1
|
Pereira-Fantini PM, Byars SG, Kamlin COF, Manley BJ, Davis PG, Tingay DG. Plasma Proteome Profiles Associated with Early Development of Lung Injury in Extremely Preterm Infants. Am J Respir Cell Mol Biol 2024; 71:677-687. [PMID: 39051934 DOI: 10.1165/rcmb.2024-0034oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024] Open
Abstract
The biological mediators that initiate lung injury in extremely preterm infants during early postnatal life remain largely unidentified, limiting opportunities for early treatment and diagnosis. In this exploratory study, we used sequential window acquisition of all theoretical mass spectra mass spectrometry to identify bronchopulmonary dysplasia (BPD)-specific changes in protein abundance in plasma samples obtained in the first 72 hours of life from extremely preterm infants and bioinformatic analysis to identify BPD-related biological categories and pathways. Last, binary logistic regression analysis was used to test the BPD predictive potential of a base model alone (gestational age, birth weight, sex) and with the protein biomarker added, with bootstrap resampling used to internally validate protein predictors and adjust for overoptimism. We observed disturbance of key processes, including coagulation, complement activation, development, and extracellular matrix organization, in the first days of life in extremely preterm infants who later received diagnoses of BPD. In the BPD prediction analysis, 49 plasma proteins were identified; when each singularly was combined with birth characteristics the optimism-adjusted C index was 0.65-0.84, suggesting predictive potential for BPD outcomes. Taken together, the results of this study demonstrate that alterations in plasma proteins can be detected from 4 hours of age in extremely preterm infants who later develop BPD and that protein biomarkers, when combined with three birth characteristics, have the potential to predict BPD development within the first 72 hours of life.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Neonatal Research Group and
- Department of Paediatrics and
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Sean G Byars
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - C Omar F Kamlin
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Brett J Manley
- Victorian Infant Brain Studies Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Peter G Davis
- Neonatal Research Group and
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - David G Tingay
- Neonatal Research Group and
- Department of Paediatrics and
- Newborn Research, The Royal Women's Hospital, Parkville, Victoria, Australia; and
| |
Collapse
|
2
|
Targeting the Semaphorin3E-plexinD1 complex in allergic asthma. Pharmacol Ther 2023; 242:108351. [PMID: 36706796 DOI: 10.1016/j.pharmthera.2023.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Asthma is a heterogenous airway disease characterized by airway inflammation and remodeling. It affects more than 300 million people worldwide and poses a significant burden on society. Semaphorins, discovered initially as neural guidance molecules, are ubiquitously expressed in various organs and regulate multiple signaling pathways. Interestingly, Semaphorin3E is a critical molecule in lung pathophysiology through its role in both lung development and homeostasis. Semaphorin3E binds to plexinD1, mediating regulatory effects on cell migration, proliferation, and angiogenesis. Recent in vitro and in vivo studies have demonstrated that the Semaphorin3E-plexinD1 axis is implicated in asthma, impacting inflammatory and structural cells associated with airway inflammation, tissue remodeling, and airway hyperresponsiveness. This review details the Semaphorin3E-plexinD1 axis in various aspects of asthma and highlights future directions in research including its potential role as a therapeutic target in airway allergic diseases.
Collapse
|
3
|
Chapoval SP, Keegan AD. Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection. Mol Med 2021; 27:162. [PMID: 34961486 PMCID: PMC8711287 DOI: 10.1186/s10020-021-00423-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel type b coronavirus responsible for the COVID-19 pandemic. With over 224 million confirmed infections with this virus and more than 4.6 million people dead because of it, it is critically important to define the immunological processes occurring in the human response to this virus and pathogenetic mechanisms of its deadly manifestation. This perspective focuses on the contribution of the recently discovered interaction of SARS-CoV-2 Spike protein with neuropilin 1 (NRP1) receptor, NRP1 as a virus entry receptor for SARS-CoV-2, its role in different physiologic and pathologic conditions, and the potential to target the Spike-NRP1 interaction to combat virus infectivity and severe disease manifestations.
Collapse
Affiliation(s)
- Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD, 21201, USA.
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- SemaPlex LLC, Ellicott City, MD, USA.
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD, 21201, USA
- Program in Oncology at the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| |
Collapse
|
4
|
Genome-Wide RNAi Screening Identifies Novel Pathways/Genes Involved in Oxidative Stress and Repurposable Drugs to Preserve Cystic Fibrosis Airway Epithelial Cell Integrity. Antioxidants (Basel) 2021; 10:antiox10121936. [PMID: 34943039 PMCID: PMC8750174 DOI: 10.3390/antiox10121936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.
Collapse
|
5
|
Karolak JA, Gambin T, Szafranski P, Maywald RL, Popek E, Heaney JD, Stankiewicz P. Perturbation of semaphorin and VEGF signaling in ACDMPV lungs due to FOXF1 deficiency. Respir Res 2021; 22:212. [PMID: 34315444 PMCID: PMC8314029 DOI: 10.1186/s12931-021-01797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781, Poznań, Poland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.,Institute of Computer Science, Warsaw University of Technology, 00-665, Warsaw, Poland
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Rebecca L Maywald
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
7
|
Imoto T, Kondo S, Wakisaka N, Hai PT, Seishima N, Kano M, Ueno T, Mizokami H, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Moriyama-Kita M, Yoshizaki T. Overexpression of Semaphorin 3A is a Marker Associated with Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Microorganisms 2020; 8:microorganisms8030423. [PMID: 32192122 PMCID: PMC7143379 DOI: 10.3390/microorganisms8030423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Semaphorins were discovered as guidance signals that mediate neural development. Recent studies suggest that semaphorin 3A (Sema3A), a member of the semaphorin family, is involved in the development of several cancers. This study aimed to analyze the association of Sema3A with the clinical features of nasopharyngeal carcinoma (NPC), an Epstein–Barr virus-associated carcinoma, and the Epstein–Barr virus primary oncogene latent membrane protein 1 (LMP1). The expression of Sema3A and LMP1 was immunohistochemically examined in the 35 NPC specimens. The mean expression scores for Sema3A and LMP1 were 20.8% ± 14.5% and 13.9% ± 14.8%, respectively. The expression of Sema3A significantly correlated with that of LMP1 (r = 0.41, p = 0.014). In addition, the Sema3A high cohort showed significantly poorer prognosis than the Sema3A low cohort. Sema3A expression was higher in the LMP1-positive KH-1 and KR-4 cell lines compared to the LMP1-negative HeLa cells. Overexpression of LMP1 in the LMP1-negative AdAH cell line upregulated Sema3A expression, both at the transcriptional and translational level. Finally, Sema3A expression was associated with poor prognosis in patients with NPC. Our data suggest that LMP1 induces the expression of Sema3A, which may promote tumor progression in NPC.
Collapse
|
8
|
Lumb R, Tata M, Xu X, Joyce A, Marchant C, Harvey N, Ruhrberg C, Schwarz Q. Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla. Development 2018; 145:dev.162552. [PMID: 30237243 PMCID: PMC6240312 DOI: 10.1242/dev.162552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/13/2018] [Indexed: 01/22/2023]
Abstract
The adrenal medulla is composed of neuroendocrine chromaffin cells that secrete adrenaline into the systemic circulation to maintain physiological homeostasis and enable the autonomic stress response. How chromaffin cell precursors colonise the adrenal medulla and how they become connected to central nervous system-derived preganglionic sympathetic neurons remain largely unknown. By combining lineage tracing, gene expression studies, genetic ablation and the analysis of mouse mutants, we demonstrate that preganglionic axons direct chromaffin cell precursors into the adrenal primordia. We further show that preganglionic axons and chromaffin cell precursors require class 3 semaphorin (SEMA3) signalling through neuropilins (NRP) to target the adrenal medulla. Thus, SEMA3 proteins serve as guidance cues to control formation of the adrenal neuroendocrine system by establishing appropriate connections between preganglionic neurons and adrenal chromaffin cells that regulate the autonomic stress response. Summary: A new role is revealed for semaphorin/neuropilin signalling in guiding preganglionic sympathetic axons and chromaffin cell precursors into the adrenal primordia, ensuring correct regulation of the autonomic stress response.
Collapse
Affiliation(s)
- Rachael Lumb
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia.,Medical School, University of Adelaide, Frome Road, Adelaide 5000, Australia
| | - Mathew Tata
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| | - Andrew Joyce
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ceilidh Marchant
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| | - Natasha Harvey
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, North Terrace, Adelaide 5001, Australia
| |
Collapse
|
9
|
Sato Y, Matsuo A, Kudoh S, Fang L, Hasegawa K, Shinmyo Y, Ito T. Expression of Draxin in Lung Carcinomas. Acta Histochem Cytochem 2018; 51:53-62. [PMID: 29622850 PMCID: PMC5880803 DOI: 10.1267/ahc.17035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Guidance molecules, such as Netrin-1, and their receptors have important roles in controlling axon pathfinding, modulate biological activities of various cancer cells, and may be a useful target for cancer therapy. Dorsal repulsive axon guidance protein (Draxin) is a novel guidance molecule that binds not only common guidance molecule receptors with Netrin-1, but also directly binds the EGF domain of Netrin-1 through a 22-amino-acid peptide (22aa). By immunostaining, Draxin was positively expressed in small cell carcinoma, adenocarcinoma (ADC), and squamous cell carcinoma of the lung. In addition, western blot analysis revealed that Draxin was expressed in all histological types of lung cancer cell lines examined. Knockdown of Draxin in an ADC cell line H358 resulted in altered expression of molecules associated with proliferation and apoptosis. The Ki-67 labeling index of Draxin-knockdown ADC cells was increased compared to that of control ADC cells. In H358 cells, treatment of 22aa induced phosphorylation of histone H3, but did not change apoptosis-associated enzymes. These data suggest that Draxin might be involved in cell proliferation and apoptosis in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Younosuke Sato
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Akira Matsuo
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Shinji Kudoh
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Liu Fang
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
- Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University
| | - Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University
| | - Yohei Shinmyo
- Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University
| |
Collapse
|
10
|
Movassagh H, Khadem F, Gounni AS. Semaphorins and Their Roles in Airway Biology: Potential as Therapeutic Targets. Am J Respir Cell Mol Biol 2018; 58:21-27. [PMID: 28817310 DOI: 10.1165/rcmb.2017-0171tr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Semaphorins are a large family of proteins originally identified as axon guidance cues that play a crucial role in neural development. They are also ubiquitously expressed beyond the nervous system and contribute to regulation of essential cell functions, such as cell migration, proliferation, and adhesion. Binding of semaphorins to their receptors, including plexins and neuropilins, triggers diverse signaling pathways, which are involved in the pathogenesis of various diseases, from cancer to autoimmune and allergic disorders. Despite emerging evidence suggestive of nonredundant roles of semaphorins in cellular and molecular mechanisms of the airway biology, their precise expression and function have not been fully addressed. Here, we first provide an overview about the semaphorin family, their receptors, signaling pathways, and their cellular functions. Then, we highlight the novel findings on the role of semaphorins in airway biology under developmental, homeostatic, and pathological conditions. In particular, we discuss the dual roles of semaphorins in respiratory disorders where they can up- or downregulate processes underlying the pathophysiology of the airway diseases. Next, our recent findings on the expression and function of semaphorin 3E in allergic asthma are further emphasized, and its potential mechanism of action in allergic airway inflammation and remodeling is discussed. Finally, we raise some unanswered questions aiming to develop future research directions.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Forough Khadem
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Li X, Chen Q, Yin D, Shi S, Yu L, Zhou S, Chen E, Zhou Z, Shi Y, Fan J, Zhou J, Dai Z. Novel role of semaphorin 3A in the growth and progression of hepatocellular carcinoma. Oncol Rep 2017; 37:3313-3320. [PMID: 28498470 DOI: 10.3892/or.2017.5616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
Semaphorin 3A (SEMA3A), a secretory protein, is a founding member of the semaphorin family and functions in both the biological behavior of tumor cells and the modulation of tumor-associated macrophages. However, the role of SEMA3A in hepatocellular carcinoma (HCC) is still not well established. In the present study, we investigated the expression levels of SEMA3A in 80 HCC tissues and cell lines, using RT-qPCR, western blotting and immunohistochemistry. Expression profile analysis revealed that SEMA3A was significantly overexpressed in human HCC patients and positively correlated with the metastatic potential of HCC cells. Lentiviral transfection into PLC/PRF/5 and HCCLM3 cells was performed to stably upregulate and downregulate the expression of SEMA3A in HCC cells. Cell Counting Kit-8 (CCK-8), wound-healing and invasion assays revealed that SEMA3A promoted the proliferation and migration of HCC cells in vitro. Proteome profiler antibody microarray analysis revealed that overexpression of SEMA3A in HCC cells induced a significant increase in the expression levels of gelsolin-like capping protein (CapG), galectin-3, enolase 2 and epithelial cell adhesion molecule (EpCAM). Furthermore, the upregulation of SEMA3A in HCC cells promoted tumor growth and progression in an HCC mouse model. These results indicate that SEMA3A enhances CapG, galectin-3, enolase 2 and EpCAM expression to promote HCC progression and is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xuedong Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qing Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Dan Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shiming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lei Yu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shaolai Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Erbao Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhengjun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yinghong Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
12
|
Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H, Shioi G, Jitsuki-Takahashi A, Nakamura H, Tanaka F, Akase T, Kolattukudy P, Goshima Y. CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes Cells 2016; 21:994-1005. [DOI: 10.1111/gtc.12399] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/02/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroko Makihara
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
- Biological Science and Nursing; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
| | - Shiori Nakai
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
| | - Wataru Ohkubo
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
- JSPS Postdoctoral Fellowship for Research Abroad; Chiyoda-ku 102-0083 Japan
- Department of Biology; Johns Hopkins University; Baltimore MD 21218 USA
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit; RIKEN Center for Life Science Technologies; 2-2-3 Minatojima Minami-machi Chuou-ku Kobe 650-0047 Japan
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; 2-2-3 Minatojima Minami-machi Chuou-ku Kobe 650-0047 Japan
| | - Go Shioi
- Genetic Engineering Team; RIKEN Center for Life Science Technologies; 2-2-3 Minatojima Minami-machi Chuou-ku Kobe 650-0047 Japan
| | - Aoi Jitsuki-Takahashi
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
| | - Haruko Nakamura
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
- Department of Neurology and Stroke Medicine; Graduate School of Medicine; Yokohama City University; Yokohama 236-0004 Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine; Graduate School of Medicine; Yokohama City University; Yokohama 236-0004 Japan
| | - Tomoko Akase
- Biological Science and Nursing; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Sciences; College of Medicine; University of Central Florida; Orlando FL USA
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology; Graduate School of Medicine; Yokohama City University; 3-9 Fuku-ura Kanazawa-ku Yokohama 236-0004 Japan
| |
Collapse
|
13
|
Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, Dębski J, Uusi-Rauva K, Dadlez M, Gingras AC, Tyynelä J, Simonati A, Jalanko A, Baumann MH, Lalowski M. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics 2015; 123:42-53. [PMID: 25865307 DOI: 10.1016/j.jprot.2015.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1). In this study, we utilised single step affinity purification coupled to mass spectrometry (AP-MS) to unravel the in vivo substrates of human PPT1 in the brain neuronal cells. Protein complexes were isolated from human PPT1 expressing SH-SY5Y stable cells, subjected to filter-aided sample preparation (FASP) and analysed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. A total of 23 PPT1 interacting partners (IP) were identified from label free quantitation of the MS data by SAINT platform. Three of the identified PPT1 IP, namely CRMP1, DBH, and MAP1B are predicted to be palmitoylated. Our proteomic analysis confirmed previously suggested roles of PPT1 in axon guidance and lipid metabolism, yet implicates the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway. BIOLOGICAL SIGNIFICANCE The significance of this work lies in the unravelling of putative in vivo substrates of human CLN1 or PPT1 in brain neuronal cells. Moreover, the PPT1 IP implicate the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway.
Collapse
Affiliation(s)
- Enzo Scifo
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland; Doctoral Program Brain & Mind, University of Helsinki, Helsinki, Finland.
| | - Agnieszka Szwajda
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Francesco Pezzini
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Marzia Bianchi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arvydas Dapkunas
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kristiina Uusi-Rauva
- Folkhälsan Institute of Genetics, Helsinki, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Michał Dadlez
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anne-Claude Gingras
- Centre for Systems Biology, Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Jaana Tyynelä
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Anu Jalanko
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Marc H Baumann
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland; Folkhälsan Institute of Genetics, Helsinki, Finland.
| |
Collapse
|
14
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
15
|
Song Y, Wang P, Zhao W, Yao Y, Liu X, Ma J, Xue Y, Liu Y. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin. Exp Cell Res 2014; 324:54-64. [PMID: 24657544 DOI: 10.1016/j.yexcr.2014.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 01/22/2023]
Abstract
MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Yichen Song
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People׳s Republic of China.
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People׳s Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People׳s Republic of China.
| | - Wei Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People׳s Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People׳s Republic of China.
| | - Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People׳s Republic of China.
| | - Xiaobai Liu
- The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001, People׳s Republic of China.
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People׳s Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People׳s Republic of China.
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People׳s Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People׳s Republic of China.
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People׳s Republic of China.
| |
Collapse
|
16
|
Li W, Lin CY, Shang C, Han P, Xiong Y, Lin CJ, Yang J, Selleri L, Chang CP. Pbx1 activates Fgf10 in the mesenchyme of developing lungs. Genesis 2014; 52:399-407. [PMID: 24591256 DOI: 10.1002/dvg.22764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/19/2023]
Abstract
Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung.
Collapse
Affiliation(s)
- Wei Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Leikauf GD, Concel VJ, Bein K, Liu P, Berndt A, Martin TM, Ganguly K, Jang AS, Brant KA, Dopico RA, Upadhyay S, Cario C, Di YPP, Vuga LJ, Kostem E, Eskin E, You M, Kaminski N, Prows DR, Knoell DL, Fabisiak JP. Functional genomic assessment of phosgene-induced acute lung injury in mice. Am J Respir Cell Mol Biol 2013; 49:368-83. [PMID: 23590305 DOI: 10.1165/rcmb.2012-0337oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to phosgene and genome-wide association mapping performed using a high-density single nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was also used to improve the genetic resolution in the identification of genetic determinants of phosgene-induced acute lung injury (ALI). We prioritized the identified genes based on whether the encoded protein was previously associated with lung injury or contained a nonsynonymous SNP within a functional domain. Candidates were selected that contained a promoter SNP that could alter a putative transcription factor binding site and had variable expression by transcriptomic analyses. The latter two criteria also required that ≥10% of mice carried the minor allele and that this allele could account for ≥10% of the phenotypic difference noted between the strains at the phenotypic extremes. This integrative, functional approach revealed 14 candidate genes that included Atp1a1, Alox5, Galnt11, Hrh1, Mbd4, Phactr2, Plxnd1, Ptprt, Reln, and Zfand4, which had significant SNP associations, and Itga9, Man1a2, Mapk14, and Vwf, which had suggestive SNP associations. Of the genes with significant SNP associations, Atp1a1, Alox5, Plxnd1, Ptprt, and Zfand4 could be associated with ALI in several ways. Using a competitive electrophoretic mobility shift analysis, Atp1a1 promoter (rs215053185) oligonucleotide containing the minor G allele formed a major distinct faster-migrating complex. In addition, a gene with a suggestive SNP association, Itga9, is linked to transforming growth factor β1 signaling, which previously has been associated with the susceptibility to ALI in mice.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shim EJ, Chun E, Kang HR, Cho SH, Min KU, Park HW. Expression of semaphorin 3A and neuropilin 1 in asthma. J Korean Med Sci 2013; 28:1435-42. [PMID: 24133346 PMCID: PMC3792596 DOI: 10.3346/jkms.2013.28.10.1435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/19/2013] [Indexed: 01/13/2023] Open
Abstract
Neuropilin 1 (NP1) is a part of essential receptor complexes mediating both semaphorin3A (SEMA3A) and vascular endothelial growth factor (VEGF) which is one of important mediators involved in the pathogenesis of asthma. Therefore, it is possible that SEMA3A plays a role in the pathogenesis of asthma through attenuation of VEGF-mediated effects. In the present study, we aimed to evaluate expression levels of SEMA3A and NP1 using induced sputum of asthmatics and a murine model of asthma. Firstly, SEMA3A and NP1 expressions in induced sputum of asthmatics and SEMA3A and NP1 expression on bronchoalveolar lavage (BAL) cells and lung homogenates of asthmatic mice were determined. Then we evaluated the immunolocalization of VEGF receptor 1 (VEGFR1), VEGF receptor 2 (VEGFR2), and NP1 expressions on asthmatic mice lung tissue and their subcellular distributions using fibroblast and BEAS2B cell lines. Sputum SEMA3A and NP1 expressions were significantly higher in asthmatics than controls. Similarly, SEMA3A and NP1 expressions on BAL cells and lung homogenates were significantly elevated in asthmatic mice compared to control mice. Immunohistochemical analysis showed that VEGFR1, VEGFR2, and NP1 expressions were also uniformly increased in asthmatic mice. Our observations suggest that SEMA3A and NP1 may play important roles in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Eun-Jin Shim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eunyoung Chun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hae-Ryun Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Up Min
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Vadivel A, Alphonse RS, Collins JJP, van Haaften T, O’Reilly M, Eaton F, Thébaud B. The axonal guidance cue semaphorin 3C contributes to alveolar growth and repair. PLoS One 2013; 8:e67225. [PMID: 23840631 PMCID: PMC3688622 DOI: 10.1371/journal.pone.0067225] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/17/2013] [Indexed: 01/30/2023] Open
Abstract
Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.
Collapse
Affiliation(s)
- Arul Vadivel
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research, Regenerative Medicine Program and Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Rajesh S. Alphonse
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Jennifer J. P. Collins
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research, Regenerative Medicine Program and Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Tim van Haaften
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Megan O’Reilly
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Farah Eaton
- Department of Pediatrics, School of Human Development, Women and Children’s Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research, Regenerative Medicine Program and Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Yasukawa M, Ishida K, Yuge Y, Hanaoka M, Minami Y, Ogawa M, Sasaki T, Saito M, Tsuji T. Dpysl4 is involved in tooth germ morphogenesis through growth regulation, polarization and differentiation of dental epithelial cells. Int J Biol Sci 2013; 9:382-90. [PMID: 23630450 PMCID: PMC3638293 DOI: 10.7150/ijbs.5510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/09/2013] [Indexed: 11/05/2022] Open
Abstract
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.
Collapse
Affiliation(s)
- Masato Yasukawa
- Department of Biological Science and Technology, Graduate school of Industrial Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oliemuller E, Peláez R, Garasa S, Pajares MJ, Agorreta J, Pío R, Montuenga LM, Teijeira A, Llanos S, Rouzaut A. Phosphorylated tubulin adaptor protein CRMP-2 as prognostic marker and candidate therapeutic target for NSCLC. Int J Cancer 2012; 132:1986-95. [PMID: 23023514 DOI: 10.1002/ijc.27881] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/18/2012] [Indexed: 11/08/2022]
Abstract
Collapsin response mediator protein-2 (CRMP-2) is the first described and most studied member of a family of proteins that mediate the addition of tubulin dimers to the growing microtubule. CRMPs have mainly been studied in the nervous system, but recently, they have been described in other tissues where they participate in vesicle transport, migration and mitosis. In this work, we aimed at studying the role of CRMP-2 in lung cancer cell division. We first explored the expression of CRMP-2 and phosphorylated (Thr 514) CRMP-2 in 91 samples obtained from patients with localized nonsmall cell lung cancer. We observed a significant correlation between high levels of nuclear phosphorylated CRMP-2 and poor prognosis in those patients. Interestingly, this association was only positive for untreated patients. To provide a mechanistic explanation to these findings, we used in vitro models to analyze the role of CRMP-2 and its phosphorylated forms in cell division. Thus, we observed by confocal microscopy and immunoprecipitation assays that CRMP-2 differentially colocalizes with the mitotic spindle during cell division. The use of phosphodefective or phosphomimetic mutants of CRMP-2 allowed us to prove that anomalies in the phosphorylation status of CRMP-2 result in changes in the mitotic tempo, and increments in the number of multinucleated cells. Finally, here we demonstrate that CRMP-2 phosphorylation impairment, or silencing induces p53 expression and promotes apoptosis through caspase 3 activation. These results pointed to CRMP-2 phosphorylation as a prognostic marker and potential new target to be explored in cancer therapy.
Collapse
Affiliation(s)
- Erik Oliemuller
- Oncology Division, Center for Applied Medical Research (CIMA), University of Navarra, 55 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Solid tumors not only comprise malignant cells but also other nonmalignant cell types, forming a unique microenvironment that can strongly influence the behavior of tumor cells. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins. In fact, semaphorins form a family of molecular signals known to guide and control cell migration during embryo development and in adults. Tumor cells express semaphorins as well as their receptors, plexins and neuropilins. It has been shown that semaphorin signaling can regulate tumor cell behavior. Moreover, semaphorins are important regulators of tumor angiogenesis. Conversely, very little is known about the functional relevance of semaphorin signals for tumor-infiltrating stromal cells, such as leukocytes. In this chapter, we review the current knowledge on the functional role of semaphorins in cancer progression, and we focus on the emerging role of semaphorins in mediating the cross talk between tumor cells and different tumor stromal cells.
Collapse
Affiliation(s)
- Claudia Muratori
- University of Torino Medical School, Institute for Cancer Research (IRCC), Candiolo, Turin, Italy
| | | |
Collapse
|
23
|
Varma S, Cao Y, Tagne JB, Lakshminarayanan M, Li J, Friedman TB, Morell RJ, Warburton D, Kotton DN, Ramirez MI. The transcription factors Grainyhead-like 2 and NK2-homeobox 1 form a regulatory loop that coordinates lung epithelial cell morphogenesis and differentiation. J Biol Chem 2012; 287:37282-95. [PMID: 22955271 DOI: 10.1074/jbc.m112.408401] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Grainyhead family of transcription factors controls morphogenesis and differentiation of epithelial cell layers in multicellular organisms by regulating cell junction- and proliferation-related genes. Grainyhead-like 2 (Grhl2) is expressed in developing mouse lung epithelium and is required for normal lung organogenesis. The specific epithelial cells expressing Grhl2 and the genes regulated by Grhl2 in normal lungs are mostly unknown. In these studies we identified the NK2-homeobox 1 transcription factor (Nkx2-1) as a direct transcriptional target of Grhl2. By binding and transcriptional assays and by confocal microscopy we showed that these two transcription factors form a positive feedback loop in vivo and in cell lines and are co-expressed in lung bronchiolar and alveolar type II cells. The morphological changes observed in flattening lung alveolar type II cells in culture are associated with down-regulation of Grhl2 and Nkx2-1. Reduction of Grhl2 in lung epithelial cell lines results in lower expression levels of Nkx2-1 and of known Grhl2 target genes. By microarray analysis we identified that in addition to Cadherin1 and Claudin4, Grhl2 regulates other cell interaction genes such as semaphorins and their receptors, which also play a functional role in developing lung epithelium. Impaired collective cell migration observed in Grhl2 knockdown cell monolayers is associated with reduced expression of these genes and may contribute to the altered epithelial phenotype reported in Grhl2 mutant mice. Thus, Grhl2 functions at the nexus of a novel regulatory network, connecting lung epithelial cell identity, migration, and cell-cell interactions.
Collapse
Affiliation(s)
- Saaket Varma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Semaphorin-1 and netrin signal in parallel and permissively to position the male ray 1 sensillum in Caenorhabditis elegans. Genetics 2012; 192:959-71. [PMID: 22942127 DOI: 10.1534/genetics.112.144253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Netrin and semaphorin axon guidance cues have been found to function in the genesis of several mammalian organs; however, little is known about the underlying molecular mechanisms involved. A genetic approach could help to reveal the underpinnings of these mechanisms. The most anterior ray sensillum (ray 1) in the Caenorhabditis elegans male tail is frequently displaced anterior to its normal position in smp-1/semaphorin-1a and plexin-1/plx-1 mutants. Here we report that UNC-6/netrin and its UNC-40/DCC receptor signal in parallel to SMP-1/semaphorin-1a and its PLX-1/plexin-1 receptor to prevent the anterior displacement of ray 1 and that UNC-6 plus SMP-1 signaling can account entirely for this function. We also report that mab-20/semaphorin-2a mutations, which prevent the separation of neighboring rays and cause ray fusions, suppress the anterior displacements of ray 1 caused by deficiencies in SMP-1 and UNC-6 signaling and this is independent of the ray fusion phenotype, whereas overexpression of UNC-40 and PLX-1 cause ray fusions. This suggests that for ray 1 positioning, a balance is struck between a tendency of SMP-1 and UNC-6 signaling to prevent ray 1 from moving away from ray 2 and a tendency of MAB-20/semaphorin-2a signaling to separate all rays from each other. Additional evidence suggests this balance involves the relative adhesion of the ray 1 structural cell to neighboring SET and hyp 7 hypodermal cells. This finding raises the possibility that changes in ray 1 positioning depend on passive movements caused by attachment to the elongating SET cell in opposition to the morphologically more stable hyp 7 cell. Several lines of evidence indicate that SMP-1 and UNC-6 function permissively in the context of ray 1 positioning.
Collapse
|
25
|
Wild JRL, Staton CA, Chapple K, Corfe BM. Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 2012; 93:81-103. [PMID: 22414290 DOI: 10.1111/j.1365-2613.2012.00810.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Initially found expressed in neuronal and then later in endothelial cells, it is well established that the transmembrane glycoproteins neuropilin-1 (NRP1) and neuropilin-2 (NRP2) play essential roles in axonal growth and guidance and in physiological and pathological angiogenesis. Neuropilin expression and function in epithelial cells has received little attention when compared with neuronal and endothelial cells. Overexpression of NRPs is shown to enhance growth, correlate with invasion and is associated with poor prognosis in various tumour types, especially those of epithelial origin. The contribution of NRP and its ligands to tumour growth and metastasis has spurred a strong interest in NRPs as novel chemotherapy drug targets. Given NRP's role as a multifunctional co-receptor with an ability to bind with disparate ligand families, this has sparked new areas of research implicating NRPs in diverse biological functions. Here, we review the growing body of research demonstrating NRP expression and role in the normal and neoplastic epithelium.
Collapse
Affiliation(s)
- Jonathan R L Wild
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, University of Sheffield, The Medical School, Sheffield, UK
| | | | | | | |
Collapse
|
26
|
Binmadi NO, Yang YH, Zhou H, Proia P, Lin YL, Batista De Paula AM, Sena Guimarães AL, Poswar FO, Sundararajan D, Basile JR. Plexin-B1 and semaphorin 4D cooperate to promote perineural invasion in a RhoA/ROK-dependent manner. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1232-1242. [PMID: 22252234 DOI: 10.1016/j.ajpath.2011.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/07/2011] [Accepted: 12/02/2011] [Indexed: 01/15/2023]
Abstract
Perineural invasion (PNI) is a tropism of tumor cells for nerve bundles located in the surrounding stroma. It is a pathological feature observed in certain tumors, referred to as neurotropic malignancies, that severely limits the ability to establish local control of disease and results in pain, recurrent growth, and distant metastases. Despite the importance of PNI as a prognostic indicator, its biological mechanisms are poorly understood. The semaphorins and their receptors, the plexins, compose a family of proteins originally shown to be important in nerve cell adhesion, axon migration, and proper central nervous system development. Emerging evidence has demonstrated that these factors are expressed in tissues outside of the nervous system and represent a widespread signal transduction system that is involved in the regulation of motility and adhesion in different cell types. We believe that the plexins and semaphorins, which are strongly expressed in both axons and many carcinomas, play a role in PNI. In this study, we show that plexin-B1 is overexpressed in tissues and cell lines from neurotropic malignancies and is attracted to nerves that express its ligand, semaphorin 4D, in a Rho/Rho kinase-dependent manner. We also demonstrate that nerves are attracted to tumors through this same system of proteins, suggesting that both plexin-B1 and semaphorin 4D are important in the promotion of PNI.
Collapse
Affiliation(s)
- Nada O Binmadi
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland; Department of Oral, Basic, and Clinical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ying-Hua Yang
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland
| | - Hua Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland
| | - Patrizia Proia
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland; Department of Sports Science, University of Palermo, Palermo, Italy
| | - Yi-Ling Lin
- Department of Diagnostic and Surgical Sciences, University of California at Los Angeles, School of Dentistry, Los Angeles, California
| | - Alfredo M Batista De Paula
- Health Science Program, Department of Dentistry, State University of Montes Claros, Minas Gerais, Brazil
| | - André L Sena Guimarães
- Health Science Program, Department of Dentistry, State University of Montes Claros, Minas Gerais, Brazil
| | - Fabiano O Poswar
- Health Science Program, Department of Medicine, State University of Montes Claros, Minas Gerais, Brazil
| | - Devaki Sundararajan
- Department of Oral and Maxillofacial Pathology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts
| | - John R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland; Marlene and Stuart Greenebaum Cancer Center, Baltimore, Maryland.
| |
Collapse
|
27
|
Becker PM, Tran TS, Delannoy MJ, He C, Shannon JM, McGrath-Morrow S. Semaphorin 3A contributes to distal pulmonary epithelial cell differentiation and lung morphogenesis. PLoS One 2011; 6:e27449. [PMID: 22096573 PMCID: PMC3214054 DOI: 10.1371/journal.pone.0027449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022] Open
Abstract
Rationale Semaphorin 3A (Sema3A) is a neural guidance cue that also mediates cell migration, proliferation and apoptosis, and inhibits branching morphogenesis. Because we have shown that genetic deletion of neuropilin-1, which encodes an obligatory Sema3A co-receptor, influences airspace remodeling in the smoke-exposed adult lung, we sought to determine whether genetic deletion of Sema3A altered distal lung structure. Methods To determine whether loss of Sema3A signaling influenced distal lung morphology, we compared pulmonary histology, distal epithelial cell morphology and maturation, and the balance between lung cell proliferation and death, in lungs from mice with a targeted genetic deletion of Sema3A (Sema3A-/-) and wild-type (Sema3A+/+) littermate controls. Results Genetic deletion of Sema3A resulted in significant perinatal lethality. At E17.5, lungs from Sema3A-/- mice had thickened septae and reduced airspace size. Distal lung epithelial cells had increased intracellular glycogen pools and small multivesicular and lamellar bodies with atypical ultrastructure, as well as reduced expression of type I alveolar epithelial cell markers. Alveolarization was markedly attenuated in lungs from the rare Sema3A-/- mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death. Conclusions These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury.
Collapse
Affiliation(s)
- Patrice M Becker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | |
Collapse
|
28
|
Perälä N, Sariola H, Immonen T. More than nervous: the emerging roles of plexins. Differentiation 2011; 83:77-91. [PMID: 22099179 DOI: 10.1016/j.diff.2011.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/30/2022]
Abstract
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.
Collapse
Affiliation(s)
- Nina Perälä
- Institute of Biomedicine/Biochemistry and Developmental Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
29
|
Garcia F, Lepelletier Y, Smaniotto S, Hadj-Slimane R, Dardenne M, Hermine O, Savino W. Inhibitory effect of semaphorin-3A, a known axon guidance molecule, in the human thymocyte migration induced by CXCL12. J Leukoc Biol 2011; 91:7-13. [DOI: 10.1189/jlb.0111031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
30
|
Ye S, Hao X, Zhou T, Wu M, Wei J, Wang Y, Zhou L, Jiang X, Ji L, Chen Y, You L, Zhang Y, Xu G, Zhou J, Ma D, Wang S. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion. BMC Cancer 2010; 10:611. [PMID: 21059203 PMCID: PMC2991310 DOI: 10.1186/1471-2407-10-611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 11/08/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. METHODS Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKTSer473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. RESULTS Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell proliferation was not affected. CONCLUSION Plexin-B1 expression correlates with malignant phenotypes of serous ovarian tumors, probably via phosphorylation of AKT at Ser473, suggesting that Plexin-B1 might be a useful biomarker and/or a novel therapeutic target.
Collapse
Affiliation(s)
- Shuangmei Ye
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Morishige N, Ko JA, Morita Y, Nishida T. Expression of semaphorin 3A in the rat corneal epithelium during wound healing. Biochem Biophys Res Commun 2010; 395:451-7. [PMID: 20331965 DOI: 10.1016/j.bbrc.2010.03.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 01/02/2023]
Abstract
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.
Collapse
Affiliation(s)
- Naoyuki Morishige
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule families and their corresponding receptors are described, including the semaphorins/neuropilins/plexins, ephrins and Eph receptors, netrin/DCC/UNC5, Slit/Robo and Notch/Delta. In addition, the possibility to target these molecules as a therapeutic approach in cancer is discussed.
Collapse
Affiliation(s)
- Patrick Nasarre
- Medical University of South Carolina, Division of Hematology/Oncology, Charleston, SC, USA
| | | | | | | |
Collapse
|
33
|
Maione F, Molla F, Meda C, Latini R, Zentilin L, Giacca M, Seano G, Serini G, Bussolino F, Giraudo E. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. J Clin Invest 2009; 119:3356-72. [PMID: 19809158 DOI: 10.1172/jci36308] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 08/06/2009] [Indexed: 01/29/2023] Open
Abstract
Tumor growth and progression rely upon angiogenesis, which is regulated by pro- and antiangiogenic factors, including members of the semaphorin family. By analyzing 3 different mouse models of multistep carcinogenesis, we show here that during angiogenesis, semaphorin 3A (Sema3A) is expressed in ECs, where it serves as an endogenous inhibitor of angiogenesis that is present in premalignant lesions and lost during tumor progression. Pharmacologic inhibition of endogenous Sema3A during the angiogenic switch, the point when pretumoral lesions initiate an angiogenic phase that persists throughout tumor growth, enhanced angiogenesis and accelerated tumor progression. By contrast, when, during the later stages of carcinogenesis following endogenous Sema3A downmodulation, Sema3A was ectopically reintroduced into islet cell tumors by somatic gene transfer, successive waves of apoptosis ensued, first in ECs and then in tumor cells, resulting in reduced vascular density and branching and inhibition of tumor growth and substantially extended survival. Further, long-term reexpression of Sema3A markedly improved pericyte coverage of tumor blood vessels, something that is thought to be a key property of tumor vessel normalization, and restored tissue normoxia. We conclude, therefore, that Sema3A is an endogenous and effective antiangiogenic agent that stably normalizes the tumor vasculature.
Collapse
Affiliation(s)
- Federica Maione
- Department of Oncological Sciences, University of Torino School of Medicine, Candiolo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Le A, Zielinski R, He C, Crow MT, Biswal S, Tuder RM, Becker PM. Pulmonary epithelial neuropilin-1 deletion enhances development of cigarette smoke-induced emphysema. Am J Respir Crit Care Med 2009; 180:396-406. [PMID: 19520907 PMCID: PMC2742758 DOI: 10.1164/rccm.200809-1483oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 06/09/2009] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Cigarette smoke (CS) exposure is an important risk factor for chronic obstructive pulmonary disease; however, not all smokers develop disease, suggesting that other factors influence disease development. OBJECTIVES We sought to determine whether neuropilin-1 (Nrp1), an integral component of receptor complexes mediating alveolar septation and vascular development, was involved in maintenance of normal alveolar structure, and/or altered susceptibility to the effects of CS. METHODS Transgenic mice were generated to achieve inducible lung-specific deletion of epithelial Nrp1. We determined whether conditional Nrp1 deletion altered airspace size, then compared the effects of chronic CS or filtered air exposure on airspace size, inflammation, and the balance between cell death and proliferation in conditionally Nrp1-deficient adult mice and littermate controls. Finally, we evaluated the effects of Nrp1 silencing on cell death after acute exposure of A549 cells to cigarette smoke extract or short chain ceramides. MEASUREMENTS AND MAIN RESULTS Genetic deletion of epithelial Nrp1 in either postnatal or adult lungs resulted in a small increase in airspace size. More notably, both airspace enlargement and apoptosis of type I and type II alveolar epithelial cells were significantly enhanced following chronic CS exposure in conditionally Nrp1-deficient adult mice. Silencing of Nrp1 in A549 cells did not alter cell survival after vehicle treatment but significantly augmented apoptosis after exposure to cigarette smoke extract or ceramide. CONCLUSIONS These data support a role for epithelial Nrp1 in the maintenance of normal alveolar structure and suggest that dysregulation of Nrp1 expression may promote epithelial cell death in response to CS exposure, thereby enhancing emphysema development.
Collapse
Affiliation(s)
- Anne Le
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In vertebrate embryos, development of an architecturally optimized blood vessel network allows the efficient transport of oxygen and nutrients to all other tissues. The final shape of the vascular system results from vasculogenesis and angiogenesis, during which motile endothelial cells (ECs) modify their integrin-mediated interactions with the extracellular matrix (ECM) in response to pro- and anti-angiogenic factors. There is mounting evidence that different members of the semaphorin (SEMA) family of neural guidance cues participate in developmental and postnatal vessel formation and patterning as well. It turns out that paracrine secretion of class 3 SEMA (SEMA3) by nonendothelial tissues cooperates with vascular endothelial growth factor in regulating EC precursor migration and assembly during vasculogenesis and funnels navigating blood vessel through tissue boundaries during sprouting angiogenesis. Autocrine loops of endothelial SEMA3 instead appears to regulate vascular remodeling, which occurs through blood vessel intussusception and fusion. SEMA3 activity both on the vascular and nervous systems relies upon their ability to hamper the affinity of integrin receptors towards ECM ligands. Indeed, signaling from SEMA-activated plexin receptors negatively regulates cell-ECM adhesive interactions by inhibiting two key integrin activators, such as the small GTPase R-Ras and the focal adhesion protein talin.
Collapse
Affiliation(s)
- Federico Bussolino
- Department of Oncological Sciences and Division of Molecular Angiogenesis, IRCC, Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy.
| | | | | | | |
Collapse
|
36
|
Antagonistic interactions among Plexins regulate the timing of intersegmental vessel formation. Dev Biol 2009; 331:199-209. [PMID: 19422817 DOI: 10.1016/j.ydbio.2009.04.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 12/25/2022]
Abstract
The angioblast is an embryonic endothelial cell precursor that migrates long distances to reach its final position, navigating by sensing attractive and repulsive cues from the environment. Members of the semaphorin family have been implicated in controlling the behaviour of angioblast tip cells through repulsive signalling in vitro, but their in vivo roles are less clear. Here we show that zebrafish semaphorin3e (sema3e) is expressed by endothelial cells of the dorsal aorta, primary motoneurons, and endodermal cells. Further, loss of Sema3e leads to delayed exit of angioblasts from the dorsal aorta in ISV formation. Through transplant analysis, we show that Sema3e acts autonomously and non-autonomously in angioblasts to modulate interactions among themselves. The semaphorin receptors, PlexinD1 and PlexinB2, are expressed by zebrafish angioblasts. Loss of plxnB2 results in delayed ISV sprouting identical to that seen in sema3e morphants, while loss of plexinD1 in out of bounds (obd) mutants results in precocious ISV sprouting. Loss of either sema3e or plxnB2 in obd mutants generates an intermediate phenotype, suggesting that PlxnD1 and Sema3e/PlxnB2 antagonize each other to control timing of ISV sprouting. Consistent with this observation, we show that PlxnB2 acts cell autonomously in endothelial cells. This suggests a model where multiple semaphorin-plexin interactions control angioblast sprouting behaviour.
Collapse
|
37
|
Abstract
Semaphorins belong to a large family of proteins well-conserved along evolution from viruses to mammalians. Secreted and membrane-bound semaphorins participate in a wide range of biological phenomena including development and regeneration of nervous system, cardiovascular development, and immune system activities. Different classes of semaphorins are bifunctional and often exert opposite effects (i.e., repellent or attractive) by acting through the plexin receptor family. However, some classes use other membrane receptors and the same plexin-mediated signals may be modulated by co-receptors, in particular neuropilins or some tyrosine kinase receptors. In cancer, semaphorins have both tumor-suppressor and tumor-promoting functions, by acting on both tumor and stromal components. Here, we review the role of semaphorins in tumor angiogenesis and propose that an unbalance between autocrine loops respectively involving angiogenic inducers and class 3 semaphorin is instrumental for structural and functional abnormalities observed in tumor vasculature.
Collapse
|
38
|
Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 2009; 7:e25. [PMID: 19175293 PMCID: PMC2631072 DOI: 10.1371/journal.pbio.1000025] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 12/11/2008] [Indexed: 12/15/2022] Open
Abstract
Neuropilin 1 (Nrp1) is a coreceptor for vascular endothelial growth factor A165 (VEGF-A165, VEGF-A164 in mice) and semaphorin 3A (SEMA3A). Nevertheless, Nrp1 null embryos display vascular defects that differ from those of mice lacking either VEGF-A164 or Sema3A proteins. Furthermore, it has been recently reported that Nrp1 is required for endothelial cell (EC) response to both VEGF-A165 and VEGF-A121 isoforms, the latter being incapable of binding Nrp1 on the EC surface. Taken together, these data suggest that the vascular phenotype caused by the loss of Nrp1 could be due to a VEGF-A164/SEMA3A-independent function of Nrp1 in ECs, such as adhesion to the extracellular matrix. By using RNA interference and rescue with wild-type and mutant constructs, we show here that Nrp1 through its cytoplasmic SEA motif and independently of VEGF-A165 and SEMA3A specifically promotes α5β1-integrin-mediated EC adhesion to fibronectin that is crucial for vascular development. We provide evidence that Nrp1, while not directly mediating cell spreading on fibronectin, interacts with α5β1 at adhesion sites. Binding of the homomultimeric endocytic adaptor GAIP interacting protein C terminus, member 1 (GIPC1), to the SEA motif of Nrp1 selectively stimulates the internalization of active α5β1 in Rab5-positive early endosomes. Accordingly, GIPC1, which also interacts with α5β1, and the associated motor myosin VI (Myo6) support active α5β1 endocytosis and EC adhesion to fibronectin. In conclusion, we propose that Nrp1, in addition to and independently of its role as coreceptor for VEGF-A165 and SEMA3A, stimulates through its cytoplasmic domain the spreading of ECs on fibronectin by increasing the Rab5/GIPC1/Myo6-dependent internalization of active α5β1. Nrp1 modulation of α5β1 integrin function can play a causal role in the generation of angiogenesis defects observed in Nrp1 null mice. The vascular system is a hierarchical network of blood vessels lined by endothelial cells that, by means of the transmembrane integrin proteins, bind to the surrounding proteinaceous extracellular matrix (ECM). Integrins are required for proper cardiovascular development and exist in bent (inactive) and extended (active) shapes that are correspondingly unable and able to attach to the ECM. Extracellular guidance cues, such as vascular endothelial growth factor and semaphorins, bind the transmembrane protein neuropilin-1 (Nrp1) and then activate biochemical signals that, respectively, activate or inactivate endothelial integrins. Here, we show that Nrp1, via its short cytoplasmic domain and independently of vascular endothelial growth factor and semaphorins, specifically promotes endothelial cell attachment to the ECM protein fibronectin, which is known to be crucial for vascular development. Notably, Nrp1 favors cell adhesion by associating with fibronectin-binding integrins and promoting the fast vesicular traffic of their extended form back and forth from the endothelial cell-to-ECM contacts. Binding of the Nrp1 cytoplasmic domain with the adaptor protein GIPC1, which in turn associates with proteins required for integrin internalization and vesicle motility, is required as well. It is likely that such an integrin treadmill could act as a major regulator of cell adhesion in general. The transmembrane protein neuropilin-1 promotes endothelial cell attachment to the extracellular matrix by enhancing active integrin treadmilling at cell-adhesion sites.
Collapse
|
39
|
Extensive expression of collapsin response mediator protein 5 (CRMP5) is a specific marker of high-grade lung neuroendocrine carcinoma. Am J Surg Pathol 2008; 32:1699-708. [PMID: 18769332 DOI: 10.1097/pas.0b013e31817dc37c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diagnosis of high-grade neuroendocrine tumors has strong clinical relevance because it identifies patients at higher risk of an unfavorable outcome who should receive multimodal treatment. However, these tumors can be mistaken for poorly differentiated nonsmall cell carcinoma or carcinoid lung tumors. In fact, no immunohistochemical marker can currently distinguish between histologic lung subtypes. Because the collapsin response mediator protein (CRMP) family is involved in an autoimmune disease associated with small cell lung carcinoma, we explored the relationship between CRMP5 expression and lung tumor behavior. Using World Health Organization morphologic criteria, 123 lung neuroendocrine tumors and 41 randomly selected non-neuroendocrine tumors were classified. CRMP5 protein expression in tumors, metastases, and healthy lung tissue was assessed using immunostaining method. Strong and extensive CRMP5 expression was seen in 98.6% of high-grade neuroendocrine lung tumors, including small cell lung carcinoma and large cell lung neuroendocrine carcinoma, but not in any of the squamous cell carcinomas or lung adenocarcinomas in our series. In contrast, the majority of low-grade neuroendocrine lung tumors were negative for CRMP5 staining, although weak CRMP5 expression was seen in some, with 2 different staining patterns of either scattered positive cells or small foci of positive cells. Our findings point at CRMP5 as a novel marker for routine pathologic evaluation of lung tumors surgical samples in distinguishing between highly aggressive neuroendocrine carcinoma and the other lung cancers.
Collapse
|
40
|
Korostylev A, Worzfeld T, Deng S, Friedel RH, Swiercz JM, Vodrazka P, Maier V, Hirschberg A, Ohoka Y, Inagaki S, Offermanns S, Kuner R. A functional role for semaphorin 4D/plexin B1 interactions in epithelial branching morphogenesis during organogenesis. Development 2008; 135:3333-43. [PMID: 18799546 DOI: 10.1242/dev.019760] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Semaphorins and their receptors, plexins, carry out important functions during development and disease. In contrast to the well-characterized plexin A family, however, very little is known about the functional relevance of B-type plexins in organogenesis, particularly outside the nervous system. Here, we demonstrate that plexin B1 and its ligand Sema4d are selectively expressed in epithelial and mesenchymal compartments during key steps in the genesis of some organs. This selective expression suggests a role in epithelial-mesenchymal interactions. Importantly, using the developing metanephros as a model system, we have observed that endogenously expressed and exogenously supplemented Sema4d inhibits branching morphogenesis during early stages of development of the ureteric collecting duct system. Our results further suggest that the RhoA-ROCK pathway, which is activated downstream of plexin B1, mediates these inhibitory morphogenetic effects of Sema4d and suppresses branch-promoting signalling effectors of the plexin B1 signalling complex. Finally, mice that lack plexin B1 show early anomalies in kidney development in vivo. These results identify a novel function for plexin B1 as a negative regulator of branching morphogenesis during kidney development, and suggest that the Sema4d-plexin B1 ligand-receptor pair contributes to epithelial-mesenchymal interactions during organogenesis via modulation of RhoA signalling.
Collapse
Affiliation(s)
- Alexander Korostylev
- Pharmacology Institute, Im Neuenheimer Feld 366, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Potiron VA, Roche J, Drabkin HA. Semaphorins and their receptors in lung cancer. Cancer Lett 2008; 273:1-14. [PMID: 18625544 DOI: 10.1016/j.canlet.2008.05.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 02/28/2008] [Accepted: 05/23/2008] [Indexed: 12/30/2022]
Abstract
Semaphorins are a large family of secreted, transmembrane and GPI-linked proteins initially characterized in the development of the nervous system and axonal guidance. Semaphorins are expressed in many tissues where they regulate normal development, organ morphogenesis, immunity and angiogenesis. They affect the cytoskeleton, actin filament organization, microtubules and cell adhesion. Semaphorin signaling is transduced by plexins, which in the case of most class-3 semaphorins requires high-affinity neuropilin receptors. The neuropilins also function as receptors for VEGF and other growth factors, and their expression is often abnormal in tumors. In cancer, semaphorins have both tumor suppressor and tumor promoting functions. We review here the current status of semaphorins and their receptors in tumor development with a focus on lung cancer.
Collapse
Affiliation(s)
- Vincent A Potiron
- Division of Hematology/Oncology, Medical University of South Carolina, P.O. Box 250623, 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | | | | |
Collapse
|
42
|
Rahman S, Patel YM, Wijelath ES, Sobel MS. Therapeutic potential of novel modulators of neovascularization. Future Cardiol 2008; 4:409-26. [PMID: 19804321 DOI: 10.2217/14796678.4.4.409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neovacularization is an important biological process whereby new blood vessels develop in both health and disease. During development, blood vessels are formed from mesodermal cells in a process called vasculogenesis. The vascular network then expands by the sprouting of new vessel networks from pre-established vessels in a process known as angiogenesis. However, in adult life, undesirable neovascularization is associated with tumor development and a growing list of 'angiogenesis-dependent' diseases, including cardiovascular complications. Furthermore, diseases characterized by ischemia-induced tissue damage cause a neovascularization response to facilitate tissue repair. Recent research has identified novel molecular and cellular mediators of neovascularization that, in adult life, recapitulate angiogenic processes observed during embryonic development. The discovery of vascular progenitor cells and new molecules that display selective functions in modulating endothelial cell fate, migration and patterning, vessel morphogenesis and the amplification of angiogenic signaling by regulating the master signal VEGF, opens the door to new clinical strategies that target angiogenesis-dependent diseases or that can promote therapeutic neovascularization.
Collapse
Affiliation(s)
- Salman Rahman
- King's College London School of Medicine, Department of Cardiology, Cardiovascular Division, UK.
| | | | | | | |
Collapse
|
43
|
Morishige N, Ko JA, Liu Y, Chikama TI, Nishida T. Localization of semaphorin 3A in the rat cornea. Exp Eye Res 2008; 86:669-74. [PMID: 18308303 DOI: 10.1016/j.exer.2008.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 01/08/2008] [Accepted: 01/11/2008] [Indexed: 12/11/2022]
Abstract
Semaphorin 3A (Sema3A) functions to guide the growth of neurons during development. We investigated the localization of Sema3A in the cornea, one of the most sensitive tissues in the body. Immunoblot analysis and reverse transcription-polymerase chain reaction analysis revealed that Sema3A protein and mRNA are expressed in the normal rat cornea. Immunofluorescence staining of frozen sections or tissue blocks prepared from the cornea revealed the presence of Sema3A in wing cells and basal cells (but not superficial cells) of the corneal epithelium, in keratocytes, and in the corneal endothelium. The expression pattern of Sema3A in the corneal epithelium differed from those of zonula occludens-1 and connexin43. These observations show that Sema3A is expressed in all cells of the rat cornea with the exception of superficial epithelial cells.
Collapse
Affiliation(s)
- Naoyuki Morishige
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | | | | | | | | |
Collapse
|
44
|
Callander DC, Lamont RE, Childs SJ, McFarlane S. Expression of multiple class three semaphorins in the retina and along the path of zebrafish retinal axons. Dev Dyn 2008; 236:2918-24. [PMID: 17879313 DOI: 10.1002/dvdy.21315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) extend axons that exit the eye, cross the midline at the optic chiasm, and synapse on target cells in the optic tectum. Class three semaphorins (Sema3s) are a family of molecules known to direct axon growth. We undertook an expression screen to identify sema3s expressed in the retina and/or brain close to in-growing RGC axons, which might therefore influence retinal-tectal pathfinding. We find that sema3Aa, 3Fa, 3Ga, and 3Gb are expressed in the retina, although only sema3Fa is present during the time window when the axons extend. Also, we show that sema3Aa and sema3E are present near or at the optic chiasm. Furthermore, sema3C, 3Fa, 3Ga, and 3Gb are expressed in regions of the diencephalon near the path taken by RGC axons. Finally, the optic tectum expresses sema3Aa, 3Fa, 3Fb, and 3Gb. Thus, sema3s are spatiotemporally placed to influence RGC axon growth.
Collapse
|
45
|
Semaphorin 4D inhibits collagen synthesis of rat pulp-derived cells. Arch Oral Biol 2008; 53:27-34. [DOI: 10.1016/j.archoralbio.2007.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 07/02/2007] [Accepted: 08/13/2007] [Indexed: 11/23/2022]
|
46
|
Tufro A, Teichman J, Woda C, Villegas G. Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 2007; 125:558-68. [PMID: 18249526 DOI: 10.1016/j.mod.2007.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Class 3 semaphorins are guidance proteins involved in axon pathfinding, vascular patterning and lung branching morphogenesis in the developing mouse embryo. Semaphorin3a (Sema3a) is expressed in renal epithelia throughout kidney development, including podocytes and ureteric bud cells. However, the role of Sema3a in ureteric bud branching is unknown. Here we demonstrate that Sema3a plays a role in patterning the ureteric bud tree in both metanephric organ cultures and Sema3a mutant mice. In vitro ureteric bud injection with Sema3a antisense morpholino resulted in increased branching, whereas recombinant SEMA3A inhibited ureteric bud branching and decreased the number of developing glomeruli. Additional studies revealed that SEMA3A effects on ureteric bud branching involve downregulation of glial cell-line derived neurotrophic factor (GDNF) signaling, competition with vascular endothelial growth factor A (VEGF-A) and decreased activity of Akt survival pathways. Deletion of Sema3a in mice is associated with increased ureteric bud branching, confirming its inhibitory role in vivo. Collectively, these data suggest that Sema3a is an endogenous antagonist of ureteric bud branching and hence, plays a role in patterning the renal collecting system as a negative regulator.
Collapse
Affiliation(s)
- Alda Tufro
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 708, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
47
|
Basile JR, Gavard J, Gutkind JS. Plexin-B1 Utilizes RhoA and Rho Kinase to Promote the Integrin-dependent Activation of Akt and ERK and Endothelial Cell Motility. J Biol Chem 2007; 282:34888-95. [PMID: 17855350 DOI: 10.1074/jbc.m705467200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The semaphorins are a family of proteins originally identified as axon-guiding molecules in the developing nervous system that have been recently shown to regulate many cellular functions, including motility, in a variety of cell types. We have previously shown that in endothelial cells Semaphorin 4D acts through its receptor, Plexin-B1, to elicit a pro-angiogenic phenotype that involves the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Here we show through the use of a receptor chimeric approach, Plexin-B1 mutants, and dominant negative and pharmacological inhibitors that this response is dependent upon the activation of RhoA and its downstream target, Rho kinase (ROK). Indeed, we demonstrate that in endothelial cells, Semaphorin 4D promotes the formation of focal adhesion complexes, stress fibers, and the phosphorylation of myosin light chain, a response that was abolished by the use of ROK inhibitors and absent from cells expressing Plexin-B1 mutant constructs incapable of signaling to RhoA. Stress fiber polymerization and contraction are in turn necessary for RhoA-dependent pro-angiogenic signaling through Plexin-B1. Furthermore, we observed that in endothelial cells Plexin-B1 promotes the integrin-mediated activation of Pyk2, resulting in the stimulation of PI3K, Akt, and ERK. These findings provide evidence that Plexin-B1 promotes endothelial cell motility through RhoA and ROK by regulating the integrin-dependent signaling networks that result in the activation of PI3K and Akt.
Collapse
Affiliation(s)
- John R Basile
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
48
|
The Role of Vascular Endothelial Growth Factor in Lung Injury and Repair. Intensive Care Med 2007. [DOI: 10.1007/978-0-387-49518-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Abstract
Neuropilins (NRP) are receptors for the class 3 semaphorin (SEMA3) family of axon guidance molecules and the vascular endothelial growth factor (VEGF) family of angiogenesis factors. Although the seminal studies on SEMA3s and NRPs first showed them to be mediators of axon guidance, it has become very apparent that these proteins play an important role in vascular and tumor biology as well. Neuronal guidance and angiogenesis are regulated similarly at the molecular level. For example, SEMA3s not only repel neurons and collapse axon growth cones, but have similar effects on endothelial cells and tumor cells. Preclinical studies indicate that SEMA3F is a potent inhibitor of tumor angiogenesis and metastasis. In addition, neutralizing antibodies to NRP1 enhance the effects of anti-VEGF antibodies in suppressing tumor growth in xenograft models. This article reviews NRP and SEMA3 structural interactions and their role in developmental angiogenesis, tumor angiogenesis and metastasis based on cell culture, zebrafish and murine studies.
Collapse
Affiliation(s)
- Diane R Bielenberg
- Vascular Biology Program, Children's Hospital, Department of Surgery, Harvard Medical School, Karp Family Research Laboratories, 12.211, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
50
|
Chung L, Yang TL, Huang HR, Hsu SM, Cheng HJ, Huang PH. Semaphorin signaling facilitates cleft formation in the developing salivary gland. Development 2007; 134:2935-45. [PMID: 17626059 DOI: 10.1242/dev.005066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Semaphorin signaling plays integral roles in multiple developmental processes. Branching morphogenesis is one such role that has not been thoroughly explored. Here, we show in mice that functional blockage of neuropilin 1 (Npn1) inhibits cleft formation in the developing submandibular gland (SMG) cultured ex vivo. This Npn1-dependent morphogenesis is mediated by Sema3A and Sema3C in an additive manner, and can be abolished by decreasing the expression of plexin A2 or plexin D1. VEGF, another known Npn1 ligand, has no apparent effects on SMG development. FGF signaling, which also mediates SMG branching morphogenesis, acts in parallel with semaphorin signaling. Finally, in contrast to the effect of FGF signaling, we find that semaphorins do not stimulate the proliferation of SMG epithelial cells. Instead, the semaphorin signals act locally on the epithelial cells to facilitate SMG cleft formation.
Collapse
Affiliation(s)
- Ling Chung
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|