1
|
Nicklin EF, Cohen KE, Cooper RL, Mitchell G, Fraser GJ. Evolution, development, and regeneration of tooth-like epithelial appendages in sharks. Dev Biol 2024; 516:221-236. [PMID: 39154741 DOI: 10.1016/j.ydbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Sharks and their relatives are typically covered in highly specialized epithelial appendages embedded in the skin called dermal denticles; ancient tooth-like units (odontodes) composed of dentine and enamel-like tissues. These 'skin teeth' are remarkably similar to oral teeth of vertebrates and share comparable morphological and genetic signatures. Here we review the histological and morphological data from embryonic sharks to uncover characters that unite all tooth-like elements (odontodes), including teeth and skin denticles in sharks. In addition, we review the differences between the skin and oral odontodes that reflect their varied capacity for renewal. Our observations have begun to decipher the developmental and genetic shifts that separate these seemingly similar dental units, including elements of the regenerative nature in both oral teeth and the emerging skin denticles from the small-spotted catshark (Scyliorhinus canicula) and other chondrichthyan models. Ultimately, we ask what defines a tooth at both the molecular and morphological level. These insights aim to help us understand how nature makes, replaces and evolves a vast array of odontodes.
Collapse
Affiliation(s)
- Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, USA
| | - Karly E Cohen
- Department of Biology, University of Florida, Gainesville, USA; Department of Biology, California State University Fullerton, Fullerton, USA
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Switzerland
| | - Gianna Mitchell
- Department of Biology, University of Florida, Gainesville, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, USA.
| |
Collapse
|
2
|
Razmadze D, Salomies L, Di-Poï N. Squamates as a model to understand key dental features of vertebrates. Dev Biol 2024; 516:1-19. [PMID: 39069116 DOI: 10.1016/j.ydbio.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Thanks to their exceptional diversity, teeth are among the most distinctive features of vertebrates. Parameters such as tooth size, shape, number, identity, and implantation can have substantial implications for the ecology and certain social behaviors of toothed species. Despite decades of research primarily focused on mammalian dentition, particularly using the laboratory mouse model, squamate reptiles ("lizards" and snakes) offer a wide array of tooth types and dentition variations. This diversity, which includes differences in size, shape, function, and replacement capacity, provides invaluable opportunities for investigating these fundamental properties. The central bearded dragon (Pogona vitticeps), a popular pet species with well-established husbandry practices, is of particular interest. It features a broad spectrum of morphs and spontaneous mutants and exhibits a wide range of heterodont phenotypes, including variation in the size, shape, number, implantation, and renewal of teeth at both posterior and anterior positions. These characteristics position the species as a crucial model organism for developmental studies in tooth research and for gaining deeper insights into evolutionary patterns of vertebrate dentitions. In this article, we provide an overview of the current understanding of squamate dentition, its diversity, development, and replacement. Furthermore, we discuss the significant advantages offered by squamate species as model organisms for investigating the evolutionary and developmental aspects of vertebrate dentition.
Collapse
Affiliation(s)
- Daria Razmadze
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Lotta Salomies
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Zheng X, Huang H, Zhou Z, Guo W, Yang G, Chen Z, Chen D, Chen Y, Yuan G. Axin1 regulates tooth root development by inhibiting AKT1-mTORC1 activation and Shh translation in Hertwig's epithelial root sheath. Development 2024; 151:dev202899. [PMID: 39344774 DOI: 10.1242/dev.202899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Hertwig's epithelial root sheath (HERS) interacts with dental apical mesenchyme and guides development of the tooth root, which is integral to the function of the whole tooth. However, the key genes in HERS essential for root development are understudied. Here, we show that Axin1, a scaffold protein that negatively regulates canonical Wnt signaling, is strongly expressed in the HERS. Axin1 ablation in the HERS of mice leads to defective root development, but in a manner independent of canonical Wnt signaling. Further studies reveal that Axin1 in the HERS negatively regulates the AKT1-mTORC1 pathway through binding to AKT1, leading to inhibition of ribosomal biogenesis and mRNA translation. Sonic hedgehog (Shh) protein, a morphogen essential for root development, is over-synthesized by upregulated mTORC1 activity upon Axin1 inactivation. Importantly, either haploinsufficiency of the mTORC1 subunit Rptor or pharmacological inhibition of Shh signaling can rescue the root defects in Axin1 mutant mice. Collectively, our data suggest that, independently of canonical Wnt signaling, Axin1 controls ribosomal biogenesis and selective mRNA translation programs via AKT1-mTORC1 signaling during tooth root development.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Hongcan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weihua Guo
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan 610041, China
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 610041, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Ma X, Zhao B, Wang C, Sun M, Dai Y, E. L, Gao M, Liu X, Jia Y, Yue W, Liu H. ANXA1 Enhances the Proangiogenic Potential of Human Dental Pulp Stem Cells. Stem Cells Int 2024; 2024:7045341. [PMID: 39478978 PMCID: PMC11524703 DOI: 10.1155/2024/7045341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Dental trauma is highly prevalent in children and adolescents, alongside tooth decay. This condition mainly induces pulp contamination, pulp necrosis, and tooth avulsion in the clinical context. The disturbance to root growth is prone to occur in immature permanent teeth. However, conventional endodontic treatment may not achieve favorable outcomes in these cases, necessitating conducting relevant exploration. Therefore, this study was performed to examine the impact of Annexin A1 (ANXA1) on the vascular repair of dental pulp using human dental pulp stem cells (DPSCs). Specifically, RNA sequencing (RNA-Seq) and functional clustering analyses were employed to identify key genes involved in pulp regeneration. ANXA1 was detected in DPSCs and may correlate with pulp restoration. However, it remains undefined about the potential of ANXA1 to promote the angiogenetic differentiation of DPSCs. The results of this study revealed that the addition of ANXA1 significantly enhanced the secretion of vascular endothelial growth factor-A (VEGF-A) in DPSCs. Moreover, the incubation of DPSCs with ANXA1 resulted in a higher expression level of endothelial markers and promoted vessel formation through the upregulation of the phosphorylated p38 (p-p38) pathway. The in vivo results corroborated that the ANXA1 group exhibited more blood vessels and an increased ratio of positive staining for CD31. In conclusion, these findings indicate that ANXA1 enhances the in vivo and in vitro vascularization of DPSCs, and the activation of p-p38 may play a pivotal role in mediating the differentiation process.
Collapse
Affiliation(s)
- Xiaocao Ma
- School of Medicine, Nankai University, Tianjin 300071, China
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Manqiang Sun
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yawen Dai
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingling E.
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Mingzhu Gao
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangwei Liu
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongchen Liu
- School of Medicine, Nankai University, Tianjin 300071, China
- Institute of Stomatology and Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Leinonen S, Vuola P, Rice DP, Heliövaara A. Vascular Anomalies and Congenital Infiltrating Lipomatosis May Affect Dental Maturation and Development - a Case Control Study. Cleft Palate Craniofac J 2024:10556656241284761. [PMID: 39267377 DOI: 10.1177/10556656241284761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE Vascular anomalies are often associated with hypertrophy and asymmetry of soft tissues and bony structures. The aim of this retrospective cross-sectional radiographic study was to evaluate dental maturation and development in patients with facial vascular anomalies and congenital infiltrating lipomatosis. DESIGN A sample of 342 patients with different vascular anomalies or congenital infiltrating lipomatosis involving the head and neck area was narrowed down to 31 patients with dental panoramic radiographs taken in the mixed dentition. A control group of 172 age-matched healthy subjects was used. Individual permanent teeth were given a maturation score from 1 to 12 and alveolar eruption stage according to Haavikko et al. 1970. The laterality of the anomaly was noted if applicable. Differences in dental development between affected and unaffected sides were recorded. RESULTS The study data included both syndromic and non-syndromic vascular anomalies as well as congenital infiltrating lipomatosis and segmental odontomaxillary dysplasia. Teeth on the side of the anomaly were more developed and the eruption of teeth was accelerated with canines, premolars and second molars being most affected. Interestingly all the patients with Sturge-Weber syndrome (n = 4) and infiltrating lipomatosis (n = 2) showed accelerated dental maturation of multiple permanent teeth on the side of the anomaly. Hypodontia, dental root resorption and macrodontia were also found. CONCLUSIONS Accelerated development and eruption of permanent teeth unilaterally in patients with vascular anomalies and congenital infiltrating lipomatosis may have a significant impact on the developing occlusion and should be thus followed by an orthodontist.
Collapse
Affiliation(s)
- Sami Leinonen
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pia Vuola
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Vascular Anomaly Team, Helsinki University Hospital, Helsinki, Finland
- Reference Center, European Reference Network ERN-VASCERN, Helsinki, Finland
| | - David P Rice
- Orthodontics, Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arja Heliövaara
- Cleft Palate and Craniofacial Centre, Department of Plastic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Büki G, Antal G, Bene J. Rare Germline Variants in the Adenomatous Polyposis Coli Gene Associated with Dental and Osseous Anomalies. Int J Mol Sci 2024; 25:8189. [PMID: 39125758 PMCID: PMC11312143 DOI: 10.3390/ijms25158189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
APC is a tumor suppressor gene that exerts its effect through the regulation of the Wnt signaling pathway. Loss of function mutations of the gene are associated with familial adenomatous polyposis (FAP). Early diagnosis in FAP patients is essential to prevent the development of colorectal cancer. Extraintestinal manifestations often precede the formation of the polyposis; therefore, these manifestations may serve as a clinical indicator for the condition. The aim of this study was to assess genotype-phenotype associations between the location of APC mutations and various extraintestinal features, mainly focusing on osseous and dental anomalies. Analyses of our cases and the mutations available in the literature with these manifestations revealed that mutations in the N-terminal region (amino acids 1-~1000) of the protein are more frequently associated with only osseous anomalies, whereas dental manifestations are more prevalent in mutations in the middle region (amino acids 1000-~2100). In addition, supernumerary teeth were found to be the most common dental feature. Since dental abnormalities often precede intestinal polyposis, dentists have a crucial role in the early identification of patients at risk.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Gréta Antal
- Department of Dentistry, Oral and Maxillofacial Surgery, Clinical Center, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
7
|
Yu Y, Wang K, Wang Z, Cai H, Liao C, Wu Y, Zhang J, Tian W, Liao L. Spatial and temporal gene expression patterns during early human odontogenesis process. Front Bioeng Biotechnol 2024; 12:1437426. [PMID: 39081334 PMCID: PMC11287127 DOI: 10.3389/fbioe.2024.1437426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Studies on odontogenesis are of great importance to treat dental abnormalities and tooth loss. However, the odontogenesis process was poorly studied in humans, especially at the early developmental stages. Here, we combined RNA sequencing (RNA-seq) with Laser-capture microdissection (LCM) to establish a spatiotemporal transcriptomic investigation for human deciduous tooth germs at the crucial developmental stage to offer new perspectives to understand tooth development and instruct tooth regeneration. Several hallmark events, including angiogenesis, ossification, axonogenesis, and extracellular matrix (ECM) organization, were identified during odontogenesis in human dental epithelium and mesenchyme from the cap stage to the early bell stage. ECM played an essential role in the shift of tooth-inductive capability. Species comparisons demonstrated these hallmark events both in humans and mice. This study reveals the hallmark events during odontogenesis, enriching the transcriptomic research on human tooth development at the early stage.
Collapse
Affiliation(s)
- Yejia Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhuo Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yutao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyi Zhang
- Chengdu Shiliankangjian Biotechnology Co., Ltd., Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Cui Y, Li C, Wang H, Li L, Xie J, Zhou X, Zhang H, Sun J. Hemicentin-1 is an essential extracellular matrix component during tooth root formation by promoting mesenchymal cells differentiation. Front Cell Dev Biol 2024; 12:1435241. [PMID: 39050894 PMCID: PMC11266140 DOI: 10.3389/fcell.2024.1435241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Root dentin formation is an important process in tooth development. We tried to identify potential genes that regulate root dentin formation which could be potentially used for the regeneration and repair of defective or damaged dental roots. Methods: Tissues harvested from the labial and lingual sides of mouse incisors were used for microarray analysis. Gene ontology (GO) analysis of differentially expressed genes indicated the critical role of extracellular matrix in the discrepancy of dentin formation between root and crown, for which hemicentin-1 (Hmcn1) was selected as the target gene. Single-cell RNA sequencing analysis the expression pattern of Hmcn1 at different developmental stages in mouse molars. The spatiotemporal expression of HMCN1 in mouse incisors and molars was detected by immunohistochemical staining. The functions of HMCN1 in human dental pulp cells, including proliferation, differentiation and migration, were examined in vitro by CCK8 assay, BrdU assay, wound-healing assay, ALP staining and alizarin red staining, respectively. Results: It was showed that HMCN1 expression was more pronounced in papilla-pulp on the root than crown side in mouse incisors and molars. In vitro experiments presented inhibited dentinogenesis and migration after HMCN1-knockdown in human dental pulp cells, while there was no significant difference in proliferation between the HMCN1-knockdown group and control group. Discussion: These results indicated that HMCN1 plays an important role in dentinogenesis and migration of pulp cells, contributing to root dentin formation.
Collapse
Affiliation(s)
- Yujia Cui
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuwen Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology and National Clinical Research Center for Oral Diseases and Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyang Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hai Zhang
- School of Dentistry, University of Washington, Seattle, WA, United States
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Wang J, Morita K, Iwata T. Induction of periodontal ligament-derived mesenchymal stromal cell-like cells from human induced pluripotent stem cells. Regen Ther 2024; 26:432-441. [PMID: 39045575 PMCID: PMC11263952 DOI: 10.1016/j.reth.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Periodontal disease is a common oral infection which affects the tooth-supportive tissues directly. Considering the limitation of present regenerative treatments for severe periodontal cases, cytotherapies have been gradually introduced. Human periodontal ligament-derived mesenchymal stromal cells (hPDLMSCs), while identified as one of the promising cell sources for periodontal regenerative therapy, still hold some problems in the clinical application especially their limited life span. To solve the problems, human induced pluripotent stem cells (hiPSCs) are taken into consideration as a robust supply for hPDLMSCs. Methods The induction of hPDLMSCs was performed based on the generation of neural crest-like cells (NCLCs) from hiPSCs. Fibronectin and laminin were tested as coating materials for NCLCs differentiation when following previous protocol, and the characteristics of induced cells were identified by flow cytometry and RT-qPCR for evaluating the induction efficiency. Subsequently, selected dental ectoderm signaling-related cytokines were applied for hPDLMSCs induction for 14 days, and dental mesenchyme-related genes, dental follicle-related genes and hPDL-related genes were tested by RT-qPCR for the evaluation of differentiation. Results Compared to the 58% in laminin-coated condition, fibronectin-coated condition had a higher induction efficiency of CD271high cells as 86% after 8-day induction, while the mesenchymal potential of induced NCLCs was similar between two coating materials.It was shown that the gene expressions of dental mesenchyme, dental follicles and hPDL cells were significantly enhanced with the stimulation of the combination with fibroblast growth factor 8b (FGF8b), FGF2, and bone morphogenetic protein 4 (BMP4). Conclusion FN coating was more effective in NCLCs induction, and the FGF8b+FGF2+BMP4 growth factor cocktail was effective in hPDLMSC-like cell generation. These findings underscored the likely regenerative potential of hiPSCs as an applicable and promising curative strategy for periodontal diseases.
Collapse
Affiliation(s)
- Jiacheng Wang
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuki Morita
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
10
|
Ma Z, Wang J, Li L, Wang S, Hu L, Wang H. LIM homeobox 8 reduced apoptosis and promoted periodontal tissue regeneration function of dental pulp stem cells. Tissue Cell 2024; 88:102387. [PMID: 38703583 DOI: 10.1016/j.tice.2024.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
Stem cell-mediated tissue regeneration is a promising strategy for repairing tissue defects and functional reconstruction in periodontitis, a common disease that leads to the loss of alveolar bone and teeth. However, stem cell apoptosis, widely observed during tissue regeneration, impairs its efficiency. Therefore, the regulation of stem cell apoptosis is critical for improving regeneration efficiency. The LIM homeobox 8 gene LHX8, belongs to the LIM homeobox family, which was involved in tooth morphogenesis. Here, we found that LHX8 was significantly expressed in dental pulp. LHX8 knockdown significantly increased dental pulp mesenchymal stem cells (DPSCs) apoptosis, as confirmed by RT-PCR, western blotting, flow cytometry, and transmission electron microscopy. Additionally, LHX8 overexpression inhibited apoptosis and enhanced the osteo/odontogenic differentiation potential of hDPSCs in vitro. Furthermore, LHX8-overexpression could enhance the periodontal tissue regeneration efficiency of hDPSCs in mice with periodontitis. In conclusion, the present study indicates that LHX8 inhibits stem cell apoptosis and promotes functional tissue formation in stem cell-based tissue regeneration engineering, suggesting a new therapeutic target to increase the efficacy of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zhiyu Ma
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and School of Stomatology, Capital Medical University, Beijing 100050, China; Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| | - Jinsong Wang
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| | - Le Li
- Department of Stomatology, Tsinghua University Hospital, Beijing 100069, China
| | - Songlin Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and School of Stomatology, Capital Medical University, Beijing 100050, China; Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China.
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Haifeng Wang
- Department of Stomatology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing 100068, China.
| |
Collapse
|
11
|
Huang D, Li Y, Han J, Zuo H, Liu H, Chen Z. Xbp1 promotes odontoblastic differentiation through modulating mitochondrial homeostasis. FASEB J 2024; 38:e23600. [PMID: 38572599 DOI: 10.1096/fj.202400186r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Odontoblast differentiation depends on the orderly recruitment of transcriptional factors (TFs) in the transcriptional regulatory network. The depletion of crucial TFs disturbs dynamic alteration of the chromatin landscape and gene expression profile, leading to developmental defects. Our previous studies have revealed that the basic leucine zipper (bZIP) TF family is crucial in odontoblastic differentiation, but the function of bZIP TF family member XBP1 is still unknown. Here, we showed the stage-specific expression patterns of the spliced form Xbp1s during tooth development. Elevated Xbp1 expression and nuclear translocation of XBP1S in mesenchymal stem cells (MSCs) were induced by differentiation medium in vitro. Diminution of Xbp1 expression impaired the odontogenic differentiation potential of MSCs. The further integration of ATAC-seq and RNA-seq identified Hspa9 as a direct downstream target, an essential mitochondrial chaperonin gene that modulated mitochondrial homeostasis. The amelioration of mitochondrial dysfunction rescued the impaired odontogenic differentiation potential of MSCs caused by the diminution of Xbp1. Furthermore, the overexpression of Hspa9 rescued Xbp1-deficient defects in odontoblastic differentiation. Our study illustrates the crucial role of Xbp1 in odontoblastic differentiation via modulating mitochondrial homeostasis and brings evidence to the therapy of mitochondrial diseases caused by genetic defects.
Collapse
Affiliation(s)
- Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiahao Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Shamszadeh S, Shirvani A, Torabzadeh H, Asgary S. Effects of Growth Factors on the Differentiation of Dental Stem Cells: A Systematic Review and Meta-analysis (Part I). Curr Stem Cell Res Ther 2024; 19:523-543. [PMID: 35762556 DOI: 10.2174/1574888x17666220628125048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION To evaluate the biological interaction between dental stem cells (DSCs) and different growth factors in the field of regenerative endodontics. METHODS A systematic search was conducted in the electronic databases up to October 2021. This study followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Ex vivo studies evaluating the biological interactions of DSCs and growth factors were included. The meta-analysis was performed according to the type of growth factor. The outcomes were cell viability/ proliferation and mineralization. Standardized mean differences (SMDs) were estimated using the random-effect maximum-likelihood method (P < .05). Additional analysis was performed to find any potential source of heterogeneity. RESULTS Twenty articles were included in the systematic review; meta-analysis was performed for fibroblast growth factor-2 (FGF-2) and Transforming growth factor-ß1 (TGF-β1) (n = 5). Results showed that use of FGF-2 significantly increased cell proliferation on day 1-(SMD = 3.56, P = 0.00), 3-(SMD = 9.04, P = 0.00), 5-(SMD = 8.37, P = 0.01), and 7 (SMD=8.51, P=0.00) than the control group. TGF-ß1 increased alkaline phosphatase (ALP) activity more than control only on day 3 (SMD = 3.68, P = 0.02). TGF-β1 had no significant effect on cell proliferation on days 1 and 3 (P > 0.05) and on ALP activity on days 5 and 7 (P > 0.05). Meta-regression analysis showed that different covariates (i.e., cell type, passage number, and growth factors' concentration) could significantly influence the effect sizes at different follow- ups (P < 0.05). CONCLUSION Specific growth factors might enhance the proliferation and mineralization of DSCs; however, the obtained evidence was weak. Due to the high heterogeneity among the included studies, other growth factors' inhibitory/stimulatory effects on DSCs could not be evaluated.
Collapse
Affiliation(s)
- Sayna Shamszadeh
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Shirvani
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Torabzadeh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kalyanasundaram S, Kandasamy S, John RR. Evaluation of Expression of WNT1 and PTCH Genes in Peripheral Blood of Patients with Odontogenic Cysts and Tumours of the Jaws by Quantitative RT-PCR: A Pilot Study. J Maxillofac Oral Surg 2023; 22:1123-1129. [PMID: 38105830 PMCID: PMC10719437 DOI: 10.1007/s12663-023-02014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/01/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Odontogenic lesions of the maxillofacial region constitute a complex group of lesions with diverse histopathologic types and clinical behaviour. Early diagnosis is important to minimize the need for radical surgery and to improve quality of life of the patients. Tumour markers play an essential role in the molecular level understanding of Odontogenic lesions and also used for early diagnosis and target therapies which improves the quality of life of the patients. Patched, a tumour suppressor gene encodes the transmembrane protein PTCH and is a receptor for the morphogen Sonic Hedgehog. It is evident that PTCH gene mutations occur in odontogenic keratocysts and the Hedgehog signalling pathway has an important role during tooth formation. WNT 1 is a key signal molecule that controls cell growth and proliferation. WNT pathway abnormalities are reported to induce tumour occurrence. Hence, my study was to determine the presence of WNT1 and PTCH in peripheral blood of patients with Odontogenic lesions using quantitative RT-PCR. Materials and Methods In this cross-sectional study, two groups were included: Group 1-blood samples from 8 individuals with odontogenic cysts and tumours, and Group 2-blood samples of 8 individuals without Odontogenic lesions. 2 ml of blood sample was collected from radial veins into PAX gene tubes containing RNA stabilizing agent and stored at a temperature of 2 to 4 degrees and transported to Enable Biolabs India Pvt Ltd., Chennai. PAX gene tubes were subjected to centrifugation at 8000 rpm to separate plasma fraction. Reverse transcription of mRNA was performed using miScript II RT Kit (Cat#218161, Qiagen, Germany) to synthesize cDNA. GAPDH house-keeping gene used as control. Results The study group had 3 males and 5 females (n = 8) with a mean age group of 32.6 years and the control group had 2 males and 6 females (n = 8) with mean age of 35.2 years. Group I (study group) showed 37.5% positive expression of WNT1 gene with a p value of 0.055 (p > 0.05) and 50% positive expression of PTCH with a p value of 0.021 (p < 0.05) (Figs. 3 and 4) which was statistically significant when compared with control group. Group II (control group) showed 100% negative expression for WNT1 and PTCH genes. Conclusion WNT1 and PTCH genes were expressed in peripheral blood of patients with odontogenic lesions. WNT1 and PTCH genes may be potential predictors in individuals who would develop odontogenic lesions. Further studies on expression of WNT1 and PTCH genes with larger number of samples might give a future scope for target therapy in odontogenic lesions.
Collapse
Affiliation(s)
- Srinath Kalyanasundaram
- Department of Oral and Maxillofacial Surgery, Vivekananda Dental College for Women, Thiruchengodu, Tamilnadu India
| | - Saravanan Kandasamy
- Department of Oral and Maxillofacial Surgery, Vivekananda Dental College for Women, Thiruchengodu, Tamilnadu India
| | - Reena Rachel John
- Vinayaka Mission's Sankarachariyar Dental College, Vinayaka Missions Research Foundation (Deemed to be University), Salem, Tamilnadu India
| |
Collapse
|
14
|
Shin M, Matsushima A, Nagao JI, Tanaka Y, Harada H, Okabe K, Bartlett JD. Mobility gene expression differences among wild-type, Mmp20 null and Mmp20 over-expresser mice plus visualization of 3D mouse ameloblast directional movement. Sci Rep 2023; 13:18829. [PMID: 37914726 PMCID: PMC10620228 DOI: 10.1038/s41598-023-44627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Enamel forming ameloblasts move away from the dentino-enamel junction and also move relative to each other to establish enamel shape during the secretory stage of enamel development. Matrix metalloproteinase-20 (MMP20) is a tooth specific proteinase essential for proper enamel formation. We previously reported that MMP20 cleaves cadherins and may regulate ameloblast movement. Here, we used an Amelx promoter driven tdTomato reporter to label mouse ameloblasts. With these transgenic mice, we assessed ameloblast mobility group dynamics and gene expression. Three-dimensional imaging of mouse ameloblasts were observed in hemi-mandibles by using a tissue clearing technique. The three-dimensional ameloblast layer in Tg(Amelx-Mmp20) mice that overexpress MMP20 was uneven and the ameloblasts migrated away from this layer. Mouse ameloblast movement toward incisal tips was monitored by ex vivo time-lapse imaging. Gene expression related to cell migration and adhesion was analyzed in ameloblasts from wild-type mice, Mmp20-/- mice with no functional MMP20 and from Tg(Amelx-Mmp20) overexpressing mice. Gene expression was altered in Mmp20-/- and Tg(Amelx-Mmp20) mice compared to wild type. Among the genes assessed, those encoding laminins and a gap junction protein were upregulated in Mmp20-/- mice. New techniques and findings described in this study may lead to an improved understanding of ameloblast movement during enamel formation.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
| | - Aya Matsushima
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Jun-Ichi Nagao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Fukuoka, Japan
| | - Yoshihiko Tanaka
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, Fukuoka, Japan
| | - Hidemitsu Harada
- Divison of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - John D Bartlett
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Wang Y, Shi Y, Wang L, Xu J, Shan Z, Gao Z. Spatiotemporal expression of fibroblast growth factor 4 and 10 during the morphogenesis of deciduous molars in miniature pigs. Arch Oral Biol 2023; 155:105795. [PMID: 37619487 DOI: 10.1016/j.archoralbio.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Fibroblast growth factors (FGFs) play pivotal roles in mediating interactions between dental epithelium and mesenchyme throughout tooth initiation and morphogenesis. This study aimed to elucidate the roles of FGF4 and FGF10 in the regulation of tooth development. DESIGN In this study, we investigated spatiotemporal expression patterns of FGF4 and FGF10 in the third deciduous molars (DM3) of miniature pigs at the cap, early bell, and late bell stages. Pregnant miniature pigs were obtained, and the samples were processed for histological staining. Non-radioactive in situ hybridization, immunohistochemistry, and real-time PCR were used to detect mRNA and protein expression levels of FGF4 and FGF10. RESULTS FGF4 was expressed in the dental epithelium and mesenchyme at the cap stage. At the early bell stage, epithelial expression of FGF4 was reduced while mesenchymal expression got stronger. At the late bell stage, the FGF4 expression was restricted to the inner enamel epithelium (IEE) and differentiating odontoblasts. FGF10 was expressed intensely in both epithelium and mesenchyme at the cap stage. The expression of FGF10 was concentrated in the secondary enamel knots and surrounding mesenchyme at the early bell stage. FGF10 was weakly detected in the IEE by the late bell stage. CONCLUSIONS Our results indicated that FGF4 and FGF10 might have partially redundant functions in regulating epithelium morphogenesis. FGF4 may be involved in regulatory signaling cascades mediating interactions between the epithelium and mesenchyme. In addition, the downregulation of FGF10 expression may be associated with the cessation of mesenchymal cell proliferation and initiation of preodontoblast polarization.
Collapse
Affiliation(s)
- Yingxin Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuanyuan Shi
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lingxiao Wang
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zhenhua Gao
- Outpatient Department of Oral and Maxillofacial Surgery, School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
16
|
Vaswani BK, Mundada BP, Bhola N, Paul P, Reche A, Ahuja KP. Stem-Cell Therapy: Filling Gaps in Oro-Maxillofacial Region. Cureus 2023; 15:e47171. [PMID: 38022051 PMCID: PMC10652057 DOI: 10.7759/cureus.47171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
How do stem cells function? Why should we, as dentists, care about stem cells? How might dental procedures be substituted by stem cells? Are stem cells capable of regenerating a tooth or temporomandibular joint (TMJ)? Although the ability to regenerate a destroyed tissue has been known for a while, research into regenerative medicine and dentistry has made significant strides in molecular biology. A paradigm shift in the therapeutic toolbox for dental and oral diseases is likely to result from a growing understanding of biological concepts in the regeneration of oral/dental tissues along with stem cell research, leading to an intense search for "biological solutions to biological problems." Among other tissues, orofacial tissues effectively separate stem cells from human tissues. Because they can self-renew and produce different cell types, stem cells offer novel techniques for regenerating damaged tissues and curing illnesses. A number of significant milestone successes have shown their practical applicability, traditional biomaterial-based treatments in regenerative dentistry as therapeutic alternatives that offer regeneration of damaged oral tissues rather than merely "filling the gaps." In order to use these innovative accomplishments for patient well-being, the ultimate goal of this ground-breaking technology, well-designed clinical studies must be implemented as a crucial next step. The review's objective is to briefly synthesize the literature on stem cells in terms of their traits, subtypes, and uses for dental stem cells. It has been highlighted that stem cell therapy has the ability to treat craniofacial abnormalities and regenerate teeth in the oral and maxillofacial regions.
Collapse
Affiliation(s)
- Bhumika K Vaswani
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan P Mundada
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nitin Bhola
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Priyanka Paul
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kajal P Ahuja
- Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
17
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
18
|
Hanson-Drury S, Patni AP, Lee DL, Alghadeer A, Zhao YT, Ehnes DD, Vo VN, Kim SY, Jithendra D, Phal A, Edman NI, Schlichthaerle T, Baker D, Young JE, Mathieu J, Ruohola-Baker H. Single Cell RNA Sequencing Reveals Human Tooth Type Identity and Guides In Vitro hiPSC Derived Odontoblast Differentiation (iOB). FRONTIERS IN DENTAL MEDICINE 2023; 4:10.3389/fdmed.2023.1209503. [PMID: 38259324 PMCID: PMC10802932 DOI: 10.3389/fdmed.2023.1209503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Over 90% of the U.S. adult population suffers from tooth structure loss due to caries. Most of the mineralized tooth structure is composed of dentin, a material produced and mineralized by ectomesenchyme derived cells known as odontoblasts. Clinicians, scientists, and the general public share the desire to regenerate this missing tooth structure. To bioengineer missing dentin, increased understanding of human tooth development is required. Here we interrogate at the single cell level the signaling interactions that guide human odontoblast and ameloblast development and which determine incisor or molar tooth germ type identity. During human odontoblast development, computational analysis predicts that early FGF and BMP activation followed by later HH signaling is crucial. Application of this sci-RNA-seq analysis generates a differentiation protocol to produce mature hiPSC derived odontoblasts in vitro (iOB). Further, we elucidate the critical role of FGF signaling in odontoblast maturation and its biomineralization capacity using the de novo designed FGFR1/2c isoform specific minibinder scaffolded as a C6 oligomer that acts as a pathway agonist. We find that FGFR1c is upregulated in functional odontoblasts and specifically plays a crucial role in driving odontoblast maturity. Using computational tools, we show on a molecular level how human molar development is delayed compared to incisors. We reveal that enamel knot development is guided by FGF and WNT in incisors and BMP and ROBO in the molars, and that incisor and molar ameloblast development is guided by FGF, EGF and BMP signaling, with tooth type specific intensity of signaling interactions. Dental ectomesenchyme derived cells are the primary source of signaling ligands responsible for both enamel knot and ameloblast development.
Collapse
Affiliation(s)
- Sesha Hanson-Drury
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Anjali P. Patni
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Deborah L. Lee
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Yan Ting Zhao
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Devon Duron Ehnes
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Vivian N. Vo
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Sydney Y. Kim
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Druthi Jithendra
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biotechnology, SRM Institute of Science and Technology, Chennai, India
| | - Ashish Phal
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Natasha I. Edman
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington,Seattle, WA 98195, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - David Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Jessica E. Young
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
20
|
Fu Y, Miyazaki K, Chiba Y, Funada K, Yuta T, Tian T, Mizuta K, Kawahara J, Zhang L, Martin D, Iwamoto T, Takahashi I, Fukumoto S, Yoshizaki K. Identification of GPI-anchored protein LYPD1 as an essential factor for odontoblast differentiation in tooth development. J Biol Chem 2023; 299:104638. [PMID: 36963497 PMCID: PMC10130355 DOI: 10.1016/j.jbc.2023.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.
Collapse
Affiliation(s)
- Yao Fu
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanako Miyazaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Yuta Chiba
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Keita Funada
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tomomi Yuta
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Tian Tian
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Kanji Mizuta
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Jumpei Kawahara
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Ling Zhang
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Daniel Martin
- Genomics and Computational Biology Core (National Institute on Deafness and Other Communication Disorders), National Institutes of Health, Bethesda, Maryland, USA
| | - Tsutomu Iwamoto
- Division of Oral Health Sciences, Department of Pediatric Dentistry/Special Needs Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Satoshi Fukumoto
- Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Division of Pediatric Dentistry, Department of Community Social Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan; Dento-Craniofacial Development and Regeneration Research Center, Kyushu University Faculty of Dental Science, Fukuoka, Japan.
| |
Collapse
|
21
|
Genetic/Protein Association of Atopic Dermatitis and Tooth Agenesis. Int J Mol Sci 2023; 24:ijms24065754. [PMID: 36982827 PMCID: PMC10055628 DOI: 10.3390/ijms24065754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Atopic dermatitis and abnormalities in tooth development (including hypomineralization, hypodontia and microdontia) have been observed to co-occur in some patients. A common pathogenesis pathway that involves genes and protein interactions has been hypothesized. This review aims to first provide a description of the key gene mutations and signaling pathways associated with atopic dermatitis and tooth agenesis (i.e., the absence of teeth due to developmental failure) and identify the possible association between the two diseases. Second, utilizing a list of genes most commonly associated with the two diseases, we conducted a protein–protein network interaction analysis using the STRING database and identified a novel association between the Wnt/β-catenin signaling pathway (major pathway responsible for TA) and desmosomal proteins (component of skin barrier that affect the pathogenesis of AD). Further investigation into the mechanisms that may drive their co-occurrence and underlie the development of the two diseases is warranted.
Collapse
|
22
|
Meurman JH, Goldberg M. Irma Thesleff-Orthodontist who became a developmental biologist. Oral Dis 2023; 29 Suppl 1:883-885. [PMID: 36149325 DOI: 10.1111/odi.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
Irma Thesleff is one of the leading scholars in developmental biology. She and her research group have clarified the mysteries of tooth development. For several decades, her research of very high quality has focused on morphogenesis and resulted in an understanding of the highly complex signaling networks. Irma Thesleff has been duly recognized both in the domestic and international context. Her research continues despite her retirement.
Collapse
Affiliation(s)
- Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Michel Goldberg
- Biomédicale des Saints Pères, Université Paris Descartes, Paris, France
| |
Collapse
|
23
|
Yoshinaga K, Yasue A, Mitsui SN, Minegishi Y, Oyadomari S, Imoto I, Tanaka E. Effects of Wnt10a and Wnt10b Double Mutations on Tooth Development. Genes (Basel) 2023; 14:genes14020340. [PMID: 36833267 PMCID: PMC9957325 DOI: 10.3390/genes14020340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
WNT molecules are the regulators of various biological functions, including body axis formation, organ development, and cell proliferation and differentiation. WNTs have been extensively studied as causative genes for an array of diseases. WNT10A and WNT10B, which are considered to be genes of the same origin, have been identified as causative genes for tooth deficiency in humans. However, the disrupted mutant of each gene does not show a decrease in teeth number. A negative feedback loop, interacting with several ligands based on a reaction-diffusion mechanism, was proposed to be important for the spatial patterning of tooth formation, and WNT ligands have been considered to play a pivotal role in controlling tooth patterning from mutant phenotypes of LDL receptor-related proteins (LRPs) and WNT co-receptors. The Wnt10a and Wnt10b double-mutants demonstrated severe root or enamel hypoplasia. In Wnt10a-/- and Wnt10a+/-;Wnt10b-/- mice, changes in the feedback loop may collapse the modulation of fusion or split a sequence of tooth formation. However, in the double-knockout mutant, a decrease in the number of teeth was observed, including the upper incisor or third molar in both jaws. These findings suggest that there may be a functional redundancy between Wnt10a and Wnt10b and that the interaction between the two genes functions in conjunction with other ligands to control the spatial patterning and development of teeth.
Collapse
Affiliation(s)
- Kaoru Yoshinaga
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Akihiro Yasue
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
- Nakano-Cho niconicoKamKam Dental and Orthodontics, 1-31 Nakano-cho, Tokushima 770-0932, Japan
- Correspondence: ; Tel.: +81-88-6337357; Fax: +81-88-6339139
| | - Silvia Naomi Mitsui
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute of Advanced Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute of Advanced Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, 1-1 Kanokoden Chikusa-ku, Nagoya 464-8681, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| |
Collapse
|
24
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
25
|
Dynamic expression of Mage-D1 in rat dental germs and potential role in mineralization of ectomesenchymal stem cells. Sci Rep 2022; 12:22615. [PMID: 36585447 PMCID: PMC9803661 DOI: 10.1038/s41598-022-27197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Mage-D1 (MAGE family member D1) is involved in a variety of cell biological effects. Recent studies have shown that Mage-D1 is closely related to tooth development, but its specific regulatory mechanism is unclear. The purpose of this study was to investigate the expression pattern of Mage-D1 in rat dental germ development and its differential mineralization ability to ectomesenchymal stem cells (EMSCs), and to explore its potential mechanism. Results showed that the expression of Mage-D1 during rat dental germ development was temporally and spatially specific. Mage-D1 promotes the proliferation ability of EMSCs but inhibits their migration ability. Under induction by mineralized culture medium, Mage-D1 promotes osteogenesis and tooth-forming ability. Furthermore, the expression pattern of Mage-D1 at E19.5 d rat dental germ is similar to p75 neurotrophin receptor (p75NTR), distal-less homeobox 1 (Dlx1) and msh homeobox 1 (Msx1). In addition, Mage-D1 is binding to p75NTR, Dlx1, and Msx1 in vitro. These findings indicate that Mage-D1 is play an important regulatory role in normal mineralization of teeth. p75NTR, Dlx1, and Msx1 seem to be closely related to the underlying mechanism of Mage-D1 action.
Collapse
|
26
|
Liu H, Lin B, Liu H, Su L, Feng H, Liu Y, Yu M, Han D. Dose Dependence Effect in Biallelic WNT10A Variant-Associated Tooth Agenesis Phenotype. Diagnostics (Basel) 2022; 12:diagnostics12123087. [PMID: 36553094 PMCID: PMC9776737 DOI: 10.3390/diagnostics12123087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The goal of this study was to identify the pathogenic gene variants in patients with odonto-onycho-dermal dysplasia syndrome (OODD) or nonsyndromic tooth agenesis. Four unrelated individuals with tooth agenesis and their available family members were recruited. Peripheral blood was collected from four probands and five family members. Whole-exome sequencing (WES) and Sanger sequencing were used to identify the pathogenic gene variants. The harmfulness of these variations was predicted by bioinformatics. We identified four biallelic variants of the WNT10A gene in four patients, respectively: the proband#660: c.1176C > A (p.Cys392*) and c.812G > A (p.Cys271Tyr); the proband#681: c.637G > A (p.Gly213Ser) and c.985C > T (p.Arg329*); the proband#829: c.511C > T (p.Arg171Cys) and c.637G > A (p.Gly213Ser); and the proband#338: c.926A> G (p.Gln309Arg) and c.511C > T (p.Arg171Cys). Among them, two variants (c.812G > A; p.Cys271Tyr and c.985C > T; p.Arg329*) were previously unreported. Bioinformatics analysis showed that the pathogenicity of these six variants was different. Tertiary structure analysis showed that these variants were predicted to cause structural damage to the WNT10A protein. Genotype−phenotype analysis showed that the biallelic variants with more harmful effects, such as nonsense variants, caused OODD syndrome (#660 Ⅱ-1) or severe nonsyndromic tooth agenesis (NSTA) (#681 Ⅱ-1); the biallelic variants with less harmful effects, such as missense variants, caused a mild form of NSTA (#829 Ⅱ-2 and #338 Ⅱ-1). Individuals with a heterozygous variant presented a mild form of NSTA or a normal state. Our results further suggest the existence of the dose dependence of WNT10A pathogenicity on the tooth agenesis pattern, which broadens the variation spectrum and phenotype spectrum of WNT10A and could help with clinical diagnosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Bichen Lin
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Lanxin Su
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Correspondence: (M.Y.); (D.H.); Fax: +86-10-8210-5259 (M.Y.); +86-10-6217-3402 (D.H.)
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Correspondence: (M.Y.); (D.H.); Fax: +86-10-8210-5259 (M.Y.); +86-10-6217-3402 (D.H.)
| |
Collapse
|
27
|
Woodruff ED, Kircher BK, Armfield BA, Levy JK, Bloch JI, Cohn MJ. Domestic cat embryos reveal unique transcriptomes of developing incisor, canine, and premolar teeth. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:516-531. [PMID: 35816012 DOI: 10.1002/jez.b.23168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Division of the dentition into morphologically distinct classes of teeth (incisors, canines, premolars, and molars) and the acquisition of tribosphenic molars facilitated precise occlusion between the teeth early in mammal evolution. Despite the evolutionary and ecological importance of distinct classes of teeth with unique cusp, crest, and basin morphologies, relatively little is known about the genetic basis for the development of different tooth classes within the embryo. Here we investigated genetic differences between developing deciduous incisor, canine, and premolar teeth in the domestic cat (Felis catus), which we propose to be a new model for tooth development. We examined differences in both developmental timing and crown morphology between the three tooth classes. Using RNA sequencing of early bell stage tooth germs, we showed that each of the three deciduous tooth classes possess a unique transcriptional profile. Three notable groups of genes emerged from our differential expression analysis; genes involved in the extracellular matrix (ECM), Wnt pathway signaling, and members of multiple homeobox gene families (Lhx, Dlx, Alx, and Nkx). Our results suggest that ECM genes may play a previously under-appreciated role in shaping the surface of the tooth crown during development. Differential regulation of these genes likely underlies differences in tooth crown shape and size, although subtle temporal differences in development between the tooth germs could also be responsible. This study provides foundational data for future experiments to examine the function of these candidate genes in tooth development to directly test their potential effects on crown morphology.
Collapse
Affiliation(s)
- Emily D Woodruff
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Brooke A Armfield
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Julie K Levy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jonathan I Bloch
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Martin J Cohn
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Lee YJ, Pak H, Hwang CJ, Choi YJ, Lee JH, Lee JH, Cha JY. Targeted next-generation sequencing for comprehensive genetic analysis of external apical root resorption during orthodontic treatment with premolar extraction in the Korean population. Am J Orthod Dentofacial Orthop 2022; 162:668-679.e5. [PMID: 35965166 DOI: 10.1016/j.ajodo.2021.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION External apical root resorption (EARR) is one of the most common unfavorable consequences of orthodontic treatment and causes loss of tooth structure. The present study aimed to investigate the genetics of EARR using next-generation sequencing comprehensively. METHODS Targeted next-generation sequencing was performed for comprehensive genetic analysis of 118 Korean orthodontic patients. The patients were divided into 2 groups on the basis of their EARR value. The association of clinical and genetic parameters with EARR was assessed using the χ2 test or t test for matched pairs, followed by Bonferroni correction and linear regression analysis. In addition, haplotype analysis and in silico prediction were conducted to evaluate functional effects. RESULTS No statistically significant difference was observed between clinical and treatment-related parameters and EARR. The single nucleotide polymorphisms SPP1 rs9138 (P = 0.001) and SFRP2 rs3810765 (P = 0.04) showed only nominal significance between EARR groups. However, these 2 SNPs were not significant after Bonferroni correction for multiple testing (cutoff P = 0.05/142 = 3.52 × 10-4). Variations in SPP1 rs9138 and SFRP2 rs3810765 may be related to EARR during orthodontic treatment. In summary, not only genes related to inflammatory reactions but also those related to Wnt signaling to affect the degree of EARR during orthodontic teeth movement.
Collapse
Affiliation(s)
- Yun-Ju Lee
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Hayeon Pak
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Yoon Jeong Choi
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Jae-Hoon Lee
- Department of Prosthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, and Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea.
| | - Jung-Yul Cha
- Department of Orthodontics, Yonsei University College of Dentistry, Seodaemoon-gu, Seoul, South Korea.
| |
Collapse
|
29
|
GSK3beta inhibitor-induced dental mesenchymal stem cells regulate ameloblast differentiation. J Oral Biosci 2022; 64:400-409. [DOI: 10.1016/j.job.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
30
|
Wang Y, Zhao Y, Chen S, Chen X, Zhang Y, Chen H, Liao Y, Zhang J, Wu D, Chu H, Huang H, Wu C, Huang S, Xu H, Jia B, Liu J, Feng B, Li Z, Qin D, Pei D, Cai J. Single cell atlas of developing mouse dental germs reveals populations of CD24 + and Plac8 + odontogenic cells. Sci Bull (Beijing) 2022; 67:1154-1169. [PMID: 36545982 DOI: 10.1016/j.scib.2022.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood. We report a cell lineage and atlas of developing mouse teeth. We performed a large-scale (92,688 cells) single cell RNA sequencing, tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5. Combined with an assay for transposase-accessible chromatin with high-throughput sequencing, our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types. Subsequently, we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells. CD24+ and Plac8+ cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla, respectively, which could individually induce nonodontogenic epithelia to form tooth-like structures. Specifically, the Plac8+ tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date. Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.
Collapse
Affiliation(s)
- Yaofeng Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Xiaoming Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou 341099, China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Hong Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Yuansong Liao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jiashu Zhang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130012, China
| | - Di Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130012, China
| | - Hongxing Chu
- Department of Periodontics and Implantology, Stomatological Hospital, Southern Medical University (Guangdong Provincial Stomatological Hospital), Guangzhou 510515, China
| | - Hongying Huang
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Caixia Wu
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shijuan Huang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huichao Xu
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Bei Jia
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhonghan Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Dajiang Qin
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Jinglei Cai
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| |
Collapse
|
31
|
Paul KS, Stojanowski CM, Hughes T, Brook AH, Townsend GC. Genetic Correlation, Pleiotropy, and Molar Morphology in a Longitudinal Sample of Australian Twins and Families. Genes (Basel) 2022; 13:genes13060996. [PMID: 35741762 PMCID: PMC9222655 DOI: 10.3390/genes13060996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
This study aims to expand our understanding of the genetic architecture of crown morphology in the human diphyodont dentition. Here, we present bivariate genetic correlation estimates for deciduous and permanent molar traits and evaluate the patterns of pleiotropy within (e.g., m1–m2) and between (e.g., m2–M1) dentitions. Morphology was observed and scored from dental models representing participants of an Australian twin and family study (deciduous n = 290, permanent n = 339). Data collection followed Arizona State University Dental Anthropology System standards. Genetic correlation estimates were generated using maximum likelihood variance components analysis in SOLAR v.8.1.1. Approximately 23% of deciduous variance components models and 30% of permanent variance components models yielded significant genetic correlation estimates. By comparison, over half (56%) of deciduous–permanent homologues (e.g., m2 hypocone–M1 hypocone) were significantly genetically correlated. It is generally assumed that the deciduous and permanent molars represent members of a meristic molar field emerging from the primary dental lamina. However, stronger genetic integration among m2–M1/M2 homologues than among paired deciduous traits suggests the m2 represents the anterior-most member of a “true” molar field. The results indicate genetic factors act at distinct points throughout development to generate homologous molar form, starting with the m2, which is later replaced by a permanent premolariform crown.
Collapse
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-479-718-1352
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA;
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| | - Alan H. Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
- Barts and the London Dental Institute, Queen Mary University of London, London EC1M 6AX, UK
| | - Grant C. Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| |
Collapse
|
32
|
The effect of BMP4, FGF8 and WNT3a on mouse iPS cells differentiating to odontoblast-like cells. Med Mol Morphol 2022; 55:199-209. [PMID: 35578118 DOI: 10.1007/s00795-022-00318-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
We investigated whether BMP4, FGF8, and/or WNT3a on neural crest-like cells (NCLC) derived from mouse induced pluripotent stem (miPS) cells will promote differentiation of odontoblasts-like cells. After the miPS cells matured into embryonic body (EB) cells, they were cultured in a neural induction medium to produce NCLC. As the differentiation of NCLC were confirmed by RT-qPCR, they were then disassociated and cultured with a medium containing, BMP4, FGF8, and/or WNT3a for 7 and 14 days. The effect of these stimuli on NCLC were assessed by RT-qPCR, ALP staining, and immunocytochemistry. The cultured EB cells presented a significant increase of Snai1, Slug, and Sox 10 substantiating the differentiation of NCLC. NCLC stimulated with more than two stimuli significantly increased the odontoblast markers Dmp-1, Dspp, Nestin, Alp, and Runx2 expression compared to control with no stimulus. The expression of Dmp-1 and Dspp upregulated more when FGF8 was combined with WNT3a. ALP staining was positive in groups containing BMP4 and fluorescence was observed in immunocytochemistry of the common significant groups between Dmp-1 and Dspp. After stimulation, the cell morphology demonstrated a spindle-shaped cells with long projections resembling odontoblasts. Simultaneous BMP4, FGF8, and WNT3a stimuli significantly differentiated NCLC into odontoblast-like cells.
Collapse
|
33
|
Thiery AP, Standing AS, Cooper RL, Fraser GJ. An epithelial signalling centre in sharks supports homology of tooth morphogenesis in vertebrates. eLife 2022; 11:73173. [PMID: 35536602 PMCID: PMC9249395 DOI: 10.7554/elife.73173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Department of Animal and Plant Sciences, King's College London, London, United Kingdom
| | - Ariane S Standing
- Department of Biology, University of Florida, Gainesville, United States
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, United States
| |
Collapse
|
34
|
Matsubara T, Iga T, Sugiura Y, Kusumoto D, Sanosaka T, Tai-Nagara I, Takeda N, Fong GH, Ito K, Ema M, Okano H, Kohyama J, Suematsu M, Kubota Y. Coupling of angiogenesis and odontogenesis orchestrates tooth mineralization in mice. J Exp Med 2022; 219:213091. [PMID: 35319724 PMCID: PMC8952600 DOI: 10.1084/jem.20211789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/25/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
The skeletal system consists of bones and teeth, both of which are hardened via mineralization to support daily physical activity and mastication. The precise mechanism for this process, especially how blood vessels contribute to tissue mineralization, remains incompletely understood. Here, we established an imaging technique to visualize the 3D structure of the tooth vasculature at a single-cell level. Using this technique combined with single-cell RNA sequencing, we identified a unique endothelial subtype specialized to dentinogenesis, a process of tooth mineralization, termed periodontal tip-like endothelial cells. These capillaries exhibit high angiogenic activity and plasticity under the control of odontoblasts; in turn, the capillaries trigger odontoblast maturation. Metabolomic analysis demonstrated that the capillaries perform the phosphate delivery required for dentinogenesis. Taken together, our data identified the fundamental cell-to-cell communications that orchestrate tooth formation, angiogenic–odontogenic coupling, a distinct mechanism compared to the angiogenic–osteogenic coupling in bones. This mechanism contributes to our understanding concerning the functional diversity of organotypic vasculature.
Collapse
Affiliation(s)
- Tomoko Matsubara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Takahito Iga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Ikue Tai-Nagara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT
| | - Kosei Ito
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masatsugu Ema
- Depart of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Rahman SU, Ponnusamy S, Nagrath M, Arany PR. Precision-engineered niche for directed differentiation of MSCs to lineage-restricted mineralized tissues. J Tissue Eng 2022; 13:20417314211073934. [PMID: 35237403 PMCID: PMC8883406 DOI: 10.1177/20417314211073934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
The major difference between tissue healing and regeneration is the extent of instructional cues available to precisely direct the biological response. A classic example is reparative or osteodentin that is seen in response to physicochemical injury to the pulp-dentin complex. Dentin regeneration can direct the differentiation of dental stem cells using concerted actions of both soluble (biomolecules, agonists, and antagonists) and insoluble (matrix topology) cues. The major purpose of this study was to examine the synergistic combination of two discrete biomaterial approaches by utilizing nanofiber scaffolds in discrete configurations (aligned or random) with incorporated polymeric microspheres capable of controlled release of growth factors. Further, to ensure appropriate disinfection for clinical use, Radio-Frequency Glow Discharge (RFGD) treatments were utilized, followed by seeding with a mesenchymal stem cell (MSC) line. SEM analysis revealed electrospinning generated controlled architectural features that significantly improved MSC adhesion and proliferation on the aligned nanofiber scaffolds compared to randomly oriented scaffolds. These responses were further enhanced by RFGD pre-treatments. These enhanced cell adhesion and proliferative responses could be attributed to matrix-induced Wnt signaling that was abrogated by pre-treatments with anti-Wnt3a neutralizing antibodies. Next, we incorporated controlled-release microspheres within these electrospun scaffolds with either TGF-β1 or BMP4. We observed that these scaffolds could selectively induce dentinogenic or osteogenic markers (DSPP, Runx2, and BSP) and mineralization. This work demonstrates the utility of a novel, modular combinatorial scaffold system capable of lineage-restricted differentiation into bone or dentin. Future validation of this scaffold system in vivo as a pulp capping agent represents an innovative dentin regenerative approach capable of preserving tooth pulp vitality.
Collapse
Affiliation(s)
- Saeed Ur Rahman
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sasikumar Ponnusamy
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Malvika Nagrath
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Praveen R Arany
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
36
|
Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Pořízka P, Hovorakova M, Mina M, Krivanek J. The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium. J Bone Miner Res 2022; 37:323-339. [PMID: 34783080 PMCID: PMC9300090 DOI: 10.1002/jbmr.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magdalena Kolouskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Prochazka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez-Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klara Steklikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jozef Kaiser
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Pavel Pořízka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
37
|
Y Baena AR, Casasco A, Monti M. Hypes and Hopes of Stem Cell Therapies in Dentistry: a Review. Stem Cell Rev Rep 2022; 18:1294-1308. [PMID: 35015212 PMCID: PMC8748526 DOI: 10.1007/s12015-021-10326-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
One of the most exciting advances in life science research is the development of 3D cell culture systems to obtain complex structures called organoids and spheroids. These 3D cultures closely mimic in vivo conditions, where cells can grow and interact with their surroundings. This allows us to better study the spatio-temporal dynamics of organogenesis and organ function. Furthermore, physiologically relevant organoids cultures can be used for basic research, medical research, and drug discovery. Although most of the research thus far focuses on the development of heart, liver, kidney, and brain organoids, to name a few, most recently, these structures were obtained using dental stem cells to study in vitro tooth regeneration. This review aims to present the most up-to-date research showing how dental stem cells can be grown on specific biomaterials to induce their differentiation in 3D. The possibility of combining engineering and biology principles to replicate and/or increase tissue function has been an emerging and exciting field in medicine. The use of this methodology in dentistry has already yielded many interesting results paving the way for the improvement of dental care and successful therapies.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andrea Casasco
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy.,Dental & Face Center, CDI, Milan, Italy
| | - Manuela Monti
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy. .,Research Center for Regenerative Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
38
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
39
|
Guo H, Li B, Wu M, Zhao W, He X, Sui B, Dong Z, Wang L, Shi S, Huang X, Liu X, Li Z, Guo X, Xuan K, Jin Y. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth. Biomaterials 2021; 279:121223. [PMID: 34736149 DOI: 10.1016/j.biomaterials.2021.121223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Harnessing developmental processes for tissue engineering represents a promising yet challenging approach to regenerative medicine. Tooth avulsion is among the most serious traumatic dental injuries, whereas functional tooth regeneration remains uncertain. Here, we established a strategy using decellularized tooth matrix (DTM) combined with human dental pulp stem cell (hDPSC) aggregates to simulate an odontogenesis-related developmental microenvironment. The bioengineered teeth reconstructed by this strategy regenerated three-dimensional pulp and periodontal tissues equipped with vasculature and innervation in a preclinical pig model after implantation into the alveolar bone. These results prompted us to enroll 15 patients with avulsed teeth after traumatic dental injuries in a pilot clinical trial. At 12 months after implantation, bioengineered teeth led to the regeneration of functional teeth, which supported continued root development, in humans. Mechanistically, exosomes derived from hDPSC aggregates mediated the tooth regeneration process by upregulating the odontogenic and angiogenic ability of hDPSCs. Our findings suggest that odontogenic microenvironment engineering by DTM and stem cell aggregates initiates functional tooth regeneration and serves as an effective treatment for tooth avulsion.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Meiling Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wanmin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bingdong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ling Wang
- Department of Health Statistics, School of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zihan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaohe Guo
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
40
|
Lin C, Ruan N, Li L, Chen Y, Hu X, Chen Y, Hu X, Zhang Y. FGF8-mediated signaling regulates tooth developmental pace during odontogenesis. J Genet Genomics 2021; 49:40-53. [PMID: 34500094 DOI: 10.1016/j.jgg.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
The developing human and mouse teeth constitute an ideal model system to study the regulatory mechanism underlying organ growth control since their teeth share highly conserved and well-characterized developmental processes and their developmental tempo varies notably. In the current study, we manipulated heterogenous recombination between human and mouse dental tissues and demonstrate that the dental mesenchyme dominates the tooth developmental tempo and FGF8 could be a critical player during this developmental process. Forced activation of FGF8 signaling in the dental mesenchyme of mice promoted cell proliferation, prevented cell apoptosis via p38 and perhaps PI3K-Akt intracellular signaling, and impelled the transition of the cell cycle from G1- to S-phase in the tooth germ, resulting in the slowdown of the tooth developmental pace. Our results provide compelling evidence that extrinsic signals can profoundly affect tooth developmental tempo and the dental mesenchymal FGF8 could be a pivotal factor in controlling the developmental pace in a non-cell-autonomous manner during mammalian odontogenesis.
Collapse
Affiliation(s)
- Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Ningsheng Ruan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Linjun Li
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Yibin Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, P.R. China.
| |
Collapse
|
41
|
Birjandi AA, Sharpe P. Wnt Signalling in Regenerative Dentistry. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.725468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Teeth are complex structures where a soft dental pulp tissue is enriched with nerves, vasculature and connective tissue and encased by the cushioning effect of dentin and the protection of a hard enamel in the crown and cementum in the root. Injuries such as trauma or caries can jeopardise these layers of protection and result in pulp exposure, inflammation and infection. Provision of most suitable materials for tooth repair upon injury has been the motivation of dentistry for many decades. Wnt signalling, an evolutionarily conserved pathway, plays key roles during pre- and post-natal development of many organs including the tooth. Mutations in the components of this pathway gives rise to various types of developmental tooth anomalies. Wnt signalling is also fundamental in the response of odontoblasts to injury and repair processes. The complexity of tooth structure has resulted in diverse studies looking at specific compartments or cell types of this organ. This review looks at the current advances in the field of tooth development and regeneration. The objective of the present review is to provide an updated vision on dental biomaterials research, focusing on their biological properties and interactions to act as evidence for their potential use in vital pulp treatment procedures. We discuss the outstanding questions and future directions to make this knowledge more translatable to the clinics.
Collapse
|
42
|
Ide Y, Nakahara T, Fukada T, Nasu M. Local Irradiation of Mouse Tooth Germ Gives Insight into the Direct Effects of Irradiation on Root Development. Radiat Res 2021; 196:602-610. [PMID: 34388821 DOI: 10.1667/rade-20-00081.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2021] [Indexed: 11/03/2022]
Abstract
To elucidate the mechanism underlying the failure of root formation after irradiation, we established a method of local irradiation of the molar tooth germ and demonstrated that radiation directly affected dental root development. In the current study, to locally irradiate the lower first molars of 5-day-old C57BL/6J mice, we used lead glass containing a hole as a collimator. We confirmed that our local irradiation method targeted only the tooth germ. The irradiated root was immature in terms of apical growth, and dentin formation was irregular along the outside of the root apices. Moreover, calcified tissue apically surrounded Hertwig's epithelial root sheath, which disappeared abnormally early. This method using a local irradiation experimental model will facilitate research into radiation-induced disorders of dental root formation.
Collapse
Affiliation(s)
- Yoshiaki Ide
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo.,Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Tetsuya Fukada
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Tokyo
| | - Masanori Nasu
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry at Tokyo
| |
Collapse
|
43
|
Sánchez N, Juárez-Balarezo J, Olhaberry M, González-Oneto H, Muzard A, Mardonez MJ, Franco P, Barrera F, Gaete M. Depression and Antidepressants During Pregnancy: Craniofacial Defects Due to Stem/Progenitor Cell Deregulation Mediated by Serotonin. Front Cell Dev Biol 2021; 9:632766. [PMID: 34476233 PMCID: PMC8406697 DOI: 10.3389/fcell.2021.632766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a common and debilitating mood disorder that increases in prevalence during pregnancy. Worldwide, 7 to 12% of pregnant women experience depression, in which the associated risk factors include socio-demographic, psychological, and socioeconomic variables. Maternal depression could have psychological, anatomical, and physiological consequences in the newborn. Depression has been related to a downregulation in serotonin levels in the brain. Accordingly, the most commonly prescribed pharmacotherapy is based on selective serotonin reuptake inhibitors (SSRIs), which increase local serotonin concentration. Even though the use of SSRIs has few adverse effects compared with other antidepressants, altering serotonin levels has been associated with the advent of anatomical and physiological changes in utero, leading to defects in craniofacial development, including craniosynostosis, cleft palate, and dental defects. Migration and proliferation of neural crest cells, which contribute to the formation of bone, cartilage, palate, teeth, and salivary glands in the craniofacial region, are regulated by serotonin. Specifically, craniofacial progenitor cells are affected by serotonin levels, producing a misbalance between their proliferation and differentiation. Thus, it is possible to hypothesize that craniofacial development will be affected by the changes in serotonin levels, happening during maternal depression or after the use of SSRIs, which cross the placental barrier, increasing the risk of craniofacial defects. In this review, we provide a synthesis of the current research on depression and the use of SSRI during pregnancy, and how this could be related to craniofacial defects using an interdisciplinary perspective integrating psychological, clinical, and developmental biology perspectives. We discuss the mechanisms by which serotonin could influence craniofacial development and stem/progenitor cells, proposing some transcription factors as mediators of serotonin signaling, and craniofacial stem/progenitor cell biology. We finally highlight the importance of non-pharmacological therapies for depression on fertile and pregnant women, and provide an individual analysis of the risk-benefit balance for the use of antidepressants during pregnancy.
Collapse
Affiliation(s)
- Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jesús Juárez-Balarezo
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Olhaberry
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Humberto González-Oneto
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Muzard
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - María Jesús Mardonez
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Pamela Franco
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Felipe Barrera
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Kim R, Yu T, Li J, Prochazka J, Sharir A, Green JBA, Klein OD. Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development 2021; 148:dev199685. [PMID: 34195802 PMCID: PMC8326921 DOI: 10.1242/dev.199685] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
Tooth formation requires complex signaling interactions both within the oral epithelium and between the epithelium and the underlying mesenchyme. Previous studies of the Wnt/β-catenin pathway have shown that tooth formation is partly inhibited in loss-of-function mutants, and gain-of-function mutants have perturbed tooth morphology. However, the stage at which Wnt signaling is first important in tooth formation remains unclear. Here, using an Fgf8-promoter-driven, and therefore early, deletion of β-catenin in mouse molar epithelium, we found that loss of Wnt/β-catenin signaling completely deletes the molar tooth, demonstrating that this pathway is central to the earliest stages of tooth formation. Early expression of a dominant-active β-catenin protein also perturbs tooth formation, producing a large domed evagination at early stages and supernumerary teeth later on. The early evaginations are associated with premature mesenchymal condensation marker, and are reduced by inhibition of condensation-associated collagen synthesis. We propose that invagination versus evagination morphogenesis is regulated by the relative timing of epithelial versus mesenchymal cell convergence regulated by canonical Wnt signaling. Together, these studies reveal new aspects of Wnt/β-catenin signaling in tooth formation and in epithelial morphogenesis more broadly.
Collapse
Affiliation(s)
- Rebecca Kim
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Tingsheng Yu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Jingjing Li
- Centre for Craniofacial Regeneration and Biology, King's College London, London, SE1 9RT, UK
| | - Jan Prochazka
- Institute of Molecular Genetics of the ASCR, v. v. i., Prumyslova 595, 252 42 Vestec, Czech Republic
| | - Amnon Sharir
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Jeremy B. A. Green
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
- Centre for Craniofacial Regeneration and Biology, King's College London, London, SE1 9RT, UK
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Paul KS, Stojanowski CM, Hughes T, Brook A, Townsend GC. The genetic architecture of anterior tooth morphology in a longitudinal sample of Australian twins and families. Arch Oral Biol 2021; 129:105168. [PMID: 34174590 DOI: 10.1016/j.archoralbio.2021.105168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study presents a quantitative genetic analysis of human anterior dental morphology in a longitudinal sample of known genealogy. The primary aim of this work is to generate a suite of genetic correlations within and between deciduous and permanent characters to access patterns of integration across the diphyodont dental complex. DESIGN Data were recorded from casted tooth crowns representing participants of a long-term Australian twin and family study (deciduous n = 290, permanent n = 339). Morphological trait expression was observed and scored following Arizona State University Dental Anthropology System standards. Bivariate genetic correlations were estimated using maximum likelihood variance decomposition models in SOLAR v.8.1.1. RESULTS Genetic correlation estimates indicate high levels of integration between antimeres but low to moderate levels among traits within a tooth row. Only 9% of deciduous model comparisons were significant, while pleiotropy was indicated for one third of permanent trait pairs. Canine characters stood out as strongly integrated, especially in the deciduous dentition. For homologous characters across dentitions (e.g., deciduous i1 shoveling and permanent I1 shoveling), ∼70% of model comparisons yielded significant genetic correlations. CONCLUSIONS Patterns of genetic correlation suggest a morphological canine module that spans the primary and secondary dentition. Results also point to the existence of a genetic mechanism conserving morphology across the diphyodont dental complex, such that paired deciduous and permanent traits are more strongly integrated than characters within individual tooth rows/teeth.
Collapse
Affiliation(s)
- Kathleen S Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Christopher M Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Alan Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; Barts and the London Dental Institute, Queen Mary University of London, London, E1, UK
| | - Grant C Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
46
|
Effect of Inducible BMP-7 Expression on the Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int J Mol Sci 2021; 22:ijms22126182. [PMID: 34201124 PMCID: PMC8229115 DOI: 10.3390/ijms22126182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
BMP-7 has shown inductive potential for in vitro osteogenic differentiation of mesenchymal stem cells, which are an ideal resource for regenerative medicine. Externally applied, recombinant BMP-7 was able to induce the osteogenic differentiation of DPSCs but based on our previous results with BMP-2, we aimed to study the effect of the tetracyclin-inducible BMP-7 expression on these cells. DPSC, mock, and DPSC-BMP-7 cell lines were cultured in the presence or absence of doxycycline, then alkaline phosphatase (ALP) activity, mineralization, and mRNA levels of different osteogenic marker genes were measured. In the DPSC-BMP-7 cell line, the level of BMP-7 mRNA significantly increased in the media supplemented with doxycycline, however, the expression of Runx2 and noggin genes was upregulated only after 21 days of incubation in the osteogenic medium with doxycycline. Moreover, while the examination of ALP activity showed reduced activity in the control medium containing doxycycline, the accumulation of minerals remained unchanged in the cultures. We have found that the induced BMP-7 expression failed to induce osteogenic differentiation of DPSCs. We propose three different mechanisms that may worth investigating for the engineering of expression systems that can be used for the induction of differentiation of mesenchymal stem cells.
Collapse
|
47
|
Cui D, Yu S, Zhou X, Liu Y, Gan L, Pan Y, Zheng L, Wan M. Roles of Dental Mesenchymal Stem Cells in the Management of Immature Necrotic Permanent Teeth. Front Cell Dev Biol 2021; 9:666186. [PMID: 34095133 PMCID: PMC8170050 DOI: 10.3389/fcell.2021.666186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries and trauma always lead to pulp necrosis and subsequent root development arrest of young permanent teeth. The traditional treatment, apexification, with the absence of further root formation, results in abnormal root morphology and compromises long-term prognosis. Regeneration endodontics procedures (REPs) have been developed and considered as an alternative strategy for management of immature permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free REPs, including revascularization and cell homing with molecules recruiting endogenous mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing optimistic periapical lesion healing and continued root development. However, the regenerated pulp-dentin complex is still absent in these cases. Dental MSCs, as one of the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental MSC-based REPs have presented promising potential with pulp-dentin regeneration in large animal studies and clinical trials via cell transplantation. In the present review, we summarize current understanding of the biological basis of clinical treatments for immature necrotic permanent teeth and the roles of dental MSCs during this process and update the progress of MSC-based REPs in the administration of immature necrotic permanent teeth.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Berio F, Debiais-Thibaud M. Evolutionary developmental genetics of teeth and odontodes in jawed vertebrates: a perspective from the study of elasmobranchs. JOURNAL OF FISH BIOLOGY 2021; 98:906-918. [PMID: 31820456 DOI: 10.1111/jfb.14225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Most extant vertebrates display a high variety of tooth and tooth-like organs (odontodes) that vary in shape, position over the body and nature of composing tissues. The development of these structures is known to involve similar genetic cascades and teeth and odontodes are believed to share a common evolutionary history. Gene expression patterns have previously been compared between mammalian and teleost tooth development but we highlight how the comparative framework was not always properly defined to deal with different tooth types or tooth developmental stages. Larger-scale comparative analyses also included cartilaginous fishes: sharks display oral teeth and dermal scales for which the gene expression during development started to be investigated in the small-spotted catshark Scyliorhinus canicula during the past decade. We report several descriptive approaches to analyse the embryonic tooth and caudal scale gene expressions in S. canicula. We compare these expressions wih the ones reported in mouse molars and teleost oral and pharyngeal teeth and highlight contributions and biases that arise from these interspecific comparisons. We finally discuss the evolutionary processes that can explain the observed intra and interspecific similarities and divergences in the genetic cascades involved in tooth and odontode development in jawed vertebrates.
Collapse
Affiliation(s)
- Fidji Berio
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
- University of Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR5242, 46 Allée d'Italie, Lyon, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
49
|
Kataoka K, Fujita H, Isa M, Gotoh S, Arasaki A, Ishida H, Kimura R. The human EDAR 370V/A polymorphism affects tooth root morphology potentially through the modification of a reaction-diffusion system. Sci Rep 2021; 11:5143. [PMID: 33664401 PMCID: PMC7933414 DOI: 10.1038/s41598-021-84653-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Morphological variations in human teeth have long been recognized and, in particular, the spatial and temporal distribution of two patterns of dental features in Asia, i.e., Sinodonty and Sundadonty, have contributed to our understanding of the human migration history. However, the molecular mechanisms underlying such dental variations have not yet been completely elucidated. Recent studies have clarified that a nonsynonymous variant in the ectodysplasin A receptor gene (EDAR 370V/A; rs3827760) contributes to crown traits related to Sinodonty. In this study, we examined the association between the EDAR polymorphism and tooth root traits by using computed tomography images and identified that the effects of the EDAR variant on the number and shape of roots differed depending on the tooth type. In addition, to better understand tooth root morphogenesis, a computational analysis for patterns of tooth roots was performed, assuming a reaction-diffusion system. The computational study suggested that the complicated effects of the EDAR polymorphism could be explained when it is considered that EDAR modifies the syntheses of multiple related molecules working in the reaction-diffusion dynamics. In this study, we shed light on the molecular mechanisms of tooth root morphogenesis, which are less understood in comparison to those of tooth crown morphogenesis.
Collapse
Affiliation(s)
- Keiichi Kataoka
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hironori Fujita
- Astrobiology Center, National Institutes of Natural Sciences, Tokyo, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate School for Advanced Studies), Aichi, Japan
| | - Mutsumi Isa
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Shimpei Gotoh
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan.
| |
Collapse
|
50
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Manshouri T, Veletic I, Ferrajoli A, Bose P, Thompson P, Jain N, Verstovsek S, Wierda W, Keating MJ, Estrov Z. STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells. Oncotarget 2021; 12:401-411. [PMID: 33747356 PMCID: PMC7939524 DOI: 10.18632/oncotarget.27884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
The glioma associated oncogene-1 (GLI1), a downstream effector of the embryonic Hedgehog pathway, was detected in chronic lymphocytic leukemia (CLL), but not normal adult cells. GLI1 activating mutations were identified in 10% of patients with CLL. However, what induces GLI1 expression in GLI1-unmutated CLL cells is unknown. Because signal transducer and activator of transcription 3 (STAT3) is constitutively activated in CLL cells and sequence analysis detected putative STAT3-binding sites in the GLI1 gene promoter, we hypothesized that STAT3 induces the expression of GLI1. Western immunoblotting detected GLI1 in CLL cells from 7 of 7 patients, flow cytometry analysis confirmed that CD19+/CD5+ CLL cells co-express GLI1 and confocal microscopy showed co-localization of GLI1 and phosphorylated STAT3. Chromatin immunoprecipitation showed that STAT3 protein co-immunoprecipitated GLI1 as well as other STAT3-regulated genes. Transfection of CLL cells with STAT3-shRNA induced a mark decrease in GLI1 levels, suggesting that STAT3 binds to and induces the expression of GLI1 in CLL cells. An electromobility shift assay confirmed that STAT3 binds, and a luciferase assay showed that STAT3 activates the GLI1 gene. Transfection with GLI1-siRNA significantly increased the spontaneous apoptosis rate of CLL cells, suggesting that GLI1 inhibitors might provide therapeutic benefit to patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tiqva, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Phillip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|