC1 and can slow neurological damage. The aim of this study was to assess the levels of peripheric neurodegeneration biomarkers of NPC1 patients, namely brain-derived neurotrophic factor (BDNF), platelet-derived growth factors (PDGF-AA and PDGF-AB/BB), neural cell adhesion molecule (NCAM), PAI-1 Total and Cathepsin-D, as well as the levels of cholestane-3β,5α,6β-triol (3β,5α,6β-triol), a biomarker for NPC1. Molecular analysis of the NPC1 patients under study was performed by next generation sequencing (NGS) in cultured fibroblasts. We observed that NPC1 patients treated with miglustat have a significant decrease in PAI-1 total and PDGF-AA concentrations, and no alteration in BDNF, NCAM, PDGF-AB/BB and Cathepsin D. We also found that NPC1 patients treated with miglustat have normalized levels of 3β,5α,6β-triol. The molecular analysis showed four described mutations, and for two patients was not possible to identify the second mutated allele. Our results indicate that the decrease of PAI-1 and PDGF-AA in NPC1 patients could be involved in the pathophysiology of this disease. This is the first work to analyze those plasmatic markers of neurodegenerative processes in NPC1 patients.
Collapse
Affiliation(s)
| | - Marisa Encarnação
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil
| | | | | | - Isaura Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP, Porto, Portugal; Espero Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sandra Alves
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | | | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Shehta N, Kamel AE, Sobhy E, Ismail MH. Malondialdehyde and superoxide dismutase levels in patients with epilepsy: a case–control study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Oxidative stress has a significant influence in the initiation and progression of epileptic seizures. It was reported that inhibiting oxidative stress could protect against epilepsy. The aim of the current research is to estimate some biomarkers that reflect the oxidative stress in epileptics, its relation to seizure control as well as to study the impact of antiepileptic drugs (AEDs) on these biomarkers. This case–control study included 62 epileptic patients beside 62 age and gender-matched healthy controls. The epileptic patients subjected to detailed history taking with special regards to disease duration, seizure frequency, and the current AEDs. Laboratory evaluation of serum malondialdehyde (a lipid peroxidation byproduct) and superoxide dismutase (an endogenous antioxidant) were done.
Results
Malondialdehyde (MDA) was significantly higher, and superoxide dismutase (SOD) was lower in epileptic patients than in the controls (p < 0.001). Seizure frequency was directly correlated with MDA (r = 0.584, p < 0.001) while inversely correlated with SOD (r = − 0.432, p = 0.008). High MDA and low SOD were recorded in epileptic patients receiving polytherapy as compared to monotherapy (p < 0.001).
Conclusions
Epileptic patients had higher oxidative stress biomarkers than healthy individuals. Frequent seizures, long disease duration, and AEDs were associated with higher MDA and lower SOD that reflects an imbalance in the oxidant–antioxidant status among these patients.
Collapse
|
8
|
A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine. Antioxidants (Basel) 2022; 11:antiox11050803. [PMID: 35624666 PMCID: PMC9137678 DOI: 10.3390/antiox11050803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
No precision medicine models of temporal lobe epilepsy (TLE) and associated mental comorbidities have been developed to date. This observational study aimed to develop a precision nomothetic, data-driven comorbid TLE model with endophenotype classes and pathway phenotypes that may have prognostic and therapeutical implications. We recruited forty healthy controls and 108 TLE patients for this research and assessed TLE and psychopathology (PP) features as well as oxidative stress (OSTOX, e.g., malondialdehyde or MDA, lipid hydroperoxides, and advanced oxidation protein products) and antioxidant (paraoxonase 1 or PON1 status, -SH groups, and total radical trapping potential or TRAP) biomarkers. A large part (57.2%) of the variance in a latent vector (LV) extracted from the above TLE and PP features was explained by these OSTOX and antioxidant biomarkers. The PON1 Q192R genetic variant showed indirect effects on this LV, which were completely mediated by PON1 activity and MDA. Factor analysis showed that a common core could be extracted from TLE, PP, OSTOX and antioxidant scores, indicating that these features are manifestations of a common underlying construct, i.e., a novel pathway phenotype of TLE. Based on the latter, we constructed a new phenotype class that is characterized by increased severity of TLE, PP and OSTOX features and lowered antioxidant defenses. A large part of the variance in episode frequency was explained by increased MDA, lowered antioxidant, and nitric oxide metabolite levels. In conclusion, (a) PP symptoms belong to the TLE phenome, and the signal increased severity; and (b) cumulative effects of aldehyde formation and lowered antioxidants determine epileptogenic kindling.
Collapse
|
9
|
N-acetylcysteine aggravates seizures while improving depressive-like and cognitive impairment comorbidities in the WAG/Rij rat model of absence epilepsy. Mol Neurobiol 2022; 59:2702-2714. [PMID: 35167014 DOI: 10.1007/s12035-021-02720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
N-acetylcysteine (NAC) is an antioxidant with some demonstrated efficacy in a range of neuropsychiatric disorders. NAC has shown anticonvulsant effects in animal models. NAC effects on absence seizures are still not uncovered, and considering its clinical use as a mucolytic in patients with lung diseases, people with epilepsy are also likely to be exposed to the drug. Therefore, we aimed to study the effects of NAC on absence seizures in the WAG/Rij rat model of absence epilepsy with neuropsychiatric comorbidities. The effects of NAC chronic treatment in WAG/Rij rats were evaluated on: absence seizures at 15 and 30 days by EEG recordings and animal behaviour at 30 days on neuropsychiatric comorbidities. Furthermore, the mechanism of action of NAC was evaluated by analysing brain expression levels of some possible key targets: the excitatory amino acid transporter 2, cystine-glutamate antiporter, metabotropic glutamate receptor 2, the mechanistic target of rapamycin and p70S6K as well as levels of total glutathione. Our results demonstrate that in WAG/Rij rats, NAC treatment significantly increased the number and duration of SWDs, aggravating absence epilepsy while ameliorating neuropsychiatric comorbidities. NAC treatment was linked to an increase in brain mGlu2 receptor expression with this being likely responsible for the observed absence seizure-promoting effects. In conclusion, while confirming the positive effects on animal behaviour induced by NAC also in epileptic animals, we report the aggravating effects of NAC on absence seizures which could have some serious consequences for epilepsy patients with the possible wider use of NAC in clinical therapeutics.
Collapse
|
10
|
Riva A, Golda A, Balagura G, Amadori E, Vari MS, Piccolo G, Iacomino M, Lattanzi S, Salpietro V, Minetti C, Striano P. New Trends and Most Promising Therapeutic Strategies for Epilepsy Treatment. Front Neurol 2021; 12:753753. [PMID: 34950099 PMCID: PMC8690245 DOI: 10.3389/fneur.2021.753753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the wide availability of novel anti-seizure medications (ASMs), 30% of patients with epilepsy retain persistent seizures with a significant burden in comorbidity and an increased risk of premature death. This review aims to discuss the therapeutic strategies, both pharmacological and non-, which are currently in the pipeline. Methods: PubMed, Scopus, and EMBASE databases were screened for experimental and clinical studies, meta-analysis, and structured reviews published between January 2018 and September 2021. The terms “epilepsy,” “treatment” or “therapy,” and “novel” were used to filter the results. Conclusions: The common feature linking all the novel therapeutic approaches is the spasmodic rush toward precision medicine, aiming at holistically evaluating patients, and treating them accordingly as a whole. Toward this goal, different forms of intervention may be embraced, starting from the choice of the most suitable drug according to the type of epilepsy of an individual or expected adverse effects, to the outstanding field of gene therapy. Moreover, innovative insights come from in-vitro and in-vivo studies on the role of inflammation and stem cells in the brain. Further studies on both efficacy and safety are needed, with the challenge to mature evidence into reliable assets, ameliorating the symptoms of patients, and answering the challenges of this disease.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alice Golda
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Lattanzi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
SARIKAYA S, YAŞİN S, ÇALIK M, YOLDAŞ T, AKSOY N, YILMAZ M. Investigation on Acute Phase Reactants and Oxidant - Antioxidant Parameters in Patients Diagnosed as Having Generalized Tonic Clonic Type Epilepsy on Antiepileptic Monotherapy and Polytherapy. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2021. [DOI: 10.17944/mkutfd.910039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Fedin AI, Starykh EV, Baranova OA, Chekanov AV, Torshin DV, Mikhailova EV. [Oxidative stress in focal symptomatic and cryptogenic epilepsy in young patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:17-22. [PMID: 32790971 DOI: 10.17116/jnevro202012007117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study oxidative stress in young patients with focal symptomatic and cryptogenic epilepsy and after the new-onset epileptic seizures. MATERIAL AND METHODS Patients, aged from 19 to 44 years, were distributed into three groups, 30 patients in each: patients after a few (first) epileptic seizures, patients in the clinical remission that has lasted at least one year, and patients with treatment-resistant epileptic seizures. The control group included 20 healthy people. Parameters of the pro-oxidant status (TBA-reactive products) and the antioxidant defense (total superoxide-scavenging activity, catalase, total antioxidant activity, and reduced thiols (SH groups)) were measured in the blood plasma. RESULTS No significant differences in the concentrations of TBA-reactive products were identified in patients with epilepsy compared with healthy controls while concentrations of reduced SH groups, total superoxide-scavenging activity, catalase activity and the total antioxidant activity were significantly decreased in patients. In addition, some of the parameters displayed significant differences between different groups of patients. CONCLUSION In patients with epilepsy, the changes in the free-radical processes are seen already after the first seizures and persist in the treatment-resistant epilepsy and in clinical remission. Since the parameters of the activity of the antioxidant defense are significantly different in different groups of patients, one can assume that different elements of the oxidative stress are present after the first epileptic seizures and in different courses of the disease.
Collapse
Affiliation(s)
- A I Fedin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E V Starykh
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O A Baranova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Chekanov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D V Torshin
- City Clinical Hospital No. 13, Moscow, Russia.,Central Clinical Hospital of the Russian Academy of Sciences, Moscow, Russia
| | - E V Mikhailova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Maes M, Supasitthumrong T, Limotai C, Michelin AP, Matsumoto AK, de Oliveira Semão L, de Lima Pedrão JV, Moreira EG, Carvalho AF, Sirivichayakul S, Barbosa DS, Kanchanatawan B. Increased Oxidative Stress Toxicity and Lowered Antioxidant Defenses in Temporal Lobe Epilepsy and Mesial Temporal Sclerosis: Associations with Psychiatric Comorbidities. Mol Neurobiol 2020; 57:3334-3348. [PMID: 32514863 DOI: 10.1007/s12035-020-01949-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/22/2020] [Indexed: 01/26/2023]
Abstract
Oxidative stress toxicity (OSTOX), as well as lowered antioxidant defenses (ANTIOX), plays a role in temporal lobe epilepsy (TLE). Nevertheless, the associations between OSTOX/ANTIOX and psychiatric comorbidities in TLE are largely unknown. Thus, this study examines plasma malondialdehyde (MDA), lipid hydroperoxides (LOOH), advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), total radical-trapping antioxidant parameter (TRAP), and sulfhydryl (-SH) groups in depression due to TLE (n = 25); anxiety disorders due to TLE (n = 27); psychotic disorder due to TLE (n = 25); "pure TLE" (n = 27); and healthy controls (n = 40). TLE and mesial temporal sclerosis (MTS) were characterized by significant increases in OSTOX (MDA, AOPP, LOOH) and lowered ANTIOX (-SH groups, TRAP). The discrimination of pure TLE from controls yielded a significant area under the ROC curve for MDA (0.999), AOPP (0.851), -SH groups (0.899), and the OSTOX/ANTIOX ratio (0.996). Seizure frequency is significantly associated with increased MDA and lowered LOOH and NOx levels. Increased MDA was associated with the severity of depressive and physiosomatic symptoms, while increased AOPP levels predicted suicidal ideation. Depression and anxiety disorders co-occurring with TLE showed significantly lower MDA levels than TLE without any comorbidities. The psychotic and negative symptoms of TLE are associated with increased MDA levels and excitation with increased LOOH and lowered TRAP levels. These results indicate that oxidative stress toxicity especially protein oxidation and aldehyde formation coupled with lowered -SH groups plays a key role in the pathophysiology of TLE/MTS. Increased aldehyde formation also impacts psychopathology and psychosis, as well as negative and depressive symptoms.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Thitiporn Supasitthumrong
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chusak Limotai
- Chulalongkorn Comprehensive Epilepsy Center of Excellence (CCEC), The Thai Red Cross Society; Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ana Paula Michelin
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - Andressa Keiko Matsumoto
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - Laura de Oliveira Semão
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - João Victor de Lima Pedrão
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | | | - Décio Sabbatini Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| |
Collapse
|
14
|
Guerreiro G, Diaz Jaques CE, Wajner M, Vargas CR. Elevated levels of BDNF and cathepsin‐
d
as possible peripheral markers of neurodegeneration in plasma of patients with glutaric acidemia type I. Int J Dev Neurosci 2020; 80:42-49. [DOI: 10.1002/jdn.10006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia UFRGS Porto Alegre Brazil
- Serviço de Genética Médica HCPA UFRGS Porto Alegre Brazil
| | | | - Moacir Wajner
- Serviço de Genética Médica HCPA UFRGS Porto Alegre Brazil
- Programa de Pós‐Graduação em CB:Bioquímica UFRGS Porto Alegre Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia UFRGS Porto Alegre Brazil
- Serviço de Genética Médica HCPA UFRGS Porto Alegre Brazil
- Programa de Pós‐Graduação em CB:Bioquímica UFRGS Porto Alegre Brazil
- Programa de Pós‐Graduação em Ciências Farmacêuticas UFRGS Porto Alegre Brazil
| |
Collapse
|
15
|
Terrone G, Frigerio F, Balosso S, Ravizza T, Vezzani A. Inflammation and reactive oxygen species in status epilepticus: Biomarkers and implications for therapy. Epilepsy Behav 2019; 101:106275. [PMID: 31171434 DOI: 10.1016/j.yebeh.2019.04.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Abstract
Preclinical studies in immature and adult rodents and clinical observations show that neuroinflammation and oxidative stress are rapid onset phenomena occurring in the brain during status epilepticus and persisting thereafter. Notably, both neuroinflammation and oxidative stress contribute to the acute and long-term sequelae of status epilepticus thus representing potential druggable targets. Antiinflammatory drugs that interfere with the IL-1β pathway, such as anakinra, can control benzodiazepine-refractory status epilepticus in animals, and there is recent proof-of-concept evidence for therapeutic effects in children with Febrile infection related epilepsy syndrome (FIRES). Inhibitors of monoacylglycerol lipase and P2X7 receptor antagonists are also promising antiinflammatory drug candidates for rapidly aborting de novo status epilepticus and provide neuroprotection. Antiinflammatory and antioxidant drugs administered to rodents during status epilepticus and transiently thereafter, prevent long-term sequelae such as cognitive deficits and seizure progression in animals developing epilepsy. Some drugs are already in medical use and are well-tolerated, therefore, they may be considered for treating status epilepticus and its neurological consequences. Finally, markers of neuroinflammation and oxidative stress are measureable in peripheral blood and by neuroimaging, which offers an opportunity for developing prognostic and predictive mechanistic biomarkers in people exposed to status epilepticus. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Federica Frigerio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
16
|
Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019; 167:107742. [PMID: 31421074 DOI: 10.1016/j.neuropharm.2019.107742] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1β-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
17
|
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R, Liang LP, Villa BR, Balosso S, Abramov AY, van Vliet EA, Del Giudice E, Aronica E, Patel M, Walker MC, Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2019; 142:e39. [PMID: 31145451 PMCID: PMC6598637 DOI: 10.1093/brain/awz130] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 01/07/2023] Open
Abstract
Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.
Collapse
Affiliation(s)
- Alberto Pauletti
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Gaetano Terrone
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Tawfeeq Shekh-Ahmad
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Alessia Salamone
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Teresa Ravizza
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Massimo Rizzi
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Anna Pastore
- 3 Metabolomics and Proteomics Unit, ‘Bambino Gesù’ Children’s Hospital,
IRCCS, Rome, Italy
| | - Rosaria Pascente
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Li-Ping Liang
- 4 Department of Pharmaceutical Sciences, University of Colorado Denver,
Aurora, Colorado, USA
| | - Bianca R Villa
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Silvia Balosso
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Andrey Y Abramov
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Erwin A van Vliet
- 5 Department of (Neuro)Pathology, Academic Medical Center, University of
Amsterdam, The Netherlands
| | - Ennio Del Giudice
- 6 Department of Translational Medical Sciences, Section of Pediatrics,
Federico II University, Naples, Italy
| | - Eleonora Aronica
- 5 Department of (Neuro)Pathology, Academic Medical Center, University of
Amsterdam, The Netherlands
- 7 Stichting Epilepsie Instellingen Nederland, Amsterdam, The
Netherlands
| | - Manisha Patel
- 4 Department of Pharmaceutical Sciences, University of Colorado Denver,
Aurora, Colorado, USA
| | - Matthew C Walker
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Annamaria Vezzani
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
- Correpondence to: Annamaria Vezzani, PhD Department of Neuroscience
IRCCS-Istituto di Ricerche Farmacologiche Mario Negri Via G. La Masa 19, 20156 Milano,
Italy E-mail:
| |
Collapse
|
18
|
Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15:459-472. [DOI: 10.1038/s41582-019-0217-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
|
19
|
Immunohistochemical Study of Antioxidant Enzymes Regulated by Nrf2 in the Models of Epileptic Seizures (KA and PTZ). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1327986. [PMID: 31019649 PMCID: PMC6451808 DOI: 10.1155/2019/1327986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/10/2019] [Accepted: 02/17/2019] [Indexed: 12/31/2022]
Abstract
Epilepsy is a neurological disorder characterized by recurrent spontaneous seizures due to an imbalance between cerebral excitability and inhibition, with a tendency towards uncontrolled excitability. Epilepsy has been associated with oxidative and nitrosative stress due to prolonged neuronal hyperexcitation and loss neurons during seizures. The experimental animal models report level of ATP diminished and increase in lipid peroxidation, catalase, and glutathione altered activity in the brain. We studied the immunohistochemical expression and localization of antioxidant enzymes GPx, SOD, and CAT in the rat brains treated with KA and PTZ. A significant decrease was observed in the number of immunoreactive cells to GPx, without significant changes for SOD and CAT in KA-treated rats, and decrease in the number of immunoreactive cells to SOD, without significant changes for GPx and only CAT in PTZ-treated rats. Evident immunoreactivity of GPx, SOD, and CAT was observed mainly in astrocytes and neurons of the hippocampal brain region in rats exposed at KA; similar results were observed in rats treated with PTZ at the first hours. These results provide evidence supporting the role of activation of the Nrf2 antioxidant system pathway against oxidative stress effects in the experimental models of epileptic seizures.
Collapse
|
20
|
Abstract
This article contains an analysis of clinical and experimental studies in which oxidative stress is considered as a possible mechanism in the pathogenesis of epilepsy. Oxidative stress occurs as a result of brain damage after epileptic seizures and may later cause epileptogenesis. Patients with epilepsy showed a high level of lipid peroxidation markers, while the activity of antioxidant defense system was low. The level of oxidative stress was shown to be significantly higher in epileptics with associated mental disorders and in patients with refractory epilepsy. Further study of oxidative stress in epilepsy may play the key role in the treatment of this disease.
Collapse
Affiliation(s)
- A I Fedin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E V Starykh
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
21
|
Kalita J, Misra UK, Singh LS, Tiwari A. Oxidative stress in status epilepticus: A clinical-radiological correlation. Brain Res 2019; 1704:85-93. [DOI: 10.1016/j.brainres.2018.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/08/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
|
22
|
Cysteine/Glutathione Deficiency: A Significant and Treatable Corollary of Disease. THE THERAPEUTIC USE OF N-ACETYLCYSTEINE (NAC) IN MEDICINE 2019. [PMCID: PMC7120747 DOI: 10.1007/978-981-10-5311-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glutathione (GSH) deficiency may play a pivotal role in a variety of apparently unrelated clinical conditions and diseases. Orally administered N-acetylcysteine (NAC), which replenishes the cysteine required for GSH synthesis, has been tested in a large number of randomized placebo-controlled trials involving these diseases and conditions. This chapter focused on developing a base of evidence suggesting that NAC administration improves disease by increasing cysteine and/or GSH in a variety of diseases, thereby implying a significant role for GSH deficiency in the clinical basis of many diseases. To develop this base of evidence, we systematically selected studies which considered the hypothesis that the therapeutic efficacy for NAC is an indication that cysteine and/or GSH deficiency is a pathophysiological part of the diseases studied. In this manner we focus this chapter on explaining the biological mechanisms of NAC therapy in a wide variety of disorders and demonstrate its ubiquitous role in improving disease that involves disrupted GSH and/or cysteine metabolism.
Collapse
|
23
|
Beltrán-Sarmiento E, Arregoitia-Sarabia CK, Floriano-Sánchez E, Sandoval-Pacheco R, Galván-Hernández DE, Coballase-Urrutia E, Carmona-Aparicio L, Ramos-Reyna E, Rodríguez-Silverio J, Cárdenas-Rodríguez N. Effects of Valproate Monotherapy on the Oxidant-Antioxidant Status in Mexican Epileptic Children: A Longitudinal Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7954371. [PMID: 30622673 PMCID: PMC6304806 DOI: 10.1155/2018/7954371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/29/2018] [Accepted: 10/21/2018] [Indexed: 11/18/2022]
Abstract
Epilepsy is a neurological disorder that can produce brain injury and neuronal death. Several factors such as oxidative stress have been implicated in epileptogenesis. Valproic acid (VPA) is a widely used drug for the treatment of epilepsy, but the mechanisms underlying these benefits are complex and still not fully understood. The objective of this study was to evaluate, for the first time, the effects of VPA on the oxidant-antioxidant status in Mexican epileptic children before and after 6 or 12 months of treatment with VPA by determining the activities of several plasmatic antioxidant enzymes (glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT)) and oxidant marker (malondialdehyde (MDA), hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and 3-nitrotyrosine (3-NT) levels) profiles. The possible relationships between these markers and some clinicopathological factors were also evaluated. Plasma samples were obtained from the peripheral blood of 16 healthy children and 32 patients diagnosed with epilepsy, and antioxidant/oxidant markers were measured spectrometrically. Significant decreases in all antioxidant enzyme activities, with the exception of GPx, and increases in all oxidant markers in epileptic subjects versus healthy children were observed. Interestingly, all these effects reverted after VPA monotherapy, although the results were different depending on the treatment period (6 or 12 months). These changes were contingent upon brain imaging findings, type of epilepsy, etiology of epilepsy, and the efficacy of 6 months of VPA monotherapy. Significant and positive correlations of GPx and SOD activities and H2O2 and 8-OHdG levels with the age of children at the beginning of treatment were observed. H2O2 levels were also positively correlated with number of seizures before VPA monotherapy. VPA showed significant antioxidant effects decreasing seizure activity, possibly depending on the presence of cerebral structural alterations, treatment time, and age.
Collapse
Affiliation(s)
- Eduardo Beltrán-Sarmiento
- National Institute of Pediatrics, Laboratory of Neurosciences, 04530, Mexico
- National Polytechnic Institute, Section of Research and Graduate Studies, Mexico 11340, Mexico
| | - Cindy K. Arregoitia-Sarabia
- National Institute of Pediatrics, Laboratory of Neurosciences, 04530, Mexico
- National Polytechnic Institute, Section of Research and Graduate Studies, Mexico 11340, Mexico
| | - Esaú Floriano-Sánchez
- University of the Army and Air Force, Secretary of National Defense, Military Graduate School of Health, 11200, Mexico
| | - Roberto Sandoval-Pacheco
- University of the Army and Air Force, Secretary of National Defense, Military Graduate School of Health, 11200, Mexico
| | - Diana E. Galván-Hernández
- University of the Army and Air Force, Secretary of National Defense, Military Graduate School of Health, 11200, Mexico
| | | | | | - Eduardo Ramos-Reyna
- University of the Army and Air Force, Secretary of National Defense, Military Graduate School of Health, 11200, Mexico
| | - Juan Rodríguez-Silverio
- National Polytechnic Institute, Section of Research and Graduate Studies, Mexico 11340, Mexico
| | | |
Collapse
|
24
|
Arena A, Zimmer TS, van Scheppingen J, Korotkov A, Anink JJ, Mühlebner A, Jansen FE, van Hecke W, Spliet WG, van Rijen PC, Vezzani A, Baayen JC, Idema S, Iyer AM, Perluigi M, Mills JD, van Vliet EA, Aronica E. Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathol 2018; 29:351-365. [PMID: 30303592 DOI: 10.1111/bpa.12661] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress (OS) occurs in brains of patients with epilepsy and coincides with brain inflammation, and both phenomena contribute to seizure generation in animal models. We investigated whether expression of OS and brain inflammation markers co-occurred also in resected brain tissue of patients with epileptogenic cortical malformations: hemimegalencephaly (HME), focal cortical dysplasia (FCD) and cortical tubers in tuberous sclerosis complex (TSC). Moreover, we studied molecular mechanisms linking OS and inflammation in an in vitro model of neuronal function. Untangling interdependency and underlying molecular mechanisms might pose new therapeutic strategies for treating patients with drug-resistant epilepsy of different etiologies. Immunohistochemistry was performed for specific OS markers xCT and iNOS and brain inflammation markers TLR4, COX-2 and NF-κB in cortical tissue derived from patients with HME, FCD IIa, IIb and TSC. Additionally, we studied gene expression of these markers using the human neuronal cell line SH-SY5Y in which OS was induced using H2 O2 . OS markers were higher in dysmorphic neurons and balloon/giant cells in cortex of patients with FCD IIb or TSC. Expression of OS markers was positively correlated to expression of brain inflammation markers. In vitro, 100 µM, but not 50 µM, of H2 O2 increased expression of TLR4, IL-1β and COX-2. We found that NF-κB signaling was activated only upon stimulation with 100 µM H2 O2 leading to upregulation of TLR4 signaling and IL-1β. The NF-κB inhibitor TPCA-1 completely reversed this effect. Our results show that OS positively correlates with neuroinflammation and is particularly evident in brain tissue of patients with FCD IIb and TSC. In vitro, NF-κB is involved in the switch to an inflammatory state after OS. We propose that the extent of OS can predict the neuroinflammatory state of the brain. Additionally, antioxidant treatments may prevent the switch to inflammation in neurons thus targeting multiple epileptogenic processes at once.
Collapse
Affiliation(s)
- Andrea Arena
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Till S Zimmer
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anatoly Korotkov
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jasper J Anink
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Angelika Mühlebner
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Anand M Iyer
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - James D Mills
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro-)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| |
Collapse
|
25
|
Lorigados Pedre L, Gallardo JM, Morales Chacón LM, Vega García A, Flores-Mendoza M, Neri-Gómez T, Estupiñán Díaz B, Cruz-Xenes RM, Pavón Fuentes N, Orozco-Suárez S. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure. Behav Sci (Basel) 2018; 8:E59. [PMID: 29890748 PMCID: PMC6027168 DOI: 10.3390/bs8060059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS) patients compared to a control group (age and sex matched), and the results were related to clinical variables. We examined malondialdehyde (MDA), advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), nitric oxide (NO), uric acid, superoxide dismutase (SOD), glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE) and nitrotyrosine (3-NT). All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001) while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively). Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005) similarly to SOD activity (p = 0.0001), whereas vitamin C was considerably diminished (p = 0.0001). Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.
Collapse
Affiliation(s)
- Lourdes Lorigados Pedre
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805 Havana, Cuba.
| | - Juan M Gallardo
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Lilia M Morales Chacón
- Clinical Neurophysiology Lab., International Center for Neurological Restoration, 11300 Havana, Cuba.
| | - Angélica Vega García
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Monserrat Flores-Mendoza
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| | - Teresa Neri-Gómez
- Nanomaterials Laboratory, Research Center in Health Sciences, Autonomous University of San Luis Potosí, 78300 San Luis Potosi; Mexico.
| | - Bárbara Estupiñán Díaz
- Morphological Laboratory, International Center for Neurological Restoration, 11300 Havana, Cuba.
| | | | - Nancy Pavón Fuentes
- Immunochemical Department, International Center for Neurological Restoration, 25th Ave, Playa, 15805 Havana, Cuba.
| | - Sandra Orozco-Suárez
- Medical Research Unit in Nephrological Diseases, Specialty Hospital, National Medical Center "XXI Century", IMSS, 06720 Mexico City, Mexico.
| |
Collapse
|
26
|
Abstract
Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.
Collapse
Affiliation(s)
- Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathalie Jette
- Department of Neurology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, and Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Mohamadpour M, Gabriel G, Grant AC. A Native Haitian Woman with Unverricht-Lundborg Disease. Case Rep Neurol 2017; 9:284-288. [PMID: 29422850 PMCID: PMC5803694 DOI: 10.1159/000484136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/29/2017] [Indexed: 11/23/2022] Open
Abstract
Unverricht-Lundborg disease (ULD) is an autosomal recessive progressive myoclonic epilepsy. The prevalence is highest in specific European countries and North Africa. Affected individuals have myoclonic and tonic-clonic seizures and a variable degree of ataxia and cognitive impairment. We report a native Haitian woman with ULD who was wheelchair bound due to nearly continuous myoclonic seizures exacerbated by activity and emotional distress. The seizures and their dramatic increase with volitional activity were recorded during video electroencephalography monitoring. Rational antiepileptic drug therapy controlled the seizures well enough for the patient to achieve a level of independence she had not experienced in over 25 years.
Collapse
Affiliation(s)
- Maliheh Mohamadpour
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Genevieve Gabriel
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Arthur C Grant
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York, USA.,Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
28
|
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R, Liang LP, Villa BR, Balosso S, Abramov AY, van Vliet EA, Del Giudice E, Aronica E, Antoine DJ, Patel M, Walker MC, Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2017; 140:1885-1899. [PMID: 28575153 DOI: 10.1093/brain/awx117] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/26/2017] [Indexed: 12/31/2022] Open
Abstract
Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.
Collapse
Affiliation(s)
- Alberto Pauletti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gaetano Terrone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Tawfeeq Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Alessia Salamone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Massimo Rizzi
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Anna Pastore
- Metabolomics and Proteomics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| | - Bianca R Villa
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Andrey Y Abramov
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ennio Del Giudice
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland, Amsterdam, The Netherlands
| | - Daniel J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
29
|
Antioxidant polymorphisms do not influence the risk of epilepsy or its drug resistance after neonatal hypoxic-ischemic brain injury. Seizure 2017; 46:38-42. [DOI: 10.1016/j.seizure.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022] Open
|
30
|
Evaluation of the Influence of Antiepileptic Therapy on Antioxidant Enzyme Activity and Lipid Peroxidation in Erythrocytes of Children With Epilepsy. J Child Neurol 2016. [PMID: 16970843 DOI: 10.1177/08830738060210070301] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the influence of antiepileptic therapy on antioxidant enzyme activity and lipid peroxidation in the erythrocytes of children with epilepsy. For this purpose, the activity of superoxide dismutase, glutathione peroxidase, and glutathione reductase and the malondialdehyde concentration in 61 healthy children and 90 children with epilepsy were measured. The activities of all of these enzymes were insignificantly higher, whereas the malondialdehyde concentration was significantly lower in the patients treated with carbamazepine monotherapy. In patients treated with valproate monotherapy, the activities of all enzymes were insignificantly lower, whereas the malondialdehyde concentration was insignificantly higher. In patients treated with polytherapy, the activity of superoxide dismutase was insignificantly lower, whereas the activity of glutathione peroxidase and glutathione reductase was insignificantly higher and the malondialdehyde concentration was lower. There were differences in glutathione reductase activity between the valproate monotherapy group and both the carbamazepine monotherapy and polytherapy groups and in malondialdehyde concentrations between the carbamazepine and valproate groups. The results indicate that the oxidant-antioxidant balance in children with epilepsy is modified by antiepileptic therapy. (J Child Neurol 2006;21:558–562; DOI 10.2310/7010.2006.00115).
Collapse
|
31
|
Tolerability and Safety of Combined Glatiramer Acetate and N-Acetylcysteine in Relapsing-Remitting Multiple Sclerosis. Clin Neuropharmacol 2016; 38:127-31. [PMID: 26166235 DOI: 10.1097/wnf.0000000000000090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system where inflammation and neurodegeneration play key roles. Mounting evidence implicates oxidative stress in the development of irreversible neuronal and glial injury in this condition. N-acetylcysteine (NAC) is a sulfhydryl amino acid derivative with antioxidant and antiapoptotic properties. Administration of NAC to mice attenuated the induction of or improved experimental autoimmune encephalomyelitis (an MS model). METHODS We performed an open-label study to explore the tolerability and safety of the combination of glatiramer acetate (GA) and NAC in patients with relapsing-remitting multiple sclerosis at the outpatient MS clinics of the Jewish General Hospital and Hôpital Charles Lemoyne, Montreal, Canada. Seven patients with relapsing-remitting multiple sclerosis with at least one T1 gadolinium-enhancing lesion on screening magnetic resonance imaging were recruited. Treatment consisted of a 10-week run-in period followed by 36-week treatment with a combination of GA 20 mg subcutaneously once daily plus NAC 2.5 g orally twice daily. Outcome measures included safety and tolerability, redox biochemistry, and magnetic resonance imaging effect. RESULTS Treatment with the combination of GA and NAC was safe and well tolerated. CONCLUSIONS In light of the favorable safety profile, an efficacy-demonstrating study may be considered.
Collapse
|
32
|
Saghazadeh A, Mahmoudi M, Meysamie A, Gharedaghi M, Zamponi GW, Rezaei N. Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis. Nutr Rev 2015; 73:760-79. [DOI: 10.1093/nutrit/nuv026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
33
|
Ercegovac M, Jovic N, Sokic D, Savic-Radojevic A, Coric V, Radic T, Nikolic D, Kecmanovic M, Matic M, Simic T, Pljesa-Ercegovac M. GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in progressive myoclonus epilepsy: A Serbian case-control study. Seizure 2015; 32:30-6. [PMID: 26552558 DOI: 10.1016/j.seizure.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/06/2015] [Accepted: 08/29/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Oxidative stress is recognized as an important factor in progressive myoclonus epilepsy (PME). Genetic polymorphism of glutathione S-transferases (GSTs), which are involved in both protection from oxidative damage and detoxification, might alter the capacity for protecting tissues from exogenous and endogenous oxidants. We aimed to assess a possible association between GST polymorphism and PME, as well as, correlation between GST genotypes and oxidative phenotype in PME patients. METHODS GSTA1, GSTM1, GSTP1 and GSTT1 genotypes were determined in 26 patients with PME and 66 controls. Byproducts of protein oxidative damage (thiol groups (P-SH) and nitrotyrosine), superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities were determined. RESULTS The frequency of GSTA1, GSTM1 and GSTP1 genotypes was not significantly different between PME patients and controls, while individuals with GSTT1-null genotype were at 5.44-fold higher risk of PME than carriers of GSTT1-active genotype. Moreover, significant risk of PME was obtained in carriers of both GSTT1-null and GSTM1-null genotypes. Carriers of combined GSTA1- active and GSTT1-null genotype were at highest, 7.55-fold increased risk of PME. Byproducts of protein damage did not reach statistical significance, while SOD and GPX activities were significantly higher in PME patients then in controls. When stratified according to GST genotype, P-SH groups were significantly lower only in patients with GSTT1-null genotype in comparison to carriers of active genotype. Only SOD activity was increased in GSTT1-null when compared to corresponding active genotype. CONCLUSIONS GSTT1-null genotype might be associated with the increased risk and enhanced susceptibility to oxidative stress in PME patients.
Collapse
Affiliation(s)
- Marko Ercegovac
- Clinic of Neurology, Clinical Centre of Serbia, Dr Subotica 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Nebojsa Jovic
- Clinic of Neurology and Psychiatry for Children and Youth, Clinical Centre of Serbia, Dr Subotica 6a, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Dragoslav Sokic
- Clinic of Neurology, Clinical Centre of Serbia, Dr Subotica 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Vesna Coric
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Tanja Radic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia.
| | - Dimitrije Nikolic
- University Children's Hospital, Tirsova 10, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Miljana Kecmanovic
- Faculty of Biology, University in Belgrade, Studentski trg 3, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Pasterova 2, 11000 Belgrade, Serbia; Faculty of Medicine, University in Belgrade, Belgrade, Serbia.
| |
Collapse
|
34
|
Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci Biobehav Rev 2015; 55:294-321. [PMID: 25957927 DOI: 10.1016/j.neubiorev.2015.04.015] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/30/2015] [Accepted: 04/25/2015] [Indexed: 01/19/2023]
Abstract
N-acetylcysteine (NAC) is recognized for its role in acetaminophen overdose and as a mucolytic. Over the past decade, there has been growing evidence for the use of NAC in treating psychiatric and neurological disorders, considering its role in attenuating pathophysiological processes associated with these disorders, including oxidative stress, apoptosis, mitochondrial dysfunction, neuroinflammation and glutamate and dopamine dysregulation. In this systematic review we find favorable evidence for the use of NAC in several psychiatric and neurological disorders, particularly autism, Alzheimer's disease, cocaine and cannabis addiction, bipolar disorder, depression, trichotillomania, nail biting, skin picking, obsessive-compulsive disorder, schizophrenia, drug-induced neuropathy and progressive myoclonic epilepsy. Disorders such as anxiety, attention deficit hyperactivity disorder and mild traumatic brain injury have preliminary evidence and require larger confirmatory studies while current evidence does not support the use of NAC in gambling, methamphetamine and nicotine addictions and amyotrophic lateral sclerosis. Overall, NAC treatment appears to be safe and tolerable. Further well designed, larger controlled trials are needed for specific psychiatric and neurological disorders where the evidence is favorable.
Collapse
|
35
|
Kopra O, Joensuu T, Lehesjoki AE. Mouse Model of Unverricht-Lundborg Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
36
|
Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:293689. [PMID: 25614776 PMCID: PMC4295154 DOI: 10.1155/2014/293689] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022]
Abstract
Epilepsy is considered one of the most common neurological disorders worldwide. Oxidative stress produced by free radicals may play a role in the initiation and progression of epilepsy; the changes in the mitochondrial and the oxidative stress state can lead mechanism associated with neuronal death pathway. Bioenergetics state failure and impaired mitochondrial function include excessive free radical production with impaired synthesis of antioxidants. This review summarizes evidence that suggest what is the role of oxidative stress on induction of apoptosis in experimental models of epilepsy.
Collapse
|
37
|
Martinc B, Grabnar I, Vovk T. Antioxidants as a preventive treatment for epileptic process: a review of the current status. Curr Neuropharmacol 2014; 12:527-50. [PMID: 25977679 PMCID: PMC4428026 DOI: 10.2174/1570159x12666140923205715] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance of antioxidant system balance and consequently increased production of reactive species in patients with epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted.
Collapse
Affiliation(s)
| | | | - Tomaž Vovk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Zeng LH, Zhang HD, Xu CJ, Bian YJ, Xu XJ, Xie QM, Zhang RH. Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties. J Zhejiang Univ Sci B 2014; 14:1004-12. [PMID: 24190446 DOI: 10.1631/jzus.b1300138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A relationship between status epilepticus (SE) and oxidative stress has recently begun to be recognized. To explore whether the flavonoids extracted from licorice (LFs) have any protective effect on kainate (KA)-induced seizure in mice, we treated mice with LFs before and after KA injection. In KA-treated mice, we found that superoxide dismutase (SOD) activity decreased immediately after the onset of seizure at 1 h and then increased at 6 h. It returned to baseline 1 d after seizure and then increased again at 3, 7, and 28 d, while malondialdehyde (MDA) content remained at a high level at 1 h, 6 h, 3 d, 7 d, and 28 d, indicating a more oxidized status related to the presence of more reactive oxygen species (ROS). Treatment with LFs before KA injection reversed the seizure-induced change in SOD activity and MDA content at 1 h, 6 h, 3 d, 7 d, and 28 d. Treatment with LFs after seizure decreased KA-induced SOD activity and MDA content at 7 and 28 d. Also, LF pre- and post-KA treatments decreased seizure-induced neuronal cell death. Subsequently, Morris water maze tests revealed that the escape latency was significantly decreased and the number of target quadrant crossings was markedly increased in the LF-treated groups. Thus, our data indicate that LFs have protective effects on seizure-induced neuronal cell death and cognitive impairment through their anti-oxidative effects.
Collapse
Affiliation(s)
- Ling-hui Zeng
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Saad K, Hammad E, Hassan AF, Badry R. Trace element, oxidant, and antioxidant enzyme values in blood of children with refractory epilepsy. Int J Neurosci 2014; 124:181-6. [PMID: 23919524 DOI: 10.3109/00207454.2013.831851] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study is to evaluate the serum levels of some trace elements, oxidants, and antioxidants in children with intractable epilepsy compared to healthy children. PATIENTS AND METHODS In a case-control study, 40 children (24 males and 16 females) suffering from refractory generalized epileptic seizures were compared with 40 sex- and age-matched healthy children serve as a control group. Serum selenium (Se), zinc (Zn), copper (Cu), and plasma malondialdehyde (MDA) as well as erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) values were measured in the patients and controls. RESULTS Plasma MDA values of the patient group were significantly ( p < 0.001) higher than those in control. Serum Zn, Se, and erythrocyte GSH-Px values of the patient group are significantly ( p < 0.001) lower than those in control, although there is no statistical difference in Cu and SOD values. CONCLUSION Plasma MDA, erythrocyte GSH-Px, and trace elements Zn and Se may play an important role in the pathogenesis of intractable epilepsy in children.
Collapse
Affiliation(s)
- Khaled Saad
- 1Department of Pediatrics, Faculty of Medicine
| | | | | | | |
Collapse
|
40
|
Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res 2013; 38:2625-30. [PMID: 24135880 DOI: 10.1007/s11064-013-1180-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/24/2023]
Abstract
Tyrosinemia type II, also known as Richner-Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of L-tyrosine. Our results demonstrated that the acute administration of L-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of L-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II.
Collapse
|
41
|
Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 2013; 14:1455-76. [PMID: 23344052 PMCID: PMC3565330 DOI: 10.3390/ijms14011455] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology.
Collapse
|
42
|
Devi PU, Saraogi P, Manocha A, Vohora D. Pharmacological and biochemical analysis of interactions between N-acetylcysteine and some antiepileptic drugs on experimental seizures in mice. CNS Neurosci Ther 2012; 18:406-13. [PMID: 22537319 DOI: 10.1111/j.1755-5949.2011.00278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE In view of a putative role of oxidative stress in the pathophysiology of seizures, this study addressed the interactions between N-acetylcysteine (NAC), a potent antioxidant and two antiepileptic drugs sodium valproate (SVP) and phenytoin (PHT) on experimental seizures in mice. METHODS The interaction was studied at three fixed ratio combinations (i.e., 1:1, 1:3, and 3:1) in the mouse maximal electroshock (MES) test using isobolographic analysis. Markers of oxidative stress (reduced glutathione [GSH] and malondialdehyde [MDA]) were estimated in the cortex of mice pretreated with either of these drugs alone or their 3:1 ratio combinations at the experimentally determined ED(50) values (ED(50 exp) values). The grip strength and spontaneous alternation behavior (SAB) were also assessed. In addition, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and calcium levels were estimated. RESULTS We found an anticonvulsant action of NAC in the MES test. Further, the ED(50 exp) values for the combinations of PHT and NAC did not differ from the theoretically calculated ED(50) values indicating additive effects. In case of SVP and NAC, however, the ED(50 exp) values were lower than the theoretically calculated ED(50) values. The interaction of SVP with NAC at the fixed ratios of 1:3 and 3:1 was found to be synergistic. No significant changes were observed in the grip strength, SAB, cortical GSH and MDA levels, serum AST, ALT, ALP, or calcium levels. CONCLUSION Our results thus hold promise for the use of NAC as an adjunct to PHT and SVP therapy.
Collapse
Affiliation(s)
- P Uma Devi
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | | | | | | |
Collapse
|
43
|
Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH, Hong JS, Yoneda Y, Kim HC. Role of oxidative stress in epileptic seizures. Neurochem Int 2011; 59:122-37. [PMID: 21672578 PMCID: PMC3606551 DOI: 10.1016/j.neuint.2011.03.025] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 11/16/2022]
Abstract
Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetic rat models, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, South Korea
| | - Kwang-Ho Ko
- Pharmacology Laboratory, College of Pharmacy, Seoul National University, Seoul 143-701, South Korea
| | - Jae-Hyung Bach
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharamcology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| |
Collapse
|
44
|
Nazıroglu M. Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 2011; 34:2181-91. [PMID: 19513830 DOI: 10.1007/s11064-009-0015-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2009] [Indexed: 01/18/2023]
Abstract
Epilepsy is one of the oldest neurological conditions known to humankind. It is known that oxidative stress and generation of reactive oxygen species are a cause and consequence of epileptic seizures. Although recent years have seen tremendous progress in the molecular biology and metabolism of selenium, we still know little about the cell type-specific and temporal pattern of selenium and its derivatives in the brain of epileptic humans and experimental animals. It has been suggested that some antiepileptic drug therapies such as valproic acid, deplete the total body selenium level and selenium-dependent glutathione peroxidase (GSH-Px) activity although therapy with a new epileptic drug, topiramate, activated GSH-Px activity in epileptic animals and humans. An observation of lower blood or tissue selenium level and GSH-Px activity in epileptic patients and animals compared to controls in recent publications may support the proposed crucial role of selenium level and GSH-Px activity in the pathogenesis of epilepsy. Selenium is incorporated into an interesting class of molecules known as selenoproteins that contain the modified amino acid, selenocysteine. There are signs of selenium and selenoprotein deficiency in the pathogenesis of epilepsy. In conclusion, there is convincing evidence for the proposed crucial role of selenium and deficiency of GSH-Px enzyme activity in epilepsy pathogenesis. Blood GSH-Px activities could be a reliable indicator of selenium deficiency in patients with epilepsy.
Collapse
Affiliation(s)
- Mustafa Nazıroglu
- Department of Biophysics, Medical Faculty, Süleyman Demirel University, Morfoloji Binasi, Cünür, 32260 Isparta, Turkey.
| |
Collapse
|
45
|
Filippon L, Vanzin CS, Biancini GB, Pereira IN, Manfredini V, Sitta A, Peralba MDCR, Schwartz IVD, Giugliani R, Vargas CR. Oxidative stress in patients with mucopolysaccharidosis type II before and during enzyme replacement therapy. Mol Genet Metab 2011; 103:121-7. [PMID: 21420339 DOI: 10.1016/j.ymgme.2011.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the enzyme iduronate-2-sulfatase, responsible for the degradation of glycosaminoglycans dermatan and heparan sulfate. Once the generation of free radicals is involved in the pathogenesis of many diseases, including some inborn errors of metabolism, the aim of this study was to evaluate blood oxidative stress parameters in MPS II patients, before and during 6 months of enzyme replacement therapy. We found significantly increased levels of malondialdehyde and carbonyl groups in plasma as well as erythrocyte catalase activity in patients before treatment compared to the control group. Plasma sulfhydryl group content and total antioxidant status were significantly reduced before treatment, while superoxide dismutase enzyme was not altered at this time when compared to controls. During enzyme replacement therapy, there was a significant reduction in levels of malondialdehyde when compared to pretreatment. Sulfhydryl groups were significantly increased until three months of treatment in MPS II patients in comparison to pretreatment. There were no significant alterations in plasma total antioxidant status and carbonyl groups as well as in catalase and superoxide dismutase activities during treatment in relation to pretreatment. The results indicate that MPS II patients are subject to lipid and protein oxidative damage and present reduction in non-enzymatic antioxidants, suggesting a possible involvement of free radicals in the pathophysiology of this disease. Also, the results may suggest that enzyme replacement therapy seems to protect against lipid peroxidation and protein damage in these patients.
Collapse
Affiliation(s)
- Letícia Filippon
- Programa de Pós-Graduação em Ciências Biológicas:Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2700, Porto Alegre, RS, 90035-000, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Oxidative stress in children affected by epileptic encephalopathies. J Neurol Sci 2011; 300:103-6. [DOI: 10.1016/j.jns.2010.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/28/2010] [Accepted: 09/14/2010] [Indexed: 12/30/2022]
|
47
|
Abstract
Lafora disease is a rare, fatal, autosomal recessive, progressive myoclonic epilepsy. It may also be considered as a disorder of carbohydrate metabolism because of the formation of polyglucosan inclusion bodies in neural and other tissues due to abnormalities of the proteins laforin or malin. The condition is characterized by epilepsy, myoclonus and dementia. Diagnostic findings on MRI and neurophysiological testing are not definitive and biopsy or genetic studies may be required. Therapy in Lafora disease is currently limited to symptomatic management of the epilepsy, myoclonus and intercurrent complications. With a greater understanding of the pathophysiological processes involved, there is justified hope for future therapies.
Collapse
Affiliation(s)
- Thomas S Monaghan
- Department of Neurology and Neuroscience, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | | |
Collapse
|
48
|
Ercegovac M, Jovic N, Simic T, Beslac-Bumbasirevic L, Sokic D, Djukic T, Savic-Radojevic A, Matic M, Mimic-Oka J, Pljesa-Ercegovac M. Byproducts of protein, lipid and DNA oxidative damage and antioxidant enzyme activities in seizure. Seizure 2010; 19:205-10. [DOI: 10.1016/j.seizure.2010.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/25/2010] [Accepted: 02/05/2010] [Indexed: 11/17/2022] Open
|
49
|
Xiao F, Chen D, Lu Y, Xiao Z, Guan LF, Yuan J, Wang L, Xi ZQ, Wang XF. Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy. Brain Res 2009; 1255:180-9. [DOI: 10.1016/j.brainres.2008.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 11/24/2022]
|
50
|
|