1
|
Mehta SK, Pradhan RB. Phytochemicals in antiviral drug development against human respiratory viruses. Drug Discov Today 2024; 29:104107. [PMID: 39032810 DOI: 10.1016/j.drudis.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This review explores the potential antiviral properties of various plant-based compounds, including polyphenols, phytochemicals, and terpenoids. It emphasizes the diverse functionalities of compounds such as epigallocatechin-3-gallate (EGCG), quercetin, griffithsin (GRFT,) resveratrol, linalool, and carvacrol in the context of respiratory virus infections, including SARS-CoV-2. Emphasizing their effectiveness in modulating immune responses, disrupting viral envelopes, and influencing cellular signaling pathways, the review underlines the imperative for thorough research to establish safety and efficacy. Additionally, the review underscores the necessity of well-designed clinical trials to evaluate the efficacy and safety of these compounds as potential antiviral agents. This approach would establish a robust framework for future drug development efforts focused on bolstering host defense mechanisms against human respiratory viral infections.
Collapse
Affiliation(s)
- Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India.
| | - Ran Bahadur Pradhan
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India
| |
Collapse
|
2
|
Helvacioglu S, Charehsaz M, Bankoglu EE, Stopper H, Aydin A. The ameliorative effect of rosmarinic acid and epigallocatechin gallate against doxorubicin-induced genotoxicity. Drug Chem Toxicol 2024:1-13. [PMID: 38529831 DOI: 10.1080/01480545.2024.2332790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Doxorubicin (Dox), an effective anticancer agent, is known for its genotoxic effects on normal cells. Phenolic compounds, renowned for their antitumor, antioxidant, and antigenotoxic properties, have gained prominence in recent years. This study investigates the individual and combined protective effects of rosmarinic acid (RA) and epigallocatechin gallate (EGCG) against Dox-induced genotoxicity using various in vitro test systems. The synergistic/antagonistic interaction of these combinations on Dox's chemotherapeutic effect is explored in breast cancer cell lines. Both RA and EGCG significantly mitigate Dox-induced genotoxicity in comet, micronucleus, and Ames assays. While Dox exhibits higher selectivity against MCF-7 cells, EGCG and RA show greater selectivity against MDA-MB-231 cells. The coefficient of drug interaction reveals a synergistic effect when RA or EGCG is combined with Dox in breast cancer cells. In conclusion, both EGCG and RA effectively reduce Dox-induced genetic damage and enhance Dox's cell viability-reducing effect in breast cancer cells.
Collapse
Affiliation(s)
- Sinem Helvacioglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstinye University, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ahmet Aydin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Tagorti G, Yalçın B, Güneş M, Kurşun AY, Kaya B. Genotoxic and genoprotective effects of phytoestrogens: a systematic review. Drug Chem Toxicol 2023; 46:1242-1254. [PMID: 36606318 DOI: 10.1080/01480545.2022.2146134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
Phytoestrogens are xenoestrogens found in plants with a myriad of health benefits. However, various studies reported the genotoxic effects of these substances. Thus, we reviewed in vitro and in vivo studies published in PubMed, Scopus, and Web of Science to evaluate the genotoxic and the genoprotective potential of phytoestrogens. Only studies written in English and intended to study commercially available phytoestrogens were included. The screening was performed manually. Moreover, the underlying mechanism of action of phytoestrogens was described. Around half of those studies (43%) reported genoprotective results. However, several studies revealed positive results for genotoxicity with specific model organisms and with dose/concentration dependence. The assessment of the selected articles showed substantial differences in the used concentrations and a biphasic response was recorded in some phytoestrogens. As far as we know, this is the first study to assess the genotoxic and genoprotective effects of phytoestrogens systematically.
Collapse
Affiliation(s)
- Ghada Tagorti
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Halevas E, Mavroidi B, Zahariou G, Pelecanou M, Hatzidimitriou AG. Structurally characterized copper complexes of flavonoid naringenin with enhanced radical scavenging activity. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Gumus E, Sisko A, Abas BI, Demirkan B, Cevik O. Quercetin protects mouse oocytes against chromium-induced damage in vitro and in vivo. J Trace Elem Med Biol 2023; 75:127087. [PMID: 36209711 DOI: 10.1016/j.jtemb.2022.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Chromium (Cr) is a naturally-occurring element that is used in various fields of industry. Humans may be exposed to hexavalent chromium [Cr(VI)], which is one of the stable valence states of the chromium through contaminated soil, air, and water. Exposure to Cr(VI) through contaminated drinking water, soil and air causes various cancers and also fertility problems in animals and humans. Quercetin (QCT), a common flavonoid compound, has numerous biological effects as an antioxidant and free radical scavenger, but its function and mechanisms in reproductive processes in various species remain unclear. This study aims to determine the chromium effects on mice oocyte quality and the ameliorative effect of QCT in both in vitro and in vivo experimental models. METHODS For the in vitro experiment, oocytes were collected and divided into the control, sham, QCT-treated, Cr(VI) (potassium dichromate), and treatment [Cr(VI)+QCT] groups. Collected oocytes were cultured in maturation medium with or without 10 µM quercetin and 10 µM Cr(VI) for 14 h based on the defined experimental design. For the in vivo experiment, the mice were randomly divided into the control, sham, QCT-treated, Cr(VI), and Cr(VI) + QCT groups. Control and sham mice received regular drinking water and diet. Cr(VI) group received Cr(VI) (50 ppm in drinking water) and Cr(VI) + QCT group received 50 ppm Cr(VI) with QCT (20 mg/kg body wt, through i.p) for a period of 21 days and then oocytes were collected and cultured for 14 h for in vitro maturation. For both experiments, at the end of the culture period, we examined the ameliorative effect of QCT on oocyte maturation, spindle formation, ROS production, mitochondrial function, and apoptosis. RESULTS Our in vitro and in vivo results showed that Cr(VI) disrupt the oocyte maturation and spindle formation (P < 0.001). Furthermore, we found that exposure to Cr(VI) significantly increased ROS levels and decreased mitochondrial membrane potential (P < 0.001). In addition, exposure to Cr(VI) induced early apoptosis and downregulated the Bcl-2 mRNA expression and upregulated the Caspase-3 and Bax mRNAs expression (P < 0.01). Finally, quercetin significantly restored the detrimental effects of Cr(VI). CONCLUSION The results indicated that quercetin protects the oocytes against Cr(VI) toxicity through the suppression of oxidative stress and apoptosis. The conclusions drawn from our study's findings suggest that quercetin might be useful agent for oocyte maturation in case of possible exposure to toxic substances such as chromium.
Collapse
Affiliation(s)
- Erkan Gumus
- Department of Histology and Embryology, School of Medicine, Adnan Menderes University, Aydın, Turkey.
| | - Asli Sisko
- Department of Histology and Embryology, School of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Burcin Irem Abas
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Busra Demirkan
- Department of Histology and Embryology, School of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Ozge Cevik
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
6
|
Naringin Attenuates the Diabetic Neuropathy in STZ-Induced Type 2 Diabetic Wistar Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122111. [PMID: 36556476 PMCID: PMC9782177 DOI: 10.3390/life12122111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The application of traditional medicines for the treatment of diseases, including diabetic neuropathy (DN), has received great attention. The aim of this study was to investigate the ameliorative potential of naringin, a flavanone, to treat streptozotocin-induced DN in rat models. After the successful induction of diabetes, DN complications were measured by various behavioral tests after 4 weeks of post-induction of diabetes with or without treatment with naringin. Serum biochemical assays such as fasting blood glucose, HbA1c%, insulin, lipid profile, and oxidative stress parameters were determined. Proinflammatory cytokines such as TNF-α and IL-6, and neuron-specific markers such as BDNF and NGF, were also assessed. In addition, pancreatic and brain tissues were subjected to histopathology to analyze structural alterations. The diabetic rats exhibited increased paw withdrawal frequencies for the acetone drop test and decreased frequencies for the plantar test, hot plate test, and tail flick test. The diabetic rats also showed an altered level of proinflammatory cytokines and oxidative stress parameters, as well as altered levels of proinflammatory cytokines and oxidative stress parameters. Naringin treatment significantly improved these parameters and helped in restoring the normal architecture of the brain and pancreatic tissues. The findings show that naringin's neuroprotective properties may be linked to its ability to suppress the overactivation of inflammatory molecules and mediators of oxidative stress.
Collapse
|
7
|
Inhibitory effects of polyphenols from black chokeberry on advanced glycation end-products (AGEs) formation. Food Chem 2022; 392:133295. [PMID: 35636190 DOI: 10.1016/j.foodchem.2022.133295] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/25/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022]
Abstract
Plant-based polyphenols are known to exert mitigating effects on the harmful consequences of advanced glycation. In this study, the antioxidant and antiglycation properties of purified black chokeberry polyphenol and its dominant monomers were studied. The phenolics of black chokeberry had a significant inhibitory effect on glycation products at all stages. The highest inhibition of fructosamine (72.27%) was achieved by chlorogenic acid (CA). Epigallocatechin gallate (EGCG) showed an 84.47% inhibition of α-dicarbonyl and 54.44% inhibition of AGEs (advanced glycation end-products). However, the inhibition of α-dicarbonyl was impacted by the presence of Cu2+. In addition, an EGCG-induced increase in the protein α-helical structure to 21.43% was observed. Overall, EGCG was the main component inhibited protein glycosylation in the simulated glycation system. Furthermore, the mechanism of inhibition was a combination of scavenging free radicals, capturing metal ions, and alleviating changes in the secondary structure of proteins.
Collapse
|
8
|
Xu H, Zhang Z, Zhang L, Chen Z, Wang S. Tungsten disulfide nanoflowers with multi-nanoenzyme activities for the treatment of acute liver injury. J Colloid Interface Sci 2022; 625:544-554. [PMID: 35749849 DOI: 10.1016/j.jcis.2022.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
In this study, polyvinyl pyrrolidone modified tungsten disulfide (WS2-PVP) nanoflower was synthesized using a simple and effective one-pot method. Owing to the surface polyvinyl pyrrolidone (PVP) modification, WS2-PVP nanoflowers showed excellent colloidal stability in different circumstances, which can be well dispersed in water, saline, and cell culture medium. Meanwhile, the WS2-PVP nanoflowers have a good biocompatibility both in vitro and in vivo. Further studies confirmed that the WS2-PVP nanoflowers have the ability of simulating catalase, superoxide dismutase and glutathione peroxidase enzymes and scavenging reactive oxygen species (ROS). Therefore, WS2-PVP nanoflowers were used to treat reactive oxygen species-related diseases, which showed the cell protection effect and significantly improved the treatment results of acute liver injury on mice. We hope that our findings will facilitate the development of nanomaterials with multiple enzymatic mimicking properties and further clinical application of tungsten-based ROS scavengers in biomedical therapy and research.
Collapse
Affiliation(s)
- Hao Xu
- Department of Infectious Diseases, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Zhirui Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Liying Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
9
|
Quercetin Completely Ameliorates Hypoxia-Reoxygenation-Induced Pathophysiology Severity in NY1DD Transgenic Sickle Mice: Intrinsic Mild Steady State Pathophysiology of the Disease in NY1DD Is Also Reversed. Biomolecules 2021; 11:biom11101473. [PMID: 34680105 PMCID: PMC8533533 DOI: 10.3390/biom11101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022] Open
Abstract
The vaso-occlusive crisis (VOC) is a major complication of sickle cell disease (SCD); thus, strategies to ameliorate vaso-occlusive episodes are greatly needed. We evaluated the therapeutic benefits of quercetin in a SCD transgenic sickle mouse model. This disease model exhibited very mild disease pathophysiology in the steady state. The severity of the disease in the NY1DD mouse was amplified by subjecting mice to 18 h of hypoxia followed by 3 h of reoxygenation. Quercetin (200 mg/kg body weight) administered to hypoxia challenged NY1DD mice in a single intraperitoneal (i.p.) dose at the onset of reoxygenation completely ameliorated all hypoxia reoxygenation (H/R)-induced pathophysiology. Additionally, it ameliorated the mild intrinsic steady state pathophysiology. These results are comparable with those seen with semisynthetic supra plasma expanders. In control mice, C57BL/6J, hypoxia reoxygenation-induced vaso-occlusion was at significantly lower levels than in NY1DD mice, reflecting the role of sickle hemoglobin (HbS) in inducing vaso-occlusion; however, the therapeutic benefits from quercetin were significantly muted. We suggest that these findings represent a unique genotype of the NY1DD mice, i.e., the presence of high oxygen affinity red blood cells (RBCs) with chimeric HbS, composed of mouse α-chain and human βS-chain, as well as human α-chain and mouse β-chain (besides HbS). The anti-anemia therapeutic benefits from high oxygen affinity RBCs in these mice exert disease severity modifications that synergize with the therapeutic benefits of quercetin. Combining the therapeutic benefits of high oxygen affinity RBCs generated in situ by chemical or genetic manipulation with the therapeutic benefits of antiadhesive therapies is a novel approach to treat sickle cell patients with severe pathophysiology.
Collapse
|
10
|
Flavonoids-Macromolecules Interactions in Human Diseases with Focus on Alzheimer, Atherosclerosis and Cancer. Antioxidants (Basel) 2021; 10:antiox10030423. [PMID: 33802084 PMCID: PMC7999194 DOI: 10.3390/antiox10030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Flavonoids, a class of polyphenols, consumed daily in our diet, are associated with a reduced risk for oxidative stress (OS)-related chronic diseases, such as cardiovascular disease, neurodegenerative diseases, cancer, and inflammation. The involvement of flavonoids with OS-related chronic diseases have been traditionally attributed to their antioxidant activity. However, evidence from recent studies indicate that flavonoids' beneficial impact may be assigned to their interaction with cellular macromolecules, rather than exerting a direct antioxidant effect. This review provides an overview of the recent evolving research on interactions between the flavonoids and lipoproteins, proteins, chromatin, DNA, and cell-signaling molecules that are involved in the OS-related chronic diseases; it focuses on the mechanisms by which flavonoids attenuate the development of the aforementioned chronic diseases via direct and indirect effects on gene expression and cellular functions. The current review summarizes data from the literature and from our recent research and then compares specific flavonoids' interactions with their targets, focusing on flavonoid structure-activity relationships. In addition, the various methods of evaluating flavonoid-protein and flavonoid-DNA interactions are presented. Our aim is to shed light on flavonoids action in the body, beyond their well-established, direct antioxidant activity, and to provide insights into the mechanisms by which these small molecules, consumed daily, influence cellular functions.
Collapse
|
11
|
Phytochemical and In Vitro Genotoxicity Studies of Standardized Ficus deltoidea var. kunstleri Aqueous Extract. PLANTS 2021; 10:plants10020343. [PMID: 33670296 PMCID: PMC7918690 DOI: 10.3390/plants10020343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/18/2022]
Abstract
The present study was carried out to assess the genotoxicity potential of Ficus deltoidea var. kunstleri aqueous extract (FDAE) using standard in vitro assays. The DNA damage of V79B cells was measured using the alkaline comet assay treated at 0.1 mg/mL (IC10) and 0.3 mg/mL (IC25) of FDAE together with positive and negative controls. For in vitro micronucleus assay, the V79B cells were treated with FDAE at five different concentrations (5, 2.5, 1.25, 0.625, and 0.3125 mg/mL) with and without S9 mixture. The bacteria reverse mutation assay of FDAE was performed on Salmonella typhimurium strains TA98, 100, 1535, 1537, and Escherichia coli strain WP2uvrA using pre-incubation method in the presence or in the absence of an extrinsic metabolic system (S9 mixture). FDAE at 0.1 and 0.3 mg/mL significantly increased DNA damage in both comet tail and tail moment (p < 0.05). No significant changes were detected in the number of micronucleated cell when compared to control. Tested at the doses up to 5000 µg/plate, the FDAE did not increase the number of revertant colonies for all strains. In conclusion, further investigation needs to be conducted in animal model to confirm the non-genotoxicity activities of FDAE.
Collapse
|
12
|
Glycyrrhizin mediated liver-targeted alginate nanogels delivers quercetin to relieve acute liver failure. Int J Biol Macromol 2020; 168:93-104. [PMID: 33278444 DOI: 10.1016/j.ijbiomac.2020.11.204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022]
Abstract
Acute liver failure is an uncommon and dramatic clinical syndrome with a high risk of mortality. Previous treatments existed some limitations of poor bioavailability and targeting the efficiency of drugs. In this study, a novel glycyrrhizin mediated liver-targeted alginate nanogels, which can deliver the antioxidant quercetin to the liver for the treatment of acute liver injury. In vitro radical scavenging results showed that the antioxidant activity of quercetin was increased 81-fold. The tissue distribution results indicated that glycyrrhizin-mediated nanogels showed stronger fluorescence intensity in the liver, which improved liver targeting and therapeutic efficacy. Quercetin-glycyrrhizin nanogels were more effective at restoring liver injury as indicated on serum markers, including alanine transaminase, aspartate aminotransferase, and total bilirubin. The histopathology result showed that quercetin-glycyrrhizin nanogels reversed liver damage. Oxidative parameters of malondialdehyde and glutathione s-transferase were decreased, which provided supporting evidence of antioxidation. Moreover, quercetin-glycyrrhizin nanogels were more effective in down-regulating the inflammation-related gene expression of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase and monocyte chemotactic protein-1. In conclusion, the novel glycyrrhizin mediated liver-targeted alginate nanogels might be a promising treatment for acute liver failure.
Collapse
|
13
|
Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity Via Pro-Oxidant Properties. Int J Mol Sci 2020; 21:E3561. [PMID: 32443552 PMCID: PMC7279003 DOI: 10.3390/ijms21103561] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Amyloid β (Aβ) aggregation has been the focus for a therapeutic target for the treatment of AD. Naturally occurring polyphenols have an inhibitory effect on Aβ aggregation and have attracted a lot of attention for the development of treatment strategies which could mitigate the symptoms of AD. However, considerable evidence has shown that the pro-oxidant mechanisms of polyphenols could have a deleterious effect. Our group has established an assay system to evaluate the pro-oxidant characteristics of chemical compounds, based on their reactivity with DNA. In this review, we have summarized the anti-Aβ aggregation and pro-oxidant properties of polyphenols. These findings could contribute to understanding the mechanism underlying the potential risk of polyphenols. We would like to emphasize the importance of assessing the pro-oxidant properties of polyphenols from a safety point of view.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| |
Collapse
|
14
|
DNA-BINDING and DNA-protecting activities of small natural organic molecules and food extracts. Chem Biol Interact 2020; 323:109030. [PMID: 32205154 DOI: 10.1016/j.cbi.2020.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
The review summarizes literature data on the DNA-binding, DNA-protecting and DNA-damaging activities of a range of natural human endogenous and exogenous compounds. Small natural organic molecules bind DNA in a site-specific mode, by arranging tight touch with the structure of the major and minor grooves, as well as individual bases in the local duplex DNA. Polyphenols are the best-studied exogenous compounds from this point of view. Many of them demonstrate hormetic effects, producing both beneficial and damaging effects. An attempt to establish the dependence of DNA damage or DNA protection on the concentration of the compound turned out to be successful for some polyphenols, daidzein, genistein and resveratrol, which were DNA protecting in low concentrations and DNA damaging in high concentrations. There was no evident dependence on concentration for quercetin and kaempferol. Probably, the DNA-protecting effect is associated with the affinity to DNA. Caffeine and theophylline are DNA binders; at the same time, they favor DNA repair. Although most alkaloids damage DNA, berberine can protect DNA against damage. Among the endogenous compounds, hormones belonging to the amine class, thyroid and steroid hormones appear to bind DNA and produce some DNA damage. Thus, natural compounds continue to reveal beneficial or adverse effects on genome integrity and provide a promising source of therapeutic activities.
Collapse
|
15
|
Hu L, Cheng H, Gao Y, Liang L. Mechanism for Inhibition of Folic Acid Photodecomposition by Various Antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:340-350. [PMID: 31874034 DOI: 10.1021/acs.jafc.9b06263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Folic acid, a synthetic form of folate, is a water-soluble vitamin that is essential during periods of rapid cell division and growth. However, it decomposes upon ultraviolet irradiation to form inactive photoproducts. In this study, the protective effect and mechanisms of antioxidants, including cinnamic acids, flavonoids, catechol and its derivatives, stilbenes, p-benzoquinone and its derivatives, isoprenoids, curcumin, oleic acid, and linoleic acid, against folic acid photodecomposition were investigated by using fluorescence and absorbance spectroscopy, high-performance liquid chromatography, and antioxidant assay. It was found that antioxidants could inhibit or delay the folic acid decomposition in varying degrees, among which caffeic acid was the most effective. The increase in its remarkable antioxidant efficiency and absorbance in the UVA region during irradiation contributed to its effective protection. This finding could be useful for the protection of photolabile components in food and other uses.
Collapse
|
16
|
Saccol RDSP, da Silveira KL, Manzoni AG, Abdalla FH, de Oliveira JS, Dornelles GL, Barbisan F, Passos DF, Casali EA, de Andrade CM, da Cruz IBM, Leal DBR. Antioxidant, hepatoprotective, genoprotective, and cytoprotective effects of quercetin in a murine model of arthritis. J Cell Biochem 2019; 121:2792-2801. [PMID: 31691375 DOI: 10.1002/jcb.29502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis is a highly debilitating inflammatory autoimmune disease which is characterized by joint destruction. The present study sought to investigate the effect of quercetin in rats with complete Freund's adjuvant-induced arthritis. Animals were divided into control/saline, control/quercetin (5 mg/kg, 25 mg/kg, and 50 mg/kg) arthritis/saline, and arthritis/quercetin (5 mg/kg, 25 mg/kg, and 50 mg/kg); the treatments were administered for 45 days. Biochemical, oxidative stress, genotoxicity, and cytotoxicity parameters were evaluated. All doses of quercetin reduced the levels of aspartate aminotransferase, thiobarbituric acid-reactive substances, and reactive oxygen species; however, only treatment with 25 or 50 mg/kg increased catalase activity. Total thiol and reduced glutathione levels were not significantly affected by the induction nor by the treatments. Genotoxicity assessed by DNA damage, and cytotoxicity through picogreen assay, decreased after treatments with quercetin. Our results present evidence of the antioxidant, cytoprotective, genoprotective and hepatoprotective, and effects of quercetin, demonstrating its potential as a candidate for coadjuvant therapy.
Collapse
Affiliation(s)
- Renata da Silva Pereira Saccol
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Karine Lanes da Silveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Alessandra Guedes Manzoni
- Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Fátima Husein Abdalla
- Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Juliana Sorraila de Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Guilherme Lopes Dornelles
- Programa de Pós-Graduação em Medicina Veterinária, Centro de Ciências Rurais, Departamento de Pequenos Animais, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Fernanda Barbisan
- Programa de Pós-Graduação em Gerontologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Daniela Ferreira Passos
- Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Emerson André Casali
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
| | - Cinthia Melazzo de Andrade
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Programa de Pós-Graduação em Medicina Veterinária, Centro de Ciências Rurais, Departamento de Pequenos Animais, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Ivana Beatrice Mânica da Cruz
- Programa de Pós-Graduação em Gerontologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Laboratório de Biogenômica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Daniela Bitencourt Rosa Leal
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Laboratório de Imunobiologia Experimental e Aplicada, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
17
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
18
|
Pandey SK, Singh DP, Pratap S, Marverti G, Butcher R. Copper(I) complexes of N-(2/4 methoxy/2-chloro-4-nitro)phenyl-N′ (methoxycarbonyl)thiocarbamides as potential anticancer agents: Synthesis, crystal structure, in vitro cytotoxicity and DNA damage studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Kedhari Sundaram M, Raina R, Afroze N, Bajbouj K, Hamad M, Haque S, Hussain A. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci Rep 2019; 39:BSR20190720. [PMID: 31366565 PMCID: PMC6692570 DOI: 10.1042/bsr20190720] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells have the unique ability to overcome natural defense mechanisms, undergo unchecked proliferation and evade apoptosis. While chemotherapeutic drugs address this, they are plagued by a long list of side effects and have a poor success rate. This has spurred researchers to identify safer bioactive compounds that possess chemopreventive and therapeutic properties. A wide range of experimental as well as epidemiological data encourage the use of dietary agents to impede or delay different stages of cancer. In the present study, we have examined the anti-ancer property of ubiquitous phytochemical quercetin by using cell viability assay, flow cytometry, nuclear morphology, colony formation, scratch wound assay, DNA fragmentation and comet assay. Further, qPCR analysis of various genes involved in apoptosis, cell cycle regulation, metastasis and different signal transduction pathways was performed. Proteome profiler was used to quantitate the expression of several of these proteins. We find that quercetin decreases cell viability, reduces colony formation, promotes G2-M cell cycle arrest, induces DNA damage and encourages apoptosis. Quercetin induces apoptosis via activating both apoptotic pathways with a stronger effect of the extrinsic pathway relying on the combined power of TRAIL, FASL and TNF with up-regulation of caspases and pro-apoptotic genes. Quercetin could inhibit anti-apoptotic proteins by docking studies. Further, quercetin blocks PI3K, MAPK and WNT pathways. Anticancer effect of quercetin observed in cell-based assays were corroborated by molecular biology studies and yielded valuable mechanistic information. Quercetin appears to be a promising candidate with chemopreventive and chemotherapeutic potential and warrants further research.
Collapse
Affiliation(s)
| | - Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| |
Collapse
|
20
|
Kaushal S, Ahsan AU, Sharma VL, Chopra M. Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in balb/C mice. Mol Biol Rep 2019; 46:5355-5369. [PMID: 31350662 DOI: 10.1007/s11033-019-04991-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022]
Abstract
Arsenic is well known genotoxicant which causes the excessive generation of reactive oxygen species (ROS) and inhibition of antioxidant enzyme systems leading to cell damage through the activation of oxidative sensitive signaling pathways. Epigallocatechin gallate (EGCG), the main and active polyphenolic catechin present in green tea, has shown potent antioxidant, free radical scavenging and genoprotective activity in vivo. The present study attempted to investigate antioxidant and geno-protective efficacy of EGCG by regulating arsenic induced oxidative stress in mice. Animals received prophylactic and therapeutic treatments at two different doses (25 and 50 mg/kg b.wt.) of EGCG orally for 15 days and administered arsenic intraperitoneally at dose of 1.5 mg/kg b.wt (1/10th of LD50) for 10 days. Arsenic intoxication revealed enhanced ROS production (114%) in lymphocytes; elevated levels of LPO (2-4 fold); reduced levels of hepato-renal antioxidants (approx. 45%) and augmented genomic fragmentation in hepato-renal tissues; increased chromosomal anomalies (78%) and micronucleation (21.93%) in bone marrow cells and comet tailing (25%) in lymphocytes of mice. Both pre and post treatments of EGCG decreased ROS production, restored lipid peroxidation (LPO) and reduced hepato-renal antioxidants levels, reduced the DNA fragmentation, number of chromosomal aberrations (CA), micronucleation (MN), and comet tailing but prophylactic treatment of 50 mg/kg b.wt was the most effective treatment in regulating arsenic induced oxidative stress. The effectiveness of this dose was furthermore validated by calculating the inhibitory index. Thus, results of present work empirically demonstrate free radical scavenging, anti-oxidative and genoprotective efficacy of EGCG against arsenic toxicity.
Collapse
Affiliation(s)
- Surbhi Kaushal
- Department of Zoology, Panjab University, Chandigarh, India
| | | | | | - Mani Chopra
- Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
21
|
Pandey SK, Pratap S, Rai SK, Marverti G, Kaur M, Jasinski JP. Synthesis, characterization, Hirshfeld surface, cytotoxicity, DNA damage and cell cycle arrest studies of N, N-diphenyl-N'-(biphenyl-4-carbonyl/4-chlorobenzoyl) thiocarbamides. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Pandey SK, Pratap S, Pokharia S, Mishra H, Marverti G, Kaur M, Jasinski JP. Copper (I) complexes based on novel N, N′-disubstituted thiocarbamides: Synthesis, spectroscopic, in vitro cytotoxicity, DNA damage and G0/G1 cell cycle arrest studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Epigallocatechin-3-gallate inhibits doxorubicin-induced inflammation on human ovarian tissue. Biosci Rep 2019; 39:BSR20181424. [PMID: 30996116 PMCID: PMC6522724 DOI: 10.1042/bsr20181424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy protocol can destroy the reproductive potential of young cancer patients. Doxorubicin (DOX) is a potent anthracycline commonly used in the treatment of numerous malignancies. The purpose of the study was to evaluate the ovarian toxicity of DOX via inflammation and the possible protective effect of the green tea polyphenol epigallocatechin-3-gallate (EGCG). Ovarian tissue of three patients was cultured with 1 µg/ml DOX and/or 10 µg/ml EGCG for 24 and 48 h. Levels of inflammatory factors were determined by quantitative Real-Time PCR, western blot, zimography, and multiplex bead-based immunoassay. Morphological evaluation, damaged follicle count and TUNEL assay were also performed. DOX influenced inflammatory responses by inducing a significant increase in the expression of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and cyclooxigenase-2 (COX-2), of inflammatory interleukins (IL), such as interleukin-6 (IL-6) and interleukin-8 (IL-8), and the inflammatory proteins mediators metalloproteinase-2 and metalloproteinase-9 (MMP2 and MMP9). IL-8 secretion in the culture supernatants and MMP9 activity also significantly raised after DOX treatment. Moreover, a histological evaluation of the ovarian tissue showed morphological damage to follicles and stroma after DOX exposure. EGCG significantly reduced DOX-induced inflammatory responses and improved the preservation of follicles. DOX-induced inflammation could be responsible for the ovarian function impairment of chemotherapy. EGCG could have a protective role in reducing DOX-mediated inflammatory responses in human ovarian tissue.
Collapse
|
24
|
Shan L, Kang X, Liu F, Cai X, Han X, Shang Y. Epigallocatechin gallate improves airway inflammation through TGF‑β1 signaling pathway in asthmatic mice. Mol Med Rep 2018; 18:2088-2096. [PMID: 29916550 PMCID: PMC6072166 DOI: 10.3892/mmr.2018.9183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the effect of epigallocatechin gallate (EGCG) on airway inflammation in mice with bronchial asthma, and the regulatory mechanism of transforming growth factor (TGF)-β1 signaling pathway, so as to provide theoretical basis for research and development of a novel drug for clinical treatment. Mouse models of bronchial asthma were established and injected with dexamethasone and EGCG via the caudal vein. 7 days later, bronchoalveolar tissue was collected for hematoxylin and eosin staining. Determination of airway resistance (AWR) and lung function in mice was detected. Serum was separated for cytometric bead array to detect the changes in inflammatory factors. Bronchoalveolar lavage fluid was collected for eosinophil and neutrophil counts. Fresh blood was obtained for flow cytometry to determine the percentages of Th17 and Treg cells. Bronchovesicular tissue was utilized for western blot assay and reverse transcription-quantitative polymerase chain reaction to determine the proteins and transcription factors in the TGF-β1 pathway. EGCG 20 mg/kg significantly reduced asthmatic symptoms, lung inflammatory cell infiltration, and the inflammatory factor levels of interleukin (IL)-2, IL-6 and tumor necrosis factor (TNF)-α. In addition, it increased the levels of inflammatory factors, including IL-10, diminished the percentage of Th17 cells, increased the percentage of Treg cells, and decreased the expression of TGF-β1 and phosphorylated (p)-Smad2/3 expression. Following the inhibition of the TGF-β1 receptor, the anti-inflammatory effect of EGCG disappeared, and the expression of TGF-β1 and p-Smad2/3 increased. EGCG attenuated airway inflammation in asthmatic mice, decreased the percentage of Th17 cells and increased the percentage of Treg cells. The anti-inflammatory effect of EGCG is achieved via the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Lishen Shan
- Department of Pediatric Pulmonology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xinyuan Kang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang North New Area, Shenyang, Liaoning 110122, P.R. China
| | - Fen Liu
- Department of Pediatric Pulmonology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xuxu Cai
- Department of Pediatric Pulmonology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaohua Han
- Department of Pediatric Pulmonology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yunxiao Shang
- Department of Pediatric Pulmonology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
25
|
Baran A, Köktürk M, Atamanalp M, Ceyhun SB. Determination of developmental toxicity of zebrafish exposed to propyl gallate dosed lower than ADI (Acceptable Daily Intake). Regul Toxicol Pharmacol 2018; 94:16-21. [DOI: 10.1016/j.yrtph.2017.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
|
26
|
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol 2018; 95:412-433. [PMID: 29580974 DOI: 10.1016/j.yrtph.2018.03.019] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
A systematic review of published toxicology and human intervention studies was performed to characterize potential hazards associated with consumption of green tea and its preparations. A review of toxicological evidence from laboratory studies revealed the liver as the target organ and hepatotoxicity as the critical effect, which was strongly associated with certain dosing conditions (e.g. bolus dose via gavage, fasting), and positively correlated with total catechin and epigallocatechingallate (EGCG) content. A review of adverse event (AE) data from 159 human intervention studies yielded findings consistent with toxicological evidence in that a limited range of concentrated, catechin-rich green tea preparations resulted in hepatic AEs in a dose-dependent manner when ingested in large bolus doses, but not when consumed as brewed tea or extracts in beverages or as part of food. Toxico- and pharmacokinetic evidence further suggests internal dose of catechins is a key determinant in the occurrence and severity of hepatotoxicity. A safe intake level of 338 mg EGCG/day for adults was derived from toxicological and human safety data for tea preparations ingested as a solid bolus dose. An Observed Safe Level (OSL) of 704 mg EGCG/day might be considered for tea preparations in beverage form based on human AE data.
Collapse
Affiliation(s)
- Jiang Hu
- Worldwide Scientific Affairs, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Donna Webster
- Product Science, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Joyce Cao
- Global Post Market Safety Surveillance, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Andrew Shao
- Independent Consultant, Rancho Palos Verdes, CA 90505, USA.
| |
Collapse
|
27
|
Sheng H, Ogawa T, Niwano Y, Sasaki K, Tachibana K. Effects of polyphenols on doxorubicin-induced oral keratinocyte cytotoxicity and anticancer potency against oral cancer cells. J Oral Pathol Med 2018; 47:368-374. [PMID: 29381815 DOI: 10.1111/jop.12685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Normal human oral keratinocytes are highly sensitive to anticancer drugs including doxorubicin. Resveratrol, epigallocatechin gallate, and tannic acid are polyphenolic compounds that were reported to have cardioprotective effect when combined with doxorubicin. However, it is unknown whether these polyphenols could protect normal human oral keratinocytes against doxorubicin-induced cytotoxicity without weakening its cytotoxic potential against oral cancer cells. Here, we examined the effects of the 3 polyphenolic compounds on doxorubicin-induced cytotoxicity in normal human oral keratinocytes and also investigated their effects on doxorubicin potency in HSC-2 human oral squamous cell carcinoma cells. METHODS Cell viability was evaluated, followed by the analysis of apoptosis and necrosis. The changes in intracellular reactive oxygen species at the early stage after treatment were also examined. RESULTS The results revealed that resveratrol in combination with doxorubicin additively augmented doxorubicin cytotoxicity in both types of cells. However, epigallocatechin gallate and tannic acid at a certain concentration mitigated the doxorubicin-induced keratinocyte toxicity mainly due to reduced doxorubicin-induced necrosis in normal human oral keratinocytes without weaken doxorubicin anticancer efficacy. The exact mechanism is still unknown but intracellular reactive oxygen species might be not the sole factor. CONCLUSIONS This study for the first time reported the effects of resveratrol, epigallocatechin gallate, and tannic acid on doxorubicin-induced cytotoxicity in normal oral keratinocytes and oral cancer cells. The combined use of epigallocatechin gallate or tannic acid with doxorubicin at a certain concentration could mitigate doxorubicin-induced keratinocyte cytotoxicity without weakening doxorubicin anticancer efficacy.
Collapse
Affiliation(s)
- Hong Sheng
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan.,Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshimi Niwano
- Laboratory for Redox Regulation, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
28
|
Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:296-310. [PMID: 28864169 DOI: 10.1016/j.jep.2017.08.035] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/19/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The compound epigallocatechin-3-gallate (EGCG), the major polyphenolic compound present in green tea [Camellia sinensis (Theaceae], has shown numerous cardiovascular health promoting activity through modulating various pathways. However, molecular understanding of the cardiovascular protective role of EGCG has not been reported. AIM OF THE REVIEW This review aims to compile the preclinical and clinical studies that had been done on EGCG to investigate its protective effect on cardiovascular and metabolic diseases in order to provide a systematic guidance for future research. MATERIALS AND METHODS Research papers related to EGCG were obtained from the major scientific databases, for example, Science direct, PubMed, NCBI, Springer and Google scholar, from 1995 to 2017. RESULTS EGCG was found to exhibit a wide range of therapeutic properties including anti-atherosclerosis, anti-cardiac hypertrophy, anti-myocardial infarction, anti-diabetes, anti-inflammatory and antioxidant. These therapeutic effects are mainly associated with the inhibition of LDL cholesterol (anti-atherosclerosis), inhibition of NF-κB (anti-cardiac hypertrophy), inhibition of MPO activity (anti-myocardial infarction), reduction in plasma glucose and glycated haemoglobin level (anti-diabetes), reduction of inflammatory markers (anti-inflammatory) and the inhibition of ROS generation (antioxidant). CONCLUSION EGCG shows different biological activities and in this review, a compilation of how this bioactive molecule plays its role in treating cardiovascular and metabolic diseases was discussed.
Collapse
Affiliation(s)
- Qian Yi Eng
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil 57000, Malaysia
| | | | - Srinivasan Ramamurthy
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil 57000, Malaysia.
| |
Collapse
|
29
|
Bacanlı M, Aydın S, Başaran AA, Başaran N. Are all phytochemicals useful in the preventing of DNA damage? Food Chem Toxicol 2017; 109:210-217. [DOI: 10.1016/j.fct.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 01/11/2023]
|
30
|
Topal A, Çomakli S, Özkaraca M, Baran A, Köktürk M, Parlak V, Sağlam YS, Atamanalp M, Ceyhun SB. Immunofluorescence evaluation of 4-hydroxynonenal and 8-hydroxy-2-deoxyguanosine activation in zebrafish (Daino rerio) larvae brain exposed (microinjected) to propyl gallate. CHEMOSPHERE 2017; 183:252-256. [PMID: 28550782 DOI: 10.1016/j.chemosphere.2017.05.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Propyl gallate (PG) is a chemical compound obtained by esterification of propanol with gallic acid. Due to its antioxidative properties, it is widely used in cosmetics and pharmaceutical industries as well as to protect the oils in foods such as butter, milk-based desserts, chewing gum, mayonnaise, meat, soups, cereals, spices and seasonings from rancidity. This study has been designed to assessment 8-OHdG and 4-HNE activity, and histopathological changes in the brain tissues of zebrafish larvae, which is a lecithotrophic organism, after 96 h of PG exposure via microinjecting to yolk sac of embryo. To this end, approximately 5 nL of various concentrations of PG (1, 10, and 50 ppm) has been injected into yolk sac of fertilized embryo (final exposure concentrations are 5, 50, 250 pg/egg) with micro manipulator system. After 96 h exposure time, propyl gallate caused immunofluorescence positivity of 8-OHdG and 4-HNE in the brain tissues of zebrafish larvae. PG was not effect brain tissue histopathological in low concentrations (1 and 10 ppm) but highest concentration (50 ppm) caused degenerative changes in brain. These results suggests that PG treatment could lead oxidative DNA damage by causing an increase 8-OHdG and 4-HNE activities. This strategy will enable us to better understand the mechanisms of propyl gallate in brain tissues of zebrafish larvae.
Collapse
Affiliation(s)
- Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, TR-25240 Erzurum, Turkey
| | - Selim Çomakli
- Department of Pathology, Faculty of Veterinary, Atatürk University, TR-25240 Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Atatürk University, TR-25240 Erzurum, Turkey
| | - Alper Baran
- Erzurum Vocational School, Department of Food Quality Control and Analysis, Atatürk University, TR-25240 Erzurum, Turkey
| | - Mine Köktürk
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240 Erzurum, Turkey; Fisheries Faculty, Aquatic Biotechnology Laboratory, Atatürk University Erzurum, TR-25240, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240 Erzurum, Turkey
| | - Yavuz Selim Sağlam
- Department of Pathology, Faculty of Veterinary, Atatürk University, TR-25240 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240 Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, TR-25240 Erzurum, Turkey; Fisheries Faculty, Aquatic Biotechnology Laboratory, Atatürk University Erzurum, TR-25240, Turkey.
| |
Collapse
|
31
|
Liu W, Zhang M, Feng J, Fan A, Zhou Y, Xu Y. The Influence of Quercetin on Maternal Immunity, Oxidative Stress, and Inflammation in Mice with Exposure of Fine Particulate Matter during Gestation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E592. [PMID: 28574437 PMCID: PMC5486278 DOI: 10.3390/ijerph14060592] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
The objective is to investigate the influence of PM2.5 exposure on peripheral blood lymphocyte subsets in pregnant mice and the antagonism of quercetin on adverse effects induced by PM2.5 exposure. Pregnant mice were randomly divided into control group, PM2.5 model group and 3 quercetin intervention groups. Dams in all groups except the control group were exposed to PM2.5 suspension by intratracheal instillation on gestational day (GD) 3, 6, 9, 12 and 15. Meanwhile, each dam was given 0.15% carboxymethylcellulose sodium (CMCS) (control group & PM2.5 model group) and different doses of quercetin (quercetin intervention groups) by gavage once a day from GD0 to GD17. The percentage of lymphocyte subsets, Biomarkers of systemic inflammation injuries (IL-2, IL-6, IL-8 & TNF-α) and oxidative stress indicators (CAT, GSH & HO-1) in peripheral blood of the dams were analyzed. The number of T cells increased, accompanied by increased level of IL-2, IL-6, IL-8 and HO-1 due to PM2.5 exposure. Less CD4+ and CD8+ T cells were counted in 100 mg/kg quercetin intervention group, compared with PM2.5 model group. Quercetin may inhibit cytokine production, especially in IL-6 and IL-8 and may upgrade the level of HO-1. Our findings indicate that PM2.5 could significantly influence the distribution of T-lymphocyte subsets, activate inflammatory reaction and elevate oxidative stress level in peripheral blood of pregnant mice. Certain dose of quercetin administration during pregnancy may protect the dams against the adverse effects through various ways.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Minjia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Jinqiu Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Aiqin Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China.
| |
Collapse
|
32
|
Vargas AJ, Sittadjody S, Thangasamy T, Mendoza EE, Limesand KH, Burd R. Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors. Integr Cancer Ther 2017; 10:328-40. [DOI: 10.1177/1534735410391661] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Melanoma is an aggressive tumor that expresses the pigmentation enzyme tyrosinase. Tyrosinase expression increases during tumorigenesis, which could allow for selective treatment of this tumor type by strategies that use tyrosinase activity. Approaches targeting tyrosinase would involve gene transcription or signal transduction pathways mediated by p53 in a direct or indirect manner. Two pathways are proposed for exploiting tyrosinase expression: ( a) a p53-dependent pathway leading to apoptosis or arrest and ( b) a reactive oxygen species–mediated induction of endoplasmic reticulum stress in p53 mutant tumors. Both strategies could use tyrosinase-mediated activation of quercetin, a dietary polyphenol that induces the expression of p53 and modulates reactive oxygen species. In addition to antitumor signaling properties, activation of quercetin could complement conventional cancer therapy by the induction of phase II detoxification enzymes resulting in p53 stabilization and transduction of its downstream targets. In conclusion, recent advances in tyrosinase enzymology, prodrug chemistry, and modern chemotherapeutics present an intriguing and selective multitherapy targeting system where dietary bioflavonoids could be used to complement conventional cancer treatments.
Collapse
|
33
|
Zor M, Aydin S, Güner ND, Başaran N, Başaran AA. Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds. Altern Ther Health Med 2017; 17:229. [PMID: 28446228 PMCID: PMC5405477 DOI: 10.1186/s12906-017-1732-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/08/2017] [Indexed: 12/16/2022]
Abstract
Background Paliurus spina-christi Mill. (PS) fruits are widely used for different medical purposes in Turkey. Like in many medicinal herbs the studies concerning their activity, the activities of PS are also not well clarified. The aim of this study is to evaluate the antigenotoxicity of the compounds isolated and identified from the extracts of PS fruits. Methods The active compounds were separated, isolated, and determined by chromatographic methods and their structural elucidation was performed by Nuclear Magnetic Resonance (NMR) methods. The compounds were obtained from either ethyl acetate (EA) or n-butanol extracts. The cytotoxicities of the compounds using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the antigenotoxic activities of the compounds using the alkaline single cell gel electrophoresis techniques (comet assay) were evaluated in Chinese hamster lung fibroblast (V79) cell lines. Results The isolated major compounds were identified as (+/−) catechins and gallocatechin from EA fraction and rutin from n-butanol fraction of PS fruits. Their chemical structures were identified by 1H-NMR, 13C-NMR, HMBC, and HMQC techniques. Half-maximal inhibitory concentration of catechins, gallocatechin, and rutin were found to be 734 μg/mL, 220 μg/mL, and 1004 μg/mL, respectively. The methanolic extract of PS (1-100 μg/mL) alone did not induce DNA single-strand breaks while catechins (1-100 μg/mL), gallocatechin (1-50 μg/mL), and rutin (1-50 μg/mL) significantly reduced H2O2-induced DNA damage. Conclusion It has been suggested that PS fruits and their compounds catechins, gallocatechin and rutin may have beneficial effects in oxidative DNA damage. It seems that PS fruits may be used in protection of the disorders related to DNA damage.
Collapse
|
34
|
Fredotović Ž, Šprung M, Soldo B, Ljubenkov I, Budić-Leto I, Bilušić T, Čikeš-Čulić V, Puizina J. Chemical Composition and Biological Activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) Methanolic Extracts. Molecules 2017; 22:E448. [PMID: 28287477 PMCID: PMC6155300 DOI: 10.3390/molecules22030448] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/25/2022] Open
Abstract
Here, we report a comparative study of the phytochemical profile and the biological activity of two onion extracts, namely Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842), members of the family Amaryllidaceae. The identification of flavonoids and anthocyanins, and their individual quantities, was determined by high-performance liquid chromatography (HPLC). The potency of both extracts to scavenge free radicals was determined by the DPPH (2,2'-diphenyl-1-picrylhydrazyl) radical-scavenging activity and oxygen radical absorbance capacity (ORAC) methods. The DNA protective role was further tested by the single-cell gel electrophoresis (COMET) assay and by Fenton's reagent causing double-strand breaks on the closed circular high copy pUC19 plasmid isolated from Escherichia coli. In the presence of both extracts, a significant decrease in DNA damage was observed, which indicates a protective role of Allium cepa and Allium × cornutum on DNA strand breaks. Additionally, cytotoxicity was tested on glioblastoma and breast cancer cell lines. The results showed that both extracts had antiproliferative effects, but the most prominent decrease in cellular growth was observed in glioblastoma cells.
Collapse
Affiliation(s)
- Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia.
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia.
| | - Barbara Soldo
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia.
| | - Ivica Ljubenkov
- Department of Chemistry, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia.
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia.
| | - Tea Bilušić
- Department for Food technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, 21000 Split, Croatia.
| | - Vedrana Čikeš-Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia.
| | - Jasna Puizina
- Department of Biology, Faculty of Science, University of Split, R. Boškovića 33, 21000 Split, Croatia.
| |
Collapse
|
35
|
Wang HL, Sun ZO, Rehman RU, Wang H, Wang YF, Wang H. Rosemary Extract-Mediated Lifespan Extension and Attenuated Oxidative Damage inDrosophila melanogasterFed on High-Fat Diet. J Food Sci 2017; 82:1006-1011. [DOI: 10.1111/1750-3841.13656] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Hua-li Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Zhen-ou Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Rizwan-ur Rehman
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hong Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Yi-fei Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hao Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| |
Collapse
|
36
|
EGCG Prevents High Fat Diet-Induced Changes in Gut Microbiota, Decreases of DNA Strand Breaks, and Changes in Expression and DNA Methylation of Dnmt1 and MLH1 in C57BL/6J Male Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3079148. [PMID: 28133504 PMCID: PMC5241499 DOI: 10.1155/2017/3079148] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Obesity as a multifactorial disorder involves low-grade inflammation, increased reactive oxygen species incidence, gut microbiota aberrations, and epigenetic consequences. Thus, prevention and therapies with epigenetic active antioxidants, (-)-Epigallocatechin-3-gallate (EGCG), are of increasing interest. DNA damage, DNA methylation and gene expression of DNA methyltransferase 1, interleukin 6, and MutL homologue 1 were analyzed in C57BL/6J male mice fed a high-fat diet (HFD) or a control diet (CD) with and without EGCG supplementation. Gut microbiota was analyzed with quantitative real-time polymerase chain reaction. An induction of DNA damage was observed, as a consequence of HFD-feeding, whereas EGCG supplementation decreased DNA damage. HFD-feeding induced a higher inflammatory status. Supplementation reversed these effects, resulting in tissue specific gene expression and methylation patterns of DNA methyltransferase 1 and MutL homologue 1. HFD feeding caused a significant lower bacterial abundance. The Firmicutes/Bacteroidetes ratio is significantly lower in HFD + EGCG but higher in CD + EGCG compared to control groups. The results demonstrate the impact of EGCG on the one hand on gut microbiota which together with dietary components affects host health. On the other hand effects may derive from antioxidative activities as well as epigenetic modifications observed on CpG methylation but also likely to include other epigenetic elements.
Collapse
|
37
|
Abstract
CONTEXT Naringin is a natural flavanone glycoside that is found in the Chinese herbal medicines and citrus fruits. Studies have demonstrated that naringin possesses numerous biological and pharmacological properties, but few reviews of these studies have been performed. OBJECTIVE The present review gathers the fragmented information available in the literature describing the extraction of naringin, its pharmacology and its controlled release formulations. Current research progress and the therapeutic potential of naringin are also discussed. METHODS A literature survey for relevant information regarding the biological and pharmacological properties of naringin was conducted using Pubmed, Sciencedirect, MEDLINE, Springerlink and Google Scholar electronic databases from the year 2007-2015. RESULTS Naringin modulates signalling pathways and interacts with signalling molecules and thus has a wide range of pharmacological activities, including anti-inflammatory, anti-cancer activities, as well as effects on bone regeneration, metabolic syndrome, oxidative stress, genetic damage and central nervous system (CNS) diseases. Information was gathered that showed the extraction of naringin can be improved using several modifications. There has been some progress in the development of controlled release formulations of naringin. CONCLUSION Naringin is a promising candidate for further in vivo studies and clinical use. More detailed studies regarding its mechanism of action are required.
Collapse
Affiliation(s)
- Rui Chen
- a Medical Faculty , Kunming University of Science and Technology , Kunming , Yunnan Province , China
- b The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
- c Affiliated Hospital of Kunming University of Science and Technology , Kunming , Yunnan Province , China
| | - Qiao-Ling Qi
- d Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D , Dali University , Dali , Yunnan Province , China
| | - Meng-Ting Wang
- a Medical Faculty , Kunming University of Science and Technology , Kunming , Yunnan Province , China
- b The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
- c Affiliated Hospital of Kunming University of Science and Technology , Kunming , Yunnan Province , China
| | - Qi-Yan Li
- a Medical Faculty , Kunming University of Science and Technology , Kunming , Yunnan Province , China
- b The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
- c Affiliated Hospital of Kunming University of Science and Technology , Kunming , Yunnan Province , China
| |
Collapse
|
38
|
Tak E, Park GC, Kim SH, Jun DY, Lee J, Hwang S, Song GW, Lee SG. Epigallocatechin-3-gallate protects against hepatic ischaemia-reperfusion injury by reducing oxidative stress and apoptotic cell death. J Int Med Res 2016; 44:1248-1262. [PMID: 27807255 PMCID: PMC5536772 DOI: 10.1177/0300060516662735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective To investigate the protective effects of epigallocatechin-3-gallate (EGCG), a major polyphenol source in green tea, against hepatic ischaemia–reperfusion injury in mice. Methods The partial hepatic ischaemia–reperfusion injury model was created by employing the hanging-weight method in C57BL/6 male mice. EGCG (50 mg/kg) was administered via an intraperitoneal injection 45 min before performing the reperfusion. A number of markers of inflammation, oxidative stress, apoptosis and liver injury were measured after the ischaemia–reperfusion injury had been induced. Results The treatment groups were: sham-operated (Sham, n = 10), hepatic ischaemia–reperfusion injury (IR, n = 10), and EGCG with ischaemia–reperfusion injury (EGCG-treated IR, n = 10). Hepatic ischaemia–reperfusion injury increased the levels of biochemical and histological markers of liver injury, increased the levels of malondialdehyde, reduced the glutathione/oxidized glutathione ratio, increased the levels of oxidative stress and lipid peroxidation markers, decreased B-cell lymphoma 2 levels, and increased the levels of Bax, cytochrome c, cleaved caspase-3, and cleaved caspase-9. Pretreatment with EGCG ameliorated all of these changes. Conclusion The antioxidant and antiapoptotic effects of EGCG protected against hepatic ischaemia–reperfusion injury in mice.
Collapse
Affiliation(s)
- Eunyoung Tak
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gil-Chun Park
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Young Jun
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooyoung Lee
- 1 Asan Institute for Life Sciences, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shin Hwang
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi-Won Song
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Gyu Lee
- 2 Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A. Review: Health Effects of Cocoa Flavonoids. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013205054498] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Flavonoids are phenolic substances widely found in fruits and vegetables. Many epidemiological studies associate the ingestion of flavonoids with a reduced risk of cardiovascular disease and certain types of cancer. These effects are due to the physiological activity of flavonoids in the reduction of oxidative stress, inhibiting low-density lipoproteins (LDL) oxidation and platelet aggregation, acting as vasodilators in blood vessels, inhibiting the adherence of monocytes to the vascular endothelium, promoting fibrinolysis, acting as immunomodulators and anti-inflammatory agents and as inhibitors in the different phases of tumour process. Cocoa is an important source of polyphenols, which comprise 12-18% of its total weight on dry basis; the major phenolic compounds are epicatechin, proanthocyanidins and cate-chin. The levels of flavonoids contained are higher than the ones founds in apples, onions or wine, foods known for their high amount of phenolic compounds. Cocoa and cocoa products are important sources of flavonoids in our diet. In the Dutch population chocolate contributes up to 20% of the total flavonoid intake in adults, and in children the percentage is even higher. The bioavailability of these compounds depends on other food constituents, and their interaction with the food matrix. This article reviews current evidence on the health effects of cocoa flavonoids in our diet. The compiled data supports the premise that the consumption of cocoa flavonoids is beneficial to human health.
Collapse
Affiliation(s)
- R. M. Lamuela-Raventós
- Nutrició i Bromatologia, CÈRTA, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028 Barcelona, Spain,
| | - A. I. Romero-Pérez
- Nutrició i Bromatologia, CÈRTA, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| | - C. Andrés-Lacueva
- Nutrició i Bromatologia, CÈRTA, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028 Barcelona, Spain
| | - A. Tornero
- Faculty of Science, Engineering and Environment, School of Environment and Life Sciences, University of Salford, Salford, Greater Manchester M5 4WT, UK
| |
Collapse
|
40
|
Martinez RM, Pinho-Ribeiro FA, Steffen VS, Silva TCC, Caviglione CV, Bottura C, Fonseca MJV, Vicentini FTMC, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice. PLoS One 2016; 11:e0146296. [PMID: 26741806 PMCID: PMC4704734 DOI: 10.1371/journal.pone.0146296] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022] Open
Abstract
Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation.
Collapse
Affiliation(s)
- Renata M. Martinez
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Felipe A. Pinho-Ribeiro
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057–970 Londrina, Paraná, Brasil
| | - Vinicius S. Steffen
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Thais C. C. Silva
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Carla V. Caviglione
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Carolina Bottura
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Maria J. V. Fonseca
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café s/n, 14049–903 Ribeirão Preto, São Paulo, Brasil
| | - Fabiana T. M. C. Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 738—Anexo I, Lagoinha, 14095–250 Ribeirão Preto, São Paulo, Brasil
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057–970 Londrina, Paraná, Brazil
| | - Marcela M. Baracat
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Sandra R. Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
| | - Waldiceu A. Verri
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057–970 Londrina, Paraná, Brasil
- * E-mail: (RC); (WAV)
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina-UEL, Avenida Robert Koch, 60, Hospital Universitário, 86039–440 Londrina, Paraná, Brasil
- * E-mail: (RC); (WAV)
| |
Collapse
|
41
|
JEŽOVIČOVÁ MIRIAM, KOŇARIKOVÁ KATARÍNA, ĎURAČKOVÁ ZDEŇKA, KERESTEŠ JÁN, KRÁLIK GABRIEL, ŽITŇANOVÁ INGRID. Protective effects of black tea extract against oxidative DNA damage in human lymphocytes. Mol Med Rep 2015; 13:1839-44. [DOI: 10.3892/mmr.2015.4747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 11/10/2015] [Indexed: 11/05/2022] Open
|
42
|
Cao C, Zeng Y, Shi H, Yang S, Bao W, Qi L, Liu Y, Zhao X. Metabonomic analysis of quercetin against the toxicity of chronic exposure to a mixture of four organophosphate pesticides in rat plasma. Xenobiotica 2015; 46:805-15. [PMID: 26677787 DOI: 10.3109/00498254.2015.1121552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. A metabonomics approach was performed to investigate the effect of quercetin on the toxicity of chronic exposure to a mixture of four organophosphate pesticides (OPs) at their corresponding no-observed-adverse-effect level (NOAEL). The rats were divided into six groups (n = 10/group): control, two different doses of quercetin, OPs mixture and different doses of quercetin plus OPs mixture-treated groups. 2. Nine metabolites, including two quercetin metabolites and seven endogenous metabolites were identified in plasma. The intensities of metabolites significantly changed in the OP mixture-treated group compared with the control group (p < 0.01), such as lysoPE (16:0/0:0), lysoPC (17:0/0:0), lysoPC (15:0/0:0) and 4-pyridoxic acid, significantly increased; by contrast, the intensities of arachidonic acid and citric acid significantly decreased. Anomalous intensity changes in aforementioned metabolites were alleviated in the OP mixture plus 50 mg/kgċbw/d quercetin-treated group compared with the OP mixture-treated group (p < 0.05). 3. The results indicated that quercetin elicited partial protective effects against the toxicity induced by a mixture of OPs, which include regulation of lipid metabolism, improvement of tricarboxylic acid (TCA) cycle disorders, enhancement of antioxidant defence system to protect the liver.
Collapse
Affiliation(s)
- Can Cao
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| | - Yan Zeng
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| | - Haidan Shi
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| | - Shuang Yang
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| | - Wei Bao
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| | - Lei Qi
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| | - Ying Liu
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| | - Xiujun Zhao
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , Heilongjiang , China
| |
Collapse
|
43
|
Tofolean IT, Ganea C, Ionescu D, Filippi A, Garaiman A, Goicea A, Gaman MA, Dimancea A, Baran I. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells. Pharmacol Res 2015; 103:300-17. [PMID: 26687095 DOI: 10.1016/j.phrs.2015.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022]
Abstract
We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain.
Collapse
Affiliation(s)
- Ioana Teodora Tofolean
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Constanta Ganea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Diana Ionescu
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Filippi
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Garaiman
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Goicea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Mihnea-Alexandru Gaman
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Alexandru Dimancea
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania
| | - Irina Baran
- "Carol Davila" University of Medicine and Pharmacy, Dept. of Biophysics, 8 Eroii Sanitari, 050474 Bucharest, Romania.
| |
Collapse
|
44
|
Fan FY, Shi M, Nie Y, Zhao Y, Ye JH, Liang YR. Differential behaviors of tea catechins under thermal processing: Formation of non-enzymatic oligomers. Food Chem 2015; 196:347-54. [PMID: 26593500 DOI: 10.1016/j.foodchem.2015.09.056] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023]
Abstract
Tea catechins as a member of flavan-3-ols subclass with the same skeleton may behave differentially. This study investigated the chemical conversions of 8 catechins under heat treatment with the involvement of epimerization, hydrolysis and oxidation/condensation reactions. Three reactions were enhanced as temperature increased from 30 °C to 90 °C. The epimerization of non-gallated catechins was favored by epi-configuration but hindered by pyrogallol moiety, and the hydrolysis reaction of gallated catechins was facilitated by pyrogallol moiety. Epicatechin and epigallocatechin had the lowest thermostabilities due to epimerization and oxidation/condensation reactions respectively. Sufficient O2 was not a precondition for the occurrence of chemical conversions of catechins under heat treatment. Non-enzymatic oligomerization occurred to epi type catechins and catechin under heat treatment, and dehydrodicatechins A were mainly responsible for the browning of epicatechin and catechin solutions. The evidence of generation of catechin oligomers provides a novel way to explain sensory change of tea and relevant products during thermal processing.
Collapse
Affiliation(s)
- Fang-Yuan Fan
- Zhejiang University Tea Research Institute, Hangzhou 310058, China
| | - Meng Shi
- Zhejiang University Tea Research Institute, Hangzhou 310058, China
| | - Ying Nie
- Zhejiang University Tea Research Institute, Hangzhou 310058, China
| | - Yue Zhao
- Zhejiang University Tea Research Institute, Hangzhou 310058, China
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Zhejiang University Tea Research Institute, Hangzhou 310058, China
| |
Collapse
|
45
|
Baik JH, Shin KS, Park Y, Yu KW, Suh HJ, Choi HS. Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2337-2344. [PMID: 25307474 DOI: 10.1002/jsfa.6955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Green tea is a dietary source of bioactive compounds for human health. Enzymatic treatments induce the bioconversion of bioactive components, which can improve biological activities. In this study, we investigated the effect of simultaneous treatment with tannase and Rapidase on biotransformation of catechins and extraction of polysaccharide from green tea extract (GTE). RESULTS Tannase and pectinase treatments induced the biotransformation of catechins and altered tea polysaccharide () content. The addition of GTE to the enzyme reaction resulted in a significant increase in degallated catechins, including gallic acid, a product of the tannase reaction (314.5-4076.0 µg mL(-1)) and a reduction in epigallocatechin gallate (EGCG). Biotransformation of catechins improved the radical scavenging activity of GTE. Pectinase treatment led to change of TPS composition in GTE by hydrolyzing polysaccharides. In addition, pectinase-driven hydrolysis in polysaccharides significantly increased TPS-induced Interleukin 6 (IL-6) production in macrophages. In particular, treatment of Rapidase (TPS-Ra) led to the highest IL-6 production among TPS samples, similar to treatment of highly purified pectinase (TPS-GTE), a positive control. CONCLUSION Simultaneous processing with tannase and Rapidase can be an efficient method for the extraction of bioactive polysaccharides and biotransformation of catechins with enhanced radical scavenging activity from green tea.
Collapse
Affiliation(s)
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 443-760, Republic of Korea
| | - Yooheon Park
- Department of Food and Nutrition, Korea University, Seoul, 136-703, Republic of Korea
| | - Kwang-Won Yu
- Department of Food and Nutrition, Korea National University of Transportation, Jeungpyeong, 368-701, Republic of Korea
| | - Hyung Joo Suh
- Department of Food and Nutrition, Korea University, Seoul, 136-703, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women's University, Seoul, 139-774, Republic of Korea
| |
Collapse
|
46
|
Islas MS, Naso LG, Lezama L, Valcarcel M, Salado C, Roura-Ferrer M, Ferrer EG, Williams PAM. Insights into the mechanisms underlying the antitumor activity of an oxidovanadium(IV) compound with the antioxidant naringenin. Albumin binding studies. J Inorg Biochem 2015; 149:12-24. [PMID: 25957189 DOI: 10.1016/j.jinorgbio.2015.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 12/16/2022]
Abstract
Naringenin, a natural antioxidant present in grapefruit, oranges and the skin of tomatoes showed low antioxidant properties among other flavonoids due to its structural characteristics. Since many flavonoids were shown to have cell-killing and antioxidant activities, naringenin was investigated herein. In parallel with its antioxidant activities the flavonoid showed very low cytotoxicity at concentrations up to 100 μM against lung (A549) and breast (SKBr3 and MDAMB231) cancer cell lines. Furthermore, a newly-synthesized and characterized complex of naringenin and oxidovanadium(IV) ([V(IV)O(nar)2] · 2H2O, VOnar, with weak ferromagnetic coupling) was also studied. As a result, VOnar acted as a better compound on cell-killing and antioxidant activities (in vitro) than naringenin. The anti-proliferative effect of VOnar was accompanied by reactive oxygen species (ROS) generation, cell membrane and DNA damages, cell cycle arrest, caspase 3/7 activation and mitochondrial potential reduction. The higher parameters observed for the MDAMB231 cell line have been related to its low glutathione (GSH) content. The assays of the interaction of bovine serum albumin (BSA) with the complex showed the affinity of protein toward it and that there is only one binding site on the BSA molecule. However, metal complexation decreased the binding affinity to BSA of naringenin probably due to a steric hindrance of the complex.
Collapse
Affiliation(s)
- María S Islas
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina
| | - Luis Lezama
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain; BCMaterials, Parque científico y Tecnológico de Bizkaia, Edificio 500-1, 48160 Derio, Spain
| | - María Valcarcel
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Clarisa Salado
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Meritxell Roura-Ferrer
- Innoprot SL, Parque científico y Tecnológico de Bizkaia, Edificio 502-P1, 48160 Derio, Spain
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115-C.C.962-B1900AVV, 1900 La Plata, Argentina.
| |
Collapse
|
47
|
Petkova P, Francesko A, Tzanov T. Enzyme‐assisted formation of hybrid biopolymer hydrogels incorporating active phenolic nanospheres. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Petya Petkova
- Grup de Biotecnologia Molecular i IndustrialDepartment of Chemical EngineeringUniversitat Politècnica de Catalunya Terrassa Barcelona Spain
| | - Antonio Francesko
- Grup de Biotecnologia Molecular i IndustrialDepartment of Chemical EngineeringUniversitat Politècnica de Catalunya Terrassa Barcelona Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i IndustrialDepartment of Chemical EngineeringUniversitat Politècnica de Catalunya Terrassa Barcelona Spain
| |
Collapse
|
48
|
Wu H, Shabala L, Zhou M, Shabala S. Chloroplast-generated ROS dominate NaCl(-) induced K(+) efflux in wheat leaf mesophyll. PLANT SIGNALING & BEHAVIOR 2015; 10:e1013793. [PMID: 26039472 PMCID: PMC4622462 DOI: 10.1080/15592324.2015.1013793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 05/29/2023]
Abstract
Mesophyll K(+) retention ability has been recently reported as an important component of salinity stress tolerance in wheat. In order to investigate the role of ROS in regulating NaCl(-)induced K(+) efflux in wheat leaf mesophyll, a series of pharmacological experiments was conducted using MV (methyl viologen, superoxide radical inducer), DPI (an inhibitor of NADPH oxidase), H2O2 (to mimic apoplastic ROS), and EGCG ((-)-Epigallocatechin gallate, ROS scavenger). Mesophyll pre-treatment with 10 μM MV resulted in a significantly higher NaCl(-)induced K(+) efflux in leaf mesophyll, while 50 μM EGCG pre-treatment alleviated K(+) leakage under salt stress. No significant change in NaCl(-)induced K(+) efflux in leaf mesophyll was found in specimens pre-treated by H2O2 and DPI, compared with the control. The highest NaCl(-)induced H(+) efflux in leaf mesophyll was also found in samples pre-treated with MV, suggesting a futile cycle between increased H(+)-ATPase activity and ROS-induced K(+) leak. Overall, it is suggested that, under saline stress, K(+) efflux from wheat mesophyll is mediated predominantly by non-selective cation channels (NSCC) regulated by ROS produced in chloroplasts, at least in bread wheat.
Collapse
Affiliation(s)
- Honghong Wu
- School of Land and Food; University of Tasmania; Hobart, Tas, Australia
| | - Lana Shabala
- School of Land and Food; University of Tasmania; Hobart, Tas, Australia
| | - Meixue Zhou
- School of Land and Food; University of Tasmania; Hobart, Tas, Australia
| | - Sergey Shabala
- School of Land and Food; University of Tasmania; Hobart, Tas, Australia
| |
Collapse
|
49
|
Jabeen E, Janjua NK, Hameed S. β-Cyclodextrin assisted solubilization of Cu and Cr complexes of flavonoids in aqueous medium: a DNA-interaction study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 128:191-6. [PMID: 24667424 DOI: 10.1016/j.saa.2014.02.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/03/2014] [Accepted: 02/19/2014] [Indexed: 05/21/2023]
Abstract
Cu and Cr complexes of three flavonoids (morin, quercetin and 6-hydroxyflavone) were synthesized and included in beta-cyclodextrin (βCD) with the objective of improving their pharmacokinetic profiles. Then binding with ds.DNA was studied to monitor their interactive tendencies at physiological conditions. The binding constants and other thermodynamic data from UV-vis spectroscopy and cyclic voltammetry revealed Cr-flavonoid-βCD to interact with ds.DNA at pH-7.4 through electrostatic mode of binding while Cu-flavonoid-βCD can intercalate into DNA. The strong binding propensity of Cu-flavonoid-βCD with ds.DNA encourages their application as anticancerous agent.
Collapse
Affiliation(s)
- Erum Jabeen
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
50
|
Boadi WY, Johnson D. Effects of low doses of quercetin and genistein on oxidation and carbonylation in hemoglobin and myoglobin. J Diet Suppl 2014; 11:272-87. [PMID: 25026201 DOI: 10.3109/19390211.2014.937046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein-bound carbonyls have been shown to increase with age as well as in numerous diseases including rheumatoid arthritis, adult respiratory syndrome pulmonary fibrosis, diabetes, Parkinson's disease, and Alzheimer's just to mention a few. The effects of the flavonoids quercetin and genistein were investigated according to their ability to inhibit the oxidation of hemoglobin and myoglobin via the Fenton's pathway. Antioxidative activity of the flavonoids were determined by oxidizing hemoglobin and myoglobin in separate experiments with 50 μM Fe(2+) and 0.01 mM hydrogen peroxide (H2O2) with and without quercetin and/or genistein. The samples were treated singly with either quercetin, genistein, or in combination at concentrations of 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 μM, respectively, dissolved in dimethyl sulfoxide (DMSO). Samples were then incubated in a water bath at 37°C for 8, 12, and 24 hr, respectively. Levels of carbonylation were assayed by the protein carbonyl assay and the carbonyl levels quantified and expressed per mg of protein. The results indicate that protein carbonyls for samples treated with quercetin or genistein decreased in a dose-dependent manner compared to the controls. That of quercetin compared to genistein was more efficient in reducing the levels of protein carbonylation in hemoglobin and myoglobin, respectively. The combination of both flavonoids did show a gradual decrease in carbonyl compounds for only hemoglobin for all the doses and times tested. The results indicate that both flavonoids at low doses inhibited carbonylation in both hemoglobin and myoglobin and the inhibition may be attributed to the prevention of protein oxidation.
Collapse
Affiliation(s)
- William Y Boadi
- Department of Chemistry, Tennessee State University , Nashville, Tennessee , USA
| | | |
Collapse
|