1
|
Kwakye-Nuako G, Middleton CE, McCall LI. Small molecule mediators of host-T. cruzi-environment interactions in Chagas disease. PLoS Pathog 2024; 20:e1012012. [PMID: 38457443 PMCID: PMC10923493 DOI: 10.1371/journal.ppat.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Small molecules (less than 1,500 Da) include major biological signals that mediate host-pathogen-microbiome communication. They also include key intermediates of metabolism and critical cellular building blocks. Pathogens present with unique nutritional needs that restrict pathogen colonization or promote tissue damage. In parallel, parts of host metabolism are responsive to immune signaling and regulated by immune cascades. These interactions can trigger both adaptive and maladaptive metabolic changes in the host, with microbiome-derived signals also contributing to disease progression. In turn, targeting pathogen metabolic needs or maladaptive host metabolic changes is an important strategy to develop new treatments for infectious diseases. Trypanosoma cruzi is a single-celled eukaryotic pathogen and the causative agent of Chagas disease, a neglected tropical disease associated with cardiac and intestinal dysfunction. Here, we discuss the role of small molecules during T. cruzi infection in its vector and in the mammalian host. We integrate these findings to build a theoretical interpretation of how maladaptive metabolic changes drive Chagas disease and extrapolate on how these findings can guide drug development.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Caitlyn E. Middleton
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
2
|
Pedra-Rezende Y, Barbosa JMC, Bombaça ACS, Dantas-Pereira L, Gibaldi D, Vilar-Pereira G, Dos Santos HAM, Ramos IP, Silva-Gomes NL, Moreira OC, Lannes-Vieira J, Menna-Barreto RFS. Physical Exercise Promotes a Reduction in Cardiac Fibrosis in the Chronic Indeterminate Form of Experimental Chagas Disease. Front Immunol 2021; 12:712034. [PMID: 34804007 PMCID: PMC8599157 DOI: 10.3389/fimmu.2021.712034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a neglected tropical disease and a health problem in Latin America. Etiological treatment has limited effectiveness in chronic CD; thus, new therapeutic strategies are required. The practice of physical exercises has been widely advocated to improve the quality of life of CD patients. The most frequent clinical CD manifestation is the chronic indeterminate form (CIF), and the effect of physical exercises on disease progression remains unknown. Here, in a CIF model, we aimed to evaluate the effect of physical exercises on cardiac histological, parasitological, mitochondrial, and oxidative metabolism, electro and echocardiographic profiles, and immunological features. To establish a CIF model, BALB/c and C57BL/6 mice were infected with 100 and 500 trypomastigotes of the Y T. cruzi strain. At 120 days postinfection (dpi), all mouse groups showed normal PR and corrected QT intervals and QRS complexes. Compared to BALB/c mice, C57BL/6 mice showed a lower parasitemia peak, mortality rate, and less intense myocarditis. Thus, C57BL/6 mice infected with 500 parasites were used for subsequent analyses. At 120 dpi, a decrease in cardiac mitochondrial oxygen consumption and an increase in reactive oxygen species (ROS) were detected. When we increased the number of analyzed mice, a reduced heart rate and slightly prolonged corrected QT intervals were detected, at 120 and 150 dpi, which were then normalized at 180 dpi, thus characterizing the CIF. Y-infected mice were subjected to an exercise program on a treadmill for 4 weeks (from 150 to 180 dpi), five times per week in a 30–60-min daily training session. At 180 dpi, no alterations were detected in cardiac mitochondrial and oxidative metabolism, which were not affected by physical exercises, although ROS production increased. At 120 and 180 dpi, comparing infected and non-infected mice, no differences were observed in the levels of plasma cytokines, indicating that a crucial biomarker of the systemic inflammatory profile was absent and not affected by exercise. Compared with sedentary mice, trained Y-infected mice showed similar parasite loads and inflammatory cells but reduced cardiac fibrosis. Therefore, our data show that physical exercises promote beneficial changes that may prevent CD progression.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Juliana M C Barbosa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Cristina S Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luiza Dantas-Pereira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil.,Instituto Brasileiro de Medicina de Reabilitação, Rio de Janeiro, Brazil
| | - Hílton Antônio Mata Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos e Laboratório Multiusuário de Análises por RMN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Lins Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular de Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular de Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Liu Z, Ulrich vonBargen R, McCall LI. Central role of metabolism in Trypanosoma cruzi tropism and Chagas disease pathogenesis. Curr Opin Microbiol 2021; 63:204-209. [PMID: 34455304 PMCID: PMC8463485 DOI: 10.1016/j.mib.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi parasites. During mammalian infection, T. cruzi alternates between an intracellular stage and extracellular stage. T. cruzi adapts its metabolism to this lifestyle, while also reshaping host metabolic pathways. Such host metabolic adaptations compensate for parasite-induced stress, but may promote parasite survival and proliferation. Recent work has demonstrated that metabolism controls parasite tropism and location of Chagas disease symptoms, and regulates whether infection is mild or severe. Such findings have important translational applications with regards to treatment and diagnostic test development, though further research is needed with regards to in vivo parasite metabolic gene expression, relationship between magnitude of local metabolic perturbation, parasite strain and disease location, and host-parasite-microbiota co-metabolism.
Collapse
Affiliation(s)
- Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, 73019, United States
| | - Rebecca Ulrich vonBargen
- Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, 73019, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, 73019, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, United States.
| |
Collapse
|
4
|
Use of a small molecule integrin activator as a systemically administered vaccine adjuvant in controlling Chagas disease. NPJ Vaccines 2021; 6:114. [PMID: 34497271 PMCID: PMC8426359 DOI: 10.1038/s41541-021-00378-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
The development of suitable safe adjuvants to enhance appropriate antigen-driven immune responses remains a challenge. Here we describe the adjuvant properties of a small molecule activator of the integrins αLβ2 and α4β1, named 7HP349, which can be safely delivered systemically independent of antigen. 7HP349 directly activates integrin cell adhesion receptors crucial for the generation of an immune response. When delivered systemically in a model of Chagas disease following immunization with a DNA subunit vaccine encoding candidate T. cruzi antigens, TcG2 and TcG4, 7HP349 enhanced the vaccine efficacy in both prophylactic and therapeutic settings. In a prophylactic setting, mice immunized with 7HP349 adjuvanted vaccine exhibited significantly improved control of acute parasite burden in cardiac and skeletal muscle as compared to vaccination alone. When administered with vaccine therapeutically, parasite burden was again decreased, with the greatest adjuvant effect of 7HP349 being noted in skeletal muscle. In both settings, adjuvantation with 7HP349 was effective in decreasing pathological inflammatory infiltrate, improving the integrity of tissue, and controlling tissue fibrosis in the heart and skeletal muscle of acutely and chronically infected Chagas mice. The positive effects correlated with increased splenic frequencies of CD8+T effector cells and an increase in the production of IFN-γ and cytolytic molecules (perforin and granzyme) by the CD4+ and CD8+ effector and central memory subsets in response to challenge infection. This demonstrates that 7HP349 can serve as a systemically administered adjuvant to enhance T cell-mediated immune responses to vaccines. This approach could be applied to numerous vaccines with no reformulation of existing stockpiles.
Collapse
|
5
|
Hoffman K, Liu Z, Hossain E, Bottazzi ME, Hotez PJ, Jones KM, McCall LI. Alterations to the Cardiac Metabolome Induced by Chronic T. cruzi Infection Relate to the Degree of Cardiac Pathology. ACS Infect Dis 2021; 7:1638-1649. [PMID: 33843195 PMCID: PMC8588157 DOI: 10.1021/acsinfecdis.0c00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic Chagasic cardiomyopathy (CCC) is a Neglected Tropical Disease caused by the parasite Trypanosoma cruzi. The pathognomonic findings in symptomatic CCC patients and animal models includes diffuse cardiac fibrosis and inflammation with persistent parasite presence in the heart. This study investigated chemical alterations in different regions of the heart in relation to cardiac pathology indicators to better understand the long-term pathogenesis of this neglected disease. We used data from echocardiography, fibrosis biomarkers, and histopathological analysis to fully evaluate cardiac pathology. Metabolites isolated from the pericardial and endocardial sides of the right ventricular myocardium were analyzed by liquid chromatography tandem mass spectrometry. The endocardial sections contained significantly less cardiac inflammation and fibrosis than the pericardial sections. Cardiac levels of acylcarnitines, phosphocholines, and other metabolites were significantly disrupted in accordance with cardiac fibrosis, inflammation, and serum fibrosis biomarker levels. These findings have potential implications in treatment and monitoring for CCC patients.
Collapse
Affiliation(s)
- Kristyn Hoffman
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ekram Hossain
- Department of Chemistry and Biochemistry and Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Maria Elena Bottazzi
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States; Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Peter J. Hotez
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States; Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Kathryn M. Jones
- Department of Molecular Virology and Microbiology and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030, United States; Texas Children’s Hospital Center for Vaccine Development, Houston, Texas 77030, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, Laboratories of Molecular Anthropology and Microbiome Research, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
6
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
7
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
8
|
Libisch MG, Rego N, Robello C. Transcriptional Studies on Trypanosoma cruzi - Host Cell Interactions: A Complex Puzzle of Variables. Front Cell Infect Microbiol 2021; 11:692134. [PMID: 34222052 PMCID: PMC8248493 DOI: 10.3389/fcimb.2021.692134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Carlos Robello,
| |
Collapse
|
9
|
Trypanosoma cruzi Modulates PIWI-Interacting RNA Expression in Primary Human Cardiac Myocytes during the Early Phase of Infection. Int J Mol Sci 2020; 21:ijms21249439. [PMID: 33322418 PMCID: PMC7764157 DOI: 10.3390/ijms21249439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Trypanosoma cruzi dysregulates the gene expression profile of primary human cardiomyocytes (PHCM) during the early phase of infection through a mechanism which remains to be elucidated. The role that small non-coding RNAs (sncRNA) including PIWI-interacting RNA (piRNA) play in regulating gene expression during the early phase of infection is unknown. To understand how T. cruzi dysregulate gene expression in the heart, we challenged PHCM with T. cruzi trypomastigotes and analyzed sncRNA, especially piRNA, by RNA-sequencing. The parasite induced significant differential expression of host piRNAs, which can target and regulate the genes which are important during the early infection phase. An average of 21,595,866 (88.40%) of clean reads mapped to the human reference genome. The parasite induced 217 unique piRNAs that were significantly differentially expressed (q ≥ 0.8). Of these differentially expressed piRNAs, 6 were known and 211 were novel piRNAs. In silico analysis showed that some of the dysregulated known and novel piRNAs could target and potentially regulate the expression of genes including NFATC2, FOS and TGF-β1, reported to play important roles during T. cruzi infection. Further evaluation of the specific functions of the piRNAs in the regulation of gene expression during the early phase of infection will enhance our understanding of the molecular mechanism of T. cruzi pathogenesis. Our novel findings constitute the first report that T. cruzi can induce differential expression of piRNAs in PHCM, advancing our knowledge about the involvement of piRNAs in an infectious disease model, which can be exploited for biomarker and therapeutic development.
Collapse
|
10
|
de Castro TBR, Canesso MCC, Boroni M, Chame DF, Souza DDL, de Toledo NE, Tahara EB, Pena SD, Machado CR, Chiari E, Macedo A, Franco GR. Differential Modulation of Mouse Heart Gene Expression by Infection With Two Trypanosoma cruzi Strains: A Transcriptome Analysis. Front Genet 2020; 11:1031. [PMID: 33088283 PMCID: PMC7495023 DOI: 10.3389/fgene.2020.01031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
The protozoan Trypanosoma cruzi (T. cruzi) is a well-adapted parasite to mammalian hosts and the pathogen of Chagas disease in humans. As both host and T. cruzi are highly genetically diverse, many variables come into play during infection, making disease outcomes difficult to predict. One important challenge in the field of Chagas disease research is determining the main factors leading to parasite establishment in the chronic stage in some organs, mainly the heart and/or digestive system. Our group previously showed that distinct strains of T. cruzi (JG and Col1.7G2) acquired differential tissue distribution in the chronic stage in dually infected BALB/c mice. To investigate changes in the host triggered by the two distinct T. cruzi strains, we assessed the gene expression profiles of BALB/c mouse hearts infected with either JG, Col1.7G2 or an equivalent mixture of both parasites during the initial phase of infection. This study demonstrates the clear differences in modulation of host gene expression by both parasites. Col1.7G2 strongly activated Th1-polarized immune signature genes, whereas JG caused only minor activation of the host immune response. Moreover, JG strongly reduced the expression of genes encoding ribosomal proteins and mitochondrial proteins related to the electron transport chain. Interestingly, the evaluation of gene expression in mice inoculated with a mixture of the parasites produced expression profiles with both up- and downregulated genes, indicating the coexistence of both parasite strains in the heart during the acute phase. This study suggests that different strains of T. cruzi may be distinguished by their efficiency in activating the immune system, modulating host energy metabolism and reactive oxygen species production and decreasing protein synthesis during early infection, which may be crucial for parasite persistence in specific organs.
Collapse
Affiliation(s)
| | | | - Mariana Boroni
- Laboratório de Bioinformática e Biologia Computacional, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Daniela Ferreira Chame
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Daniela de Laet Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Nayara Evelin de Toledo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Eric Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Sergio Danilo Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Andrea Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Gloria Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Oliveira AER, Pereira MCA, Belew AT, Ferreira LRP, Pereira LMN, Neves EGA, Nunes MDCP, Burleigh BA, Dutra WO, El-Sayed NM, Gazzinelli RT, Teixeira SMR. Gene expression network analyses during infection with virulent and avirulent Trypanosoma cruzi strains unveil a role for fibroblasts in neutrophil recruitment and activation. PLoS Pathog 2020; 16:e1008781. [PMID: 32810179 PMCID: PMC7508367 DOI: 10.1371/journal.ppat.1008781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/22/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells. Similar transcriptome profiles were observed at 60 hpi with both strains compared to uninfected samples. However, at 96 hpi, significant differences in the number and expression levels of several genes, particularly those involved with immune response and cytoskeleton organization, were observed. Further analyses confirmed the difference in the chemokine/cytokine signaling involved with the recruitment and activation of immune cells such as neutrophils upon T. cruzi infection. These findings suggest that infection with the virulent CL Brener strain induces a more robust inflammatory response when compared with the non-virulent CL-14 strain. Importantly, the RNA-Seq data also exposed an unexplored role of fibroblasts as sentinel cells that may act by recruiting neutrophils to the initial site of infection. This role for fibroblasts in the regulation of the inflammatory response during infection by T. cruzi was corroborated by measurements of levels of different chemokines/cytokines during in vitro infection and in plasma from Chagas disease patients as well as by neutrophil activation and migration assays. Trypanosoma cruzi is the causative agent of Chagas disease, a debilitating and often life-threatening illness that affects 6 to 7 million people mainly in Latin America. The parasite, transmitted to humans by an insect vector, needs to invade different cells from the infected person in order to multiply and spread the infection to various organs, including the heart and the gut. In this study, we investigated how the host cell responds to the infection by analyzing changes in the expression of human genes in fibroblasts infected with the CL Brener and CL-14 strains, which are strains that present highly distinct virulent phenotypes during infection in mice. We showed that human fibroblasts build a strong immune response upon infection by T. cruzi and that this response is different depending on the parasite strain: infection with the virulent CL Brener strain induces a more robust inflammatory response compared with the infection with the avirulent CL-14 strain. We also showed that, in response to the infection, fibroblasts produce molecules that can recruit and activate neutrophils, which are important immune cells that controls the infection.
Collapse
Affiliation(s)
- Antonio Edson R. Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milton C. A. Pereira
- Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Ashton T. Belew
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Ludmila R. P. Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Eula G. A. Neves
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria do Carmo P. Nunes
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Walderez O. Dutra
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Ricardo T. Gazzinelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- * E-mail: (SMRT); (RTG)
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail: (SMRT); (RTG)
| |
Collapse
|
12
|
Chen M, Luo Y, Xu J, Chang MX, Liu JX. Copper Regulates the Susceptibility of Zebrafish Larvae to Inflammatory Stimuli by Controlling Neutrophil/Macrophage Survival. Front Immunol 2019; 10:2599. [PMID: 31787979 PMCID: PMC6856049 DOI: 10.3389/fimmu.2019.02599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/21/2019] [Indexed: 11/21/2022] Open
Abstract
Copper has been revealed to negatively affect the hematopoietic system, which has an important function in immune pathogen defense, but little is known about the potential mechanism. In this study, copper-stressed larvae exhibited significantly increased mortality as well as reduced percentages of GFP-labeled macrophages and neutrophils after Aeromonas hydrophila (A. hydrophila) infection. However, those copper-stressed GFP-labeled macrophages and neutrophils showed more rapid responses to A. hydrophila infection. The transcriptional profiles in copper-stressed macrophages or neutrophils were unveiled by RNA-Sequencing, and KEGG pathway analysis revealed enrichment of differentially expressed genes (DEGs) in lysosome, apoptosis, oxidative phosphorylation, phagosome, etc. The copper-stressed macrophages or neutrophils were revealed to have an increase in reactive oxygen species (ROS) and mitochondria ROS (mROS)-mediated apoptosis, and a reduction in phagocytosis. Furthermore, the A. hydrophila-infected copper-stressed macrophages or neutrophils were found to be unable to maintain a consistently increased expression in immune responsive genes. This study demonstrated for the first time that copper might induce the susceptibility of fish larvae to inflammatory stimuli via triggering macrophage or neutrophil apoptosis, leading to reduced phagocytic activities and non-sustainable immune responses in immune macrophages or neutrophils.
Collapse
Affiliation(s)
- MingYue Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - JiangPing Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ming-Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jing-Xia Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Ayyappan JP, lizardo K, Wang S, Yurkow E, Nagajyothi JF. Inhibition of ER Stress by 2-Aminopurine Treatment Modulates Cardiomyopathy in a Murine Chronic Chagas Disease Model. Biomol Ther (Seoul) 2019; 27:386-394. [PMID: 30879276 PMCID: PMC6609105 DOI: 10.4062/biomolther.2018.193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi infection results in debilitating cardiomyopathy, which is a major cause of mortality and morbidity in the endemic regions of Chagas disease (CD). The pathogenesis of Chagasic cardiomyopathy (CCM) has been intensely studied as a chronic inflammatory disease until recent observations reporting the role of cardio-metabolic dysfunctions. In particular, we demonstrated accumulation of lipid droplets and impaired cardiac lipid metabolism in the hearts of cardiomyopathic mice and patients, and their association with impaired mitochondrial functions and endoplasmic reticulum (ER) stress in CD mice. In the present study, we examined whether treating infected mice with an ER stress inhibitor can modify the pathogenesis of cardiomyopathy during chronic stages of infection. T. cruzi infected mice were treated with an ER stress inhibitor 2-Aminopurine (2AP) during the indeterminate stage and evaluated for cardiac pathophysiology during the subsequent chronic stage. Our study demonstrates that inhibition of ER stress improves cardiac pathology caused by T. cruzi infection by reducing ER stress and downstream signaling of phosphorylated eukaryotic initiation factor (P-elF2α) in the hearts of chronically infected mice. Importantly, cardiac ultrasound imaging showed amelioration of ventricular enlargement, suggesting that inhibition of ER stress may be a valuable strategy to combat the progression of cardiomyopathy in Chagas patients.
Collapse
Affiliation(s)
- Janeesh Plakkal Ayyappan
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, NJ 07103,
USA
| | - Kezia lizardo
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, NJ 07103,
USA
| | - Sean Wang
- Rutgers Molecular Imaging Center, Piscataway, NJ 08854,
USA
| | - Edward Yurkow
- Rutgers Molecular Imaging Center, Piscataway, NJ 08854,
USA
| | - Jyothi F Nagajyothi
- Department of Microbiology, Biochemistry and Molecular Genetics, Public Health Research Institute, New Jersey Medical School, Newark, NJ 07103,
USA
| |
Collapse
|
14
|
Oliveira AER, Grazielle-Silva V, Ferreira LRP, Teixeira SMR. Close encounters between Trypanosoma cruzi and the host mammalian cell: Lessons from genome-wide expression studies. Genomics 2019; 112:990-997. [PMID: 31229555 DOI: 10.1016/j.ygeno.2019.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/22/2019] [Accepted: 06/15/2019] [Indexed: 12/15/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas disease, a life-threatening disease that affects different tissues. Within its mammalian host, T. cruzi develops molecular strategies for successful invasion of different cell types and adaptation to the intracellular environment. Conversely, the host cell responds to the infection by activating intracellular pathways to control parasite replication. Here, we reviewed genome-wide expression studies based on microarray and RNA-seq data from both parasite and host genes generated from animal models of infection as well as from Chagas disease patients. As expected, analyses of T. cruzi genes highlighted changes related to parasite energy metabolism and cell surface molecules, whereas host cell transcriptome emphasized the role of immune response genes. Besides allowing a better understanding of mechanisms behind the pathogenesis of Chagas disease, these studies provide essential information for the development of new therapies as well as biomarkers for diagnosis and assessment of disease progression.
Collapse
Affiliation(s)
- Antonio Edson R Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila R P Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Ribeiro FAP, Pontes C, Machado ADMV, Bruna-Romero O, Quintana HT, De Oliveira F, De Vasconcelos JRC, Ribeiro DA. Therapeutical effects of vaccine from Trypanosoma cruzi amastigote surface protein 2 by simultaneous inoculation with live parasites. J Cell Biochem 2018; 120:3373-3383. [PMID: 30246366 DOI: 10.1002/jcb.27608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 08/08/2018] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate the efficacy of vaccine using replication-deficient human recombinant Type 5 replication-defective adenoviruses (AdHu5) carrying sequences of the amastigote surface protein 2 (ASP2) (AdASP2) in mice infected with the Trypanosoma cruzi ( T cruzi) Y strain. A total of 16 A/Sn mice female were distributed into four groups, as follows (n = 4 per group): Group 1 - Control Group (CTRL); Group 2 - Infected Group (TC): animals were infected by subcutaneous route with 150 bloodstream trypomastigotes of T cruzi Y strain; Group 3 - Immunized Group (AdASP-2): animals were immunized by intramuscular injection (im) route with 50 µL of AdSP-2 (2 × 10 8 plaque forming units [pfu]/cam) at day 0; Group 4-Immunized and Infected Group (AdASP-2+TC): animals were immunized by im route with 50 µL of ASP-2 (2 × 10 8 pfu/cam) and infected by T cruzi at the same day (day 0). It was observed a significant decrease of nests in the group that was immunized with AdASP-2 and infected on the same day. Tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) gene expressions showed a significant increase in the AdASP-2+TC group when compared to TC group, but it was noted that Cyclooxygenase-2 (Cox-2) was increased in TC group when compared to AdASP-2+TC group. Increase of matrix metalloproteinases-2 (MMP-2) and decrease of MMP-9 immunoexpression in the AdASP-2+TC group was noticed as well. Oxidative DNA damage was present in myocardium for AdASP-2+TC group as a result of 8-hydroxydeoxyguanosine immunoexpression. Taken together, our results highlighted an increased oxidative stress, MMP-2 activity and inflammatory host response promoted by AdASP-2 against T cruzi infection.
Collapse
Affiliation(s)
| | - Camila Pontes
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, São Paulo, Brasil
| | | | | | - Hananiah T Quintana
- Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, Brasil
| | - Flávia De Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, Brasil
| | | | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, Brasil
| |
Collapse
|
16
|
Suman S, Rachakonda G, Mandape SN, Sakhare SS, Villalta F, Pratap S, Lima MF, Nde PN. Phospho-proteomic analysis of primary human colon epithelial cells during the early Trypanosoma cruzi infection phase. PLoS Negl Trop Dis 2018; 12:e0006792. [PMID: 30222739 PMCID: PMC6160231 DOI: 10.1371/journal.pntd.0006792] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, causes severe morbidity and mortality in afflicted individuals. About 30% of T. cruzi-infected individuals present with cardiac, gastrointestinal tract, and/or neurological disorders. Megacolon, one of the major pathologies of Chagas disease, is accompanied by gastrointestinal motility disorders. The molecular mechanism of T. cruzi-mediated megacolon in Chagas disease is currently unknown. To decipher the molecular mechanism of T. cruzi-induced alteration in the colon during the early infection phase, we exposed primary human colonic epithelial cells (HCoEpiC) to invasive T. cruzi trypomastigotes at multiple time points to determine changes in the phosphoprotein networks in the cells following infection using proteome profiler Human phospho-kinase arrays. We found significant changes in the phosphorylation pattern that can mediate cellular deregulations in colonic epithelial cells after infection. We detected a significant increase in the levels of phosphorylated heat shock protein (p-HSP) 27 and transcription factors that regulate various cellular functions, including c-Jun and CREB. Our study confirmed significant upregulation of phospho (p-) Akt S473, p-JNK, which may directly or indirectly modulate CREB and c-Jun phosphorylation, respectively. We also observed increased levels of phosphorylated CREB and c-Jun in the nucleus. Furthermore, we found that p-c-Jun and p-CREB co-localized in the nucleus at 180 minutes post infection, with a maximum Pearson correlation coefficient of 0.76±0.02. Increased p-c-Jun and p-CREB have been linked to inflammatory and profibrotic responses. T. cruzi infection of HCoEpiC induces an increased expression of thrombospondin-1 (TSP-1), which is fibrogenic at elevated levels. We also found that T. cruzi infection modulates the expression of NF-kB and JAK2-STAT1 signaling molecules which can increase pro-inflammatory flux. Bioinformatics analysis of the phosphoprotein networks derived using the phospho-protein data serves as a blueprint for T. cruzi-mediated cellular transformation of primary human colonic cells during the early phase of T. cruzi infection.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Sammed N. Mandape
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Shruti S. Sakhare
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Maria F. Lima
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Pius N. Nde
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| |
Collapse
|
17
|
Libisch MG, Faral-Tello P, Garg NJ, Radi R, Piacenza L, Robello C. Early Trypanosoma cruzi Infection Triggers mTORC1-Mediated Respiration Increase and Mitochondrial Biogenesis in Human Primary Cardiomyocytes. Front Microbiol 2018; 9:1889. [PMID: 30166980 PMCID: PMC6106620 DOI: 10.3389/fmicb.2018.01889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Chagasic chronic cardiomyopathy is one of the most frequent and severe manifestations of Chagas disease, caused by the parasite Trypanosoma cruzi. The pathogenic and biochemical mechanisms responsible for cardiac lesions remain not completely understood, although it is clear that hypertrophy and subsequent heart dilatation is in part caused by the direct infection of cardiomyocytes. In this work, we evaluated the initial response of human cardiomyocytes to T. cruzi infection by transcriptomic profiling. Immediately after infection, cardiomyocytes dramatically change their gene expression patterns, up regulating most of the genes encoding for respiratory chain, oxidative phosphorylation and protein synthesis. We found that these changes correlate with an increase in basal and maximal respiration, as well as in spare respiratory capacity, which is accompanied by mitochondrial biogenesis pgc-1α independent. We also demonstrate that these changes are mediated by mTORC1 and reversed by rapamycin, resembling the molecular mechanisms described for the non-chagasic hypertrophic cardiomyopathy. The results of the present work identify that early during infection, the activation of mTORC1, mitochondrial biogenesis and improvement in oxidative phosphorylation are key biochemical changes that provide new insights into the host response to parasite infection and the pathogenesis of chronic chagasic cardiomyopathy. The finding that this phenotype can be reversed opens a new perspective in the treatment of Chagas disease, through the identification of host targets, and the use of combined parasite and host targeted therapies, in order to prevent chagasic cardiomyopathy.
Collapse
Affiliation(s)
- M Gabriela Libisch
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nisha J Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
18
|
Wen JJ, Garg NJ. Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease. PLoS Negl Trop Dis 2018; 12:e0006687. [PMID: 30044789 PMCID: PMC6078326 DOI: 10.1371/journal.pntd.0006687] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/06/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023] Open
Abstract
In this study, we have investigated the effects of manganese superoxide dismutase (SOD2 or MnSOD) deficiency on mitochondrial function and oxidative stress during Chagas disease. For this, C57BL/6 wild type (WT) and MnSOD+/- mice were infected with Trypanosoma cruzi (Tc), and evaluated at 150 days’ post-infection that corresponded to chronic disease phase. Genetic deletion of SOD2 decreased the expression and activity of MnSOD, but it had no effect on the expression of other members of the SOD family. The myocardial expression and activity of MnSOD were significantly decreased in chronically infected WT mice, and it was further worsened in MnSOD+/- mice. Chronic T. cruzi infection led to a decline in mitochondrial complex I and complex II driven, ADP-coupled respiration and ATP synthesis in the myocardium of WT mice. The baseline oxidative phosphorylation (OXPHOS) capacity in MnSOD+/- mice was decreased, and it had an additive effect on mitochondrial dysregulation of ATP synthesis capacity in chagasic myocardium. Further, MnSOD deficiency exacerbated the mitochondrial rate of reactive oxygen species (ROS) production and myocardial oxidative stress (H2O2, protein carbonyls, malondialdehyde, and 4-hydroxynonenal) in Chagas disease. Peripheral and myocardial parasite burden and inflammatory response (myeloperoxidase, IL-6, lactate dehydrogenase, inflammatory infiltrate) were increased in all chagasic WT and MnSOD+/- mice. We conclude that MnSOD deficiency exacerbates the loss in mitochondrial function and OXPHOS capacity and enhances the myocardial oxidative damage in chagasic cardiomyopathy. Mitochondria targeted, small molecule mitigators of MnSOD deficiency will offer potential benefits in averting the mitochondrial dysfunction and chronic oxidative stress in Chagas disease. Infection by Trypanosoma cruzi parasitic protozoan remains endemic in Latin America. After acute parasitemia phase is controlled by host immune system, infected individuals remain clinically silent but manifest a number of micro and macro cardiac injuries for several years. Eventually many of the infected individuals develop chronic cardiomyopathy that leads to heart failure and sudden death. Cardiac muscle cells are rich in mitochondria and manganese superoxide dismutase (MnSOD) is the chief superoxide scavenging enzyme in the mitochondria. In this study, we show that a deficiency of MnSOD exacerbates the T. cruzi induced mitochondrial dysfunction of the electron transport chain and energy production in the heart. Further, MnSOD deficiency resulted in increased mitochondrial release of oxidants and caused excessive oxidative damage in the chagasic heart. Our results suggest that small molecule agonists of MnSOD will have potential utility as adjuvant therapy in preventing the development of chronic Chagas disease in infected individuals.
Collapse
Affiliation(s)
- Jake J. Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, UTMB, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, UTMB, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Coelho LL, Pereira IR, Pereira MCDS, Mesquita L, Lannes-Vieira J, Adesse D, Garzoni LR. Trypanosoma cruzi activates mouse cardiac fibroblasts in vitro leading to fibroblast-myofibroblast transition and increase in expression of extracellular matrix proteins. Parasit Vectors 2018; 11:72. [PMID: 29382361 PMCID: PMC5791182 DOI: 10.1186/s13071-018-2614-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023] Open
Abstract
Background Cardiac fibrosis is a consequence of chronic chagasic cardiomyopathy (CCC). In other cardiovascular diseases, the protagonist role of fibroblasts in cardiac fibrosis is well established. However, the role of cardiac fibroblasts (CFs) in fibrosis during the CCC is not clear. Here, our aim was to investigate the effect of Trypanosoma cruzi, the etiological agent of Chagas disease on CFs activation. Methods Cardiac fibroblasts were purified from primary cultures of mouse embryo cardiac cells. After two passages, cells were infected with T. cruzi (Y strain) and analyzed at different times for determination of infectivity, activation and production of extracellular matrix components (fibronectin, laminin and collagen IV) by immunofluorescence and western blot. Results At second passage, cultures were enriched in CFs (95% of fibroblasts and 5% of cardiomyocytes), as revealed by presence of alpha-smooth muscle actin (α-SMA) and discoidin domain receptor 2 (DDR2) and absence of sarcomeric tropomyosin (ST) protein expression. Trypanosoma cruzi infection induced fibroblast-myofibroblast transition, with increased expression of α-SMA after 6 and 24 h post-infection (hpi). Fibronectin was increased at 6, 24 and 48 hpi, laminin was increased at 6 and 24 hpi and collagen IV was increased at 6 hpi. Conclusions Our results showed that T. cruzi activates CFs, inducing activation and exacerbates ECM production. Furthermore, our data raise the possibility of the involvement of CFs in heart fibrosis during Chagas disease.
Collapse
Affiliation(s)
- Laura Lacerda Coelho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Pavilhão Cardoso Fontes, 2° andar, Rio de Janeiro RJ, 20045-900, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Pavilhão Cardoso Fontes, 2° andar, Rio de Janeiro RJ, 20045-900, Brazil
| | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Pavilhão Carlos Chagas sala 308, Rio de Janeiro RJ, 20045-900, Brazil
| | - Liliane Mesquita
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Pavilhão Carlos Chagas sala 308, Rio de Janeiro RJ, 20045-900, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Pavilhão Cardoso Fontes, 2° andar, Rio de Janeiro RJ, 20045-900, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Pavilhão Carlos Chagas, sala 307, Rio de Janeiro RJ, 20045-900, Brazil
| | - Luciana Ribeiro Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Av. Brasil 4365, Pavilhão Cardoso Fontes, 2° andar, Rio de Janeiro RJ, 20045-900, Brazil.
| |
Collapse
|
20
|
Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection. Sci Rep 2017; 7:17990. [PMID: 29269773 PMCID: PMC5740174 DOI: 10.1038/s41598-017-18080-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America. Its acute phase is associated with high parasitism, myocarditis and profound myocardial gene expression changes. A chronic phase ensues where 30% develop severe heart lesions. Mouse models of T. cruzi infection have been used to study heart damage in Chagas disease. The aim of this study was to provide an interactome between miRNAs and their targetome in Chagas heart disease by integrating gene and microRNA expression profiling data from hearts of T. cruzi infected mice. Gene expression profiling revealed enrichment in biological processes and pathways associated with immune response and metabolism. Pathways, functional and upstream regulator analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs revealed enrichment in biological processes and pathways such as IFNγ, TNFα, NF-kB signaling signatures, CTL-mediated apoptosis, mitochondrial dysfunction, and Nrf2-modulated antioxidative responses. We also observed enrichment in other key heart disease-related processes like myocarditis, fibrosis, hypertrophy and arrhythmia. Our correlation study suggests that miRNAs may be implicated in the pathophysiological processes taking place the hearts of acutely T. cruzi-infected mice.
Collapse
|
21
|
Wen JJ, Porter C, Garg NJ. Inhibition of NFE2L2-Antioxidant Response Element Pathway by Mitochondrial Reactive Oxygen Species Contributes to Development of Cardiomyopathy and Left Ventricular Dysfunction in Chagas Disease. Antioxid Redox Signal 2017; 27:550-566. [PMID: 28132522 PMCID: PMC5567598 DOI: 10.1089/ars.2016.6831] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS We investigated the effects of mitochondrial reactive oxygen species (mtROS) on nuclear factor (erythroid 2)-like 2 (NFE2L2) transcription factor activity during Trypanosoma cruzi (Tc) infection and determined whether enhancing the mtROS scavenging capacity preserved the heart function in Chagas disease. RESULTS C57BL/6 wild type (WT, female) mice infected with Tc exhibited myocardial loss of mitochondrial membrane potential, complex II (CII)-driven coupled respiration, and ninefold increase in mtROS production. In vitro and in vivo studies showed that Tc infection resulted in an ROS-dependent decline in the expression, nuclear translocation, antioxidant response element (ARE) binding, and activity of NFE2L2, and 35-99% decline in antioxidants' (gamma-glutamyl cysteine synthase [γGCS], heme oxygenase-1 [HO1], glutamate-cysteine ligase modifier subunit [GCLM], thioredoxin (Trx), glutathione S transferase [GST], and NAD(P)H dehydrogenase, quinone 1 [NQO1]) expression. An increase in myocardial and mitochondrial oxidative adducts, myocardial interventricular septum thickness, and left ventricle (LV) mass, a decline in LV posterior wall thickness, and disproportionate synthesis of collagens (COLI/COLIII), αSMA, and SM22α were noted in WT.Tc mice. Overexpression of manganese superoxide dismutase (MnSOD) in cultured cells (HeLa or cardiomyocytes) and MnSODtg mice preserved the NFE2L2 transcriptional activity and antioxidant/oxidant balance, and cardiac oxidative and fibrotic pathology were significantly decreased in MnSODtg.Tc mice. Importantly, echocardiography finding of a decline in LV systolic (stroke volume, cardiac output, ejection fraction) and diastolic (early/late peak filling ratio, myocardial performance index) function in WT.Tc mice was abolished in MnSODtg.Tc mice. Innovation and Conclusion: The mtROS inhibition of NFE2L2/ARE pathway constitutes a key mechanism in signaling the fibrotic gene expression and evolution of chronic cardiomyopathy. Preserving the NFE2L2 activity arrested the mitochondrial and cardiac oxidative stress, cardiac fibrosis, and heart failure in Chagas disease. Antioxid. Redox Signal. 27, 550-566.
Collapse
Affiliation(s)
- Jake Jianjun Wen
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Craig Porter
- 2 Metabolism Unit, Shriners Hospital for Children , Galveston, Texas.,3 Department of Surgery, University of Texas Medical Branch (UTMB) , Galveston, Texas
| | - Nisha Jain Garg
- 1 Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,4 Department of Pathology, University of Texas Medical Branch (UTMB) , Galveston, Texas.,5 Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB) , Galveston, Texas
| |
Collapse
|
22
|
Wen JJ, Wan X, Thacker J, Garg NJ. Chemotherapeutic efficacy of phosphodiesterase inhibitors in chagasic cardiomyopathy. JACC Basic Transl Sci 2016; 1:235-250. [PMID: 27747306 PMCID: PMC5065248 DOI: 10.1016/j.jacbts.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular mechanisms of Trypanosoma cruzi (Tc)-induced Chagasic cardiomyopathy (CCM) are not well understood. The NO-cGMP-PKG1α pathway maintains cardiac homeostasis and inotropy and may be disturbed due to phosphodiesterase (PDE5)-mediated cGMP catabolism in CCM. To test this, C57BL/6 mice were infected with T. cruzi, and after the control of acute parasitemia (∼45 days post-infection), given sildenafil (SIL) (1 mg/kg) treatment for 3 weeks that ended long before the chronic disease phase (∼150 days post-infection). The PDE5 was increased and cGMP/PKG activity was decreased in chagasic myocardium. Transthoracic echocardiography revealed left ventricular (LV) systolic function, that is, stroke volume, cardiac output, and ejection fraction, was significantly decreased in chagasic mice. SIL treatment resulted in normal levels of PDE5 and cGMP/PKG activity and preserved the LV function. The cardioprotective effects of SIL were provided through inhibition of cardiac collagenosis and chronic inflammation that otherwise were pronounced in CCM. Further, SIL treatment restored the mitochondrial DNA–encoded gene expression, complex I–dependent (but not complex II–dependent) ADP-coupled respiration, and oxidant/antioxidant balance in chagasic myocardium. In vitro studies in cardiomyocytes verified that SIL conserved the redox metabolic state and cellular health via maintaining the antioxidant status that otherwise was compromised in response to T. cruzi infection. We conclude that SIL therapy was useful in controlling the LV dysfunction and chronic pathology in CCM. Mice infected with T. cruzi control acute parasitemia but develop chronic chagasic cardiomyopathy. Treatment with SIL (a phosphodiesterase inhibitor) during a therapeutic window of indeterminate phase provided powerful cardioprotective effects against chronic development of cardiomyopathy and LV dysfunction. SIL normalized the cGMP-dependent protein kinase activity and mitochondrial oxidative metabolism, and established the oxidant/antioxidant balance in chagasic myocardium. SIL prevented the oxidative/inflammatory adducts that precipitate cardiomyocytes death and cardiac remodeling in CCM.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - John Thacker
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas; Department of Pathology, UTMB, Galveston, TX; Institute for Human Infections and Immunity, UTMB, Galveston, TX
| |
Collapse
|
23
|
Garg NJ, Soman KV, Zago MP, Koo SJ, Spratt H, Stafford S, Blell ZN, Gupta S, Nuñez Burgos J, Barrientos N, Brasier AR, Wiktorowicz JE. Changes in Proteome Profile of Peripheral Blood Mononuclear Cells in Chronic Chagas Disease. PLoS Negl Trop Dis 2016; 10:e0004490. [PMID: 26919708 PMCID: PMC4769231 DOI: 10.1371/journal.pntd.0004490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/03/2016] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi (Tc) infection causes chagasic cardiomyopathy; however, why 30-40% of the patients develop clinical disease is not known. To discover the pathomechanisms in disease progression, we obtained the proteome signature of peripheral blood mononuclear cells (PBMCs) of normal healthy controls (N/H, n = 30) and subjects that were seropositive for Tc-specific antibodies, but were clinically asymptomatic (C/A, n = 25) or clinically symptomatic (C/S, n = 28) with cardiac involvement and left ventricular dysfunction. Protein samples were labeled with BODIPY FL-maleimide (dynamic range: > 4 orders of magnitude, detection limit: 5 f-mol) and resolved by two-dimensional gel electrophoresis (2D-GE). After normalizing the gel images, protein spots that exhibited differential abundance in any of the two groups were analyzed by mass spectrometry, and searched against UniProt human database for protein identification. We found 213 and 199 protein spots (fold change: |≥ 1.5|, p< 0.05) were differentially abundant in C/A and C/S individuals, respectively, with respect to N/H controls. Ingenuity Pathway Analysis (IPA) of PBMCs proteome dataset identified an increase in disorganization of cytoskeletal assembly and recruitment/activation and migration of immune cells in all chagasic subjects, though the invasion capacity of cells was decreased in C/S individuals. IPA predicted with high probability a decline in cell survival and free radical scavenging capacity in C/S (but not C/A) subjects. The MYC/SP1 transcription factors that regulate hypoxia and oxidative/inflammatory stress were predicted to be key targets in the context of control of Chagas disease severity. Further, MARS-modeling identified a panel of proteins that had >93% prediction success in classifying infected individuals with no disease and those with cardiac involvement and LV dysfunction. In conclusion, we have identified molecular pathways and a panel of proteins that could aid in detecting seropositive individuals at risk of developing cardiomyopathy.
Collapse
Affiliation(s)
- Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, UTMB, Galveston, Texas, United States of America
- Faculty of the Institute for Human Infections and Immunity, and Sealy Center for Vaccine Development, UTMB, Galveston, Texas, United States of America
| | - Kizhake V. Soman
- Department of Biochemistry and Molecular Biology, and the Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, United States of America
| | - Maria P. Zago
- Instituto de Patología Experimental, CONICET-UNSa, Salta, Argentina
| | - Sue-Jie Koo
- Department of Pathology, UTMB, Galveston, Texas, United States of America
| | - Heidi Spratt
- Department of Preventive Medicine and Community Health, UTMB, Galveston, Texas, United States of America
- Institute for Translational Sciences, UTMB, Galveston, Texas, United States of America
| | - Susan Stafford
- Department of Biochemistry and Molecular Biology, and the Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, United States of America
| | - Zinzi N. Blell
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | | | | | - Allan R. Brasier
- Institute for Translational Sciences, UTMB, Galveston, Texas, United States of America
- Department of Internal Medicine, UTMB, Galveston, Texas, United States of America
| | - John E. Wiktorowicz
- Department of Biochemistry and Molecular Biology, and the Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, United States of America
- Institute for Translational Sciences, UTMB, Galveston, Texas, United States of America
| |
Collapse
|
24
|
Udoko AN, Johnson CA, Dykan A, Rachakonda G, Villalta F, Mandape SN, Lima MF, Pratap S, Nde PN. Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0003747. [PMID: 26771187 PMCID: PMC4714843 DOI: 10.1371/journal.pntd.0003747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM) exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes). The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1) transcription factor network components (including FOSB, FOS and JUNB), early growth response proteins 1 and 3 (EGR1, EGR3), and cytokines/chemokines (IL5, IL6, IL13, CCL11), which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA) array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF-β dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic cardiomyopathy. Examining the very early molecular events of T. cruzi cellular infection may provide disease biomarkers which will aid clinicians in patient assessment and identification of patient subpopulation at risk of developing Chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Aniekanabassi N. Udoko
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Candice A. Johnson
- Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Andrey Dykan
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Sammed N. Mandape
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Maria F. Lima
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- School of Graduate Studies and Research, Bioinformatics and Molecular Biology Core, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Siddharth Pratap
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- School of Graduate Studies and Research, Bioinformatics and Molecular Biology Core, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Pius N. Nde
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
25
|
Báez AL, Reynoso MN, Lo Presti MS, Bazán PC, Strauss M, Miler N, Pons P, Rivarola HW, Paglini-Oliva P. Mitochondrial dysfunction in skeletal muscle during experimental Chagas disease. Exp Mol Pathol 2015; 98:467-75. [PMID: 25835781 DOI: 10.1016/j.yexmp.2015.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 01/17/2023]
Abstract
Trypanosoma cruzi invasion and replication in cardiomyocytes and other tissues induce cellular injuries and cytotoxic reactions, with the production of inflammatory cytokines and nitric oxide, both sources of reactive oxygen species. The myocyte response to oxidative stress involves the progression of cellular changes primarily targeting mitochondria. Similar alterations could be taking place in mitochondria from the skeletal muscle; if that is the case, a simple skeletal muscle biopsy would give information about the cardiac energetic production that could be used as a predictor of the chagasic cardiopathy evolution. Therefore, in the present paper we studied skeletal muscle mitochondrial structure and the enzymatic activity of citrate synthase and respiratory chain complexes I to IV (CI-CIV), in Albino Swiss mice infected with T. cruzi, Tulahuen strain and SGO Z12 and Lucky isolates, along the infection. Changes in the mitochondrial structure were detected in 100% of the mitochondria analyzed from the infected groups: they all presented at least 1 significant abnormality such as increase in their matrix or disorganization of their cristae, which are probably related to the enzymatic dysfunction. When we studied the Krebs cycle functionality through the measurement of the specific citrate synthase activity, we found it to be significantly diminished during the acute phase of the infection in Tulahuen and SGO Z12 infected groups with respect to the control one; citrate synthase activity from the Lucky group was significantly increased (p<0.05). The activity of this enzyme was reduced in all the infected groups during the chronic asymptomatic phase (p<0.001) and return to normal values (Tulahuen and SGO Z12) or increased its activity (Lucky) by day 365 post-infection (p.i.). When the mitochondrial respiratory chain was analyzed from the acute to the chronic phase of the infection through the measurement of the activity of complexes I to IV, the activity of CI remained similar to control in Tulahuen and Lucky groups, but was significantly augmented in the SGO Z12 one in the acute and chronic phases (p<0.05). CII increased its activity in Tulahuen and Lucky groups by day 75 p.i. and in SGO Z12 by day 365 p.i. (p<0.05). CIII showed a similar behavior in the 3 infected groups, remaining similar to control values in the first two stages of the infection and significantly increasing later on (p<0.0001). CIV showed an increase in its activity in Lucky throughout all stages of infection (p<0.0001) and an increase in Tulahuen by day 365days p.i. (p<0.0001); SGO Z12 on the other hand, showed a decreased CIV activity at the same time. The structural changes in skeletal muscle mitochondria and their altered enzyme activity began in the acute phase of infection, probably modifying the ability of mitochondria to generate energy; these changes were not compensated in the rest of the phases of the infection. Chagas is a systemic disease, which produces not only heart damage but also permanent skeletal muscle alterations.
Collapse
Affiliation(s)
- Alejandra L Báez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - María N Reynoso
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - María S Lo Presti
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Paola C Bazán
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Mariana Strauss
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Noemí Miler
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Patricia Pons
- Cátedra de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Héctor W Rivarola
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| | - Patricia Paglini-Oliva
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU Córdoba, Argentina
| |
Collapse
|
26
|
Enzymatic activities linked to cardiac energy metabolism of Trypanosoma evansi-infected rats and their possible functional correlations to disease pathogenesis. Parasitology 2015; 142:1163-70. [PMID: 25758981 DOI: 10.1017/s0031182015000220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate the activities of important enzymes involved in the phosphoryl transfer network (adenylate kinase and creatine kinase (CK)), lactate dehydrogenase (LDH), respiratory chain complexes and biomarkers of cardiac function in rat experimentally infected by Trypanosoma evansi. Rat heart samples were evaluated at 5 and 15 days post-infection (PI). At 5 day PI, there was an increase in LDH and CK activities, and a decrease in respiratory chain complexes II, IV and succinate dehydrogenase activities. In addition, on day 15 PI, a decrease in the respiratory chain complex IV activity was observed. Biomarkers of cardiac function were higher in infected animals on days 5 and 15 PI. Considering the importance of the energy metabolism for heart function, it is possible that the changes in the enzymatic activities involved in the cardiac phosphotransfer network and the decrease in respiratory chain might be involved partially in the role of biomarkers of cardiac function of T. evansi-infected rats.
Collapse
|
27
|
Henao-Martínez AF, Agler AH, Watson AM, Hennessy C, Davidson E, Demos-Davies K, McKinsey TA, Wilson M, Schwartz DA, Yang IV. AKT network of genes and impaired myocardial contractility during murine acute Chagasic myocarditis. Am J Trop Med Hyg 2015; 92:523-9. [PMID: 25582694 DOI: 10.4269/ajtmh.14-0433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chagasic disease is associated with high morbidity in Latin America. Acute Chagasic myocarditis is consistently found in acute infections, but little is known about its contribution to chronic cardiomyopathy. The aim of the study was to phenotypically characterize two strains of mice with differential Chagas infection susceptibility and correlate strain myocarditis phenotypes with heart tissue gene expression. C57BL/6J and Balb/c mice were injected intraperitoneally with 0 or 150-200 tissue-derived trypomastigotes (Tulahuen strain). Echocardiograms, brain natriuretic peptide, and troponin were measured. Heart tissue was harvested for histopathological analysis and gene expression profiling on microarrays. Genes differently expressed between infected Balb/c and C57BL/6J mice were identified. Echocardiograms showed differences in Balb/c versus C57BL/6J infected mice in heart rate (413 versus 476 beats per minute; P = 0.0001), stroke volume (31.9 ± 9.3 versus 39.2 ± 5.5 μL; P = 0.03), and cardiac output (13.1 ± 3.5 versus 18.7 ± 3.2 μL/min; P = 0.002). Gene expression at 4 weeks analysis showed 32 statistically significant (q value < 0.05) differentially expressed genes between infected Balb/c and C57BL/6J mice that were enriched for genes related to the protein kinase B (AKT) pathway. These specific phenotypic features of cardiac response during acute Chagasic myocarditis may, in part, be related to host AKT network regulation.
Collapse
Affiliation(s)
- Andrés F Henao-Martínez
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Anne Hermetet Agler
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Alan M Watson
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Corinne Hennessy
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Elizabeth Davidson
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Kim Demos-Davies
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Timothy A McKinsey
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Michael Wilson
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - David A Schwartz
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Ivana V Yang
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| |
Collapse
|
28
|
Dhiman M, Garg NJ. P47phox-/- mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection. PLoS Pathog 2014; 10:e1004516. [PMID: 25474113 PMCID: PMC4256457 DOI: 10.1371/journal.ppat.1004516] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022] Open
Abstract
Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- * E-mail: (MD); (NJG)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Pathology, UTMB, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, UTMB, Galveston, Texas, United States of America
- * E-mail: (MD); (NJG)
| |
Collapse
|
29
|
Ferreira LRP, Frade AF, Baron MA, Navarro IC, Kalil J, Chevillard C, Cunha-Neto E. Interferon-γ and other inflammatory mediators in cardiomyocyte signaling during Chagas disease cardiomyopathy. World J Cardiol 2014; 6:782-790. [PMID: 25228957 PMCID: PMC4163707 DOI: 10.4330/wjc.v6.i8.782] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/29/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Chagas disease cardiomyopathy (CCC), the main consequence of Trypanosoma cruzi (T.cruzi) infection, is an inflammatory cardiomyopathy that develops in up to 30% of infected individuals. The heart inflammation in CCC patients is characterized by a Th1 T cell-rich myocarditis with increased production of interferon (IFN)-γ, produced by the CCC myocardial infiltrate and detected at high levels in the periphery. IFN-γ has a central role in the cardiomyocyte signaling during both acute and chronic phases of T.cruzi infection. In this review, we have chosen to focus in its pleiotropic mode of action during CCC, which may ultimately be the strongest driver towards pathological remodeling and heart failure. We describe here the antiparasitic protective and pathogenic dual role of IFN-γ in Chagas disease.
Collapse
|
30
|
Early Trypanosoma cruzi infection reprograms human epithelial cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:439501. [PMID: 24812617 PMCID: PMC4000934 DOI: 10.1155/2014/439501] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response), a great number of transcription factors (including the majority of NFκB family members), and host metabolism (cholesterol, fatty acids, and phospholipids). These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.
Collapse
|
31
|
Dhiman M, Wan X, Popov VL, Vargas G, Garg NJ. MnSODtg mice control myocardial inflammatory and oxidative stress and remodeling responses elicited in chronic Chagas disease. J Am Heart Assoc 2013; 2:e000302. [PMID: 24136392 PMCID: PMC3835234 DOI: 10.1161/jaha.113.000302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background We utilized genetically modified mice equipped with a variable capacity to scavenge mitochondrial and cellular reactive oxygen species to investigate the pathological significance of oxidative stress in Chagas disease. Methods and Results C57BL/6 mice (wild type, MnSODtg, MnSOD+/−, GPx1−/−) were infected with Trypanosoma cruzi and harvested during the chronic disease phase. Chronically infected mice exhibited a substantial increase in plasma levels of inflammatory markers (nitric oxide, myeloperoxidase), lactate dehydrogenase, and myocardial levels of inflammatory infiltrate and oxidative adducts (malondialdehyde, carbonyls, 3‐nitrotyrosine) in the order of wild type=MnSOD+/−>GPx1−/−>MnSODtg. Myocardial mitochondrial damage was pronounced and associated with a >50% decline in mitochondrial DNA content in chronically infected wild‐type and GPx1−/− mice. Imaging of intact heart for cardiomyocytes and collagen by the nonlinear optical microscopy techniques of multiphoton fluorescence/second harmonic generation showed a significant increase in collagen (>10‐fold) in chronically infected wild‐type mice, whereas GPx1−/− mice exhibited a basal increase in collagen that did not change during the chronic phase. Chronically infected MnSODtg mice exhibited a marginal decline in mitochondrial DNA content and no changes in collagen signal in the myocardium. P47phox−/− mice lacking phagocyte‐generated reactive oxygen species sustained a low level of myocardial oxidative stress and mitochondrial DNA damage in response to Trypanosoma cruzi infection. Yet chronically infected p47phox−/− mice exhibited increase in myocardial inflammatory and remodeling responses, similar to that noted in chronically infected wild‐type mice. Conclusions Inhibition of oxidative burst of phagocytes was not sufficient to prevent pathological cardiac remodeling in Chagas disease. Instead, enhancing the mitochondrial reactive oxygen species scavenging capacity was beneficial in controlling the inflammatory and oxidative pathology and the cardiac remodeling responses that are hallmarks of chronic Chagas disease.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | | | | | | | | |
Collapse
|
32
|
Guerreiro LTA, Robottom-Ferreira AB, Ribeiro-Alves M, Toledo-Pinto TG, Rosa Brito T, Rosa PS, Sandoval FG, Jardim MR, Antunes SG, Shannon EJ, Sarno EN, Pessolani MCV, Williams DL, Moraes MO. Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy. PLoS One 2013; 8:e64748. [PMID: 23798993 PMCID: PMC3683049 DOI: 10.1371/journal.pone.0064748] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Herein, we performed microarray experiments in Schwann cells infected with live M. leprae and identified novel differentially expressed genes (DEG) in M. leprae infected cells. Also, we selected candidate genes associated or implicated with leprosy in genetic studies and biological experiments. Forty-seven genes were selected for validation in two independent types of samples by multiplex qPCR. First, an in vitro model using THP-1 cells was infected with live Mycobacterium leprae and M. bovis bacillus Calmette-Guérin (BCG). In a second situation, mRNA obtained from nerve biopsies from patients with leprosy or other peripheral neuropathies was tested. We detected DEGs that discriminate M. bovis BCG from M. leprae infection. Specific signatures of susceptible responses after M. leprae infection when compared to BCG lead to repression of genes, including CCL2, CCL3, IL8 and SOD2. The same 47-gene set was screened in nerve biopsies, which corroborated the down-regulation of CCL2 and CCL3 in leprosy, but also evidenced the down-regulation of genes involved in mitochondrial metabolism, and the up-regulation of genes involved in lipid metabolism and ubiquitination. Finally, a gene expression signature from DEG was identified in patients confirmed of having leprosy. A classification tree was able to ascertain 80% of the cases as leprosy or non-leprous peripheral neuropathy based on the expression of only LDLR and CCL4. A general immune and mitochondrial hypo-responsive state occurs in response to M. leprae infection. Also, the most important genes and pathways have been highlighted providing new tools for early diagnosis and treatment of leprosy.
Collapse
Affiliation(s)
| | | | - Marcelo Ribeiro-Alves
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Farmacogenética, Instituto de Pesquisa Clínica Evandro Chagas (IPEC), FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Thiago Gomes Toledo-Pinto
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Tiana Rosa Brito
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | | | - Felipe Galvan Sandoval
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Márcia Rodrigues Jardim
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Sérgio Gomes Antunes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | - Edward J. Shannon
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
| | | | - Diana Lynn Williams
- Health Resources and Services Administration (HRSA), Bureau of Primary Health Care (BPHC), Division of National Hansen's Disease Programs, Laboratory Research Branch at the School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Milton Ozório Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ-RJ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
33
|
Granulocyte colony-stimulating factor partially repairs the damage provoked by Trypanosoma cruzi in murine myocardium. Int J Cardiol 2013; 168:2567-74. [PMID: 23597573 DOI: 10.1016/j.ijcard.2013.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/13/2012] [Accepted: 03/17/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND The hallmark of Trypanosoma cruzi infection is cardiomyopathy that leads to end-stage heart failure. We investigated whether G-CSF, known to induce heart tissue repair by bone marrow stem cell mobilization, ameliorates T. cruzi-induced myocarditis. METHODS AND RESULTS T. cruzi-infected C3H/He mice were treated with G-CSF and monitored for parasite burden, BMSC mobilization, cytokine profile and cardiac remodeling. G-CSF increased the expression of CXCR4, CD34, and c-Kit, indicating mobilization and migration of BMSC, some of which differentiated to cardiomyocytes as evidenced by increased levels of GATA4(+)/MEF2C(+) cells and desmin expression in chagasic hearts. G-CSF enhanced a mixed cytokine response (IL-10+TGF-β>IFN-γ+TNF-α>IL-4) associated with increased heart inflammation and no beneficial effect on parasite control. Further, G-CSF controlled T. cruzi-induced extracellular-matrix alterations of collagens (Col I and Col llI), hydroxyproline, and glycosaminoglycan contents and promoted compensatory cardiac remodeling; however, these responses were not sufficient to control T. cruzi-induced cardiomyocyte atrophy. Benznidazole treatment prior to G-CSF resulted in the control of parasitism and parasite-induced inflammation, and subsequently, G-CSF was effective in executing the tissue repair, as evidenced by extracellular-matrix homeostasis and normalization of cardiomyocyte size in chagasic hearts. CONCLUSIONS G-CSF treatment after T. cruzi infection enhanced migration and homing of BMSC, some of which differentiated to cardiomyocytes. Yet, G-CSF promoted a mixed (Treg>Th1>Th2) immune response that contributed to persistent inflammation and limited improvement in cardiac homeostasis. Combinatorial therapy (BZ → G-CSF) was beneficial in arresting inflammatory processes and tissue damage in chagasic hearts.
Collapse
|
34
|
Castro-Sesquen YE, Gilman RH, Paico H, Yauri V, Angulo N, Ccopa F, Bern C. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi. PLoS Negl Trop Dis 2013; 7:e1996. [PMID: 23409197 PMCID: PMC3566988 DOI: 10.1371/journal.pntd.0001996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/21/2012] [Indexed: 01/19/2023] Open
Abstract
We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection. Chronic Chagas heart disease (CHHD) caused by the infection with the parasite Trypanosoma cruzi is the most important infectious heart disease in the world. The typical manifestations are dilated cardiomyopathy and congestive heart failure; they result from death of cardiomyocytes and their replacement by collagen. Knowing the mechanisms of cardiomyocyte death is important for the development of therapies that prevent them. The contribution of apoptosis in cardiomyocyte death was evaluated in the guinea pig model of T. cruzi infection, and the detection of serum levels of collagen precursors were evaluated as biomarkers of cardiac fibrosis. We observed apoptosis of lymphocytes, cardiomyocytes, endothelial cells and epicardial adipose tissue in cardiac tissue of infected guinea pigs. The increase of serum levels of collagen precursors PICP and PIIINP were associated with cardiac fibrosis. Areas of inflammation and apoptosis of epicardial adipose tissue were associated with cardiac pathology, which suggests the importance of epicardial adipose tissue in CCHD. These results show that apoptosis is an important characteristic of cardiac cell death during CCHD and serum levels of PICP and PIIINP could be used as biomarkers of cardiac fibrosis.
Collapse
Affiliation(s)
- Yagahira E. Castro-Sesquen
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociación Benéfica PRISMA, Lima, Peru
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins University, Bloomberg School of Hygiene and Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Henry Paico
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Verónica Yauri
- School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Noelia Angulo
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fredy Ccopa
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Caryn Bern
- Global Health Sciences and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
35
|
Chronic indeterminate phase of Chagas’ disease: mitochondrial involvement in infection with two strains. Parasitology 2012; 140:414-21. [DOI: 10.1017/s0031182012001771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SUMMARYChagasic cardiopathy has become one of the most frequent causes of heart failure and sudden death, as well as one of the most common causes of cardio-embolic stroke in Latin America. The myocyte response to oxidative stress involves the progression of cellular changes, primarily targeting the mitochondria and modifying therefore the energy supply. In this paper we analysed the effect of the infection of mice with 2 different strains of Trypanosoma cruzi (Tulahuen and SGO Z12) in the chronic indeterminate stage (75 days post-infection), upon the structure and function of cardiac mitochondria. The structural results showed that 83% of the mitochondria from the Tulahuen-infected mice presented an increase in their matrix and 91% of the mitochondria from the SGO Z12-infected group showed a reduction in their diameter (P < 0·05). When the Krebs cycle and mitochondrial respiratory chain functionality was analysed through the measurement of the citrate synthase and complexes I to IV activity, it showed that their activity was altered in all cases in a similar manner in both infected groups. In this paper we have demonstrated that the chronic indeterminate phase is not ‘silent’ and that cardiac mitochondria are clearly involved in the genesis and progression to the chronic chagasic cardiopathy when different factors alter the host-parasite equilibrium.
Collapse
|
36
|
Calvet CM, Melo TG, Garzoni LR, Oliveira FOR, Neto DTS, N S L M, Meirelles L, Pereira MCS. Current understanding of the Trypanosoma cruzi-cardiomyocyte interaction. Front Immunol 2012; 3:327. [PMID: 23115558 PMCID: PMC3483718 DOI: 10.3389/fimmu.2012.00327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/16/2012] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits multiple strategies to ensure its establishment and persistence in the host. Although this parasite has the ability to infect different organs, heart impairment is the most frequent clinical manifestation of the disease. Advances in knowledge of T. cruzi-cardiomyocyte interactions have contributed to a better understanding of the biological events involved in the pathogenesis of Chagas disease. This brief review focuses on the current understanding of molecules involved in T. cruzi-cardiomyocyte recognition, the mechanism of invasion, and on the effect of intracellular development of T. cruzi on the structural organization and molecular response of the target cell.
Collapse
Affiliation(s)
- Claudia M Calvet
- Laboratório de Ultra-estrutura Celular, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nogueira FB, Rodrigues JFA, Correa MMS, Ruiz JC, Romanha AJ, Murta SMF. The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide. Mem Inst Oswaldo Cruz 2012; 107:494-502. [DOI: 10.1590/s0074-02762012000400009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 12/14/2011] [Indexed: 11/22/2022] Open
|
38
|
Dhiman M, Garg NJ. NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 2011; 225:583-96. [PMID: 21952987 DOI: 10.1002/path.2975] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 07/04/2011] [Accepted: 07/18/2011] [Indexed: 12/15/2022]
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease, invades nucleated mammalian cells including macrophages. In this study, we investigated the crosstalk between T. cruzi-induced immune activation of reactive oxygen species (ROS) and pro-inflammatory responses, and their role in myocardial pathology. Splenocytes of infected mice (C3H/HeN) responded to Tc-antigenic stimulus by more than a two-fold increase in NADPH oxidase (NOX) activity, ROS generation, cytokine production (IFN-γ > IL-4 > TNFα > IL1-β≈ IL6), and predominant expansion of CD4(+) and CD8(+) T cells. Inhibition of NOX, but not of myeloperoxidase and xanthine oxidase, controlled the ROS (>98%) and cytokine (70-89%) release by Tc-stimulated splenocytes of infected mice. Treatment of infected mice with apocynin (NOX inhibitor) in drinking water resulted in a 50-90% decline in endogenous NOX/ROS and cytokine levels, and splenic phagocytes' proliferation. The splenic percentage of T cells was maintained, though more than a 40% decline in splenic index (spleen weight/body weight) indicated decreased T-cell proliferation in apocynin-treated/infected mice. The blood and tissue parasite burden were significantly increased in apocynin-treated/infected mice, yet acute myocarditis, ie inflammatory infiltrate consisting of macrophages, neutrophils, and CD8(+) T cells, and tissue oxidative adducts (eg 8-isoprostanes, 3-nitrotyrosine, and 4-hydroxynonenal) were diminished in apocynin-treated/infected mice. Consequently, hypertrophy (increased cardiomyocytes' size and β-MHC, BNP, and ANP mRNA levels) and fibrosis (increased collagen, glycosaminoglycans, and lipid contents) of the heart during the chronic phase were controlled in apocynin-treated mice. We conclude that NOX/ROS is a critical regulator of the splenic response (phagocytes, T cells, and cytokines) to T. cruzi infection, and bystander effects of heart-infiltrating phagocytes and CD8(+) T cells resulting in cardiac remodelling in chagasic mice.
Collapse
Affiliation(s)
- Monisha Dhiman
- Department of Microbiology and Immunology, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|
39
|
Teixeira PC, Santos RHB, Fiorelli AI, Bilate AMB, Benvenuti LA, Stolf NA, Kalil J, Cunha-Neto E. Selective decrease of components of the creatine kinase system and ATP synthase complex in chronic Chagas disease cardiomyopathy. PLoS Negl Trop Dis 2011; 5:e1205. [PMID: 21738806 PMCID: PMC3125151 DOI: 10.1371/journal.pntd.0001205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 05/01/2011] [Indexed: 01/25/2023] Open
Abstract
Background Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies. Chronic Chagas disease cardiomyopathy (CCC) affects millions in endemic areas and is presenting in growing numbers in the USA and European countries due to migration currents. Clinical progression, length of survival and overall prognosis are significantly worse in CCC patients when compared to patients with dilated cardiomyopathy of non-inflammatory etiology. Impairment of energy metabolism seems to play a role in heart failure due to cardiomyopathies. Herein, we have analyzed energy metabolism enzymes in myocardium samples of CCC patients comparing to other non-inflammatory cardiomyopathies. We found that myocardial tissue from CCC patients displays a significant reduction of both myocardial protein levels of ATP synthase alpha and creatine kinase enzyme activity, in comparison to control heart samples, as well as idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. Our results suggest that CCC myocardium displays a selective energetic deficit, which may play a role in the reduced heart function observed in such patients.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | | | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Luiz Alberto Benvenuti
- Division of Pathology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
40
|
Aparicio-Burgos JE, Ochoa-García L, Zepeda-Escobar JA, Gupta S, Dhiman M, Martínez JS, de Oca-Jiménez RM, Arreola MV, Barbabosa-Pliego A, Vázquez-Chagoyán JC, Garg NJ. Testing the efficacy of a multi-component DNA-prime/DNA-boost vaccine against Trypanosoma cruzi infection in dogs. PLoS Negl Trop Dis 2011; 5:e1050. [PMID: 21625470 PMCID: PMC3098890 DOI: 10.1371/journal.pntd.0001050] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 04/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is
a major vector borne health problem in Latin America and an emerging
infectious disease in the United States. Methods We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine
(TcVac1) against experimental T. cruzi infection in a
canine model. Dogs were immunized with antigen-encoding plasmids and
cytokine adjuvants, and two weeks after the last immunization, challenged
with T. cruzi trypomastigotes. We measured antibody
responses by ELISA and haemagglutination assay, parasitemia and infectivity
to triatomines by xenodiagnosis, and performed electrocardiography and
histology to assess myocardial damage and tissue pathology. Results Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG
(IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs,
as compared to non-vaccinated controls dogs, responded to T.
cruzi with a rapid expansion of antibody response, moderately
enhanced CD8+ T cell proliferation and IFN-γ production,
and suppression of phagocytes’ activity evidenced by decreased
myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled
the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and
exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized
dogs did not control the myocardial parasite burden and electrocardiographic
and histopatholgic cardiac alterations that are the hallmarks of acute
Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a
moderate decline in cardiac alterations determined by EKG and
anatomo-/histo-pathological analysis while
chronically-infected/non-vaccinated dogs continued to exhibit severe EKG
alterations. Conclusions Overall, these results demonstrated that TcVac1 provided a partial resistance
to T. cruzi infection and Chagas disease, and provide an
impetus to improve the vaccination strategy against Chagas disease. Immunization of dogs with DNA-prime/DNA-boost vaccine (TcVac1) enhanced the
Trypanosoma cruzi-specific type 1 antibody and
CD8+ T cell responses that resulted in an early control of
acute parasitemia and a moderate decline in pathological symptoms during chronic
phase. Further improvement of vaccine-induced immunity would be required to
achieve clinical and epidemiological benefits and prevent transmission of
parasites from vaccinated/infected dogs to triatomines.
Collapse
Affiliation(s)
- José E. Aparicio-Burgos
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | - Laucel Ochoa-García
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | | | - Shivali Gupta
- Department of Microbiology and Immunology,
University of Texas Medical Branch, Galveston, Texas, United States of
America
| | - Monisha Dhiman
- Department of Microbiology and Immunology,
University of Texas Medical Branch, Galveston, Texas, United States of
America
| | - José Simón Martínez
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | | | | | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
| | - Juan C. Vázquez-Chagoyán
- Centro de Investigación y Estudios
Avanzados, Universidad Autónoma de Estado de México, Toluca,
México
- * E-mail: (NJG); (JCV-C)
| | - Nisha Jain Garg
- Department of Microbiology and Immunology,
University of Texas Medical Branch, Galveston, Texas, United States of
America
- Department of Pathology, University of Texas
Medical Branch, Galveston, Texas, United States of America
- Faculty of the Institute for Human Infections
and Immunity, and the Sealy Center for Vaccine Development, University of Texas
Medical Branch, Galveston, Texas, United States of America
- * E-mail: (NJG); (JCV-C)
| |
Collapse
|
41
|
Soares MBP, Lima RS, Souza BSF, Vasconcelos JF, Rocha LL, Dos Santos RR, Iacobas S, Goldenberg RC, Lisanti MP, Iacobas DA, Tanowitz HB, Spray DC, Campos de Carvalho AC. Reversion of gene expression alterations in hearts of mice with chronic chagasic cardiomyopathy after transplantation of bone marrow cells. Cell Cycle 2011; 10:1448-55. [PMID: 21467843 PMCID: PMC3117044 DOI: 10.4161/cc.10.9.15487] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic chagasic cardiomyopathy is a leading cause of heart failure in Latin American countries, being associated with intense inflammatory response and fibrosis. We have previously shown that bone marrow mononuclear cell (BMC) transplantation improves inflammation, fibrosis, and ventricular diameter in hearts of mice with chronic Chagas disease. Here we investigated the transcriptomic recovery induced by BMC therapy by comparing the heart transcriptomes of control, chagasic, and BMC transplanted mice. Out of the 9390 unique genes quantified in all samples, 1702 had their expression altered in chronic chagasic hearts compared to those of normal mice. Major categories of significantly upregulated genes were related to inflammation, fibrosis and immune responses, while genes involved in mitochondrion function were downregulated. When BMC-treated chagasic hearts were compared to infected mice, 96% of the alterations detected in infected hearts were restored to normal levels, although an additional 109 genes were altered by treatment. Transcriptomic recovery, a new measure that considers both resotrative and side effects of treatment, was remarkably high (84%). Immunofluorescence and morphometric analyses confirmed the effects of BMC therapy in the pattern of inflammatory-immune response and expression of adhesion molecules. In conclusion, by using large-scale gene profiling for unbiased assessment of therapeutic efficacy we demonstrate immunomodulatory effects of BMC therapy in chronic chagasic cardiomyopathy and identify potentially relevant factors involved in the pathogenesis of the disease that may provide new therapeutic targets.
Collapse
|
42
|
Tanowitz HB, Mukhopadhyay A, Ashton AW, Lisanti MP, Machado FS, Weiss LM, Mukherjee S. Microarray analysis of the mammalian thromboxane receptor-Trypanosoma cruzi interaction. Cell Cycle 2011; 10:1132-43. [PMID: 21364319 DOI: 10.4161/cc.10.7.15207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, causes vasculopathy and cardiomyopathy in humans and is associated with elevated levels of several vasoactive molecules such as nitric oxide, endothelin-1 and thromboxane A 2 (TXA 2). Parasite derived TXA 2 modulates vasculopathy and other pathophysiological features of Chagasic cardiomyopathy. Previously, we demonstrated that in response to infection with T. cruzi, TXA 2 receptor (TP) null mice displayed increased parasitemia; mortality and cardiac pathology compared with wild type (WT) and TXA 2 synthase null mice. In order to further study the role of TXA 2-TP signaling in the development of Chagas disease, GeneChip microarrays were used to detect transcriptome changes in rat fat pad endothelial cells (RFP-ECs) which is incapable of TXA 2 signaling (TP null) to that of control (wild type) and RFP-EC with reconstituted TP expression. Genes that were significantly regulated due to infection were identified using a time course of 2, 18 and 48 hrs post infection. We identified several key genes such as suppressor of cytokine signaling (SOCS-5), several cytokines (CSF-1, CXCF ligands), and MAP kinases (MAPK-1, Janus kinase) that were upregulated in the absence of TP signaling. These data underscore the importance of the interaction of the parasite with mammalian TP and may explain the increased mortality and cardiovascular pathology observed in infected TP null mice.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Trypanosoma cruzi infection induces a global host cell response in cardiomyocytes. Infect Immun 2011; 79:1855-62. [PMID: 21343357 DOI: 10.1128/iai.00643-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chagas' disease, caused by the hemoflagellate protozoan Trypanosoma cruzi, affects millions of people in South and Central America. Chronic chagasic cardiomyopathy, the most devastating manifestation of this disease, occurs in approximately one-third of infected individuals. Events associated with the parasite's tropism for and invasion of cardiomyocytes have been the focus of intense investigation in recent years. In the present study, we use murine microarrays to investigate the cellular response caused by invasion of primary murine cardiomyocytes by T. cruzi trypomastigotes. These studies identified 353 murine genes that were differentially expressed during the early stages of invasion and infection of these cells. Genes associated with the immune response, inflammation, cytoskeleton organization, cell-cell and cell-matrix interactions, apoptosis, cell cycle, and oxidative stress are among those affected during the infection. Our data indicate that T. cruzi induces broad modulations of the host cell machinery in ways that provide insight into how the parasite survives, replicates, and persists in the infected host and ultimately defines the clinical outcome of the infection.
Collapse
|
44
|
Gupta S, Dhiman M, Wen JJ, Garg NJ. ROS signalling of inflammatory cytokines during Trypanosoma cruzi infection. ADVANCES IN PARASITOLOGY 2011; 76:153-70. [PMID: 21884891 DOI: 10.1016/b978-0-12-385895-5.00007-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation is a host defence activated by exogenous (e.g. pathogen-derived, pollutants) or endogenous (e.g. reactive oxygen species-ROS) danger signals. Mostly, endogenous molecules (or their derivatives) have well-defined intracellular function but become danger signal when released or exposed following stress or injury. In this review, we discuss the potential role of ROS in chronic evolution of inflammatory cardiovascular diseases, using our experiences working on chagasic cardiomyopathy as a focus-point.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, USA
| | | | | | | |
Collapse
|
45
|
Soares MBP, de Lima RS, Rocha LL, Vasconcelos JF, Rogatto SR, dos Santos RR, Iacobas S, Goldenberg RC, Iacobas DA, Tanowitz HB, de Carvalho ACC, Spray DC. Gene expression changes associated with myocarditis and fibrosis in hearts of mice with chronic chagasic cardiomyopathy. J Infect Dis 2010; 202:416-26. [PMID: 20565256 PMCID: PMC2897928 DOI: 10.1086/653481] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic chagasic cardiomyopathy is a leading cause of heart failure in Latin American countries. About 30% of Trypanosoma cruzi-infected individuals develop this severe symptomatic form of the disease, characterized by intense inflammatory response accompanied by fibrosis in the heart. We performed an extensive microarray analysis of hearts from a mouse model of this disease and identified significant alterations in expression of approximately 12% of the sampled genes. Extensive up-regulations were associated with immune-inflammatory responses (chemokines, adhesion molecules, cathepsins, and major histocompatibility complex molecules) and fibrosis (extracellular matrix components, lysyl oxidase, and tissue inhibitor of metalloproteinase 1). Our results indicate potentially relevant factors involved in the pathogenesis of the disease that may provide new therapeutic targets in chronic Chagas disease.
Collapse
|
46
|
Gupta S, Garg NJ. Prophylactic efficacy of TcVac2 against Trypanosoma cruzi in mice. PLoS Negl Trop Dis 2010; 4:e797. [PMID: 20706586 PMCID: PMC2919396 DOI: 10.1371/journal.pntd.0000797] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagas disease is a major health problem in Latin America, and an emerging infectious disease in the US. Previously, we have screened the Trypanosoma cruzi sequence database by a computational/bioinformatics approach, and identified antigens that exhibited the characteristics of vaccine candidates. METHODOLOGY We investigated the protective efficacy of a multi-component DNA-prime/protein-boost vaccine (TcVac2) constituted of the selected candidates and cytokine (IL-12 and GM-CSF) expression plasmids in a murine model. C57BL/6 mice were immunized with antigen-encoding plasmids plus cytokine adjuvants, followed by recombinant proteins; and two-weeks later, challenged with T. cruzi trypomastigotes. ELISA and flow cytometry were employed to measure humoral (antibody isotypes) and cellular (lymphocyte proliferation, CD4(+) and CD8(+) T cell phenotype and cytokines) responses. Myocardial pathology was evaluated by H&E and Masson's trichrome staining. PRINCIPAL FINDINGS TcVac2 induced a strong antigen-specific antibody response (IgG2b>IgG1) and a moderate level of lymphocyte proliferation in mice. Upon challenge infection, TcVac2-vaccinated mice expanded the IgG2b/IgG1 antibodies and elicited a substantial CD8(+) T cell response associated with type 1 cytokines (IFN-gamma and TNF-alpha) that resulted in control of acute parasite burden. During chronic phase, antibody response persisted, splenic activation of CD8(+) T cells and IFN-gamma/TNF-alpha cytokines subsided, and IL-4/IL-10 cytokines became dominant in vaccinated mice. The tissue parasitism, inflammation, and fibrosis in heart and skeletal muscle of TcVac2-vaccinated chronic mice were undetectable by histological techniques. In comparison, mice injected with vector or cytokines only responded to T. cruzi by elicitation of a mixed (type 1/type 2) antibody, T cell and cytokine response, and exhibited persistent parasite burden and immunopathology in the myocardium. CONCLUSION TcVac2-induced activation of type 1 antibody and lymphocyte responses provided resistance to acute T. cruzi infection, and consequently, prevented the evolution of chronic immunopathology associated with parasite persistence in chagasic hearts.
Collapse
Affiliation(s)
- Shivali Gupta
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nisha Jain Garg
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Member of the Institute for Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Wen JJ, Gupta S, Guan Z, Dhiman M, Condon D, Lui C, Garg NJ. Phenyl-alpha-tert-butyl-nitrone and benzonidazole treatment controlled the mitochondrial oxidative stress and evolution of cardiomyopathy in chronic chagasic Rats. J Am Coll Cardiol 2010; 55:2499-508. [PMID: 20510218 DOI: 10.1016/j.jacc.2010.02.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/09/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the pathological importance of oxidative stress-induced injurious processes in chagasic heart dysfunction. BACKGROUND Trypanosoma cruzi-induced inflammatory pathology and a feedback cycle of mitochondrial dysfunction and oxidative stress may contribute to Chagas disease. METHODS Sprague-Dawley rats were infected with T. cruzi and treated with phenyl-alpha-tert-butylnitrone (PBN), an antioxidant, and/or benzonidazole (BZ), an antiparasitic agent. We monitored myocardial parasite burden, oxidative adducts, mitochondrial complex activities, respiration, and adenosine triphosphate synthesis rates, and inflammatory and cardiac remodeling responses during disease development. The cardiac hemodynamics was determined for all rats. RESULTS Benzonidazole (not PBN) decreased the parasite persistence and immune adverse events (proinflammatory cytokine expression, beta-nicotinamide adenine dinucleotide phosphate oxidase and myeloperoxidase activities, and inflammatory infiltrate) in chronically infected hearts. PBN +/- BZ (not BZ alone) decreased the mitochondrial reactive oxygen species level, oxidative adducts (malonyldialdehyde, 4-hydroxynonenal, carbonyls), hypertrophic gene expression (atrial natriuretic peptide, B-type natriuretic peptide, alpha-skeletal actin), and collagen deposition and preserved the respiratory chain efficiency and energy status in chronically infected hearts. Subsequently, LV dysfunction was prevented in PBN +/- BZ-treated chagasic rats. CONCLUSIONS BZ treatment after the acute stage decreased the parasite persistence and inflammatory pathology. Yet, oxidative adducts, mitochondrial dysfunction, and remodeling responses persisted and contributed to declining cardiac function in chagasic rats. Combination treatment (PBN + BZ) was beneficial in arresting the T. cruzi-induced inflammatory and oxidative pathology and chronic heart failure in chagasic rats.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Adesse D, Iacobas DA, Iacobas S, Garzoni LR, Meirelles MDN, Tanowitz HB, Spray DC. Transcriptomic signatures of alterations in a myoblast cell line infected with four distinct strains of Trypanosoma cruzi. Am J Trop Med Hyg 2010; 82:846-54. [PMID: 20439965 DOI: 10.4269/ajtmh.2010.09-0399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We examined the extent to which different Trypanosoma cruzi strains induce transcriptomic changes in cultured L(6)E(9) myoblasts 72 hours after infection with Brazil (TC I), Y (TC II), CL (TC II), and Tulahuen (TC II) strains. Expression of 6,289 distinct, fully annotated unigenes was quantified with 27,000 rat oligonucleotide arrays in each of the four replicas of all control and infected RNA samples. Considering changes greater than 1.5-fold and P values < 0.05, the Tulahuen strain was the most disruptive to host transcriptome (17% significantly altered genes), whereas the Y strain altered only 6% of the genes. The significantly altered genes in the infected cells were largely different among the strains, and only 21 genes were similarly changed by all four strains. However, myoblasts infected with different strains showed proportional overall gene-expression alterations. These results indicate that infection with different parasite strains modulates similar but not identical pathways in the host cells.
Collapse
Affiliation(s)
- Daniel Adesse
- Laboratorio de Ultra-estrutura Celular, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
49
|
Cunha-Neto E, Nogueira LG, Teixeira PC, Ramasawmy R, Drigo SA, Goldberg AC, Fonseca SG, Bilate AM, Kalil J. Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:252-8. [PMID: 19753481 DOI: 10.1590/s0074-02762009000900032] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/18/2009] [Indexed: 01/12/2023] Open
Abstract
The pathogenesis of Chagas disease cardiomyopathy (CCC) is not well understood. Since studies show that myocarditis is more frequent during the advanced stages of the disease, and the prognosis of CCC is worse than that of other dilated cardiomyopathies of non-inflammatory aetiology, which suggest that the inflammatory infiltrate plays a major role in myocardial damage. In the last decade, increasing evidence has shown that inflammatory cytokines and chemokines play a role in the generation of the inflammatory infiltrate and tissue damage. CCC patients have an increased peripheral production of the inflammatory Th1 cytokines IFN-gamma and TNF-alpha when compared to patients with the asymptomatic/indeterminate form. Moreover, Th1-T cells are the main producers of IFN-gamma and TNF-alpha and are frequently found in CCC myocardial inflammatory infiltrate. Over the past several years, our group has collected evidence that shows several cytokines and chemokines produced in the CCC myocardium may also have a non-immunological pathogenic effect via modulation of gene and protein expression in cardiomyocytes and other myocardial cell types. Furthermore, genetic polymorphisms of cytokine, chemokine and innate immune response genes have been associated with disease progression. We will review the molecular and immunological mechanisms of myocardial damage in human CCC in light of recent findings.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Laboratório de Imunologia, Instituto do Coração, Hospital das Clínicas, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wen JJ, Garg NJ. Mitochondrial complex III defects contribute to inefficient respiration and ATP synthesis in the myocardium of Trypanosoma cruzi-infected mice. Antioxid Redox Signal 2010; 12:27-37. [PMID: 19624257 PMCID: PMC2821147 DOI: 10.1089/ars.2008.2418] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, we conducted a thorough analysis of mitochondrial bioenergetic function as well as the biochemical and molecular factors that are deregulated and contribute to compromised adenosine triphosphate (ATP) production in the myocardium during Trypanosoma cruzi infection. We show that ADP-stimulated state 3 respiration and ATP synthesis supported by pyruvate/malate (provides electrons to complex I) and succinate (provides electrons to complex II) substrates were significantly decreased in left ventricular tissue and isolated cardiac mitochondria of infected mice. The decreased mitochondrial ATP synthesis in infected murine hearts was not a result of uncoupling between the electron-transport chain and oxidative phosphorylation and decreased availability of the intermediary metabolites (e.g., NADH). The observed decline in the activities of complex-I, -IV, and -V was not physiologically relevant and did not contribute to compromised respiration and ATP synthesis in infected myocardium. Instead, complex III activity was decreased above the threshold level and contributed to respiratory-chain inefficiency and the resulting decline in mitochondrial ATP synthesis in infected myocardium. The loss in complex III activity occurred as a consequence of cytochrome b depletion. Treatment of infected mice with phenyl-alpha-tert-butyl nitrone (PBN, antioxidant) was beneficial in preserving the mtDNA-encoded cytochrome b expression, and subsequently resulted in improved complex III activity, mitochondrial respiration, and ATP production in infected myocardium. Overall, we provide novel data on the mechanism(s) involved in cardiac bioenergetic inefficiency during T. cruzi infection.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology & Immunology, The Center for Biodefense & Emerging Infectious Diseases, and The Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | |
Collapse
|