1
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
2
|
Fiorenza MT, Moro E, Erickson RP. The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation. Hum Mol Genet 2019; 27:R119-R129. [PMID: 29718288 DOI: 10.1093/hmg/ddy155] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that the complex clinical manifestations of lysosomal storage diseases (LSDs) are not fully explained by the engorgement of the endosomal-autophagic-lysosomal system. In this review, we explore current knowledge of common pathogenetic mechanisms responsible for the early onset of tissue abnormalities of two LSDs, Mucopolysaccharidosis type II (MPSII) and Niemann-Pick type C (NPC) diseases. In particular, perturbations of the homeostasis of glycosaminoglycans (GAGs) and cholesterol (Chol) in MPSII and NPC diseases, respectively, affect key biological processes, including morphogen signaling. Both GAGs and Chol finely regulate the release, reception and tissue distribution of Shh. Hence, not surprisingly, developmental processes depending on correct Shh signaling have been found altered in both diseases. Besides abnormal signaling, exaggerated activation of microglia and impairment of autophagy and mitophagy occur in both diseases, largely before the appearance of typical pathological signs.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
3
|
Do GWAS and studies of heterozygotes for NPC1 and/or NPC2 explain why NPC disease cases are so rare? J Appl Genet 2018; 59:441-447. [PMID: 30209687 DOI: 10.1007/s13353-018-0465-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Early onset Niemann-Pick C diseases are extremely rare, especially Niemann-Pick C2. Perhaps unusually for autosomal recessive diseases, heterozygotes for mutations in NPC1 manifest many biological variations. NPC2 deficiency has large effects on fertility. These features of NPC1 and NPC2 are reviewed in regard to possible negative selection for heterozygotes carrying null and hypomorphic alleles.
Collapse
|
4
|
Shihata WA, Putra MRA, Chin-Dusting JPF. Is There a Potential Therapeutic Role for Caveolin-1 in Fibrosis? Front Pharmacol 2017; 8:567. [PMID: 28970796 PMCID: PMC5609631 DOI: 10.3389/fphar.2017.00567] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a process of dysfunctional wound repair, described by a failure of tissue regeneration and excessive deposition of extracellular matrix, resulting in tissue scarring and subsequent organ deterioration. There are a broad range of stimuli that may trigger, and exacerbate the process of fibrosis, which can contribute to the growing rates of morbidity and mortality. Whilst the process of fibrosis is widely described and understood, there are no current standard treatments that can reduce or reverse the process effectively, likely due to the continuing knowledge gaps surrounding the cellular mechanisms involved. Several cellular targets have been implicated in the regulation of the fibrotic process including membrane domains, ion channels and more recently mechanosensors, specifically caveolae, particularly since these latter contain various signaling components, such as members of the TGFβ and MAPK/ERK signaling pathways, all of which are key players in the process of fibrosis. This review explores the anti-fibrotic influences of the caveola, and in particular the key underpinning protein, caveolin-1, and its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Waled A Shihata
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| | - Mohammad R A Putra
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Jaye P F Chin-Dusting
- Vascular Pharmacology Laboratory, Cardiovascular Disease Program, Department of Pharmacology, Biomedical Discovery Institute, Monash UniversityClayton, VIC, Australia.,Department of Medicine, Monash UniversityClayton, VIC, Australia.,Baker Heart and Diabetes InstituteMelbourne, VIC, Australia
| |
Collapse
|
5
|
Singh S, Liu S, Rockey DC. Caveolin-1 is upregulated in hepatic stellate cells but not sinusoidal endothelial cells after liver injury. Tissue Cell 2016; 48:126-32. [PMID: 26847875 DOI: 10.1016/j.tice.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 01/03/2023]
Abstract
Sinusoidal endothelial cells (SEC) and hepatic stellate cells (HSC) are closely associated specialized vascular cells residing in the hepatic sinusoid. These cells have been shown to play important roles in many different pathophysiologic processes, in particular in liver fibrosis/cirrhosis and portal hypertension. Caveolin-1 functions as a scaffolding protein, and has a variety of functions including in many disease states, such as liver cirrhosis. Although previous studies have shown that in the injured rat liver, caveolin-1 is upregulated, the precise cells in which remains unclear. Therefore, the purpose of this study was to clarify the cell type (or types) in which caveolin-1 is expressed in normal and injured rat liver. We have utilized both detailed immunohistochemical labeling with cell specific markers as well as cell isolation techniques (isolating sinusoidal endothelial cells, HSCs, and hepatocytes) in normal and injured (bile duct ligation) rat liver. We show here that in the normal liver caveolin-1 is expressed predominantly in HSCs and SECs but after liver injury there is upregulation of caveolin-1 in HSCs, but not in SECs. These data have functional implications for the cells in which caveolin-1 is regulated.
Collapse
Affiliation(s)
- Shweta Singh
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Songling Liu
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Don C Rockey
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States.
| |
Collapse
|
6
|
Deutsch G, Muralidhar A, Le E, Borbon IA, Erickson RP. Extensive macrophage accumulation in young and old Niemann-Pick C1 model mice involves the alternative, M2, activation pathway and inhibition of macrophage apoptosis. Gene 2015; 578:242-50. [PMID: 26707209 DOI: 10.1016/j.gene.2015.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
We have studied the pathophysiology of lung disease which occurs in two mouse models of Niemann-Pick C1 disease. We utilized Npc1(-/-) mice transgenic for normal gene expression in glia or neurons and glia at ages several fold the usual and a mouse model of the juvenile form of NPC1, a point mutation, at one age to confirm some findings. Lung weights, as per cent of body weight, increase much more than liver and spleen weights. Although pulmonary function parameters only vary for hysteresis between young and older Npc1(-/-) mice, they are markedly different than those found in normal control mice. Cholesterol accumulation continued in the older mice but sphingosine-1-phosphate was not increased. Bronchoalveolar lavage (BAL) showed a massive increase (26×) in the number of macrophages. Histologic examination from the older, transgenic Npc1(-/-) mice showed small foci of alveolar proteinosis and evidence of hemorrhage, as well as dense macrophage accumulation. A large subset of macrophages was immunopositive for Fizz1 or arginase-1, markers of the alternative activation pathway, while no Fizz1 or arginase-1 positive macrophages were found in wild-type mice. The percentage of marker positive macrophages was relatively stable at 5-10% at various ages and within the 2 transgenic models. Phosphohistone H3 and Ki67 showed low levels of proliferation of these macrophages. Apoptosis was prominent within lung capillary endothelial cells, but limited within macrophages. Thus, activation of the alternative pathway is involved in Niemann-Pick C1 associated pulmonary macrophage accumulation, with low proliferation of these cells balanced by low levels of apoptosis.
Collapse
Affiliation(s)
- Gail Deutsch
- Dept. of Pathology, Seattle Children's Hospital, Seattle, WA 98105-0371, United States
| | - Akshay Muralidhar
- Dept. of Pediatrics, Univ. of AZ Health Sci. Ctr., Tucson, AZ 85724-5073, United States
| | - Ellen Le
- Dept. of Pediatrics, Univ. of AZ Health Sci. Ctr., Tucson, AZ 85724-5073, United States
| | - Ivan A Borbon
- Dept. of Pediatrics, Univ. of AZ Health Sci. Ctr., Tucson, AZ 85724-5073, United States
| | - Robert P Erickson
- Dept. of Pediatrics, Univ. of AZ Health Sci. Ctr., Tucson, AZ 85724-5073, United States; Dept. of Molecular and Cellular Biology, Univ. of AZ, Tucson, AZ 85721, United States.
| |
Collapse
|
7
|
Akpovi CD, Murphy BD, Erickson RP, Pelletier RM. Dysregulation of testicular cholesterol metabolism following spontaneous mutation of the niemann-pick c1 gene in mice. Biol Reprod 2014; 91:42. [PMID: 25009206 DOI: 10.1095/biolreprod.114.119412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Niemann-Pick-type C1 (Npc1) protein mobilizes LDL-derived cholesterol from lysosomes. Npc1 deficiency disease is a panethnic autosomal recessive disorder of intracellular cholesterol trafficking, leading to accumulation of cholesterol in endosomes/lysosomes. This report assesses the effects of a spontaneous inactivating mutation of the Npc1 gene on spermatogenesis and cholesterol homeostasis in mice. We quantified 1) free and esterified cholesterol levels by enzymatic analysis, 2) cholesterol enzymes and transporter protein expression by Western blotting, and 3) the number of Apostain-labeled apoptotic germ cells and apoptosis levels by ELISA in seminiferous tubule-enriched fractions. In wild-type (WT) mice, esterified cholesterol was elevated when Npc1 expression was low during puberty, while in adulthood, the levels were low (P < 0.05) when Npc1 expression was high (P < 0.01). In Npc1-/- mice, free and esterified cholesterol were significantly elevated. The abundance of cholesterol regulatory proteins, HMGR ACAT1, ACAT2, SR-BI, and ABCA1 was significantly higher in Npc1-/- than in WT mice. The level of apoptosis determined by ELISA and the number of Apostain-labeled cells/tubule were higher in Npc1-/- than in WT mice. Circulating testosterone levels in the Npc1-/- males were threefold lower than those observed in the WT. Deleting the Npc1 gene is accompanied by an increase in germ cell apoptosis and compensatory imbalances in the expression of cholesterol enzymatic and transporter factors and is associated with esterified cholesterol accumulation in seminiferous tubules.
Collapse
Affiliation(s)
- Casimir D Akpovi
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Bruce D Murphy
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St.-Hyacinthe, Québec, Canada
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, Arizona
| | - R-Marc Pelletier
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
8
|
Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice. PLoS One 2013; 8:e71361. [PMID: 23977027 PMCID: PMC3744576 DOI: 10.1371/journal.pone.0071361] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/27/2013] [Indexed: 01/12/2023] Open
Abstract
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1−/−) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1−/− hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1−/− astrocytes also showed more intracellular Ca2+ signal oscillations mediated by functional connexin 43 hemichannels and P2Y1 receptors. Therefore, Npc1−/− astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.
Collapse
|
9
|
Garver WS, Newman SB, Gonzales-Pacheco DM, Castillo JJ, Jelinek D, Heidenreich RA, Orlando RA. The genetics of childhood obesity and interaction with dietary macronutrients. GENES AND NUTRITION 2013; 8:271-87. [PMID: 23471855 DOI: 10.1007/s12263-013-0339-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Abstract
The genes contributing to childhood obesity are categorized into three different types based on distinct genetic and phenotypic characteristics. These types of childhood obesity are represented by rare monogenic forms of syndromic or non-syndromic childhood obesity, and common polygenic childhood obesity. In some cases, genetic susceptibility to these forms of childhood obesity may result from different variations of the same gene. Although the prevalence for rare monogenic forms of childhood obesity has not increased in recent times, the prevalence of common childhood obesity has increased in the United States and developing countries throughout the world during the past few decades. A number of recent genome-wide association studies and mouse model studies have established the identification of susceptibility genes contributing to common childhood obesity. Accumulating evidence suggests that this type of childhood obesity represents a complex metabolic disease resulting from an interaction with environmental factors, including dietary macronutrients. The objective of this article is to provide a review on the origins, mechanisms, and health consequences of obesity susceptibility genes and interaction with dietary macronutrients that predispose to childhood obesity. It is proposed that increased knowledge of these obesity susceptibility genes and interaction with dietary macronutrients will provide valuable insight for individual, family, and community preventative lifestyle intervention, and eventually targeted nutritional and medicinal therapies.
Collapse
Affiliation(s)
- William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131-0001, USA,
| | | | | | | | | | | | | |
Collapse
|
10
|
Al-Daghri NM, Cagliani R, Forni D, Alokail MS, Pozzoli U, Alkharfy KM, Sabico S, Clerici M, Sironi M. Mammalian NPC1 genes may undergo positive selection and human polymorphisms associate with type 2 diabetes. BMC Med 2012; 10:140. [PMID: 23153210 PMCID: PMC3520752 DOI: 10.1186/1741-7015-10-140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The NPC1 gene encodes a protein involved in intracellular lipid trafficking; its second endosomal loop (loop 2) is a receptor for filoviruses. A polymorphism (His215Arg) in NPC1 was associated with obesity in Europeans. Adaptations to diet and pathogens represented powerful selective forces; thus, we analyzed the evolutionary history of the gene and exploited this information for the identification of variants/residues of functional importance in human disease. METHODS We performed phylogenetic analysis, population genetic tests, and genotype-phenotype analysis in a population from Saudi Arabia. RESULTS Maximum-likelihood ratio tests indicated the action of positive selection on loop 2 and identified three residues as selection targets; these were confirmed by an independent random effects likelihood (REL) analysis. No selection signature was detected in present-day human populations, but analysis of nonsynonymous polymorphisms showed that a variant (Ile642Met, rs1788799) in the sterol sensing domain affects a highly conserved position. This variant and the previously described His215Arg polymorphism were tested for association with obesity and type 2 diabetes (T2D) in a cohort from Saudi Arabia. Whereas no association with obesity was detected, 642Met allele was found to predispose to T2D. A significant interaction was noted with sex (P = 0.041), and stratification on the basis of gender indicated that the association is driven by men (P = 0.0021, OR = 1.5). Notably, two NPC1 haplotypes were also associated with T2D in men (rs1805081-rs1788799, His-Met: P = 0.0012, OR = 1.54; His-Ile: P = 0.0004, OR = 0.63). CONCLUSIONS Our data indicate a sex-specific effect of NPC1 variants on T2D risk and describe putative binding sites for filoviruses entry.
Collapse
Affiliation(s)
- Nasser M Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, King Abdullah road, Riyadh 11451, Kingdom of Saudi Arabia.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The role of decreased levels of Niemann-Pick C1 intracellular cholesterol transport on obesity is reversed in the C57BL/6J, metabolic syndrome mouse strain: a metabolic or an inflammatory effect? J Appl Genet 2012; 53:323-30. [PMID: 22585185 DOI: 10.1007/s13353-012-0099-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/31/2022]
Abstract
We have previously shown that decreased dosage of Niemann-Pick C1 (Npc1) protein, caused by heterozygosity at the null mutation, Npc1 (nih), locus, causes altered lipid metabolism in mice. When studied on the "lean" BALB/cJ genetic background, the decreased protein was associated with no weight changes in either males or females when on a regular diet but increased weights and adiposity when on a high fat diet Jelinek et al. (Obesity 18: 1457-1459, 2010, Gene 491:128-134, 2012). When the heterozygotes were studied on a mixed C57BL/6J, BALB/cJ background, increased weight and adiposity were also found on a regular diet (sexes pooled Jelinek et al. [Hum Molec Genet 20:312-321, 2011]). We find somewhat different results when the hypomorphic Npc1 mutation, Npc1 (nmf164), is studied on a pure C57BL/6J, "metabolic syndrome" genetic background with male, but not female, heterozygotes having lower weights on the regular diet. The result does not seem to be due to the difference in the two mutations as heterozygous Npc1 (nmf164) mice on the BALB/cJ background acted like the null mutant heterozygotes. Studies of glucose tolerance, liver enzymes, liver triglycerides and fat deposition, and adipose tissue caveolin 1 levels did not disclose reasons for these differing results.
Collapse
|
12
|
Garver WS. Gene-diet interactions in childhood obesity. Curr Genomics 2011; 12:180-9. [PMID: 22043166 PMCID: PMC3137003 DOI: 10.2174/138920211795677903] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 12/31/2022] Open
Abstract
Childhood overweight and obesity have reached epidemic proportions worldwide, and the increase in weight-associated co-morbidities including premature type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease will soon become major healthcare and economic problems. A number of studies now indicate that the childhood obesity epidemic which has emerged during the past 30 years is a complex multi-factorial disease resulting from interaction of susceptibility genes with an obesogenic environment. This review will focus on gene-diet interactions suspected of having a prominent role in promoting childhood obesity. In particular, the specific genes that will be presented (FTO, MC4R, and NPC1) have recently been associated with childhood obesity through a genome-wide association study (GWAS) and were shown to interact with nutritional components to increase weight gain. Although a fourth gene (APOA2) has not yet been associated with childhood obesity, this review will also present information on what now represents the best characterized gene-diet interaction in promoting weight gain.
Collapse
Affiliation(s)
- William S Garver
- Department of Biochemistry and Molecular Biology, The University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Jelinek DA, Maghsoodi B, Borbon IA, Hardwick RN, Cherrington NJ, Erickson RP. Genetic variation in the mouse model of Niemann Pick C1 affects female, as well as male, adiposity, and hepatic bile transporters but has indeterminate effects on caveolae. Gene 2011; 491:128-34. [PMID: 22020183 DOI: 10.1016/j.gene.2011.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
We have previously shown that male Npc1 heterozygous mice (Npc1(+/-)), as compared to homozygous wild-type mice (Npc1(+/+)), both maintained on the "lean" BALB/cJ genetic background, become obese on a high fat but not on a low fat diet. We have now extended this result for female heterozygous mice. When fed high-fat diet, the Npc1(+/-) white adipose weight is also increased in females, therefore following the same trend as males. Bile transporters which had previously been found to be altered in Npc1(-/-) mice on a high fat diet, showed related, but small, changes in mRNA levels but large changes in protein expression. We have addressed the possible role of caveolae in these differences. It has long been known that caveolin 1 is increased in the liver (sex not specified) of Npc1(+/-) (compared to Npc1(+/+) and Npc1(-/-)) mice and in heterozygous cultured skin fibroblasts of NPC1 carriers. We now find that caveolin 1 is increased in male, but not female liver and female, but not male adipose tissue. The caveolin 1 increase was not accompanied by changes in another caveolar protein, polymerase1 and transcript release factor (Ptrf). The numbers of caveolae in female adipose cells could not be correlated with levels of caveolae. Thus, we conclude that Npc1 affects female as well as male obesity and bile transporters but that effects on caveolin 1 are not discernible.
Collapse
Affiliation(s)
- David A Jelinek
- Dept of Pediatrics, Box 5073, University of Arizona Health Sciences Center, Tucson, AZ 85724-5073, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Biazik JM, Jahn KA, Braet F. Caveolae and caveolin-1 in reptilian liver. Micron 2011; 42:656-61. [DOI: 10.1016/j.micron.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 11/26/2022]
|
15
|
Targeted mutation of Cav-1 alleviates the effect of endotoxin in the inhibition of ET-1-mediated eNOS activation in the liver. Shock 2010; 33:392-8. [PMID: 19730165 DOI: 10.1097/shk.0b013e3181be3e99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dysfunction of hepatic microcirculation during inflammatory stress conditions is associated with overexpression of caveolin 1 (Cav-1) in sinusoidal endothelial cells. Because Cav-1 binds and inhibits eNOS, it was suggested that Cav-1 overexpression inhibits endothelin 1 (ET-1)-mediated eNOS activation after endotoxemia in the liver; however, a causal link between stress-mediated suppression of eNOS and Cav-1 overexpression has not been fully established. We hypothesize that genetic knockout of Cav-1 reverses the LPS-suppressed ET-1-mediated eNOS activation. In this report, liver sinusoidal endothelial cells (LSECs) from wild-type (WT) and Cav-1 knockout (KO) mice were isolated, pretreated with 100 ng/mL LPS for 6 h, and treated with 10 nmol ET-1 for 30 min. Data showed that LPS increased Cav-1 protein expression (+88%; P < 0.05) and inhibited ET-1-mediated eNOS activation and NO production in WT LSECs. Genetic deletion of Cav-1 increased basal eNOS activity (0.40 in KO vs. 0.15 fmol/min per well in WT; +262%; P < 0.05) and reversed LPS inhibition of ET-1-stimulated eNOS activity (+25.7%; P < 0.05) by increasing eNOS-Ser1177 (+40.3%; P < 0.05) and decreasing eNOS-threonine-495 (-8.8%; P < 0.05) phosphorylation. The reversal of LPS inhibition resulted in an increase in ET-1-induced eNOS translocation to the plasma membrane and an augmentation of NO production in the perinuclear region and plasma membrane of Cav-1 KO LSECs. These results showed that genetic knockout of Cav-1 increased basal eNOS activity and at least partially restored ET-1-mediated eNOS translocation and NO production in LSECs after LPS treatment. In conclusion, Cav-1 overexpression is a requirement for decreased eNOS activity in LSECs after endotoxemia.
Collapse
|
16
|
Jelinek D, Heidenreich RA, Erickson RP, Garver WS. Decreased Npc1 gene dosage in mice is associated with weight gain. Obesity (Silver Spring) 2010; 18:1457-9. [PMID: 19910939 PMCID: PMC3101636 DOI: 10.1038/oby.2009.415] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A recent genome-wide association study has determined that the Niemann-Pick C1 (NPC1) gene is associated with early-onset and morbid adult obesity. However, what effects of the nonsynonymous variation in NPC1 on protein function result in weight gain remains unknown. The NPC1 heterozygous mouse model (Npc1(+/-)), which expresses one-half the normal amounts of functional Npc1 protein compared to the homozygous normal (Npc1(+/+)) mouse, was used to determine whether decreased Npc1 gene dosage was associated with weight gain when fed either a low-fat (10% kcal fat) or high-fat (45% kcal fat) diet beginning at 4 weeks of age until 20 weeks of age. The results indicated that Npc1(+/-) mice had significantly increased weight gain beginning at 13 weeks of age when fed a high-fat diet, but not when fed a low-fat diet, compared to the Npc1(+/+) mice fed the same diet. With respect to mice fed a high-fat diet, the Npc1(+/-) mice continued to have significantly increased weight gain to 30 weeks of age. At this age, the Npc1(+/-) mice were found to have increased liver and inguinal adipose weights compared to the Npc1(+/+) mice. Therefore, decreased Npc1 gene dosage resulting in decreased Npc1 protein function, promoted weight gain in mice fed a high-fat diet consistent with a gene-diet interaction.
Collapse
Affiliation(s)
- David Jelinek
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA
| | | | - Robert P. Erickson
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, Arizona, USA
| | - William S. Garver
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
17
|
Woudenberg J, Rembacz KP, van den Heuvel FAJ, Woudenberg-Vrenken TE, Buist-Homan M, Geuken M, Hoekstra M, Deelman LE, Enrich C, Henning RH, Moshage H, Faber KN. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology 2010; 51:1744-53. [PMID: 20146263 DOI: 10.1002/hep.23460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. CONCLUSION Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.
Collapse
Affiliation(s)
- Jannes Woudenberg
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fernández A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC. Cholesterol and sphingolipids in alcohol-induced liver injury. J Gastroenterol Hepatol 2008; 23 Suppl 1:S9-15. [PMID: 18336673 DOI: 10.1111/j.1440-1746.2007.05280.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathogenesis of alcohol-induced liver disease (ALD) is still poorly understood. One of the clues to its progression relates to the alcohol-mediated susceptibility of hepatocytes to cell death by reactive oxygen species (ROS) and inflammatory cytokines. Tumor necrosis factor alpha (TNF) has been considered a key ALD mediator with acidic sphingomyelinase (ASMase)-mediated ceramide generation playing a critical role. TNF receptor 1 and 2 knock-out mice or ASMase(-/-) mice exhibit resistance to alcohol-mediated fatty liver and cell death. Furthermore, alcohol feeding has been shown to sensitize hepatocytes to TNF due to the limitation of mitochondrial glutathione (mGSH) through impaired import of GSH from the cytosol due to altered membrane order parameter caused by mitochondrial cholesterol increase. Selective pharmacological depletion of mGSH sensitizes hepatocytes to TNF-mediated cell death, which reproduces the observations found with alcohol feeding. TNF signaling analyses in hepatocytes with or without mGSH depletion indicate that mGSH prevents cardiolipin peroxidation (CLOOH) formation by TNF-induced ROS via ASMase and that CLOOH cooperates with oligomerized Bax to cause mitochondrial outer membrane permeabilization through destabilization of the lipid bilayer via increased bilayer-to-inverted hexagonal phase transitions. Thus, activation of ASMase and cholesterol-mediated mGSH depletion both collaborate to promote alcohol-induced TNF-mediated hepatocellular damage, suggesting novel therapeutic opportunities in ALD.
Collapse
Affiliation(s)
- Anna Fernández
- Center for Biomedical Research Esther Koplowitz, IMDiM, Hospital Clinic and CIBEREHD, Institute of Biomedical Research August Pi i Sunyer, Department of Cell Death and Proliferation, Institute of Biomedical Research, Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Laliberte JP, McGinnes LW, Morrison TG. Incorporation of functional HN-F glycoprotein-containing complexes into newcastle disease virus is dependent on cholesterol and membrane lipid raft integrity. J Virol 2007; 81:10636-48. [PMID: 17652393 PMCID: PMC2045500 DOI: 10.1128/jvi.01119-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/05/2007] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus assembles in plasma membrane domains with properties of membrane lipid rafts, and disruption of these domains by cholesterol extraction with methyl-beta-cyclodextrin resulted in the release of virions with irregular protein composition, abnormal particle density, and reduced infectivity (J. P. Laliberte, L. W. McGinnes, M. E. Peeples, and T. G. Morrison, J. Virol. 80:10652-10662, 2006). In the present study, these results were confirmed using Niemann-Pick syndrome type C cells, which are deficient in normal membrane rafts due to mutations affecting cholesterol transport. Furthermore, cholesterol extraction of infected cells resulted in the release of virions that attached to target cells at normal levels but were defective in virus-cell membrane fusion. The reduced fusion capacity of particles released from cholesterol-extracted cells correlated with significant loss of HN-F glycoprotein-containing complexes detected in the virion envelopes of these particles and with detection of cell-associated HN-F protein-containing complexes in extracts of cholesterol-extracted cells. Extraction of cholesterol from purified virions had no effect on virus-cell attachment, virus-cell fusion, particle infectivity, or the levels of glycoprotein-containing complexes. Taken together, these results suggest that cholesterol and membrane rafts are required for the formation or maintenance of HN-F glycoprotein-containing complexes in cells but not the stability of preformed glycoprotein complexes once assembled into virions.
Collapse
Affiliation(s)
- Jason P Laliberte
- Department of Molecular Genetics and Microbiology, Room S5-250, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | |
Collapse
|
20
|
Orlowski S, Coméra C, Tercé F, Collet X. Lipid rafts: dream or reality for cholesterol transporters? EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:869-85. [PMID: 17576551 DOI: 10.1007/s00249-007-0193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
As a key constituent of the cell membranes, cholesterol is an endogenous component of mammalian cells of primary importance, and is thus subjected to highly regulated homeostasis at the cellular level as well as at the level of the whole body. This regulation requires adapted mechanisms favoring the handling of cholesterol in aqueous compartments, as well as its transfer into or out of membranes, involving membrane proteins. A membrane exhibits functional properties largely depending on its lipid composition and on its structural organization, which very often involves cholesterol-rich microdomains. Then there is the appealing possibility that cholesterol may regulate its own transmembrane transport at a purely functional level, independently of any transcriptional regulation based on cholesterol-sensitive nuclear factors controling the expression level of lipid transport proteins. Indeed, the main cholesterol "transporters" presently believed to mediate for instance the intestinal absorption of cholesterol, that are SR-BI, NPC1L1, ABCA1, ABCG1, ABCG5/G8 and even P-glycoprotein, all present privileged functional relationships with membrane cholesterol-containing microdomains. In particular, they all more or less clearly induce membrane disorganization, supposed to facilitate cholesterol exchanges with the close aqueous medium. The actual lipid substrates handled by these transporters are not yet unambiguously determined, but they likely concern the components of membrane microdomains. Conversely, raft alterations may provide specific modulations of the transporter activities, as well as they can induce indirect effects via local perturbations of the membrane. Finally, these cholesterol transporters undergo regulated intracellular trafficking, with presumably some relationships to rafts which remain to be clarified.
Collapse
Affiliation(s)
- Stéphane Orlowski
- SB2SM/IBTS and URA 2096 CNRS, CEA, Centre de Saclay, 91191, Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
21
|
Bourret G, Brodeur MR, Luangrath V, Lapointe J, Falstrault L, Brissette L. In vivo cholesteryl ester selective uptake of mildly and standardly oxidized LDL occurs by both parenchymal and nonparenchymal mouse hepatic cells but SR-BI is only responsible for standardly oxidized LDL selective uptake by nonparenchymal cells. Int J Biochem Cell Biol 2006; 38:1160-70. [PMID: 16427800 DOI: 10.1016/j.biocel.2005.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 11/15/2005] [Accepted: 12/11/2005] [Indexed: 11/29/2022]
Abstract
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.
Collapse
Affiliation(s)
- Geneviève Bourret
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Qué., Canada H3C 3P8
| | | | | | | | | | | |
Collapse
|
22
|
Wang X, Abdel-Rahman AA. Effect of chronic ethanol administration on hepatic eNOS activity and its association with caveolin-1 and calmodulin in female rats. Am J Physiol Gastrointest Liver Physiol 2005; 289:G579-85. [PMID: 15845868 DOI: 10.1152/ajpgi.00282.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although chronic and excessive alcohol consumption is associated with liver disease, the mechanism of alcoholic liver injury is still not clear. Whether reduced hepatic production of nitric oxide, which is evident in models of liver injury, is associated with alcohol-induced liver injury has not been investigated. We measured nitric oxide synthase (NOS) activity in the liver of pair-fed rats receiving liquid diet with or without alcohol [3% (vol/vol)] for 12 wk. Compared with control rats, hepatic NOS activity was significantly reduced in alcohol-treated rats along with the evidence of liver injury. Interestingly, there was no difference in the hepatic expression of endothelial NOS (eNOS) between ethanol-fed and pair-fed rats. We then tested the hypothesis that an imbalance between the binding of eNOS with inhibitory and stimulatory proteins may underlie the reduced activity of eNOS because eNOS catalytic activity is regulated partly through dynamic interactions with the inhibitory protein caveolin-1 and the stimulatory protein calmodulin. We found that hepatic caveolin-1 was markedly increased in alcohol-treated rats compared with control rats, whereas calmodulin remained unaltered. The binding of caveolin-1 and calmodulin with eNOS was increased and decreased, respectively, in alcohol-treated rats. Our results suggest that chronic alcohol intake attenuates hepatic eNOS activity by increasing the expression of the inhibitory protein caveolin-1 and enhancing its binding with eNOS.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina Univ., Greenville, NC 27834, USA
| | | |
Collapse
|
23
|
. RCZ. Alterations in Hepatic Cholesterol Levels in Response to Drugs That Induce
Cytochrome P450 3A23. INT J PHARMACOL 2005. [DOI: 10.3923/ijp.2005.172.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Paul CA, Boegle AK, Maue RA. Before the loss: neuronal dysfunction in Niemann-Pick Type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1685:63-76. [PMID: 15465427 DOI: 10.1016/j.bbalip.2004.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder caused by mutations in either the NPC1 or HE1 genes. Hallmarks of this presently incurable disease include abnormal intracellular accumulation of cholesterol and glycosphingolipids, progressive neuropathology and neurodegeneration, and premature death. There have been increased efforts to understand the effects of NPC disease on neurons of the brain, in part due to the recent development of improved research tools and reagents, and in part due to the rapidly growing appreciation of the importance of cholesterol and lipoproteins in the brain during neuronal development, function, and degeneration. Here, we highlight fundamental aspects of neurons that appear to be affected by NPC disease, including their morphology, metabolism, intracellular transport, electrical signaling, and response to environmental factors, and suggest other potentially important areas for future investigation. This provides a framework for acquiring additional insight to this disorder and shaping new therapeutic approaches to NPC disease.
Collapse
Affiliation(s)
- Colleen A Paul
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
25
|
Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. defining the rules for lipid traders. Int J Biochem Cell Biol 2004; 36:39-77. [PMID: 14592533 DOI: 10.1016/s1357-2725(03)00173-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The scavenger receptor class B type I (SR-BI) is a 509-amino acid, 82 kDa glycoprotein, with two cytoplasmic C- and N-terminal domains separated by a large extracellular domain. The aim of this review is to define the role of SR-BI as a lipoprotein receptor responsible for selective uptake of cholesteryl esters (CE) from high density lipoprotein (HDL) and low density lipoprotein (LDL) and free cholesterol (FC) efflux to lipoprotein acceptors. These activities depend on lipoprotein binding to its extracellular domain and subsequent lipid exchange at the plasma membrane. CE selective uptake supplies cholesterol to liver and steroidogenic tissues, for biliary cholesterol secretion and steroid hormone synthesis. Genetically modified mice have confirmed SR-BI's major role in tissue cholesterol uptake and in reverse cholesterol transport, i.e. cholesterol turnover. Accordingly, cellular cholesterol level, estrogens and trophic hormones regulate SR-BI expression by both transcriptional and post-transcriptional mechanisms. Importantly, mouse SR-BI overexpression has both corrective and preventive effects on atherosclerosis. Human SR-BI has very similar tissue distribution, binding properties and lipid transfer activities compared to rodent SR-BI. However, human plasma has most of its cholesterol in LDL. Thus, there is considerable interest to develop anti-atherogenic strategies involving human SR-BI-mediated increases in reverse cholesterol transport through HDL and/or LDL.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biological Transport, Active
- CD36 Antigens
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Cell Membrane/physiology
- Humans
- Lipid Metabolism
- Lipoproteins/metabolism
- Models, Biological
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Tissue Distribution
Collapse
Affiliation(s)
- David Rhainds
- Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montreal, Que., Canada H3C 3P8.
| | | |
Collapse
|
26
|
Ohsaki Y, Sugimoto Y, Suzuki M, Kaidoh T, Shimada Y, Ohno-Iwashita Y, Davies JP, Ioannou YA, Ohno K, Ninomiya H. Reduced sensitivity of Niemann-Pick C1-deficient cells to theta-toxin (perfringolysin O): sequestration of toxin to raft-enriched membrane vesicles. Histochem Cell Biol 2004; 121:263-72. [PMID: 15069562 DOI: 10.1007/s00418-004-0643-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2004] [Indexed: 01/04/2023]
Abstract
Theta-toxin (perfringolysin O) binds to cell surface cholesterol and forms oligomeric pores that cause membrane damage. Both in cytotoxicity and cell survival assays, a mutant Chinese hamster ovary cell line NPC1(-) that lacked Niemann-Pick C1 showed reduced sensitivity to theta-toxin, compared with wild-type (wt) cells. BCtheta is a derivative of theta-toxin that retains cholesterol-binding activity but lacks cytotoxicity. Confocal and electron microscopy revealed the presence of multiple vesicles which bound BCtheta, both on the cell surface and in the extracellular space of these cells. BCtheta binding to raft microdomains was verified by its resistance to 1% Triton X-100 at 4 degrees C and recovery of bound BCtheta in floating low-density fractions on sucrose density gradient fractionation. BCtheta-labeled vesicles were abolished when NPC1(-) cells were depleted of lipoproteins and also when treated with a Rho-associated kinase inhibitor Y-27632. In addition, similar vesicles were observed in wt cells treated with progesterone. In parallel with these results, theta-toxin sensitivity of NPC1(-) cells was increased when cells were depleted of lipoproteins or treated with Y-27632, whereas that of wt cells was decreased by progesterone. Our findings suggest that sequestration of toxin to raft-enriched cell surface vesicles may underlie reduced sensitivity of NPC1-deficient cells to theta-toxin.
Collapse
Affiliation(s)
- Yuki Ohsaki
- Department of Neurobiology, Tottori University Faculty of Medicine, 683-8503, Yonago, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jin LW, Shie FS, Maezawa I, Vincent I, Bird T. Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:975-85. [PMID: 14982851 PMCID: PMC1614713 DOI: 10.1016/s0002-9440(10)63185-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Niemann-Pick type C disease (NPC) is characterized by neurodegeneration secondary to impaired cholesterol trafficking and excessive glycosphingolipid storage. Abnormal cholesterol and ganglioside metabolism may influence the generation and aggregation of amyloidogenic fragments (ie, C99 and Abeta) from amyloid-beta precursor protein (APP), crucial factors causing neurodegeneration in Alzheimer's disease. To reveal whether abnormal accumulation and aggregation of APP fragments also occurs in NPC, we studied their expression in cultured cortical neurons treated with U18666A, a compound widely used to induce NPC defects, and also in brain tissues from NPC patients. U18666A treatment resulted in increased intraneuronal levels of C99 and insoluble Abeta42, which were distributed among early and late endosomes, in compartments distinct from where endogenous cholesterol accumulates. Analyses of NPC brains revealed that C99 or other APP C-terminal fragments (APP-CTF), but not Abeta42, accumulated in Purkinje cells, mainly in early endosomes. In contrast, in hippocampal pyramidal neurons, the major accumulated species was Abeta42, in late endosomes. Similar to what has been shown in Alzheimer's disease, cathepsin D, a lysosomal hydrolase, was redistributed to early endosomes in NPC Purkinje cells, where it co-localized with C99/APP-CTF. Our results suggest that endosomal abnormalities related to abnormal lipid trafficking in NPC may contribute to abnormal APP processing and Abeta42/C99/APP-CTF deposition.
Collapse
Affiliation(s)
- Lee-Way Jin
- Department of Pathology, University of Washington, Seattle, Washington 98104-2499, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
29
|
|
30
|
Amigo L, Mendoza H, Castro J, Quiñones V, Miquel JF, Zanlungo S. Relevance of Niemann-Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice. Hepatology 2002; 36:819-28. [PMID: 12297829 DOI: 10.1053/jhep.2002.35617] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Receptor-mediated endocytosis is one of the major mechanisms for uptake of lipoprotein cholesterol in the liver. Because Niemann-Pick C1 (NPC1) protein is a key component in the intracellular distribution of cholesterol obtained from lipoproteins by the endocytic pathway, it may play a critical role in controlling plasma lipoprotein cholesterol and its biliary secretion. A murine model of Niemann-Pick type C disease (NPC), the NPC1-deficient [NPC1 (-/-)] mouse, was used to evaluate the relevance of hepatic NPC1 expression in regulating plasma lipoprotein cholesterol profile and biliary lipid secretion under chow and high-cholesterol diets. Total plasma cholesterol concentrations were increased in NPC1 (-/-) mice compared with wild-type mice when both mouse strains were fed chow or high-cholesterol diets. The increased plasma cholesterol levels found in NPC1 (-/-) mice were mostly due to elevated cholesterol content in larger and more heterogeneous HDL particles. On the chow diet, biliary lipid secretion was not impaired by NPC1 deficiency. Furthermore, chow-fed NPC1 (-/-) mice showed a small, but significant, increase in biliary cholesterol secretion. On the high-cholesterol diet, wild-type mice increased biliary cholesterol output, whereas NPC1 (-/-) mice did not. Finally, hepatic NPC1 overexpression by adenovirus-mediated gene transfer increased biliary cholesterol secretion by 100% to 150% in both wild-type mice and cholesterol-fed NPC1 (-/-) mice. In conclusion, hepatic NPC1 expression is an important factor for regulating plasma HDL cholesterol levels and biliary cholesterol secretion in mice.
Collapse
Affiliation(s)
- Ludwig Amigo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
31
|
Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci 2002. [PMID: 12151531 DOI: 10.1523/jneurosci.22-15-06515.2002] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NPC-1 gene mutations cause Niemann-Pick type C (NPC), a neurodegenerative storage disease resulting in premature death in humans. Spontaneous mutation of the NPC-1 gene in mice generates a similar phenotype, usually with death ensuing by 12 weeks of age. Both human and murine NPC are characterized neuropathologically by ballooned neurons distended with lipid storage, axonal spheroid formation, demyelination, and widespread neuronal loss. To elucidate the biochemical mechanism underlying this neuropathology, we have investigated the phosphorylation of neuronal cytoskeletal proteins in the brains of npc-1 mice. A spectrum of antibodies against phosphorylated epitopes in neurofilaments (NFs) and MAP2 and tau were used in immunohistochemical and immunoblotting analyses of 4- to 12-week-old mice. Multiple sites in NFs, MAP2, and tau were hyperphosphorylated as early as 4 weeks of age and correlated with a significant increase in activity of the cyclin-dependent kinase 5 (cdk5) and accumulation of its more potent activator, p25, a proteolytic fragment of p35. At 5 weeks of age, the development of axonal spheroids was noted in the pons. p25 and cdk5 coaccumulated with hyperphosphorylated cytoskeletal proteins in axon spheroids. These various abnormalities escalated with each additional week of age, spreading to other regions of the brainstem, basal ganglia, cerebellum, and eventually, the cortex. Our data suggest that focal deregulation of cdk5/p25 in axons leads to cytoskeletal abnormalities and eventual neurodegeneration in NPC. The npc-1 mouse is a valuable in vivo model for determining how and when cdk5 becomes deregulated and whether cdk5 inhibitors would be useful in blocking NPC neurodegeneration.
Collapse
|
32
|
Erickson RP, Kiela M, Devine PJ, Hoyer PB, Heidenreich RA. mdr1a deficiency corrects sterility in Niemann-Pick C1 protein deficient female mice. Mol Reprod Dev 2002; 62:167-73. [PMID: 11984826 DOI: 10.1002/mrd.10093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Niemann-Pick type C disease is a progressive neurological disease with cholesterol storage in liver, and npc1-/- mice share these features and are sterile. We have searched for the cause of sterility and found normal folliculogenesis and progesterone levels but lack of implantation. Multiple drug resistance (MDR) P-glycoproteins are plasma membrane proteins implicated in the movement of drugs and lipids across membranes. Their functions are inhibited by progesterone, which has been shown to alter cellular cholesterol homeostasis and has implicated P-glycoproteins in the movement of cholesterol to the endoplasmic reticulum. We have introduced the mdr1a knockout into the npc1 mutant line. While the neurological disease continues at its usual rate, preventing the females from taking care of their litters, npc1-/-, mdr1a-/- females became fertile. Although the mdr1a P-glycoprotein co-localizes with caveolae, neither caveolin-1 nor npc1 levels were significantly altered in the livers of double homozygotes. The absence of mdr1a was confirmed by immunoblotting, but npc1 deficiency was not associated with consistent changes in cerebellar mdr1a in mdr1a+/+ mice. The results show that a mdr1a mutation is an in vivo suppressor of female sterility in npc1 deficient mice.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, Section of Medical and Molecular Genetics, Angel Charity for Children-Wings for Genetic Research, Steele Memorial Children's Research Center, Arizona, USA.
| | | | | | | | | |
Collapse
|
33
|
Mikol DD, Scherer SS, Duckett SJ, Hong HL, Feldman EL. Schwann cell caveolin-1 expression increases during myelination and decreases after axotomy. Glia 2002; 38:191-9. [PMID: 11968057 DOI: 10.1002/glia.10063] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The caveolins are a family of related proteins that form the structural framework of caveolae. They have been implicated in the regulation of signal transduction, cell cycle control, and cellular transport processes, particularly cholesterol trafficking. Caveolin-1 is expressed by a variety of cell types, including Schwann cells, although its expression is greatest in differentiated cell types, such as endothelial cells and adipocytes. In the present work, we characterize caveolin-1 expression both during rat sciatic nerve development and after axotomy. Schwann cells express little caveolin-1 on postnatal days 1 and 6. By P30, myelinating Schwann cells express caveolin-1, which is localized in the outer/abaxonal myelin membranes as well as intracellularly. After axotomy, Schwann cell caveolin-1 expression in the distal nerve stump decreases as Schwann cells revert to a premyelinating (p75-positive) phenotype; residual caveolin-1 within the nerve largely localizes to myelin debris and infiltrating macrophages. We speculate that caveolin-1 plays a role in the biology of myelinating Schwann cells.
Collapse
Affiliation(s)
- Daniel D Mikol
- Department of Neurology, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | | | |
Collapse
|
34
|
Schroeder F, Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Huang H, Starodub O, Chao H, Yang H, Frolov A, Kier AB. Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol trafficking. Exp Biol Med (Maywood) 2001; 226:873-90. [PMID: 11682693 DOI: 10.1177/153537020122601002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cellular cholesterol homeostasis is a balance of influx, catabolism and synthesis, and efflux. Unlike vascular lipoprotein cholesterol transport, intracellular cholesterol trafficking is only beginning to be resolved. Exogenous cholesterol and cholesterol ester enter cells via the low-density lipoprotein (LDL) receptor/lysosomal and less so by nonvesicular, high-density lipoprotein (HDL) receptor/caveolar pathways. However, the mechanism(s) whereby cholesterol enters the lysosomal membrane, translocates, and transfers out of the lysosome to the cell interior are unknown. Likewise, the steps whereby cholesterol enters the cytofacial leaflet of the plasma membrane caveolae, rapidly translocates, leaves the exofacial leaflet, and transfers to extracellular HDL are unclear. Increasing evidence obtained with model and isolated cell membranes, transfected cells, genetic mutants, and gene-ablated mice suggests that proteins such as caveolin, sterol carrier protein-2 (SCP-2), Niemann-Pick C1 protein, steroidogenic acute regulatory protein (StAR), and other intracellular proteins mediate intracellular cholesterol transfer. While these proteins bind cholesterol and/or interact with cholesterol-rich membrane microdomains (e.g., caveolae, rafts, and annuli), their relative contributions to direct molecular versus vesicular cholesterol transfer remain to be resolved. The formation, regulation, and role of membrane microdomains in regulating cholesterol uptake/efflux and trafficking are unclear. Some cholesterol-binding proteins exert opposing effects on cellular cholesterol uptake/efflux, transfer of cholesterol out of the lysosomal membrane, and/or intracellular cholesterol trafficking to select membranous organelles. Resolving these cholesterol pathways and the role of membrane cholesterol microdomains is essential to our understanding not only of processes that affect cholesterol metabolism, but also of the abnormal regulation that may lead to disease (diabetes, obesity, atherosclerosis, neutral lipid storage, Niemann-Pick C, congenital lipoid adrenal hyperplasia, etc.).
Collapse
Affiliation(s)
- F Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, Texas 77843-4466, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmitz G, Orsó E. Intracellular cholesterol and phospholipid trafficking: comparable mechanisms in macrophages and neuronal cells. Neurochem Res 2001; 26:1045-68. [PMID: 11699932 DOI: 10.1023/a:1012357106398] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the past ten years considerable evidences have accumulated that in addition to monocytes/macrophages, that are implicated in innate immunity and atherogenesis, neuronal cells also exhibit an extensive cellular metabolism. The present study focuses on the major protein players that establish cellular distribution of cholesterol and phospholipids. Evidences are provided that neuronal cells and monocytes/macrophages are equipped with comparable intracellular lipid trafficking mechanisms. Selected examples are presented that trafficking dysfunctions lead to disease development, such as Tangier disease and Niemann-Pick disease type C, or contribute to the pathogenesis of diseases such as Alzheimer disease and atherosclerosis.
Collapse
Affiliation(s)
- G Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.
| | | |
Collapse
|
36
|
Abstract
Studies of Niemann-Pick C (NPC) and Tangier diseases have led to the identification of the causative genes, NPC1 and ABCA1, respectively. Characterization of their protein products shows that NPC1 and ABCA1 are permeases that belong to two different superfamilies of efflux pumps, which might be important in subcellular lipid and cholesterol transport.
Collapse
Affiliation(s)
- Y A Ioannou
- Department of Human Genetics, Box 1498, The Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, New York 10029, USA.
| |
Collapse
|
37
|
Shah V, Cao S, Hendrickson H, Yao J, Katusic ZS. Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1209-16. [PMID: 11352814 DOI: 10.1152/ajpgi.2001.280.6.g1209] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In carbon tetrachloride-induced liver cirrhosis, diminution of hepatic endothelial nitric oxide synthase (eNOS) activity may contribute to impaired hepatic vasodilation and portal hypertension. The mechanisms responsible for these events remain unknown; however, a role for the NOS-associated proteins caveolin and calmodulin has been postulated. The purpose of this study is to characterize the expression and cellular localization of the NOS inhibitory protein caveolin-1 in normal rat liver and to then examine the role of caveolin in conjunction with calmodulin in regulation of NOS activity in cholestatic portal hypertension. In normal liver, caveolin protein is expressed preferentially in nonparenchymal cells compared with hepatocytes as assessed by Western blot analysis of isolated cell preparations. Additionally, within the nonparenchymal cell populations, caveolin expression is detected within both liver endothelial cells and hepatic stellate cells. Next, studies were performed 4 wk after bile duct ligation (BDL), a model of portal hypertension characterized by prominent cholestasis, as evidenced by a significant increase in serum cholesterol in BDL animals. After BDL, caveolin protein levels from detergent-soluble liver lysates are significantly increased as assessed by Western blot analysis. Immunoperoxidase staining demonstrates that this increase is most prominent within sinusoids and venules. Additionally, caveolin-1 upregulation is associated with a significant reduction in NOS catalytic activity in BDL liver lysates, an event that is corrected with provision of excess calmodulin, a protein that competitively binds eNOS from caveolin. We conclude that, in cholestatic portal hypertension, caveolin may negatively regulate NOS activity in a manner that is reversible by excess calmodulin.
Collapse
Affiliation(s)
- V Shah
- Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
38
|
Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001; 152:1057-70. [PMID: 11238460 PMCID: PMC2198820 DOI: 10.1083/jcb.152.5.1057] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies have indicated a role for caveolin in regulating cholesterol-dependent signaling events. In the present study we have analyzed the role of caveolins in intracellular cholesterol cycling using a dominant negative caveolin mutant. The mutant caveolin protein, cav-3(DGV), specifically associates with the membrane surrounding large lipid droplets. These structures contain neutral lipids, and are accessed by caveolin 1-3 upon overexpression. Fluorescence, electron, and video microscopy observations are consistent with formation of the membrane-enclosed lipid rich structures by maturation of subdomains of the ER. The caveolin mutant causes the intracellular accumulation of free cholesterol (FC) in late endosomes, a decrease in surface cholesterol and a decrease in cholesterol efflux and synthesis. The amphiphile U18666A acts synergistically with cav(DGV) to increase intracellular accumulation of FC. Incubation of cells with oleic acid induces a significant accumulation of full-length caveolins in the enlarged lipid droplets. We conclude that caveolin can associate with the membrane surrounding lipid droplets and is a key component involved in intracellular cholesterol balance and lipid transport in fibroblasts.
Collapse
Affiliation(s)
- Albert Pol
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis and Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia
| | - Robert Luetterforst
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis and Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia
| | - Margaret Lindsay
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis and Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia
| | - Sanna Heino
- Department of Biochemistry, National Public Health Institute, 00300 Helsinki, Finland
| | - Elina Ikonen
- Department of Biochemistry, National Public Health Institute, 00300 Helsinki, Finland
| | - Robert G. Parton
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis and Department of Physiology and Pharmacology, University of Queensland, Queensland 4072, Australia
| |
Collapse
|
39
|
Abstract
In this review, we summarize our studies of membrane lipid transport in sphingolipid storage disease (SLSD) fibroblasts. We recently showed that several fluorescent SL analogs were internalized from the plasma membrane predominantly to the Golgi complex of normal cells, while in ten different SLSD cell types, these lipids accumulated in endosomes and lysosomes (The Lancet 1999;354: 901-905). Additional studies showed that cholesterol homeostasis is perturbed in multiple SLSDs secondary to SL accumulation and that mistargeting of SL analogs was regulated by cholesterol (Nature Cell Biol 1999;1: 386-388). Based on these findings, we hypothesize that endogenous sphingolipids, which accumulate in SLSD cells due to primary defects in lipid catabolism, result in an altered intracellular distribution of cholesterol, and that this alteration in membrane composition then results in defective sorting and transport of SLs. The importance of SL/cholesterol interactions and potential mechanisms underlying the regulation of lipid transport and targeting are also discussed. These studies suggest a new paradigm for regulation of membrane lipid traffic along the endocytic pathway and could have important implications for future studies of protein trafficking as well as lipid transport. This work may also lead to important future clinical developments (e.g. screening tests for SLSD, new methodology for screening drugs which abrogate lipid storage, and possible therapeutic approaches to SLSD).
Collapse
Affiliation(s)
- R E Pagano
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, 200 First Street, S.W., Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
40
|
Henderson LP, Lin L, Prasad A, Paul CA, Chang TY, Maue RA. Embryonic striatal neurons from niemann-pick type C mice exhibit defects in cholesterol metabolism and neurotrophin responsiveness. J Biol Chem 2000; 275:20179-87. [PMID: 10770933 DOI: 10.1074/jbc.m001793200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a progressive and fatal neuropathological disorder previously characterized by abnormal cholesterol metabolism in peripheral tissues. Although a defective gene has been identified in both humans and the npc(nih) mouse model of NP-C disease, how this leads to abnormal neuronal function is unclear. Here we show that whereas embryonic striatal neurons from npc(nih) mice can take up low density lipoprotein-derived cholesterol, its subsequent hydrolysis and esterification are significantly reduced. Given the importance of cholesterol to a variety of signal transduction mechanisms, we assessed the effect of this abnormality on the ability of these neurons to respond to brain-derived neurotrophic factor (BDNF). In contrast to its effects on wild type neurons, BDNF failed to induce autophosphorylation of the TrkB receptor and to increase neurite outgrowth in npc(nih) neurons, despite expression of TrkB on the cell surface. The results suggest that abnormal cholesterol metabolism occurs in neurons in the brain during NP-C disease, even at embryonic stages of development prior to the onset of phenotypic symptoms. Moreover, this defect is associated with a lack of TrkB function and BDNF responsiveness, which may contribute to the loss of neuronal function observed in NP-C disease.
Collapse
Affiliation(s)
- L P Henderson
- Departments of Physiology and Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
41
|
Garver WS, Heidenreich RA, Erickson RP, Thomas MA, Wilson JM. Localization of the murine Niemann-Pick C1 protein to two distinct intracellular compartments. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32376-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Abstract
Caveolins are major integral membrane components of caveolae. Over the last few years, evidence has accumulated for a close link between caveolin, caveolae, and the regulation of cellular cholesterol levels. However, the exact role of caveolin in this process, the intracellular trafficking routes followed by caveolin/cholesterol complexes, and the relationship of caveolin-cholesterol to other caveolin-mediated processes such as signal transduction have remained unclear. Recent findings from a number of systems suggest that specific signaling pathways require precise regulation of cellular cholesterol. Here we review evidence for caveolin regulation of cholesterol transport and consider how this may relate to signal transduction.
Collapse
Affiliation(s)
- E Ikonen
- Department of Biochemistry, National Public Health Institute, Mannerheimintie 166, 00300 Helsinki, Finland.
| | | |
Collapse
|
43
|
Shah V, Toruner M, Haddad F, Cadelina G, Papapetropoulos A, Choo K, Sessa WC, Groszmann RJ. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 1999; 117:1222-8. [PMID: 10535886 DOI: 10.1016/s0016-5085(99)70408-7] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A reduction in nitric oxide (NO) has been implicated as a cause of intrahepatic vasoconstriction in cirrhosis, but the regulatory mechanisms remain undefined. The aim of this study was to examine a contributory role for caveolin-1, a putative negative regulator of endothelial NO synthase, in mediating deficient intrahepatic NO production in the intact cirrhotic liver. METHODS Cirrhosis was induced by carbon tetrachloride inhalation. Flow regulation of NO production and perfusion pressure was examined in the perfused rat liver. Protein expression of endothelial NO synthase (eNOS), caveolin, and calmodulin was examined by Western blotting and immunohistochemistry. NOS activity and NO production were assessed by citrulline generation and chemiluminescence, respectively. Protein-protein interactions were examined using whole tissue protein immunoprecipitation. RESULTS In response to incremental increases in flow, cirrhotic animals produced significantly less NO(x) than control animals. NOS activity was significantly reduced in liver tissue from cirrhotic animals compared with control animals in the presence of similar eNOS protein levels. Deficient eNOS activity was associated with a severalfold increase in binding of eNOS with caveolin. Protein levels of caveolin-1 were markedly increased in the cirrhotic liver. CONCLUSIONS These studies provide evidence that enhanced expression and interaction of caveolin with eNOS contribute to impaired NO production, reduced NOS activity, and vasoconstriction in the intact cirrhotic liver.
Collapse
Affiliation(s)
- V Shah
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Masserini M, Palestini P, Pitto M. Glycolipid-enriched caveolae and caveolae-like domains in the nervous system. J Neurochem 1999; 73:1-11. [PMID: 10386949 DOI: 10.1046/j.1471-4159.1999.0730001.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent years have been characterized by a booming interest in research on caveolae and caveolae-like membrane domains. The interest in this subject grew further, when their involvement in fundamental membrane-associated events, such as signal transmission and lipid/protein sorting, was postulated. Substantial progress has been reached in understanding the biological role of membrane domains in eukaryotic cells. The neuron, however, which perhaps represents one of the greatest challenges to research on membrane traffic and function, has only been partially investigated. The purpose of the present review is to survey this issue in the nervous system. We confine ourselves to the presence of membrane domains in the nervous system and discuss this in the context of three facts: first, glycolipids are peculiarly enriched in both caveolae and caveolae-like domains and are particularly abundant in the nervous system; second, the neuron is characterized by a basic dual polarity, similar in this respect to other polarized cells, where the role of glycolipid-enriched domains for lipid/protein sorting has been better ascertained; and third, neurons evolved from, and are related to, simpler eukaryotic cells, allowing us to find analogies with more investigated nonneuronal cells.
Collapse
Affiliation(s)
- M Masserini
- Department of Medical Chemistry and Biochemistry, University of Milano, Italy
| | | | | |
Collapse
|
45
|
Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1999; 1:98-105. [PMID: 10559881 DOI: 10.1038/10067] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasma membrane pits known as caveolae have been implicated both in cholesterol homeostasis and in signal transduction. CavDGV and CavKSY, two dominant-negative amino-terminal truncation mutants of caveolin, the major structural protein of caveolae, significantly inhibited caveola-mediated SV40 infection, and were assayed for effects on Ras function. We find that CavDGV completely blocked Raf activation mediated by H-Ras, but not that mediated by K-Ras. Strikingly, the inhibitory effect of CavDGV on H-Ras signalling was completely reversed by replenishing cell membranes with cholesterol and was mimicked by cyclodextrin treatment, which depletes membrane cholesterol. These results provide a crucial link between the cholesterol-trafficking role of caveolin and its postulated role in signal transduction through cholesterol-rich surface domains. They also provide direct evidence that H-Ras and K-Ras, which are targeted to the plasma membrane by different carboxy-terminal anchors, operate in functionally distinct microdomains of the plasma membrane.
Collapse
Affiliation(s)
- S Roy
- Queensland Cancer Fund Laboratory of Experimental Oncology, Department of Pathology, University of Queensland Medical School, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Garver WS, Hossain GS, Winscott MM, Heidenreich RA. The Npc1 mutation causes an altered expression of caveolin-1, annexin II and protein kinases and phosphorylation of caveolin-1 and annexin II in murine livers. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:193-206. [PMID: 10036317 DOI: 10.1016/s0925-4439(98)00101-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated (1) an increased expression of caveolin-1 in murine heterozygous and homozygous Niemann-Pick type C (NPC) livers, and (2) an increased concentration of unesterified cholesterol in a detergent insoluble caveolae-enriched fraction from homozygous livers. To define further the relationship between caveolin-1 function and the cholesterol trafficking defect in NPC, we examined the expression and distribution of additional caveolar and signal transduction proteins. The expression of annexin II was significantly increased in homozygous liver homogenates and the Triton X-100 insoluble floating fraction (TIFF). Phosphoamino acid analysis of caveolin-1 and annexin II from the homozygous TIFF demonstrated an increase in serine and tyrosine phosphorylation, respectively. To determine the basis for increased phosphorylation of these proteins, the expression and distribution of several protein kinases was examined. The expression of PKCalpha, PKCzeta and pp60-src (protein kinases) were significantly increased in both heterozygous and homozygous liver homogenates, while PKCdelta was increased only in homozygous livers. Of the protein kinases analyzed, only CK IIalpha was significantly enriched in the heterozygous TIFF. Finally, the concentration of diacylglycerol in the homozygous TIFF was significantly increased and this elevation may modulate PKC distribution and function. These results provide additional evidence for involvement of a caveolin-1 containing cellular fraction in the pathophysiology of NPC and also suggest that the Npc1 gene product may directly or indirectly, regulate the expression and distribution of signaling molecules.
Collapse
Affiliation(s)
- W S Garver
- Angel Charity for Children - Wings for Genetic Research, Section of Medical and Molecular Genetics, Steele Memorial Children's Research Center, The University of Arizona, College of Medicine, 1501 N. Campbell Avenue, Tucson, AZ 85724-5073, USA
| | | | | | | |
Collapse
|