1
|
Akbari M, Heli H, Oryan A, Hatam G. A novel outlook in the delivery of artemisinin: production and efficacy in experimental visceral leishmaniasis. Pathog Glob Health 2024; 118:40-46. [PMID: 37183476 PMCID: PMC10769112 DOI: 10.1080/20477724.2023.2212347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The visceral form of leishmaniasis (VL), due to infection by Leishmania infantum, is a neglected tropical disease. The accessible therapeutic options are limited. Artemisinin is an efficient antileishmanial product with poor biological availability that requires high repetition of therapeutic doses in VL. Solid lipid nanoparticles (SLNs) provide targeted delivery, increase bioavailability and reduce toxicity of the traditional therapeutic strategy. The spherical shape artemisinin-loaded SLNs were prepared in a particle diameter of 222.0 ± 14.0 nm. The SLNs showed no particular toxic effect on the parasites, whereas the native artemisinin demonstrated a significant toxicity rate of 31% in viability of the promastigotes at the 250 µg/ml concentration. The therapeutic efficacy of the artemisinin-loaded SLNs was demonstrated in the experimental VL, using the L. infantum-infected BALB/c mice, in the present study. The 10 and 20 mg/kg doses of artemisinin-loaded SLNs showed higher level of antileishmanial efficacy compared with the free artemisinin. There was a significant diminishing of the parasite burden in liver (84.7 ± 4.9%) and spleen (85.0 ± 3.1%) and hepatosplenomegaly by the artemisinin-loaded SLNs treated at 20 mg/kg compared to the free artemisinin. Therefore, the present study supports the superior efficacy of artemisinin-loaded SLNs over the free artemisinin and could be considered as a new therapeutic strategy in the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Maryam Akbari
- Department of Parasitology and mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Heli
- Department of Nanomedicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Pendlebury GA, Oro P, Ludlow K, Merideth D, Haynes W, Shrivastava V. Relevant Dermatoses Among U.S. Military Service Members: An Operational Review of Management Strategies and Telemedicine Utilization. Cureus 2023; 15:e33274. [PMID: 36741595 PMCID: PMC9891841 DOI: 10.7759/cureus.33274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Despite skin being the largest and most exposed organ of the human body, skin issues can be challenging to diagnose in deployed military service members. Common reasons deployed soldiers seek dermatological evaluation include infections, inflammatory skin conditions, and skin growth. Due to limited access to specialized care in deployed settings, dermatological conditions are undertreated and underdiagnosed. As a result, dermatological conditions are a leading contributor to decreased combat effectiveness among deployed medical forces. To lessen the burden of dermatological diseases, military providers should promptly identify operational skin diseases and alleviate modifiable barriers faced by service members. In a post-pandemic era with novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and monkeypox infections, the duty to effectively treat operational skin lesions is ever important. The need for military dermatologists continues to rise as the global landscape continues to evolve with unprecedented infections and increased bioterrorism threats. Teledermatology offers many solutions to mitigate the high demand for dermatologists during pandemics. Dermatological consultations account for the highest number of telemedicine visits in the US Military Health System (MHS). As such, increased utilization of teledermatology will reduce infection-related dermatological sequelae and prevent the medical evacuation of service members from military operations. This review collates and categorizes relevant dermatological conditions encountered among deployed personnel. This report outlines the standard of care and modified treatments recommended according to potential barriers faced in operational settings.
Collapse
Affiliation(s)
- Gehan A Pendlebury
- Dermatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Peter Oro
- Internal Medicine, School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, USA
| | | | - Drew Merideth
- Emergency Medicine, School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, USA
| | - William Haynes
- Radiology, School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, USA
| | - Vikas Shrivastava
- Dermatology, Navy Medicine Readiness Training Command, Naval Medical Center San Diego, San Diego, USA
| |
Collapse
|
3
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
4
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Silva-Carvalho R, Leão T, Gama FM, Tomás AM. Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential. Biomacromolecules 2022; 23:1169-1182. [DOI: 10.1021/acs.biomac.1c01451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo Silva-Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Teresa Leão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco M. Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana M. Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Nasiri MI, Vora LK, Ershaid JA, Peng K, Tekko IA, Donnelly RF. Nanoemulsion-based dissolving microneedle arrays for enhanced intradermal and transdermal delivery. Drug Deliv Transl Res 2021; 12:881-896. [PMID: 34939170 PMCID: PMC8694761 DOI: 10.1007/s13346-021-01107-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
The development of dissolving microneedles (DMN) is one of the advanced technologies in transdermal drug delivery systems, which precisely deliver the drugs through a rapid dissolution of polymers after insertion into the skin. In this study, we fabricated nanoemulsion-loaded dissolving microneedle (DMN) arrays for intradermal and transdermal drug delivery. For this task, model drug (amphotericin B, AmB)-loaded nanoemulsion (NE) were prepared by the probe-sonication method. AmB-loaded-NE was prepared using Capmul MCM C-8 EP/NF, Tween® 80, poly(vinyl alcohol) (PVA-10 kDa), and poly (vinyl pyrrolidone) (PVP-360 kDa or K29/32) by using SpeedMixer™, followed by probe-sonication and evaluated for particle size and polydispersity index (PDI). Transmission electron microscopy (TEM) was also used to assess the particle size before and after DMN casting. AmB-NE embedded DMN arrays were found to be strong enough, revealed efficient skin insertion, and penetrated down to the fourth layer (depth ≈ 508 μm) of Parafilm M® (validated skin model). Ex vivo skin deposition experiments in full-thickness neonatal porcine demonstrated that after 24 h, AmB-NE-DMN arrays were able to deposit 111.05 ± 48.4 µg/patch AmB into the skin. At the same time, transdermal porcine skin permeation studies showed significantly higher permeability of AmB (29.60 ± 8.23 μg/patch) from AmB-NE-DMN compared to MN-free AmB-NE patches (5.0 ± 6.15 μg/patch) over 24 h. Antifungal studies of optimized AmB-NE-DMN, AmB-loaded discs and drug-free DMN against Candida albicans, confirmed the synergistic activity of Campul-MCM C-8, used in the nanoemulsion formulation. This study establishes that nanoemulsion based dissolving microneedle may serve as an efficient system for intradermal as well as transdermal drug delivery.
Collapse
Affiliation(s)
- Muhammad Iqbal Nasiri
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Department of Pharmaceutics, Hamdard Institute of Pharmaceutical Sciences, Hamdard University, Islamabad, Pakistan
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Juhaina Abu Ershaid
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
7
|
Morelle C, Mukherjee A, Zhang J, Fani F, Khandelwal A, Gingras H, Trottier J, Barbier O, Leprohon P, Burke MD, Ouellette M. Well-Tolerated Amphotericin B Derivatives That Effectively Treat Visceral Leishmaniasis. ACS Infect Dis 2021; 7:2472-2482. [PMID: 34282886 DOI: 10.1021/acsinfecdis.1c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy against the neglected tropical disease visceral leishmaniasis (VL) is suboptimal with only four licensed drugs. Amphotericin B (AmB), despite its toxicity, remained a second line drug for a long time. However, the demonstration that liposomal AmB is highly effective against VL propelled it, despite its cost, to a first line drug in many countries. While several ongoing efforts are aiming at finding cheaper and stable AmB-formulations, an alternative strategy is the development of less-toxic AmB derivatives. We show here that two less-toxic AmB derivatives with the carboxylate at position 16 of AmB derivatized to a methyl urea (AmB-MU) or amino urea (AmB-AU) are active in vitro against Leishmania donovani, both as free-living parasites as well as their intracellular form. Both less-toxic derivatives, similarly to AmB, target the ergosterol pathway of L. donovani. While the AmB-AU derivative showed female-specific liver toxicity in vivo, the AmB-MU derivative was well-tolerated and more effective than AmB against experimental VL. These studies are an important step for improving AmB-based therapy against a prevalent parasitic disease.
Collapse
Affiliation(s)
- Christelle Morelle
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Angana Mukherjee
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jiabao Zhang
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fereshteh Fani
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Anuj Khandelwal
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hélène Gingras
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Philippe Leprohon
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Martin D. Burke
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Marc Ouellette
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| |
Collapse
|
8
|
Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, Mohan U, Ravichandiran V, Mandal D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review. Biomed Pharmacother 2021; 141:111920. [PMID: 34328115 DOI: 10.1016/j.biopha.2021.111920] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The study of tropical diseases like leishmaniasis, a parasitic disease, has not received much attention even though it is the second-largest infectious disease after malaria. As per the WHO report, a total of 0.7-1.0 million new leishmaniasis cases, which are spread by 23 Leishmania species in more than 98 countries, are estimated with an alarming 26,000-65,000 death toll every year. Lack of potential vaccines along with the cost and toxicity of amphotericin B (AmB), the most common drug for the treatment of leishmaniasis, has raised the interest significantly for new formulations and drug delivery systems including nanoparticle-based delivery as anti-leishmanial agents. The size, shape, and high surface area to volume ratio of different NPs make them ideal for many biological applications. The delivery of drugs through liposome, polymeric, and solid-lipid NPs provides the advantage of high biocomatibilty of the carrier with reduced toxicity. Importantly, NP-based delivery has shown improved efficacy due to targeted delivery of the payload and synergistic action of NP and payload on the target. This review analyses the advantage of NP-based delivery over standard chemotherapy and natural product-based delivery system. The role of different physicochemical properties of a nanoscale delivery system is discussed. Further, different ways of nanoformulation delivery ranging from liposome, niosomes, polymeric, metallic, solid-lipid NPs were updated along with the possible mechanisms of action against the parasite. The status of current nano-vaccines and the future potential of NP-based vaccine are elaborated here.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vinod Kumar Rajana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Vishnu Kant
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| | - Utpal Mohan
- National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India; National Institute of Pharmaceutical Education and Research, Kolkata 700054, India.
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
9
|
Peixoto JF, Ramos YJ, de Lima Moreira D, Alves CR, Gonçalves-Oliveira LF. Potential of Piper spp. as a source of new compounds for the leishmaniases treatment. Parasitol Res 2021; 120:2731-2747. [PMID: 34245362 DOI: 10.1007/s00436-021-07199-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Current treatment guidelines for leishmaniasis is based on chemotherapy with drugs that show a set of limitations such as high cost, toxicity, difficult route of administration, and lack of efficacy in endemic areas. In this context, phytopharmaceutical products and herbal medicines emerge as promising alternatives for developing new treatment against leishmaniasis. This review discusses the perspectives of leishmaniasis treatment based on natural products and phytotherapy highlighting the Piper genus, especially P. aduncun and P. mollicomum Kunth covering the period of 1998 to 2020. Leishmanicidal activity of pure compounds of Piper spp. [3-(3,4,5-trimethoxyphenyl) propanoic acid, 3-chlorosintenpyridone, 2'-hydroxy-3',4',6'-trimethoxy-chalcone, cardamonin, conocarpan, cubebin, eupomatenoid, flavokavain B, ( +)-(7R,8S)-epoxy-5,6-didehydrokavain, N-[7-(3',4'-methylenedioxypheny l-2(E),4(E)-heptadienoyl-pyrrolidine, N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl-pyrrolidine, piperovatine, pellitorine, and piplartine (piperlongumine)] were proved against the promastigote and amastigote forms of parasite related with cutaneous (L. (L.) amazonensis, L. (V.) braziliensis, and L. (V.) guyanensis) and visceral (L. (L.) donovani, L. (L.) chagasi, and L. (L.) infantum). We also discussed the perspective of leishmaniasis treatment, considering the potential synergism between different promising species of Piper, presenting some interesting interaction possibilities for future studies between plants. Finally, the necessary steps for technological development of phytomedicines and herbal medicines with the desirable quality requirements for medicines are highlighted. The data presented here highlight the use of Piper spp. as source of pharmacological compounds that can lead to effective, safe, and inexpensive treatments for leishmaniasis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ygor Jessé Ramos
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davyson de Lima Moreira
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Filipe Gonçalves-Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Av Brasil 4365, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Peixoto JF, Oliveira ADS, Monteiro PQ, Gonçalves-Oliveira LF, Andrade-Neto VV, Ferreira VF, Souza-Silva F, Alves CR. In Silico Insights into the Mechanism of Action of Epoxy-α-Lapachone and Epoxymethyl-Lawsone in Leishmania spp. Molecules 2021; 26:molecules26123537. [PMID: 34200517 PMCID: PMC8229338 DOI: 10.3390/molecules26123537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
Epoxy-α-lapachone (Lap) and Epoxymethyl-lawsone (Law) are oxiranes derived from Lapachol and have been shown to be promising drugs for Leishmaniases treatment. Although, it is known the action spectrum of both compounds affect the Leishmania spp. multiplication, there are gaps in the molecular binding details of target enzymes related to the parasite’s physiology. Molecular docking assays simulations were performed using DockThor server to predict the preferred orientation of both compounds to form stable complexes with key enzymes of metabolic pathway, electron transport chain, and lipids metabolism of Leishmania spp. This study showed the hit rates of both compounds interacting with lanosterol C-14 demethylase (−8.4 kcal/mol to −7.4 kcal/mol), cytochrome c (−10.2 kcal/mol to −8.8 kcal/mol), and glyceraldehyde-3-phosphate dehydrogenase (−8.5 kcal/mol to −7.5 kcal/mol) according to Leishmania spp. and assessed compounds. The set of molecular evidence reinforces the potential of both compounds as multi-target drugs for interrupt the network interactions between parasite enzymes, which can lead to a better efficacy of drugs for the treatment of leishmaniases.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (J.F.P.); (A.d.S.O.); or (P.Q.M.); (L.F.G.-O.)
| | - Adriane da Silva Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (J.F.P.); (A.d.S.O.); or (P.Q.M.); (L.F.G.-O.)
| | - Patrícia Queiroz Monteiro
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (J.F.P.); (A.d.S.O.); or (P.Q.M.); (L.F.G.-O.)
| | - Luiz Filipe Gonçalves-Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (J.F.P.); (A.d.S.O.); or (P.Q.M.); (L.F.G.-O.)
| | - Valter Viana Andrade-Neto
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-002, Brazil;
| | - Franklin Souza-Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Faculdade de Ciências Biológicas e da Saúde, Universidade Iguaçu, Avenida Abílio Augusto Távora, 2134, Dom Rodrigo, Nova Iguaçu CEP 26260-045, Brazil
- Correspondence: (F.S.-S.); (C.R.A.)
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (J.F.P.); (A.d.S.O.); or (P.Q.M.); (L.F.G.-O.)
- Correspondence: (F.S.-S.); (C.R.A.)
| |
Collapse
|
11
|
Nocelli NE, Zulueta Díaz YDLM, Millot M, Colazo ML, Vico RV, Fanani ML. Self-assembled nanostructures of L-ascorbic acid alkyl esters support monomeric amphotericin B. Heliyon 2021; 7:e06056. [PMID: 33553743 PMCID: PMC7848660 DOI: 10.1016/j.heliyon.2021.e06056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Hypothesis Amphotericin B (AmB) is a highly effective antimicrobial, with broad antimycotic and antiparasitic effect. However, AmB poor water-solubilisation and aggregation tendency limits its use for topical applications. We studied the capacity of nanostructures formed by alkyl esters of L-ascorbic acid (ASCn) to solubilise AmB and tested the relationship between the prevalence of the monomeric form of AmB and its effectiveness as antimicrobial agent. Experiments We developed self-assembled nanostructures formed by the commercial compound, palmitoyl ascorbic acid, as well as the shorter chained myristoyl and lauroyl ascorbic acid. AmB loaded ASCn nanostructures were studied by a combination of spectroscopic techniques, together with particle analysis, differential scanning calorimetry, microbiological tests, and Langmuir monolayer visualisation. Findings We found no direct relation between the antimicrobial capacity and the prevalence of the monomeric form of the drug. However, the later was related to chemical stability and colloidal robustness. Nanostructures formed by ASC16 in its anionic state provide an appropriate environment for AmB in its monomeric form, maintaining its antimicrobial capacity. Langmuir film visualisation supports spectrophotometric evidence, indicating that ASC16 allows the in-plane solubilisation of AmB. Coagels formed by ASC16 appear as promising for carrying AmB for dermal delivery.
Collapse
Affiliation(s)
- Natalia E. Nocelli
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Yenisleidy de las Mercedes Zulueta Díaz
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
| | - Marine Millot
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Luz Colazo
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Raquel V. Vico
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-UNC−CONICET), Córdoba, Argentina
| | - Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Córdoba, Argentina
- Corresponding author.
| |
Collapse
|
12
|
Fernández-García R, Statts L, de Jesus JA, Dea-Ayuela MA, Bautista L, Simão R, Bolás-Fernández F, Ballesteros MP, Laurenti MD, Passero LFD, Lalatsa A, Serrano DR. Ultradeformable Lipid Vesicles Localize Amphotericin B in the Dermis for the Treatment of Infectious Skin Diseases. ACS Infect Dis 2020; 6:2647-2660. [PMID: 32810398 DOI: 10.1021/acsinfecdis.0c00293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cutaneous fungal and parasitic diseases remain challenging to treat, as available therapies are unable to permeate the skin barrier. Thus, treatment options rely on systemic therapy, which fail to produce high local drug concentrations but can lead to significant systemic toxicity. Amphotericin B (AmB) is highly efficacious in the treatment of both fungal and parasitic diseases such as cutaneous leishmaniasis but is reserved for parenteral administration in patients with severe pathophysiology. Here, we have designed and optimized AmB-transfersomes [93.5% encapsulation efficiency, 150 nm size, and good colloidal stability (-35.02 mV)] that can remain physicochemically stable (>90% drug content) at room temperature and 4 °C over 6 months when lyophilized and stored under desiccated conditions. AmB-transfersomes possessed good permeability across mouse skin (4.91 ± 0.41 μg/cm2/h) and 10-fold higher permeability across synthetic Strat-M membranes. In vivo studies after a single topical application in mice showed permeability and accumulation within the dermis (>25 μg AmB/g skin 6 h postadministration), indicating the delivery of therapeutic amounts of AmB for mycoses and cutaneous leishmaniasis, while a single daily administration in Leishmania (Leishmania) amazonensis infected mice over 10 days, resulted in excellent efficacy (98% reduction in Leishmania parasites). Combining the application of AmB-transfersomes with metallic microneedles in vivo increased the levels in the SC and dermis but was unlikely to elicit transdermal levels. In conclusion, AmB-transfersomes are promising and stable topical nanomedicines that can be readily translated for parasitic and fungal infectious diseases.
Collapse
Affiliation(s)
| | - Larry Statts
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | - Jéssica A. de Jesus
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Maria Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Carrer Santiago Ramón y Cajal s/n, 46113 Valencia, Spain
| | - Liliana Bautista
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | | | | | | | - Marcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Luiz F. D. Passero
- São Paulo State University (UNESP), Institute of Biosciences, São Vicente Praça Infante Dom Henrique s/n, 11330-900 São Vicente, SP, Brazil
- São Paulo State University (UNESP), Institute for Advanced Studies of Ocean, São Vicente Av. João Francisco Bensdorp 1178, 11350-011 São Vicente, SP (Brazil)
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, United Kingdom
| | | |
Collapse
|
13
|
Mesquita JT, Romanelli MM, de Melo Trinconi Trinconi Cm C, Guerra JM, Taniwaki NN, Uliana SRB, Reimão JQ, Tempone AG. Repurposing topical triclosan for cutaneous leishmaniasis: Preclinical efficacy in a murine Leishmania (L.) amazonensis model. Drug Dev Res 2020; 83:285-295. [PMID: 32767443 DOI: 10.1002/ddr.21725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023]
Abstract
Leishmaniasis remains an important neglected tropical infection caused by the protozoan Leishmania and affects 12 million people in 98 countries. The treatment is limited with severe adverse effects. In the search for new therapies, the drug repositioning and combination therapy have been successfully applied to neglected diseases. The aim of the present study was to evaluate the in vitro and in vivo anti-Leishmania (Leishmania) amazonensis potential of triclosan, an approved topical antimicrobial agent used for surgical procedures. in vitro phenotypic studies of drug-treated parasites were performed to evaluate the lethal action of triclosan, accompanied by an isobolographic ex-vivo analysis with the association of triclosan and miltefosine. The results showed that triclosan has activity against L. (L.) amazonensis intracellular amastigotes, with a 50% inhibitory concentration of 16 μM. By using fluorescent probes and transmission electron microscopy, a pore-forming activity of triclosan toward the parasite plasma membrane was demonstrated, leading to depolarization of the mitochondrial membrane potential and reduction of the reactive oxygen species levels in the extracellular promastigotes. The in vitro interaction between triclosan and miltefosine in the combination therapy assay was classified as additive against intracellular amastigotes. Leishmania-infected mice were treated with topical triclosan (1% base cream for 14 consecutive days), and showed 89% reduction in the parasite burden. The obtained results contribute to the investigation of new alternatives for the treatment of cutaneous leishmaniasis and suggest that the coadministration of triclosan and miltefosine should be investigated in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Reni Bortolin Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Quero Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | | |
Collapse
|
14
|
Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol Control 2020; 10:e00156. [PMID: 32566773 PMCID: PMC7298521 DOI: 10.1016/j.parepi.2020.e00156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Leishmaniasis is a widespread disease that causes 20,000 to 30,000 deaths annually, making it a major health problem in endemic areas. Because of low-performance medications, drug delivery poses a great challenge for better treatment of leishmaniasis. The present study's purpose was to review the application of nanoparticles as a new method in leishmaniasis treatment. To identify all relevant literature, we searched Web of Sciences, Scopus, PubMed, NCBI, Scielo, and Google Scholar, and profiled studies published between 1986 and 2019. In the present study, we tried to identify different research efforts in different conditions that examined the influence of various nanoparticles on different forms of leishmaniasis. In this way, we could compare their results and obtain a reliable conclusion from the most recent studies on this subject. Our review's results indicate that incorporating nanoparticles with chemical drugs improves the quality, efficiency, and sustainability of drugs and reduces their costs. Finally, considering the use of nanoparticles in the destruction of parasites, their inhibitory effect (making drugs more effective and less harmful), and their utility in making effective vaccines to prevent and fight against parasites, further research on this issue is highly recommended.
Collapse
Affiliation(s)
- Amir Nafari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Koroush Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Sepahvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ghazal Shahrokhi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Esraa Gabal
- Agricultural Science and Resource Management in the Tropics and Subtropics, Bonn University, Germany
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
15
|
Nagle A, Biggart A, Be C, Srinivas H, Hein A, Caridha D, Sciotti RJ, Pybus B, Kreishman-Deitrick M, Bursulaya B, Lai YH, Gao MY, Liang F, Mathison CJN, Liu X, Yeh V, Smith J, Lerario I, Xie Y, Chianelli D, Gibney M, Berman A, Chen YL, Jiricek J, Davis LC, Liu X, Ballard J, Khare S, Eggimann FK, Luneau A, Groessl T, Shapiro M, Richmond W, Johnson K, Rudewicz PJ, Rao SPS, Thompson C, Tuntland T, Spraggon G, Glynne RJ, Supek F, Wiesmann C, Molteni V. Discovery and Characterization of Clinical Candidate LXE408 as a Kinetoplastid-Selective Proteasome Inhibitor for the Treatment of Leishmaniases. J Med Chem 2020; 63:10773-10781. [PMID: 32667203 PMCID: PMC7549094 DOI: 10.1021/acs.jmedchem.0c00499] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Visceral
leishmaniasis is responsible for up to 30,000 deaths every
year. Current treatments have shortcomings that include toxicity and
variable efficacy across endemic regions. Previously, we reported
the discovery of GNF6702, a selective inhibitor of the kinetoplastid
proteasome, which cleared parasites in murine models of leishmaniasis,
Chagas disease, and human African trypanosomiasis. Here, we describe
the discovery and characterization of LXE408, a structurally related
kinetoplastid-selective proteasome inhibitor currently in Phase 1
human clinical trials. Furthermore, we present high-resolution cryo-EM
structures of the Leishmania tarentolae proteasome
in complex with LXE408, which provides a compelling explanation for
the noncompetitive mode of binding of this novel class of inhibitors
of the kinetoplastid proteasome.
Collapse
Affiliation(s)
- Advait Nagle
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Agnes Biggart
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Celine Be
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Honnappa Srinivas
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Andreas Hein
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Diana Caridha
- Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Richard J Sciotti
- Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Brandon Pybus
- Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Mara Kreishman-Deitrick
- Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Yin H Lai
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Mu-Yun Gao
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Fang Liang
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Casey J N Mathison
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Xiaodong Liu
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Vince Yeh
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Jeffrey Smith
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Isabelle Lerario
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Yongping Xie
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Donatella Chianelli
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Michael Gibney
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Ashley Berman
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Yen-Liang Chen
- Novartis Institute of Tropical Diseases, Emeryville, California 94608, United States
| | - Jan Jiricek
- Novartis Institute of Tropical Diseases, Emeryville, California 94608, United States
| | - Lauren C Davis
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Xianzhong Liu
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Jaime Ballard
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | | | - Alexandre Luneau
- Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Todd Groessl
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Michael Shapiro
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Wendy Richmond
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Kevin Johnson
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Patrick J Rudewicz
- Novartis Institute of Tropical Diseases, Emeryville, California 94608, United States
| | - Srinivasa P S Rao
- Novartis Institute of Tropical Diseases, Emeryville, California 94608, United States
| | - Christopher Thompson
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Tove Tuntland
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Richard J Glynne
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Frantisek Supek
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | | | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| |
Collapse
|
16
|
Romanelli MM, da Costa-Silva TA, Cunha-Junior E, Dias Ferreira D, Guerra JM, Galisteo AJ, Pinto EG, Barbosa LRS, Torres-Santos EC, Tempone AG. Sertraline Delivered in Phosphatidylserine Liposomes Is Effective in an Experimental Model of Visceral Leishmaniasis. Front Cell Infect Microbiol 2019; 9:353. [PMID: 31737574 PMCID: PMC6828611 DOI: 10.3389/fcimb.2019.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Liposomes containing phosphatidylserine (PS) has been used for the delivery of drugs into the intramacrophage milieu. Leishmania (L.) infantum parasites live inside macrophages and cause a fatal and neglected viscerotropic disease, with a toxic treatment. Sertraline was studied as a free formulation (SERT) and also entrapped into phosphatidylserine liposomes (LP-SERT) against intracellular amastigotes and in a murine model of visceral leishmaniasis. LP-SERT showed a potent activity against intracellular amastigotes with an EC50 value of 2.5 μM. The in vivo efficacy of SERT demonstrated a therapeutic failure. However, when entrapped into negatively charged liposomes (−58 mV) of 125 nm, it significantly reduced the parasite burden in the mice liver by 89% at 1 mg/kg, reducing the serum levels of the cytokine IL-6 and upregulating the levels of the chemokine MCP-1. Histopathological studies demonstrated the presence of an inflammatory infiltrate with the development of granulomas in the liver, suggesting the resolution of the infection in the treated group. Delivery studies showed fluorescent-labeled LP-SERT in the liver and spleen of mice even after 48 h of administration. This study demonstrates the efficacy of PS liposomes containing sertraline in experimental VL. Considering the urgent need for VL treatments, the repurposing approach of SERT could be a promising alternative.
Collapse
Affiliation(s)
| | | | - Edezio Cunha-Junior
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | | | | - Andres Jimenez Galisteo
- Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | |
Collapse
|
17
|
Molaie S, Ghaffarifar F, Hasan ZM, Dalimi A. Enhancement Effect of Shark Cartilage Extract on Treatment of Leishmania infantum with Artemisinin and Glucantime and Evaluation of killing Factors and Apoptosis in-vitro Condition. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:887-902. [PMID: 31531071 PMCID: PMC6706737 DOI: 10.22037/ijpr.2019.1100656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study we examined enhancement effects of Artemisinin plus Glucantime and shark cartilage extract on promastigotes and amastigotes of L.infantum in in-vitro condition.The toxicity of artemisinin, glucantime, and shark cartilage extract on the L. infantum promastigotes and amastigote-infected macrophages was evaluated using MTT assay. The role of these drugs inducing apoptosis in promastigotes, un- infected, and parasite- infected macrophages was also studied. Using promastigote assay, IC50 values of artemisinin and glucantime as standalone drugs as well as in combination were obtained to be 50, 400, and 100µg/mL respectively. The flow cytometry analysis of apoptotic promastigotes stained with Annexin-V FITC staining showed that artemisinin, glucantime, artemisinin plus glucantime, artemisinin plus shark cartilage extract, and shark cartilage extract alone applied at their IC50 concentrations resulted in 53.5%, 73.92%, 64.46%, 49.9%, and 47.34% apoptosis respectively. The results of MTT assay indicated that cytotoxicity of artemisinin, glucantime, artemisinin plus glucantime, shark cartilage plus artemisinin, and shark cartilage in infected macrophages after 72h was 75%, 84%, 82%, 30%, and 3% respectively. In un- infected macrophages, cytotoxicity of Artemisinin, Glucantime, Artemisinin plus Glucantime and shark cartilage was 15%, 31%, 21%, 2%, and 0% respectively.This study suggests that artemisinin, glucantime, artemisinin plus glucantime, and shark cartilage extract have significant killing effects on promastigotes and amastigotes. Also, it proved that artimisinin alone and in combination with glucantime and shark cartilage extract has little toxic effect on macrophages, but could induce apoptosis in L.infantum promastigotes and amastigote-infected macrophages. Thus, these chemicals can be used as alternative drugs for in-vivo studies.
Collapse
Affiliation(s)
- Soheila Molaie
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Zuheir Mohammad Hasan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| | - Abdolhosein Dalimi
- Department of Parasitology , Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R.Iran
| |
Collapse
|
18
|
Souto EB, Dias-Ferreira J, Craveiro SA, Severino P, Sanchez-Lopez E, Garcia ML, Silva AM, Souto SB, Mahant S. Therapeutic Interventions for Countering Leishmaniasis and Chagas's Disease: From Traditional Sources to Nanotechnological Systems. Pathogens 2019; 8:pathogens8030119. [PMID: 31374930 PMCID: PMC6789685 DOI: 10.3390/pathogens8030119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/02/2023] Open
Abstract
The incidence of neglected diseases in tropical countries, such as Leishmaniasis and Chagas's disease, is attributed to a set of biological and ecological factors associated with the socioeconomic context of developing countries and with a significant burden to health care systems. Both Leishmaniasis and Chagas's disease are caused by different protozoa and develop diverse symptoms, which depend on the specific species infecting man. Currently available drugs to treat these disorders have limited therapeutic outcomes, frequently due to microorganisms' drug resistance. In recent years, significant efforts have been made towards the development of innovative drug delivery systems aiming to improve bioavailability and pharmacokinetic profiles of classical drug therapy. This paper discusses the key facts of Leishmaniasis and Chagas's disease, the currently available pharmacological therapies and the new drug delivery systems for conventional drugs.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sara A Craveiro
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, Paranhos, 4200-150 Porto, Portugal
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- University of Tiradentes (UNIT), Industrial Biotechnology Program, Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M Silva
- Departamento de Biologia e Ambiente, Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013; 5001-801 Vila Real, Portugal
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UTAD), 5001-801 Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of Braga Hospital, Sete Fontes, 4710-243 São Victor, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
19
|
Molaie S, Ghaffarifar F, Dalimi A, Zuhair MH, Sharifi Z. Evaluation of synergistic therapeutic effect of shark cartilage extract with artemisinin and glucantime on visceral leishmaniasis in BALB/c mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:146-153. [PMID: 30834079 PMCID: PMC6396994 DOI: 10.22038/ijbms.2018.31124.7504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Because leishmaniasis is related to the impaired functioning of T-cells, the use of an immunomodulator can increase the efficacy of antileishmanial therapy in visceral leishmaniasis. In this study, we used shark cartilage extract with artemisinin and glucantime against visceral leishmaniasis in BALB/c mice, and evaluated the synergistic therapeutic effect. MATERIALS AND METHODS The culturing method and quantitative real-time PCR by using the kDNA gene was used to detect parasite loads in the spleen and liver. INF-γ and IL-4 cytokine levels and survival rates were assayed. RESULTS The drug therapy with target drugs reduced parasite burden in the spleen and liver significantly. Although parasite burden was lower in the artemisinin treated group than in the glucantime treated group (P<0.05). The mice survival rate records, throughout the experimental period, showed highly significant survival rates in the test groups compared to the control group (P<0.001). The results of cytokine assay in mice treated with glucantime-shark cartilage extract combination indicated significant increases of IFNγ and IL-4 (P<0.05). Although the increase of IFNγ was more notable than IL-4. The synergistic therapeutic effect is shown in all groups except in the group treated with shark cartilage extract-artemisinin combination. The IFN-γ in glucantime-shark cartilage extract combination treated group was higher than in other groups (P<0.05). The survival rate in this group was more than in other groups too (P<0.05). CONCLUSION Combination therapy with shark cartilage extract as an immunomodulator can increase antileishmanial effects of antimony drugs in VL treatment.
Collapse
Affiliation(s)
- Soheila Molaie
- Department of Parasitology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Deputy of Research, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdohosein Dalimi
- Department of Parasitology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hassan Zuhair
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Sharifi
- Department of Virology, Iranian Blood Transfusion, Tehran, Iran
| |
Collapse
|
20
|
Zhou F, Xu H, Song Z, Zhu L, Feng S, Feng R. α-Linolenic acid-modified pluronic 127-CS copolymeric micelles for the skin targeted delivery of amphotericin B. NEW J CHEM 2019. [DOI: 10.1039/c8nj03847c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, an α-linolenic acid modified pluronic F127-block-chitosan (F127-(CS-LNA)2) copolymer was synthesized to prepare topical amphotericin B (AMB)-loaded micelles (AMB-M) via a dialysis technique.
Collapse
Affiliation(s)
- Feilong Zhou
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Hongmei Xu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Zhimei Song
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Li Zhu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Sijia Feng
- School of Basic Medical Sciences
- Dali University
- Dali 671000
- P. R. China
| | - Runliang Feng
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
21
|
Mostafavi M, Farajzadeh S, Sharifi I, Khazaeli P, Sharifi H. Leishmanicidal effects of amphotericin B in combination with selenium loaded on niosome against Leishmania tropica. J Parasit Dis 2019; 43:176-185. [PMID: 31263321 DOI: 10.1007/s12639-018-1071-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/10/2018] [Indexed: 01/26/2023] Open
Abstract
The strategy for improving the treatment of leishmaniasis by the World Health Organization, is the development of new drugs and combination therapy. The aim of this survey was to investigate the effect of amphotericin B (AmB) in combination with selenium, in a simple or niosomal form, on Leishmania tropica (L. tropica) by in vitro advanced assays. In this study, a niosomal formulation of AmB with selenium was prepared and characterized based on size and morphology. Using MTT assay, macrophage model, flow cytometry, and qPCR, the cytotoxicity and efficiency of the niosomal formulation and simple form of combination were evaluated. No toxicity was reported for both the niosomal and simple form of the combination. The niosomal formulation significantly showed higher inhibitory effect on the promastigote and amastigote forms of L. tropica than simple combination form. Interleukin (IL)-10 significantly decreased while the level of IL-12 and metacasoase as Th-1 activator significantly increased (P < 0.001). The findings of this study indicated that niosomes are the stable carriers for this combination, easy to produce and provide promising results as an effective formulation in the inhibition of extracellular and intracellular forms of L. tropica in compared with simple combination form.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Farajzadeh
- 2Department of Pediatric Dermatology, Kerman University of Medical Sciences, Kerman, 76169-14115 Iran
| | - Iraj Sharifi
- 1Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- 3Pharmaceutical Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- 4HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Santiago RR, Gyselle de Holanda e Silva K, Dantas dos Santos N, Genre J, Freitas de Oliveira Lione V, Silva AL, Marcelino HR, Gondim AD, Tabosa do Egito ES. Nanostructured lipid carriers containing Amphotericin B: Development, in vitro release assay, and storage stability. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv Transl Res 2018; 9:76-84. [DOI: 10.1007/s13346-018-00603-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Pinto EG, Tempone AG. Activity of the antiarrhythmic drug amiodarone against Leishmania ( L.) infantum: an in vitro and in vivo approach. J Venom Anim Toxins Incl Trop Dis 2018; 24:29. [PMID: 30386379 PMCID: PMC6203271 DOI: 10.1186/s40409-018-0166-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
Background Considering the high toxicity and limited therapies available for treating visceral leishmaniasis (VL), the drug repositioning approach represents a faster way to deliver new therapies to the market. Methods In this study, we described for the first time the activity of a potent antiarrhythmic, amiodarone (AMD), against L. (L.) infantum and its in vitro and in vivo activity. Results The evaluation against promastigotes has shown that amiodarone presents leishmanicidal effect against the extracellular form, with an IC50 value of 10 μM. The activity was even greater against amastigotes in comparison with promastigotes with an IC50 value of 0.5 μM. The selectivity index in relation to the intracellular form demonstrated that the antiparasitic activity was approximately 56 times higher than its toxicity to mammalian cells. Investigation of the in vivo AMD activity in the L. infantum-infected hamster model showed that 51 days after the initial infection, amiodarone was unable to reduce the parasite burden in the spleen and liver when treated for 10 consecutive days, intraperitoneally, at 50 mg/kg/day, as determined by qPCR. Although not statistically significant, AMD was able to reduce the parasite burden by 20% in the liver when treated for 10 consecutive days, orally, at 100 mg/kg/day; no reduction in the spleen was found by qPCR. Conclusions Our findings may help further drug design studies seeking new AMD derivatives that may provide new candidates with an in vitro selectivity close to or even greater than that observed in the prototype delivering effectiveness in the experimental model of VL.
Collapse
Affiliation(s)
- Erika G Pinto
- 1Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andre G Tempone
- 2Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 351, 8°, Andar. Cerqueira César, São Paulo, SP CEP 01246-902 Brazil
| |
Collapse
|
25
|
Relation between Skin Pharmacokinetics and Efficacy in AmBisome Treatment of Murine Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2018; 62:AAC.02009-17. [PMID: 29263075 PMCID: PMC5826151 DOI: 10.1128/aac.02009-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/16/2017] [Indexed: 01/03/2023] Open
Abstract
AmBisome (LAmB), a liposomal formulation of amphotericin B (AmB), is a second-line treatment for the parasitic skin disease cutaneous leishmaniasis (CL). Little is known about its tissue distribution and pharmacodynamics to inform clinical use in CL. Here, we compared the skin pharmacokinetics of LAmB with those of the deoxycholate form of AmB (DAmB; trade name Fungizone) in murine models of Leishmania major CL. Drug levels at the target site (the localized lesion) 48 h after single intravenous (i.v.) dosing of the individual AmB formulations (1 mg/kg of body weight) were similar but were 3-fold higher for LAmB than for DAmB on day 10 after multiple administrations (1 mg/kg on days 0, 2, 4, 6, and 8). After single and multiple dosing, intralesional concentrations were 5- and 20-fold, respectively, higher than those in the healthy control skin of the same infected mice. We then evaluated how drug levels in the lesion after LAmB treatment relate to therapeutic outcomes. After five administrations of the drug at 0, 6.25, or 12.5 mg/kg (i.v.), there was a clear correlation between dose level, intralesional AmB concentration, and relative reduction in parasite load and lesion size (R2 values of >0.9). This study confirms the improved efficacy of the liposomal over the deoxycholate AmB formulation in experimental CL, which is related to higher intralesional drug accumulation.
Collapse
|
26
|
|
27
|
Santos DCMD, de Souza MLS, Teixeira EM, Alves LL, Vilela JMC, Andrade M, Carvalho MDG, Fernandes AP, Ferreira LAM, Aguiar MMG. A new nanoemulsion formulation improves antileishmanial activity and reduces toxicity of amphotericin B. J Drug Target 2017; 26:357-364. [DOI: 10.1080/1061186x.2017.1387787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Délia Chaves Moreira dos Santos
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marselle Leite Silvério de Souza
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Eliane Morais Teixeira
- Laboratory of Clinical Research, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Líndicy Leidicy Alves
- Laboratory of Clinical Research, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Margareth Andrade
- Centro de Inovação e Tecnologia Senai Fiemg – Campus CETEC, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marta Marques Gontijo Aguiar
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
28
|
Ortega V, Giorgio S, de Paula E. Liposomal formulations in the pharmacological treatment of leishmaniasis: a review. J Liposome Res 2017; 27:234-248. [DOI: 10.1080/08982104.2017.1376682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vanessa Ortega
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Animal Biology, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, UNICAMP, Campinas, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
29
|
Biodistribution and In Vivo Antileishmanial Activity of 1,2-Distigmasterylhemisuccinoyl- sn-Glycero-3-Phosphocholine Liposome-Intercalated Amphotericin B. Antimicrob Agents Chemother 2017. [PMID: 28630182 DOI: 10.1128/aac.02525-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1,2-Distigmasterylhemisuccinoyl-sn-glycero-3-phosphocholine (DSHemsPC) is a new lipid in which two molecules of stigmasterol (an inexpensive plant sterol) are covalently linked via a succinic acid to glycerophosphocholine. Our previous study revealed that liposome (Lip)-intercalated amphotericin B (AMB) prepared from DSHemsPC (DSHemsPC-AMB-Lip) possesses excellent colloidal properties and in vitro antifungal and antileishmanial activities similar to those of the liposomal AMB preparation AmBisome. The aim of this study was to determine the biodistribution and evaluate the antileishmanial effects of DSHemsPC-AMB-Lip in Leishmania major-infected BALB/c mice. The serum profile and tissue concentrations of AMB were similar in DSHemsPC-AMB-Lip- and AmBisome-treated mice after intravenous (i.v.) injection. Multiple i.v. doses of the micellar formulation of AMB (Fungizone; 1 mg/kg of body weight), DSHemsPC-AMB-Lip (5 mg/kg), and AmBisome (5 mg/kg) were used in L. major-infected BALB/c mouse models of early and established lesions. In a model of the early lesions of cutaneous leishmaniasis (CL), the results indicated that the level of footpad inflammation was significantly (P < 0.001) lower in mice treated with DSHemsPC-AMB-Lip and AmBisome than mice treated with empty liposomes or 5% dextrose. The splenic and footpad parasite load was also significantly (P < 0.001) lower in these groups of mice than in control mice that received 5% DW or free liposome. The in vivo activity of DSHemsPC-AMB-Lip was comparable to that of AmBisome, and both provided improved results compared to those achieved with Fungizone at the designated doses. The results suggest that systemic DSHemsPC-AMB-Lip administration may be useful for the treatment of leishmaniasis, and because it costs less to produce DSHemsPC-AMB-Lip than AmBisome, DSHemsPC-AMB-Lip merits further investigation.
Collapse
|
30
|
Pharmacodynamics and Biodistribution of Single-Dose Liposomal Amphotericin B at Different Stages of Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother 2017. [PMID: 28630200 PMCID: PMC5571318 DOI: 10.1128/aac.00497-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease that causes significant morbidity and mortality worldwide. Characterization of the pharmacokinetics and pharmacodynamics of antileishmanial drugs in preclinical models is important for drug development and use. Here we investigated the pharmacodynamics and drug distribution of liposomal amphotericin B (AmBisome) in Leishmania donovani-infected BALB/c mice at three different dose levels and two different time points after infection. We additionally compared drug levels in plasma, liver, and spleen in infected and uninfected BALB/c mice over time. At the highest administered dose of 10 mg/kg AmBisome, >90% parasite inhibition was observed within 2 days after drug administration, consistent with drug distribution from blood to tissue within 24 h and a fast rate of kill. Decreased drug potency was observed in the spleen when AmBisome was administered on day 35 after infection, compared to day 14 after infection. Amphotericin B concentrations and total drug amounts per organ were lower in liver and spleen when AmBisome was administered at the advanced stage of infection and compared to those in uninfected BALB/c mice. However, the magnitude of difference was lower when total drug amounts per organ were estimated. Differences were also noted in drug distribution to L. donovani-infected livers and spleens. Taken together, our data suggest that organ enlargement and other pathophysiological factors cause infection- and organ-specific drug distribution and elimination after administration of single-dose AmBisome to L. donovani-infected mice. Plasma drug levels were not reflective of changes in drug levels in tissues.
Collapse
|
31
|
Akbari M, Oryan A, Hatam G. Application of nanotechnology in treatment of leishmaniasis: A Review. Acta Trop 2017; 172:86-90. [PMID: 28460833 DOI: 10.1016/j.actatropica.2017.04.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by a protozoan species of the genus Leishmania affecting mostly the developing countries. The disease with current mortality rate of 50,000 deaths per year threatens approximately 350 million people in more than 90 countries all over the world. Cutaneous, mucocutaneous and visceral leishmaniasis are the most frequent forms of the disease. Chemotherapy still relies on the use of pentavalent antimonials, amphotericin B, liposomal amphotericin B and miltefosin. Treatment of leishmaniasis has remained insufficient since the current antileishmanial agents have several limitations including low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment and cost lines. Consequently, there is an immediate requirement to search for new antileishmanial compounds. New drug delivery devices transport antileishmanial drug to the target cell specifically with minimizing the toxic effects to normal cells. This study attempts to present a comprehensive overview of different approaches of nanotechnology in treatment of leishmaniasis.
Collapse
Affiliation(s)
- Maryam Akbari
- Department of Parasitology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Gholamreza Hatam
- Department of Parasitology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Nanoliposomal Buparvaquone Immunomodulates Leishmania infantum-Infected Macrophages and Is Highly Effective in a Murine Model. Antimicrob Agents Chemother 2017; 61:AAC.02297-16. [PMID: 28167544 DOI: 10.1128/aac.02297-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/22/2017] [Indexed: 11/20/2022] Open
Abstract
Visceral leishmaniasis is a fatal parasitic neglected disease affecting 1.5 million people worldwide. Based on a drug repositioning approach, the aim of this work was to investigate the in vitro immunomodulatory potential of buparvaquone (BPQ) and to establish a safe regimen to evaluate the in vivo efficacy of BPQ entrapped by negatively charged nanoliposomes (BPQ-LP) in Leishmania infantum-infected hamsters. Small-angle X-ray scattering, dynamic light scattering, and the ζ-potential were applied in order to study the influence of BPQ on the liposome structure. Our data revealed that BPQ was located in the polar-apolar interface, snorkeling the polar region, and protected against aggregation inside the lipophilic region. The presence of BPQ also decreased the Z-average hydrodynamic diameter and increased the surface charge. Compared to intravenous and intramuscular administration, a subcutaneous route was a more effective route for BPQ-LP; at 0.4 mg/kg, BPQ-LP reduced infection in the spleen and liver by 98 and 96%, respectively. Treatment for 5 days resulted in limited efficacy, but 10 days of treatment resulted in an efficacy similar to that of a 15-day regimen. The nanoliposomal drug was highly effective, with a mean 50% effective dose of 0.25 mg/kg, reducing the parasite load in bone marrow by 80%, as detected using quantitative PCR analysis. In addition, flow cytometry studies showed that BPQ upregulated cytokines as tumor necrosis factor, monocyte chemoattractant protein 1, interleukin-10 (IL-10), and IL-6 in Leishmania-infected macrophages, eliminating the parasites via a nitric oxide-independent mechanism. This new formulation proved to be a safe and effective treatment for murine leishmaniasis that could be a useful candidate against visceral leishmaniasis.
Collapse
|
33
|
Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, Barnes SW, Mathison CJN, Myburgh E, Gao MY, Gillespie JR, Liu X, Tan JL, Stinson M, Rivera IC, Ballard J, Yeh V, Groessl T, Federe G, Koh HXY, Venable JD, Bursulaya B, Shapiro M, Mishra PK, Spraggon G, Brock A, Mottram JC, Buckner FS, Rao SPS, Wen BG, Walker JR, Tuntland T, Molteni V, Glynne RJ, Supek F. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 2016; 537:229-233. [PMID: 27501246 PMCID: PMC5161665 DOI: 10.1038/nature19339] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.
Collapse
Affiliation(s)
- Shilpi Khare
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Advait S Nagle
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Agnes Biggart
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Yin H Lai
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Fang Liang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Lauren C Davis
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - S Whitney Barnes
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Casey J N Mathison
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Mu-Yun Gao
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - J Robert Gillespie
- Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Xianzhong Liu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Jocelyn L Tan
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Monique Stinson
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Ianne C Rivera
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Jaime Ballard
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Vince Yeh
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Todd Groessl
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Glenn Federe
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Hazel X Y Koh
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670
| | - John D Venable
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Michael Shapiro
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Pranab K Mishra
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Glen Spraggon
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Ansgar Brock
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Frederick S Buckner
- Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Srinivasa P S Rao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, Singapore 138670
| | - Ben G Wen
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - John R Walker
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Tove Tuntland
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Valentina Molteni
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Richard J Glynne
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Frantisek Supek
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| |
Collapse
|
34
|
Mushtaq S, Dogra D, Dogra N. Clinical Response with intralesional Amphotericin B in the treatment of old world cutaneous leishmaniasis: a preliminary report. Dermatol Ther 2016; 29:398-405. [PMID: 27477764 DOI: 10.1111/dth.12377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cutaneous leishmaniasis (CL) is a vector-borne tropical disease caused by a heterogeneous group of protozoan parasites that belong to the genus Leishmania. With an annual incidence of 1.5 million new cases, CL is a global health concern mainly in developing countries. The treatment options for CL are numerous but none is optimal. Pentavalent antimonials despite their side effects remain the preferred choice since decades. Alternate new treatment options are being explored to expand the therapeutic armamentarium of CL. In this study, we intend to describe our therapeutic experience with intralesional amphotericin B in the treatment of CL in a series of Indian patients, hitherto not commonly used in old world CL (OWCL). We also endeavour to review the literature on the use of amphotericin B in OWCL. Five consecutive patients diagnosed with cutaneous leishmansis at the out-patient department of Dermatology, Government Medical College, Jammu were treated with weekly injections of intralesional amphotericin B (2.5 mg/mL). Treatment response was assessed at each visit and the cases were followed up for 6 months. All the five patients responded well to the treatment and remained recurrence-free during follow-up. Intralesional amphotericin B was found to be safe and effective treatment for OWCL. Large randomized control trials need to be conducted to establish its efficacy.
Collapse
Affiliation(s)
- Sabha Mushtaq
- Department of Dermatology, Venereology & Leprology, SMGS Hospital, Government Medical College, Jammu, Jammu & Kashmir, India
| | - Devraj Dogra
- Department of Dermatology, Venereology & Leprology, SMGS Hospital, Government Medical College, Jammu, Jammu & Kashmir, India
| | - Naina Dogra
- Department of Dermatology, Venereology & Leprology, SMGS Hospital, Government Medical College, Jammu, Jammu & Kashmir, India
| |
Collapse
|
35
|
Amat Sain A, Amanah A, Zahari Z, Mohd Salim RJ, Mansor SM, Adenan MI. (+)-Spectaline, a Piperidine Alkaloid from Senna spectabilis DC. Effective in Reducing the In Vitro Infection of Leishmania major. ACTA ACUST UNITED AC 2016. [DOI: 10.18052/www.scipress.com/ijppe.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Senna spectabilisis known to have antimicrobial, laxative, antiulcerogenic, analgesic, and anti-inflammatory properties in folk medicine. Piperidine alkaloids extracted from various parts of this plant have been shown to have anticonvulsant (iso-6-spectaline), antinociceptive [(-)-spectaline] and lipid peroxidation [(+)-3-O-feruloylcassine, (-)-spectaline and (-)-3-O-acetylspectaline] activities. In our study, the ethyl acetate extract fromS. spectabilisexhibited antileishmanial activity via intracellular promastigote assay or leishmanicidal assay and was further fractionated by using bioassay-guided isolation approach. The antiprotozoal principle was isolated from the ethyl acetate portion through solvent fractionation and a few series of chromatographic processes. The isolated active compound 1 was identified as (+)-spectaline on the basis of its spectral analysis (MS, 1D & 2D NMR) with EC50value of 0.063 ± 0.005 µM for antileishmanial activity and selectivity index of 3.76.
Collapse
|
36
|
Dikhit MR, Purkait B, Singh R, Sahoo BR, Kumar A, Kar RK, Ansari MY, Saini S, Abhishek K, Sahoo GC, Das S, Das P. Activity of a novel sulfonamide compound 2-nitro-N-(pyridin-2-ylmethyl)benzenesulfonamide against Leishmania donovani. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1753-61. [PMID: 27307706 PMCID: PMC4887065 DOI: 10.2147/dddt.s96650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
New treatments for visceral leishmaniasis, caused by Leishmania donovani, are needed to overcome sustained toxicity, cost, and drug resistance. The aim of this study was to evaluate the therapeutic effects of 2-nitro-N-(pyridin-2-ylmethyl)benzenesulfonamide (2NB) against promastigote and amastigote forms of L. donovani and examine its effect in combination with amphotericin B (AmB) against AmB-resistant clinical isolates. Effects were assessed against extracellular promastigotes in vitro and intracellular amastigotes in L. donovani-infected macrophages. Levels of inducible nitric oxide and Th1 and Th2 cytokines were measured in infected 2NB-treated macrophages, and levels of reactive oxygen species and NO were measured in 2NB-treated macrophages. 2NB was active against promastigotes and intracellular amastigotes with 50% inhibitory concentration values of 38.5±1.5 µg/mL and 86.4±2.4 µg/mL, respectively. 2NB was not toxic to macrophages. Parasite titer was reduced by >85% in infected versus uninfected macrophages at a 2NB concentration of 120 µg/mL. The parasiticidal activity was associated with increased levels of Th1 cytokines, NO, and reactive oxygen species. Finally, 2NB increased the efficacy of AmB against AmB-resistant L. donovani. These results demonstrate 2NB to be an antileishmanial agent, opening up a new avenue for the development of alternative chemotherapies against visceral leishmaniasis.
Collapse
Affiliation(s)
- Manas R Dikhit
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India
| | - Bidyut Purkait
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India
| | - Ruby Singh
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India
| | - Bikash Ranjan Sahoo
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Japan
| | - Ashish Kumar
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India
| | - Rajiv K Kar
- Biomolecular Nuclear Magnetic Resonance and Drug Design Laboratory, Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Md Yousuf Ansari
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India; Department of Pharmacoinformatics, Hajipur, India
| | - Savita Saini
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Kumar Abhishek
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India
| | - Ganesh C Sahoo
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Pradeep Das
- Department of Molecular Parasitology and Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Agamkuan, Patna, Bihar, India
| |
Collapse
|
37
|
Butani D, Yewale C, Misra A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf B Biointerfaces 2016; 139:17-24. [DOI: 10.1016/j.colsurfb.2015.07.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 10/22/2022]
|
38
|
Pinheiro IM, Carvalho IP, de Carvalho CES, Brito LM, da Silva ABS, Conde Júnior AM, de Carvalho FAA, Carvalho ALM. Evaluation of the in vivo leishmanicidal activity of amphotericin B emulgel: An alternative for the treatment of skin leishmaniasis. Exp Parasitol 2016; 164:49-55. [PMID: 26902606 DOI: 10.1016/j.exppara.2016.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/06/2023]
Abstract
The American Cutaneous Leishmaniasis (ACL) is an infectious disease that can be fatal. The first line of treatment is pentavalent antimonies. However, due to its potential to develop resistance, Amphotericin B (AmB) started to be used as an alternative medicine. Current treatments are limited, a fact that has led to a growing interesting in developing new therapies. This study aims to evaluate the therapeutic potential in vivo of an amphotericin B + oleic acid (OA) emulgel in the treatment of cutaneous leishmaniasis in an experimental model. Strains of Leishmania major MHOM/IL/80/Friendlin of Leishmania major were used. The animals were inoculated subcutaneously. After the development of leishmanial, nodular or ulcerative lesions, the animals were divided into three groups (control, Group A and Group B) and treated twice a day for twelve days. The weight of the animals was measured and the size of the lesions was observed. A histopathological analysis was performed with skin fragments of lesions and with the spleen of animals treated with different treatments (emulgel, AmB 3% emulgel and AmB 3% plus OA 5% emulgel). It was observed that when subjected to treatment with AmB 3% emulgel during the study period using both formulations, with enhancer and without enhancer, ulcerative lesions regress gradually or even complete cure. The quantification of the average number of parasites recovered from the inoculation site was made after the treatment in each group and the differences were considered significant. The treatment with AmB 3% and OA 5% emulgel had the best in vivo therapeutic response, showing good prospects for cutaneous leishmaniasis therapy as an alternative therapy.
Collapse
Affiliation(s)
| | - Ivana Pereira Carvalho
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Lucas Moreira Brito
- Programa de Pós-Graduação em Farmacologia, Universidade Federal do Piauí, Brazil
| | | | - Airton Mendes Conde Júnior
- Adjunto do Departamento de Morfologia do Centro de Ciências da Saúde, Universidade Federal do Piauí, Brazil
| | | | | |
Collapse
|
39
|
Georgiadou SP, Makaritsis KP, Dalekos GN. Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. J Transl Int Med 2015; 3:43-50. [PMID: 27847886 PMCID: PMC4936444 DOI: 10.1515/jtim-2015-0002] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. It is transmitted by phlebotomine female sand flies of the genera Phlebotomus and Lutzomyia in the old and new world, respectively. More than 20 well-recognized Leishmania species are known to infect humans and cause visceral (VL), cutaneous (CL) and mucocutaneous (ML) forms of the disease. Approximately 350 million people are at risk of contracting the disease and an estimated 1.6 million new cases occur annually. The disease mainly affects poor people in Africa, Asia and Latin America, and is associated with malnutrition, population migration, poor residency conditions, frail immune system and lack of resources. Previously, diagnosis of leishmaniasis relied mainly on invasive techniques of detecting parasites in splenic and bone marrow aspirates. Nevertheless, serological tests using the recombinant kinesin antigen (rK39) and molecular methods (polymerase chain reaction) are considered the best options for diagnosis today, despite problems related to varying sensitivities and specificities and field adaptability. Therapy of leishmaniasis ranges from local treatment of cutaneous lesions to systemic often toxic, therapy for disseminated CL, ML and VL. Agents with efficacy against leishmaniasis include amphotericin B, pentavalent antimonial drugs, paromomycin and miltefosine. No single therapy of VL currently offers satisfactory efficacy along with safety. This article provides a brief and updated systematic review on the epidemiology, diagnosis and treatment of this neglected disease.
Collapse
Affiliation(s)
- Sarah P Georgiadou
- Department of Medicine and Research Laboratory of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Konstantinos P Makaritsis
- Department of Medicine and Research Laboratory of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| |
Collapse
|
40
|
Gupta PK, Jaiswal AK, Asthana S, Dube A, Mishra PR. Antigen presenting cells targeting and stimulation potential of lipoteichoic acid functionalized lipo-polymerosome: a chemo-immunotherapeutic approach against intracellular infectious disease. Biomacromolecules 2015; 16:1073-87. [PMID: 25671728 DOI: 10.1021/bm5015156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigen presenting cells (APC) are well-recognized therapeutic targets for intracellular infectious diseases, including visceral leishmaniasis. These targets have raised concerns regarding their potential for drug delivery due to overexpression of a variety of receptors for pathogen associated molecular pathways after infection. Since, lipoteichoic acid (LTA), a surface glycolipid of Gram-positive bacteria responsible for recognition of bacteria by APC receptors that also regulate their activation for pro-inflammatory cytokine secretion, provides additive and significant protection against parasite. Here, we report the nanoarchitechture of APC focused LTA functionalized amphotericin B encapsulated lipo-polymerosome (LTA-AmB-L-Psome) delivery system mediated by self-assembly of synthesized glycol chitosan-stearic acid copolymer (GC-SA) and cholesterol lipid, which can activate and target the chemotherapeutic agents to Leishmania parasite resident APC. Greater J774A and RAW264.7 macrophage internalization of FITC tagged LTA-AmB-L-Psome compared to core AmB-L-Psome was observed by FACSCalibur cytometer assessment. This was further confirmed by higher accumulation in macrophage rich liver, lung and spleen during biodistribution study. The LTA-AmB-L-Psome overcame encapsulated drug toxicity and significantly increased parasite growth inhibition beyond commercial AmB treatment in both in vitro (macrophage-amastigote system; IC50, 0.082 ± 0.009 μg/mL) and in vivo (Leishmania donovani infected hamsters; 89.25 ± 6.44% parasite inhibition) models. Moreover, LTA-AmB-L-Psome stimulated the production of protective cytokines like interferon-γ (IFN-γ), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase and nitric oxide with down-regulation of disease susceptible cytokines, like transforming growth factor-β (TGF-β), IL-10, and IL-4. These data demonstrate the potential use of LTA-functionalized lipo-polymerosome as a biocompatible lucrative nanotherapeutic platform for overcoming toxicity and improving drug efficacy along with induction of robust APC immune responses for effective therapeutics of intracellular diseases.
Collapse
Affiliation(s)
- Pramod K Gupta
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anil K Jaiswal
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Shalini Asthana
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anuradha Dube
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Prabhat R Mishra
- †Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| |
Collapse
|
41
|
Caldeira LR, Fernandes FR, Costa DF, Frézard F, Afonso LCC, Ferreira LAM. Nanoemulsions loaded with amphotericin B: a new approach for the treatment of leishmaniasis. Eur J Pharm Sci 2015; 70:125-31. [PMID: 25660615 DOI: 10.1016/j.ejps.2015.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/07/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
This work aimed to develop nanoemulsions (NE) containing cholesterol and Amphotericin B (AmB) evaluating the influence of a lipophilic amine (stearylamine; STE) on drug encapsulation efficiency (EE), cytotoxicity on macrophages and in vitro antileishmanial activity. The EE of AmB in NE was nearly 100% regardless of STE concentration. Stability studies showed that AmB-loaded NE with or without STE were stable revealing that AmB content and EE remained constant after 180days. In significant contrast, the EE for AmB in NE without cholesterol drastically decreased showing that this co-surfactant significantly improved the retention of drug in NE. The electronic absorption and circular dichroism (CD) data revealed that the signal characteristic of self-associated free AmB, the most toxic form to the host cells, was virtually absent in the spectra of AmB-loaded NE. In agreement, NE-induced toxicity toward macrophages was significantly lower than that observed for the conventional AmB. STE enhanced both cytotoxicity and the activity against intracellular amastigotes of AmB-loaded NE. However, selectivity index values for AmB-loaded NE were considerably higher than that observed for conventional AmB. AmB-loaded and cholesterol-stabilized NE constitutes an attractive alternative for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Leila Rodrigues Caldeira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Flaviana Ribeiro Fernandes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Ferreira Costa
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Luís Carlos Crocco Afonso
- Department of Biological Sciences, Institute of Biological and Exact Sciences, Federal University of Ouro Preto (UFOP), Morro do Cruzeiro, 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
42
|
Pinto EG, Antoniazzi MM, Jared C, Tempone AG. Antileishmanial and antitrypanosomal activity of the cutaneous secretion of Siphonops annulatus. J Venom Anim Toxins Incl Trop Dis 2014; 20:50. [PMID: 25873939 PMCID: PMC4396788 DOI: 10.1186/1678-9199-20-50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/07/2014] [Indexed: 11/10/2022] Open
Abstract
Background Among the tropical parasitic diseases, those caused by protozoans are considered a challenge to public health, being represented by leishmaniasis and Chagas disease. In view of the low effectiveness and toxicity of the current therapy, animal venoms such as amphibian secretions have been used as a promising source of new drug prototypes. The present work aimed to achieve bioguided fractionation of metabolites present in a cutaneous secretion of the caecilian Siphonops annulatus (Amphibia: Gymnophiona: Siphonopidae) with antileishmanial and antitrypanosomal activity. Methods Through liquid-liquid partition and chromatographic techniques, the secretion was fractionated using bioguided assays. The 50% inhibitory concentration (IC50) of the main fraction (SaFr1) was studied against Leishmania (L.) infantum promastigotes and intracellular amastigotes, trypomastigotes of Trypanosoma cruzi and mammalian cells; viability was detected by the colorimetric MTT assay. By using a spectrofluorimetric assay with the probe SYTOX® Green and transmission electron microscopy (TEM), we also investigated the potential damage caused by SaFr1 in the plasma membrane and mitochondria of Leishmania. Results The bioguided assay enabled isolation of a highly purified fraction (SaFr1) with an IC50 of 0.065 μg/mL against promastigotes and 2.75 μg/mL against trypomastigotes. Due to its high toxicity to peritoneal macrophages, SaFr1 showed no selectivity towards the intracellular forms of Leishmania. Ultrastructural studies with Leishmania demonstrated severe mitochondrial damage and the formation of large cytoplasmic vacuoles, leading to the parasite’s death within a few hours. Nevertheless, it caused no alteration in the plasma membrane permeability as detected by the fluorescent probe and TEM. Conclusions The present study demonstrated for the first time the antiparasitic activity of the skin secretion of the caecilian S. annulatus against Leishmania and T. cruzi, confirming that skin secretions of these amphibians, similarly to those of anurans and salamanders, are also potential tools for the development of new drug candidates against neglected diseases.
Collapse
Affiliation(s)
- Erika Gracielle Pinto
- Departamento de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, 8° andar, CEP 01246-000 São Paulo, SP Brasil ; São Paulo Institute of Tropical Medicine, University of São Paulo (USP), São Paulo, São Paulo State Brazil
| | | | - Carlos Jared
- Laboratory of Cell Biology, Butantan Institute, São Paulo, São Paulo State Brazil
| | - Andre Gustavo Tempone
- Departamento de Parasitologia e Micologia, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, 8° andar, CEP 01246-000 São Paulo, SP Brasil
| |
Collapse
|
43
|
Borborema SET, Osso JA, Andrade HFD, Nascimento ND. Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice. Mem Inst Oswaldo Cruz 2014; 108:623-30. [PMID: 23903979 PMCID: PMC3970594 DOI: 10.1590/0074-0276108052013014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/28/2013] [Indexed: 11/29/2022] Open
Abstract
Pentavalent antimonials such as meglumine antimoniate (MA) are the
primary treatments for leishmaniasis, a complex disease caused by protozoan
parasites of the genus Leishmania . Despite over 70 years of
clinical use, their mechanisms of action, toxicity and pharmacokinetics have not
been fully elucidated. Radiotracer studies performed on animals have the
potential to play a major role in pharmaceutical development. The aims of this
study were to prepare an antimony radiotracer by neutron irradiation of MA and
to determine the biodistribution of MA in healthy and Leishmania
(Leishmania) infantum chagasi-infected mice. MA
(Glucantime(r)) was neutron irradiated inside the IEA-R1 nuclear
reactor, producing two radioisotopes, 122Sb and 124Sb, with high radionuclidic
purity and good specific activity. This irradiated compound presented
anti-leishmanial activity similar to that of non-irradiated MA in both in vitro
and in vivo evaluations. In the biodistribution studies, healthy mice showed
higher uptake of antimony in the liver than infected mice and elimination
occurred primarily through biliary excretion, with a small proportion of the
drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with
two compartments: the central compartment and another compartment associated
with drug excretion. Radiotracers, which can be easily produced by neutron
irradiation, were demonstrated to be an interesting tool for answering several
questions regarding antimonial pharmacokinetics and chemotherapy.
Collapse
Affiliation(s)
- Samanta Etel Treiger Borborema
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, SP, Brasil.
| | | | | | | |
Collapse
|
44
|
Pinto EG, da Costa-Silva TA, Tempone AG. Histamine H1-receptor antagonists against Leishmania (L.) infantum: an in vitro and in vivo evaluation using phosphatidylserine-liposomes. Acta Trop 2014; 137:206-10. [PMID: 24905294 DOI: 10.1016/j.actatropica.2014.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Considering the limited and toxic therapeutic arsenal available for visceral leishmaniasis (VL), the drug repositioning approach could represent a promising tool to the introduction of alternative therapies. Histamine H1-receptor antagonists are drugs belonging to different therapeutic classes, including antiallergics and anxyolitics. In this work, we described for the first time the activity of H1-antagonists against L. (L.) infantum and their potential effectiveness in an experimental hamster model. The evaluation against promastigotes demonstrated that chlorpheniramine, cinnarizine, hydroxyzine, ketotifen, loratadine, quetiapine and risperidone exerted a leishmanicidal effect against promastigotes, with IC50 values in the range of 13-84μM. The antihistaminic drug cinnarizine demonstrated effectiveness against the intracellular amastigotes, with an IC50 value of 21μM. The mammalian cytotoxicity was investigated in NCTC cells, resulting in IC50 values in the range of 57-229μM. Cinnarizine was in vivo studied as a free formulation and entrapped into phosphatidylserine-liposomes. The free drug was administered for eight consecutive days at 50mg/kg by intraperitoneal route (i.p.) and at 100mg/kg by oral route to L. infantum-infected hamsters, but showed lack of effectiveness in both regimens, as detected by real time PCR. The liposomal formulation was administered by i.p. route at 3mg/kg for eight days and reduced the parasite burden to 54% in liver when compared to untreated group; no improvement was observed in the spleen of infected hamsters. Cinnarizine is the first antihistaminic drug with antileishmanial activity and could be used as scaffold for drug design studies for VL.
Collapse
|
45
|
Moosavian Kalat S, Khamesipour A, Bavarsad N, Fallah M, Khashayarmanesh Z, Feizi E, Neghabi K, Abbasi A, Jaafari M. Use of topical liposomes containing meglumine antimoniate (Glucantime) for the treatment of L. major lesion in BALB/c mice. Exp Parasitol 2014; 143:5-10. [DOI: 10.1016/j.exppara.2014.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 04/07/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
|
46
|
Gupta PK, Asthana S, Jaiswal AK, Kumar V, Verma AK, Shukla P, Dwivedi P, Dube A, Mishra PR. Exploitation of Lectinized Lipo-Polymerosome Encapsulated Amphotericin B to Target Macrophages for Effective Chemotherapy of Visceral Leishmaniasis. Bioconjug Chem 2014; 25:1091-102. [DOI: 10.1021/bc500087h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Pramod K. Gupta
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Shalini Asthana
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Anil K. Jaiswal
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Vivek Kumar
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Ashwni K. Verma
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Prashant Shukla
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Pankaj Dwivedi
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Anuradha Dube
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| | - Prabhat R. Mishra
- Pharmaceutics and ‡Parasitology
Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow, India 226031
| |
Collapse
|
47
|
Sanderson L, Yardley V, Croft SL. Activity of anti-cancer protein kinase inhibitors against Leishmania spp. J Antimicrob Chemother 2014; 69:1888-91. [PMID: 24668412 DOI: 10.1093/jac/dku069] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES There is an urgent need to develop new and effective treatments for poverty-related neglected diseases. In light of the time required to bring a new drug to market and the cost involved (10-15 years, >1 billion US$), one approach to identifying new treatments for diseases like leishmaniasis is to evaluate drugs that are already registered for the treatment of other diseases. This paper describes the anti-leishmanial activities of 10 FDA-approved protein kinase inhibitors already available for the treatment of human cancers. METHODS In vitro and in vivo models of Leishmania infection were used to evaluate the potency of selected protein kinase inhibitors. RESULTS Sunitinib, sorafenib and lapatinib were identified as active against Leishmania donovani amastigotes in cultured murine macrophages with IC(50) values of 1.1, 3.7 and 2.5 μM, respectively, a level of potency similar to that of miltefosine (IC(50) = 1.0 μM), and were not toxic to mammalian cells. In addition, some of the protein kinase inhibitors were active against L. donovani in the BALB/c mouse model of infection; dosing on days 7-11 with a 50 mg/kg oral dose of sunitinib, lapatinib or sorafenib reduced liver amastigote burdens by 41%, 36% and 30%, respectively, compared with untreated control mice. Although less efficacious, sorafenib was also active in vitro against intracellular amastigotes of the cutaneous disease-causing species Leishmania amazonensis, Leishmania major and Leishmania mexicana. CONCLUSIONS This study demonstrates in vivo anti-leishmanial activity of clinically used protein kinase inhibitors and provides further evidence of the potential of drug repurposing.
Collapse
Affiliation(s)
- Lisa Sanderson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Simon L Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
48
|
Gupta PK, Jaiswal AK, Kumar V, Verma A, Dwivedi P, Dube A, Mishra PR. Covalent Functionalized Self-Assembled Lipo-Polymerosome Bearing Amphotericin B for Better Management of Leishmaniasis and Its Toxicity Evaluation. Mol Pharm 2014; 11:951-63. [DOI: 10.1021/mp400603t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pramod K. Gupta
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anil K. Jaiswal
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Vivek Kumar
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Ashwni Verma
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Pankaj Dwivedi
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Anuradha Dube
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| | - Prabhat R. Mishra
- Pharmaceutics Division and ‡Parasitology Division, Council of Scientific and Industrial Research-Central Drug Research Institute, B 10/1, Sector
10, Jankipuram Extension, Sitapur Road, Lucknow, India 226031
| |
Collapse
|
49
|
Mesquita JT, Tempone AG, Reimão JQ. Combination therapy with nitazoxanide and amphotericin B, Glucantime®, miltefosine and sitamaquine against Leishmania (Leishmania) infantum intracellular amastigotes. Acta Trop 2014; 130:112-6. [PMID: 24239532 DOI: 10.1016/j.actatropica.2013.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023]
Abstract
Leishmaniasis is a neglected disease that affects poorest population mainly in developing countries, representing one of the major causes of mortality and morbidity. Therefore, efforts to find new chemotherapeutics for leishmaniasis remain a priority. Previous reports demonstrated the in vitro and in vivo antileishmanial activity of nitazoxanide, an antiprotozoan agent used in the treatment of infectious diarrhea. The present work was carried out to determine the effect of nitazoxanide in combination with current antileishmanial drugs. Mouse peritoneal macrophages were infected with Leishmania (Leishmania) infantum amastigotes in order to calculate the 50% and 90% inhibitory concentration values. Drug interactions were assessed with fixed ratio isobologram method and fractional inhibitory concentrations (FIC50 and FIC90); sum of FIC (ΣFIC50 and ΣFIC90) and overall mean ΣFIC (xΣFIC50 and xΣFIC90) were calculated for each combination. The nature of interactions was classified according to the xΣFIC50 and xΣFIC90. The combination between nitazoxanide and amphotericin B, Glucantime(®), miltefosine and sitamaquine showed xΣFIC50 values of 1.13, 0.83, 1.06 and 0.94, respectively, indicating additive interaction. Considering the in vitro activity of nitazoxanide and the obtained results, further in vivo studies may be considered to evaluate possible drug interactions in visceral leishmaniasis.
Collapse
|
50
|
Manandhar KD, Yadav TP, Prajapati VK, Basukala O, Aganja RP, Dude A, Shrivastav ON, Sundar S. Nanonization increases the antileishmanial efficacy of amphotericin B: an ex vivo approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 808:77-91. [PMID: 24595612 DOI: 10.1007/978-81-322-1774-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With widespread resistance to pentavalent antimonial in the endemic eastern terai belt of Nepal and Bihar, India, Amphotericin B deoxycholate is now the first-line antileishmanial drug for the treatment of visceral leishmaniasis (VL). However, universal occurrence of infusion-related fever and rigors with amphotericin B (AmB), occasional serious life-threatening toxicities like cardiotoxicity, anaphylaxis, hypokalemia, and nephrotoxicity are major barriers to its use in areas with limited medical facilities. Liposomal amphotericins, however, are devoid of adverse effects, high cost makes it unaffordable. We had formulated nanoparticles (10-20 nm) from amphotericin B deoxycholate (1-2 μm) applying high pressure (150 atm) milling homogenization in argon atmosphere and tested its ex vivo efficacy in Leishmania infected J774A cell line and peritoneal macrophage. The ex vivo ED50 for intracellular amastigotes in peritoneal macrophage by nano-amphotericin was 0.0027 ± 0.001 μg/mL which was significantly less (p = 0.0029) than the required dose of amphotericin B (0.0426 ± 0.003 μg/mL). Similarly, in J774A cell line, 50 % of intracellular amastigotes were cleared by 0.0038 ± 0.001 μg/mL of nano-amphotericin while the dose was a bit more for AmB (0.0196 ± 0.001 μg/mL) illustrating the significant difference (p value, 0.0122). The nanoformulation has also shown high efficacy (ED50, 0.0028-0.0035 μg/mL) in inhibition of infected macrophage count. The new formulation accumulated to spleen, the targeted organ, 7 days after inoculation of drug to the infected hamster as traced in vivo by TEM convincing it as potential drug. Given a favorable safety profile and very low cost of production contemplated, it may prove to be a feasible alternative for conventional amphotericin B.
Collapse
Affiliation(s)
- Krishna Das Manandhar
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal,
| | | | | | | | | | | | | | | |
Collapse
|