1
|
García-Ferrés M, Sánchez-Higueras C, Espinosa-Vázquez JM, C-G Hombría J. Specification of the endocrine primordia controlling insect moulting and metamorphosis by the JAK/STAT signalling pathway. PLoS Genet 2022; 18:e1010427. [PMID: 36191039 PMCID: PMC9560620 DOI: 10.1371/journal.pgen.1010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The corpora allata and the prothoracic glands control moulting and metamorphosis in insects. These endocrine glands are specified in the maxillary and labial segments at positions homologous to those forming the trachea in more posterior segments. Glands and trachea can be homeotically transformed into each other suggesting that all three evolved from a metamerically repeated organ that diverged to form glands in the head and respiratory organs in the trunk. While much is known about tracheal specification, there is limited information about corpora allata and prothorathic gland specification. Here we show that the expression of a key regulator of early gland development, the snail gene, is controlled by the Dfd and Scr Hox genes and by the Hedgehog and Wnt signalling pathways that induce localised transcription of upd, the ligand of the JAK/STAT signalling pathway, which lies at the heart of gland specification. Our results show that the same upstream regulators are required for the early gland and tracheal primordia specification, reinforcing the hypothesis that they originated from a segmentally repeated organ present in an ancient arthropod.
Collapse
Affiliation(s)
- Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-JA-UPO, Seville, Spain
| | | | | | - James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-JA-UPO, Seville, Spain,* E-mail:
| |
Collapse
|
2
|
A hemipteran insect reveals new genetic mechanisms and evolutionary insights into tracheal system development. Proc Natl Acad Sci U S A 2020; 117:4252-4261. [PMID: 32041884 DOI: 10.1073/pnas.1908975117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity in the organization of the tracheal system is one of the drivers of insect evolutionary success; however, the genetic mechanisms responsible are yet to be elucidated. Here, we highlight the advantages of utilizing hemimetabolous insects, such as the milkweed bug Oncopeltus fasciatus, in which the final adult tracheal patterning can be directly inferred by examining its blueprint in embryos. By reporting the expression patterns, functions, and Hox gene regulation of trachealess (trh), ventral veinless (vvl), and cut (ct), key genes involved in tracheal development, this study provides important insights. First, Hox genes function as activators, modifiers, and suppressors of trh expression, which in turn results in a difference between the thoracic and abdominal tracheal organization. Second, spiracle morphogenesis requires the input of both trh and ct, where ct is positively regulated by trh As Hox genes regulate trh, we can now mechanistically explain the previous observations of their effects on spiracle formation. Third, the default state of vvl expression in the thorax, in the absence of Hox gene expression, features three lateral cell clusters connected to ducts. Fourth, the exocrine scent glands express vvl and are regulated by Hox genes. These results extend previous findings [Sánchez-Higueras et al., 2014], suggesting that the exocrine glands, similar to the endocrine, develop from the same primordia that give rise to the trachea. The presence of such versatile primordia in the miracrustacean ancestor could account for the similar gene networks found in the glandular and respiratory organs of both insects and crustaceans.
Collapse
|
3
|
In vivo Hox binding specificity revealed by systematic changes to a single cis regulatory module. Nat Commun 2019; 10:3597. [PMID: 31399572 PMCID: PMC6689074 DOI: 10.1038/s41467-019-11416-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/09/2019] [Indexed: 11/08/2022] Open
Abstract
Hox proteins belong to a family of transcription factors with similar DNA binding specificities that control animal differentiation along the antero-posterior body axis. Hox proteins are expressed in partially overlapping regions where each one is responsible for the formation of particular organs and structures through the regulation of specific direct downstream targets. Thus, explaining how each Hox protein can selectively control its direct targets from those of another Hox protein is fundamental to understand animal development. Here we analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins and uncover how different Hox class proteins differentially control its expression. We find that regulation by one or another Hox protein depends on the combination of three modes: Hox-cofactor dependent DNA-binding specificity; Hox-monomer binding sites; and interaction with positive and negative Hox-collaborator proteins. Additionally, we find that similar regulation can be achieved by Amphioxus orthologs, suggesting these three mechanisms are conserved from insects to chordates. Hox proteins are expressed in partially overlapping regions to inform development along the embryo’s head-tail axis. Here the authors analyse a cis regulatory module directly regulated by seven different Drosophila Hox proteins to uncover how different Hox class proteins differentially control its expression.
Collapse
|
4
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
5
|
Lavore A, Pascual A, Salinas FM, Esponda-Behrens N, Martinez-Barnetche J, Rodriguez M, Rivera-Pomar R. Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:32-43. [PMID: 26187251 DOI: 10.1016/j.ibmb.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/13/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Most of the in-depth studies on insect developmental genetic have been carried out in the fruit fly Drosophila melanogaster, an holometabolous insect, so much more still remains to be studied in hemimetabolous insects. Having Rhodnius prolixus sequenced genome available, we search for orthologue genes of zygotic signaling pathways, segmentation, and tracheogenesis in the R. prolixus genome and in three species of Triatoma genus transcriptomes, concluding that there is a high level of gene conservation. We also study the function of two genes required for tracheal system development in D. melanogaster - R. prolixus orthologues: trachealess (Rp-trh) and empty spiracles (Rp-ems). From that we see that Rp-trh is required for early tracheal development since Rp-trh RNAi shows that the primary tracheal branches fail to form. On the other hand, Rp-ems is implied in the proper formation of the posterior tracheal branches, in a similar way to D. melanogaster. These results represent the initial characterization of the genes involved in the tracheal development of an hemimetabolous insect building a bridge between the current genomic era and V. Wigglesworth's classical studies on insects' respiratory system physiology.
Collapse
Affiliation(s)
- A Lavore
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - A Pascual
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - F M Salinas
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - N Esponda-Behrens
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - J Martinez-Barnetche
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - M Rodriguez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - R Rivera-Pomar
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Sharma R, Beer K, Iwanov K, Schmöhl F, Beckmann PI, Schröder R. The single fgf receptor gene in the beetle Tribolium castaneum codes for two isoforms that integrate FGF8- and Branchless-dependent signals. Dev Biol 2015; 402:264-75. [PMID: 25864412 DOI: 10.1016/j.ydbio.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.
Collapse
Affiliation(s)
- Rahul Sharma
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Beer
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Iwanov
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Felix Schmöhl
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Paula Indigo Beckmann
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Reinhard Schröder
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany.
| |
Collapse
|
7
|
Sánchez-Higueras C, Sotillos S, Castelli-Gair Hombría J. Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Curr Biol 2013; 24:76-81. [PMID: 24332544 DOI: 10.1016/j.cub.2013.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/19/2022]
Abstract
Segmented organisms have serially repeated structures [1] that become specialized in some segments [2]. We show here that the Drosophila corpora allata, prothoracic glands, and trachea have a homologous origin and can convert into each other. The tracheal epithelial tubes develop from ten trunk placodes [3, 4], and homologous ectodermal cells in the maxilla and labium form the corpora allata and the prothoracic glands. The early endocrine and trachea gene networks are similar, with STAT and Hox genes inducing their activation. The initial invagination of the trachea and the endocrine primordia is identical, but activation of Snail in the glands induces an epithelial-mesenchymal transition (EMT), after which the corpora allata and prothoracic gland primordia coalesce and migrate dorsally, joining the corpora cardiaca to form the ring gland. We propose that the arthropod ectodermal endocrine glands and respiratory organs arose through an extreme process of divergent evolution from a metameric repeated structure.
Collapse
Affiliation(s)
| | - Sol Sotillos
- CABD, CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | | |
Collapse
|
8
|
Hombría JCG, Sotillos S. JAK-STAT pathway in Drosophila morphogenesis: From organ selector to cell behavior regulator. JAKSTAT 2013; 2:e26089. [PMID: 24069568 PMCID: PMC3772120 DOI: 10.4161/jkst.26089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main contributions of Drosophila to the JAK-STAT field is the study of morphogenesis. JAK-STAT signaling controls the formation of many different structures through surprisingly different morphogenetic behaviors that include induction of cell rearrangements, invagination, folding of tissues, modulation of cell shape, and migration. This variability may be explained by the many transcription factors and signaling molecules STAT regulates at early stages of development. But is STAT just acting as an upstream inducer of morphogenesis or does it have a more direct role in controlling cell behaviors? Here we review what is known about how the canonical phosphorylation of STAT contributes to shaping the embryonic and imaginal structures.
Collapse
|
9
|
Abstract
The Abdominal-B selector protein induces organogenesis of the posterior spiracles by coordinating an organ-specific gene network. The complexity of this network begs the questions of how it originated and what selective pressures drove its formation. Given that the network likely formed in a piecemeal fashion, with elements recruited sequentially, we studied the consequences of expressing individual effectors of this network in naive epithelial cells. We found that, with exception of the Crossveinless-c (Cv-c) Rho GTPase-activating protein, most effectors exert little morphogenetic effect by themselves. In contrast, Cv-c expression causes cell motility and down-regulates epithelial polarity and cell adhesion proteins. These effects differ in cells endogenously expressing Cv-c, which have acquired compensatory mechanisms. In spiracle cells, the down-regulation of polarity and E-cadherin expression caused by Cv-c-induced Rho1 inactivation are compensated for by the simultaneous spiracle up-regulation of guanine nucleotide exchange factor (GEF) proteins, cell polarity, and adhesion molecules. Other epithelial cells that have coopted Cv-c to their morphogenetic gene networks are also resistant to Cv-c's deleterious effects. We propose that cooption of a novel morphogenetic regulator to a selector cascade causes cellular instability, resulting in strong selective pressure that leads that same cascade to recruit molecules that compensate it. This experimental-based hypothesis proposes how the frequently observed complex organogenetic gene networks are put together.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Stem cell gene SALL4 has been well characterized for its essential role in developmental events as well as embryonic stem cell pluripotency maintenance. Several current reports now shed new light on its functions in regulating hematopoietic cell self-renewal and differentiation. In this review we attempt to summarize SALL4 roles for normal hematopoiesis, and how the knowledge obtained can be used to develop advanced cell therapies. RECENT FINDINGS SALL4 may act as a critical controller to regulate the fate of hematopoietic cells. In normal bone marrow, SALL4 is selectively expressed in primitive hematopoietic precursors and rapidly downregulated following differentiation. Of particular interest, SALL4 isoforms are able to stimulate large scale ex-vivo expansion of hematopoietic stem/progenitor cells (HSCs/HPCs). The SALL4 expanded HSCs/HPCs retain multilineage repopulation and long-term engraftment activities, which are clinically meaningful. The stem cell self-renewal mediated by SALL4 is linked to epigenetic machinery. SUMMARY The emerging knowledge about how SALL4 regulates HSC behavior may be used in the near future to develop advanced cell therapies, for example, through large-scale stem cell expansion ex vivo.
Collapse
|
11
|
Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn 2011; 241:119-35. [PMID: 22083894 DOI: 10.1002/dvdy.22775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.
Collapse
Affiliation(s)
- Rika Maruyama
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
12
|
Trachealess (Trh) regulates all tracheal genes during Drosophila embryogenesis. Dev Biol 2011; 360:160-72. [PMID: 21963537 DOI: 10.1016/j.ydbio.2011.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/08/2011] [Accepted: 09/14/2011] [Indexed: 02/03/2023]
Abstract
The Drosophila trachea is a branched tubular epithelia that transports oxygen and other gases. trachealess (trh), which encodes a bHLH-PAS transcription factor, is among the first genes to be expressed in the cells that will form the trachea. In the absence of trh, tracheal cells fail to invaginate to form tubes and remain on the embryo surface. Expression of many tracheal-specific genes depends on trh, but all of the known targets have relatively minor phenotypes compared to loss of trh, suggesting that there are additional targets. To identify uncharacterized transcriptional targets of Trh and to further understand the role of Trh in embryonic tracheal formation, we performed an in situ hybridization screen using a library of ~100 tracheal-expressed genes identified by the Berkeley Drosophila Genome Project (BDGP). Surprisingly, expression of every tracheal gene we tested was dependent on Trh, suggesting a major role for Trh in activation and maintenance of tracheal gene expression. A re-examination of the interdependence of the known early-expressed transcription factors, including trh, ventral veinless (vvl) and knirps/knirps-related (kni/knrl), suggests a new model for how gene expression is controlled in the trachea, with trh regulating expression of vvl and kni, but not vice versa. A pilot screen for the targets of Vvl and Kni/Knrl revealed that Vvl and Kni have only minor roles compared to Trh. Finally, genome-wide microarray experiments identified additional Trh targets and revealed that a variety of biological processes are affected by the loss of trh.
Collapse
|
13
|
Morozova T, Hackett J, Sedaghat Y, Sonnenfeld M. The Drosophila jing gene is a downstream target in the Trachealess/Tango tracheal pathway. Dev Genes Evol 2010; 220:191-206. [PMID: 21061019 DOI: 10.1007/s00427-010-0339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/08/2010] [Indexed: 11/28/2022]
Abstract
Primary branching in the Drosophila trachea is regulated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix-PAS (bHLH-PAS) heterodimers, the POU protein Drifter (Dfr)/Ventral Veinless (Vvl), and the Pointed (Pnt) ETS transcription factor. The jing gene encodes a zinc finger protein also required for tracheal development. Three Trh/Tgo DNA-binding sites, known as CNS midline elements, in 1.5 kb of jing 5′ cis-regulatory sequence (jing1.5) previously suggested a downstream role for jing in the pathway. Here, we show that jing is a direct downstream target of Trh/Tgo and that Vvl and Pnt are also involved in jing tracheal activation. In vivo lacZ enhancer detection assays were used to identify cis-regulatory elements mediating embryonic expression patterns of jing. A 2.8-kb jing enhancer (jing2.8) drove lacZ expression in all tracheal cell lineages, the CNS midline and Engrailed-positive segmental stripes, mimicking endogenous jing expression. A 1.3-kb element within jing2.8 drove expression that was restricted to Engrailed-positive CNS midline cells and segmental ectodermal stripes. Surprisingly, jing1.5-lacZ expression was restricted to tracheal fusion cells despite the presence of consensus DNA-binding sites for bHLH-PAS, ETS, and POU domain transcription factors. Given the absence of Trh/Tgo DNA-binding sites in the jing1.3 enhancer, these results are consistent with previous observations suggesting a combinatorial basis to Trh-/Tgo-mediated transcriptional regulation in the trachea.
Collapse
Affiliation(s)
- Tatiana Morozova
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
14
|
Sonnenfeld M, Morozova T, Hackett J, Sun X. Drosophila Jing is part of the breathless fibroblast growth factor receptor positive feedback loop. Dev Genes Evol 2010; 220:207-20. [PMID: 21061018 DOI: 10.1007/s00427-010-0342-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
In the developing Drosophila trachea, extensive cell migration lays the foundation for an elaborate network of tubules to form. This process is controlled by the Drosophila fibroblast growth factor receptor, known as Breathless (Btl), whose expression is activated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix (bHLH)-PAS transcription factors. We previously identified the jing zinc finger transcription factor as a gene sensitive to the dosage of bHLH-PAS transcriptional activity and showed that its mutations interact genetically with those of trh and btl. Here, we demonstrate that jing is required for btl expression in the branching trachea and dominantly interacts with known regulators of btl expression, including the ETS and POU transcription factors, pointed, and drifter/ventral veinless, respectively. Furthermore, the zinc finger-containing C-terminus of Jing associates with a btl tracheal enhancer in a Trh/Tgo-dependent manner in chromatin immunoprecipitation assays in vitro and interferes with btl in vitro and in vivo. Together, our results support a model by which Jing/Trh/Tgo complexes regulate btl transcript levels during primary tracheal branching.
Collapse
Affiliation(s)
- Margaret Sonnenfeld
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
15
|
Biehs B, Kechris K, Liu S, Kornberg TB. Hedgehog targets in the Drosophila embryo and the mechanisms that generate tissue-specific outputs of Hedgehog signaling. Development 2010; 137:3887-98. [PMID: 20978080 DOI: 10.1242/dev.055871] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paracrine Hedgehog (Hh) signaling regulates growth and patterning in many Drosophila organs. We mapped chromatin binding sites for Cubitus interruptus (Ci), the transcription factor that mediates outputs of Hh signal transduction, and we analyzed transcription profiles of control and mutant embryos to identify genes that are regulated by Hh. Putative targets that we identified included several Hh pathway components, mostly previously identified targets, and many targets that are novel. Every Hh target we analyzed that is not a pathway component appeared to be regulated by Hh in a tissue-specific manner; analysis of expression patterns of pathway components and target genes provided evidence of autocrine Hh signaling in the optic primordium of the embryo. We present evidence that tissue specificity of Hh targets depends on transcription factors that are Hh-independent, suggesting that `pre-patterns' of transcription factors partner with Ci to make Hh-dependent gene expression position specific.
Collapse
Affiliation(s)
- Brian Biehs
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2711, USA
| | | | | | | |
Collapse
|
16
|
A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells. Dev Cell 2010; 18:790-801. [PMID: 20493812 DOI: 10.1016/j.devcel.2010.03.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 01/22/2010] [Accepted: 03/12/2010] [Indexed: 02/01/2023]
Abstract
Microtubules (MTs) are essential for many cell features, such as polarity, motility, shape, and vesicle trafficking. Therefore, in a multicellular organism, their organization differs between cell types and during development; however, the control of this process remains elusive. Here, we show that during Drosophila tracheal morphogenesis, MT reorganization is coupled to relocalization of the microtubule organizing centers (MTOC) components from the centrosome to the apical cell domain from where MTs then grow. We reveal that this process is controlled by the trachealess patterning gene in a two-step mechanism. MTOC components are first released from the centrosome by the activity of the MT-severing protein Spastin, and then anchored apically through the transmembrane protein Piopio. We further show that these changes are essential for tracheal development, thus stressing the functional relevance of MT reorganization for morphogenesis.
Collapse
|
17
|
Junell A, Uvell H, Davis MM, Edlundh-Rose E, Antonsson Å, Pick L, Engström Y. The POU transcription factor Drifter/Ventral veinless regulates expression of Drosophila immune defense genes. Mol Cell Biol 2010; 30:3672-84. [PMID: 20457811 PMCID: PMC2897550 DOI: 10.1128/mcb.00223-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/13/2010] [Accepted: 05/02/2010] [Indexed: 01/02/2023] Open
Abstract
Innate immunity operates as a first line of defense in multicellular organisms against infections caused by different classes of microorganisms. Antimicrobial peptides (AMPs) are synthesized constitutively in barrier epithelia to protect against microbial attack and are also upregulated in response to infection. Here, we implicate Drifter/Ventral veinless (Dfr/Vvl), a class III POU domain transcription factor, in tissue-specific regulation of the innate immune defense of Drosophila. We show that Dfr/Vvl is highly expressed in a range of immunocompetent tissues, including the male ejaculatory duct, where its presence overlaps with and drives the expression of cecropin, a potent broad-spectrum AMP. Dfr/Vvl overexpression activates transcription of several AMP genes in uninfected flies in a Toll pathway- and Imd pathway-independent manner. Dfr/Vvl activates a CecA1 reporter gene both in vitro and in vivo by binding to an upstream enhancer specific for the male ejaculatory duct. Further, Dfr/Vvl and the homeodomain protein Caudal (Cad) activate transcription synergistically via this enhancer. We propose that the POU protein Dfr/Vvl acts together with other regulators in a combinatorial manner to control constitutive AMP gene expression in a gene-, tissue-, and sex-specific manner, thus promoting a first-line defense against infection in tissues that are readily exposed to pathogens.
Collapse
Affiliation(s)
- Anna Junell
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Hanna Uvell
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Monica M. Davis
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Esther Edlundh-Rose
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Åsa Antonsson
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Leslie Pick
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| |
Collapse
|
18
|
Jiang L, Pearson JC, Crews ST. Diverse modes of Drosophila tracheal fusion cell transcriptional regulation. Mech Dev 2010; 127:265-80. [PMID: 20347970 DOI: 10.1016/j.mod.2010.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 03/18/2010] [Accepted: 03/21/2010] [Indexed: 10/19/2022]
Abstract
Drosophila tracheal fusion cells play multiple important roles in guiding and facilitating tracheal branch fusion. Mechanistic understanding of how fusion cells function during development requires deciphering their transcriptional circuitry. In this paper, three genes with distinct patterns of fusion cell expression were dissected by transgenic analysis to identify the cis-regulatory modules that mediate their transcription. Bioinformatic analysis involving phylogenetic comparisons coupled with mutational experiments were employed. The dysfusion bHLH-PAS gene was shown to have two fusion cell cis-regulatory modules; one driving initial expression and another autoregulatory module to enhance later transcription. Mutational dissection of the early module identified at least four distinct inputs, and included putative binding sites for ETS and POU-homeodomain proteins. The ETS transcription factor Pointed mediates the transcriptional output of the branchless/breathless signaling pathway, suggesting that this pathway directly controls dysfusion expression. Fusion cell cis-regulatory modules of CG13196 and CG15252 require two Dysfusion:Tango binding sites, but additional sequences modulate the breadth of activation in different fusion cell classes. These results begin to decode the regulatory circuitry that guides transcriptional activation of genes required for fusion cell morphogenesis.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
19
|
Sotillos S, Espinosa-Vázquez JM, Foglia F, Hu N, Hombría JCG. An efficient approach to isolate STAT regulated enhancers uncovers STAT92E fundamental role in Drosophila tracheal development. Dev Biol 2010; 340:571-82. [PMID: 20171201 PMCID: PMC2877871 DOI: 10.1016/j.ydbio.2010.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 01/08/2023]
Abstract
The ventral veinless (vvl) and trachealess (trh) genes are determinants of the Drosophila trachea. Early in development both genes are independently activated in the tracheal primordia by signals that are ill defined. Mutants blocking JAK/STAT signaling at any level do not form a tracheal tree suggesting that STAT92E may be an upstream transcriptional activator of the early trachea determinants. To test this hypothesis we have searched for STAT92E responsive enhancers activating the expression of vvl and trh in the tracheal primordia. We show that STAT92E regulated enhancers can be rapidly and efficiently isolated by focusing the analysis on genomic regions with clusters of putative STAT binding sites where at least some of them are phylogenetically conserved. Detailed analysis of a vvl early tracheal enhancer shows that non-conserved sites collaborate with conserved sites for enhancer activation. We find that STAT92E regulated enhancers can be located as far 60 kb from the promoters. Our results indicate that vvl and trh are independently activated by STAT92E which is the most important transcription factor required for trachea specification.
Collapse
Affiliation(s)
- Sol Sotillos
- CABD, CSIC/Universidad Pablo de Olavide, Seville, Spain
| | | | | | | | | |
Collapse
|
20
|
Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol 2009; 341:34-55. [PMID: 19778532 DOI: 10.1016/j.ydbio.2009.09.024] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
21
|
Mortimer NT, Moberg KH. Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 2009; 329:294-305. [PMID: 19285057 DOI: 10.1016/j.ydbio.2009.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 01/27/2009] [Accepted: 03/03/2009] [Indexed: 01/01/2023]
Abstract
The tracheal system of Drosophila melanogaster is an interconnected network of gas-filled epithelial tubes that develops during embryogenesis and functions as the main gas-exchange organ in the larva. Larval tracheal cells respond to hypoxia by activating a program of branching and growth driven by HIF-1alpha/sima-dependent expression of the breathless (btl) FGF receptor. By contrast, the ability of the developing embryonic tracheal system to respond to hypoxia and integrate hard-wired branching programs with sima-driven tracheal remodeling is not well understood. Here we show that embryonic tracheal cells utilize the conserved ubiquitin ligase dVHL to control the HIF-1 alpha/sima hypoxia response pathway, and identify two distinct phases of tracheal development with differing hypoxia sensitivities and outcomes: a relatively hypoxia-resistant 'early' phase during which sima activity conflicts with normal branching and stunts migration, and a relatively hypoxia-sensitive 'late' phase during which the tracheal system uses the dVHL/sima/btl pathway to drive increased branching and growth. Mutations in the archipelago (ago) gene, which antagonizes btl transcription, re-sensitize early embryos to hypoxia, indicating that their relative resistance can be reversed by elevating activity of the btl promoter. These findings reveal a second type of tracheal hypoxic response in which Sima activation conflicts with developmental tracheogenesis, and identify the dVHL and ago ubiquitin ligases as key determinants of hypoxia sensitivity in tracheal cells. The identification of an early stage of tracheal development that is vulnerable to hypoxia is an important addition to models of the invertebrate hypoxic response.
Collapse
Affiliation(s)
- Nathan T Mortimer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
22
|
Kiefer SM, Robbins L, Barina A, Zhang Z, Rauchman M. SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genes. Hum Mutat 2008; 29:1133-40. [PMID: 18470945 DOI: 10.1002/humu.20759] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in SALL1 lead to the dominant multiorgan congenital anomalies that define Townes-Brocks syndrome (TBS). The majority of these mutations result in premature termination codons that would be predicted to trigger nonsense-mediated decay (NMD) of mutant mRNA and cause haploinsufficiency. Our previous studies using a gene targeted mouse model (Sall1-DeltaZn) suggested that TBS phenotypes are due to expression of a truncated mutant protein, not haploinsufficiency. In this report, we strengthen this hypothesis by showing that expression of the mutant protein alone in transgenic mice is sufficient to cause limb phenotypes that are characteristic of TBS patients. We prove that the same pathogenetic mechanism elucidated in mice is occurring in humans by demonstrating that truncated SALL1 protein is expressed in cells derived from a TBS patient. TBS mutant protein is capable of dominant negative activity that results in ectopic activation of two downstream genes, Nppa and Shox2, in the developing heart and limb. We propose a model for the pathogenesis of TBS in which truncated Sall1 protein causes derepression of Sall-responsive target genes.
Collapse
Affiliation(s)
- Susan M Kiefer
- Research and Education Service Line, St. Louis Veterans Administration Medical Center, U.S. Department of Veterans Affairs, St. Louis, Missouri 63106, USA
| | | | | | | | | |
Collapse
|
23
|
Martin V, Mrkusich E, Steinel MC, Rice J, Merritt DJ, Whitington PM. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo. Neural Dev 2008; 3:10. [PMID: 18397531 PMCID: PMC2346466 DOI: 10.1186/1749-8104-3-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/08/2008] [Indexed: 11/18/2022] Open
Abstract
Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the extracellular substrate. Rather, we suggest that Neuroglian mediates sensory axon advance by promoting adhesion of the surface of the growth cone to its substrate. Our finding that stalling of a pioneer sensory neuron is rescued by driving Neuroglian in sensory neurons alone may suggest that Neuroglian can act in a heterophilic fashion.
Collapse
Affiliation(s)
- Veronica Martin
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Lauberth SM, Bilyeu AC, Firulli BA, Kroll KL, Rauchman M. A phosphomimetic mutation in the Sall1 repression motif disrupts recruitment of the nucleosome remodeling and deacetylase complex and repression of Gbx2. J Biol Chem 2007; 282:34858-68. [PMID: 17895244 DOI: 10.1074/jbc.m703702200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The multizinc finger transcription factor Sall1 is a critical developmental regulator that mediates repression through the recruitment of the nucleosome remodeling and deacetylase (NuRD) complex. Although a short conserved peptide motif in Sall1 is sufficient to recruit NuRD, its ability to regulate native Sall1 target genes in vivo has not been demonstrated. In this report, we demonstrate an in vivo role for the Sall1 repression motif and describe a novel direct target gene of Sall1, Gbx2, that is directly repressed in a NuRD-dependent fashion. The ability of Sall1 to repress Gbx2 was impaired in Xenopus embryos expressing mutant forms of Sall1 that are defective for NuRD binding. Finally, we demonstrate that protein kinase C phosphorylates serine 2 of the Sall1 repression motif and reveal that a phosphomimetic mutation of serine 2 disrupts the ability of Sall1 to repress Gbx2 in cell culture and Xenopus embryos. Together, these studies establish that Sall1 recruits NuRD via the Sall1 repression motif to mediate repression of a native target gene and suggest a model in which dynamic control of gene expression by Sall1 is modulated by serine phosphorylation of the Sall1 repression motif.
Collapse
Affiliation(s)
- Shannon M Lauberth
- Department of Biochemistry, Saint Louis University, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
25
|
Bates KE, Whitington PM. Semaphorin 2a secreted by oenocytes signals through plexin B and plexin A to guide sensory axons in the Drosophila embryo. Dev Biol 2007; 302:522-35. [PMID: 17109838 DOI: 10.1016/j.ydbio.2006.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
The semaphorin gene family has been shown to play important roles in axonal guidance in both vertebrates and invertebrates. Both transmembrane (Sema1a, Sema1b, Sema5c) and secreted (Sema2a, Sema2b) forms of semaphorins exist in Drosophila. Two Sema receptors, plexins (Plex) A and B, have also been identified. Many questions remain concerning the axon guidance functions of the secreted semaphorins, including the identity of their receptors. We have used the well-characterized sensory system of the Drosophila embryo to address these problems. We find novel sensory axon defects in sema2a loss-of-function mutants in which particular axons misproject and follow inappropriate pathways to the CNS. plexB loss-of-function mutants show similar phenotypes to sema2a mutants and sema2a interacts genetically with plexB, supporting the hypothesis that Sema2a signals through PlexB receptors. Sema2a protein is expressed by larval oenocytes, a cluster of secretory cells in the lateral region of the embryo and the sema2a mutant phenotype can be rescued by driving Sema2a in these cells. Ablation of oenocytes results in sensory axon defects similar to the sema2a mutant phenotype. These data support a model in which Sema2a, while being secreted from oenocytes, acts in a highly localized fashion: It represses axon extension from the sensory neuron cell body, but only in regions in direct contact with oenocytes.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
26
|
Yamashita K, Sato A, Asashima M, Wang PC, Nishinakamura R. Mouse homolog of SALL1, a causative gene for Townes?Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. Genes Cells 2007; 12:171-82. [PMID: 17295837 DOI: 10.1111/j.1365-2443.2007.01042.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Spalt (sal) gene family is conserved from Drosophila to humans. Mutations of human SALL1 cause Townes-Brocks syndrome, with features of ear, limb, anal, renal and heart anomalies. Sall1, a murine homolog of SALL1, is essential for kidney formation, and both Sall1 and SALL1 localize to heterochromatin in the nucleus. Here, we present a molecular mechanism for the heterochromatin localization of Sall1. Mutation analyses revealed that the 7th-10th C-terminal double zinc finger motifs were required for the localization. A recombinant protein of the most C-terminal double zinc finger (9th-10th) bound to specific A/T-rich sequences. Furthermore, Sall1 associated with A/T-rich sequences of the major satellite DNA in heterochromatin. Thus Sall1 may bind to A/T-rich sequences of the major satellite DNA via its C-terminal double zinc fingers, thereby mediating its localization to heterochromatin.
Collapse
Affiliation(s)
- Kazunari Yamashita
- Division of Integrative Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
27
|
Cui W, Kong NR, Ma Y, Amin HM, Lai R, Chai L. Differential expression of the novel oncogene, SALL4, in lymphoma, plasma cell myeloma, and acute lymphoblastic leukemia. Mod Pathol 2006; 19:1585-92. [PMID: 16998462 DOI: 10.1038/modpathol.3800694] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SALL4, a newly identified zinc-finger transcriptional factor important for embryonic development, is mapped to chromosome 20q13. Previously, we reported that SALL4 was constitutively expressed in acute myeloid leukemia and SALL4 transgenic mice developed acute myeloid leukemia. In this study, we aimed to survey SALL4 protein expression in benign and neoplastic hematopoietic tissues in addition to acute myeloid leukemia using immunostaining with a polyclonal anti-SALL4 antibody. Primary hematological tumors (178) and 15 benign hematopoietic tissues were examined. Reverse transcription-polymerase chain reaction was also performed to detect SALL4 mRNA expression on eight precursor B-cell lymphoblastic leukemia/lymphomas, 10 benign hematopoietic tissues, and seven hematopoietic cancer cell lines. Of the benign tissues, SALL4 expression was detectable only in CD34+ hematopoietic stem/progenitor cells (2/2 at protein level, 3/3 at RNA level). In neoplastic tissues, only precursor B-cell lymphoblastic leukemia/lymphomas had detectable SALL4 (12/16 at protein level, 7/8 at RNA level), similar to that observed in acute myeloid leukemia. Of the seven cell lines examined, only those derived from acute myeloid leukemia and precursor B-cell lymphoblastic leukemia/lymphomas were positive. To conclude, SALL4 expression is normally restricted to CD34+ hematopoietic stem/progenitor cells. The persistence of SALL4 expression in leukemic blasts in precursor B-cell lymphoblastic leukemia/lymphomas resembles to what we observed in acute myeloid leukemia, and correlates with the maturation arrest of these cells. We have shown in our previous study that the constitutive expression of SALL4 in mice can lead to acute myeloid leukemia development. The similar expression pattern of SALL4 in acute myeloid leukemia and B-cell lymphoblastic leukemia/lymphomas suggests that these two disease entities may share similar biological features and/or mechanisms of leukemogenesis. More definite studies to investigate the role of SALL4 in the pathogenesis of B-cell lymphoblastic leukemia/lymphomas are needed in the future to address this question.
Collapse
Affiliation(s)
- Wei Cui
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
28
|
Tajiri R, Tsuji T, Ueda R, Saigo K, Kojima T. Fate determination of Drosophila leg distal regions by trachealess and tango through repression and stimulation, respectively, of Bar homeobox gene expression in the future pretarsus and tarsus. Dev Biol 2006; 303:461-73. [PMID: 17187773 DOI: 10.1016/j.ydbio.2006.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/15/2006] [Accepted: 11/16/2006] [Indexed: 11/24/2022]
Abstract
During tissue patterning, developing fields may be subdivided into several non-overlapping domains by region-specific expression of transcription factors. In Drosophila leg development, the most distal segments, the pretarsus and tarsal segment 5 (ta5), are precisely specified by interactions between tarsus homeobox genes (BarH1 and BarH2) and pretarsus homeobox genes (aristaless, clawless, and Lim1). Here, we demonstrate that trachealess and tango, both encoding bHLH-PAS proteins that are required for the formation of the embryonic tracheal system, are essential for forming two adjacent distal segments of the leg. trachealess is expressed in the pretarsus and ta5, and the concerted action of trachealess and tango seems to modulate the activity of homeobox gene regulatory loops by repressing Bar in the pretarsus and activating Bar in ta5.
Collapse
Affiliation(s)
- Reiko Tajiri
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
29
|
Kerman BE, Cheshire AM, Andrew DJ. From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis. Differentiation 2006; 74:326-48. [PMID: 16916373 PMCID: PMC2827874 DOI: 10.1111/j.1432-0436.2006.00095.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tube formation is a ubiquitous process required to sustain life in multicellular organisms. The tubular organs of adult mammals include the lungs, vasculature, digestive and excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, and mammary glands. Other tissues, including the embryonic heart and neural tube, have requisite stages of tubular organization early in development. To learn the molecular and cellular basis of how epithelial cells are organized into tubular organs of various shapes and sizes, investigators have focused on the Drosophila trachea and salivary gland as model genetic systems for branched and unbranched tubes, respectively. Both organs begin as polarized epithelial placodes, which through coordinated cell shape changes, cell rearrangement, and cell migration form elongated tubes. Here, we discuss what has been discovered regarding the details of cell fate specification and tube formation in the two organs; these discoveries reveal significant conservation in the cellular and molecular events of tubulogenesis.
Collapse
Affiliation(s)
- Bilal E Kerman
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
30
|
Brodu V, Casanova J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev 2006; 20:1817-28. [PMID: 16818611 PMCID: PMC1522077 DOI: 10.1101/gad.375706] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A major issue in morphogenesis is to understand how the activity of genes specifying cell fate affects cytoskeletal components that modify cell shape and induce cell movements. Here, we approach this question by investigating how a group of cells from an epithelial sheet initiate invagination to ultimately form the Drosophila tracheal tubes. We describe tracheal cell behavior at invagination and show that it is associated with, and requires, a distinct recruitment of Myosin II to the apical surface of cells at the invaginating edge. We show that this process is achieved by the activity of crossveinless-c, a gene coding for a RhoGAP and whose specific transcriptional activation in the tracheal cells is triggered by both the trachealess patterning gene and the EGF Receptor (EGFR) signaling pathway. Our results identify a developmental pathway linking cell fate genes and cell signaling pathways to intracellular modifications during tracheal cell invagination.
Collapse
Affiliation(s)
- Véronique Brodu
- Institut de Biologia Molecular de Barcelona (CSIC) and Institut de Recerca Biomèdica, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | |
Collapse
|
31
|
Jung AC, Ribeiro C, Michaut L, Certa U, Affolter M. Polychaetoid/ZO-1 is required for cell specification and rearrangement during Drosophila tracheal morphogenesis. Curr Biol 2006; 16:1224-31. [PMID: 16782014 DOI: 10.1016/j.cub.2006.04.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 04/13/2006] [Accepted: 04/24/2006] [Indexed: 11/25/2022]
Abstract
The development of the complex network of epithelial tubes that ultimately forms the Drosophila tracheal system relies on cell migration, cell shape changes, cell rearrangements, cell differentiation, and branch fusion . Most of these events are controlled by a combination of distinct transcription factors and cell-cell signaling molecules, but few proteins that do not fall within these two functional classes have been associated with tracheal development. We show that the MAGUK protein Polychaetoid (Pyd/ZO-1), the Drosophila homolog of the junctional protein ZO-1 , plays a dual role in the formation of tracheal tubes. pyd/ZO-1 mutant embryos display branch fusion defects due to the lack of reliable determination of the fusion cell fate. In addition, pyd/ZO-1 mutant embryos show impaired cell intercalation in thin tracheal branches. Pyd/ZO-1 localizes to the adherens junctions (AJs) in tracheal cells and might thus play a direct role in the regulation of the dynamic state of the AJ during epithelial remodeling. Our study suggests that MAGUK proteins might play important roles during AJ remodeling in epithelial morphogenesis.
Collapse
Affiliation(s)
- Alain C Jung
- Abteilung Zellbiologie, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Lauberth SM, Rauchman M. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J Biol Chem 2006; 281:23922-31. [PMID: 16707490 DOI: 10.1074/jbc.m513461200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sall1 is a multi-zinc finger transcription factor that represses gene expression and regulates organogenesis. In this report, we further characterize the domain of Sall1 necessary for repression. We show that endogenous Sall1 binds to the nucleosome remodeling and deacetylase corepressor complex (NuRD) and confirm the functionality of the Sall1-associating macromolecular complex by showing that the complex possesses HDAC activity. NuRD is involved in global transcriptional repression and regulation of specific developmental processes. The mechanism by which sequence-specific DNA-binding proteins associate with NuRD is not well understood. We have identified a highly conserved 12-amino acid motif in the transcription factor Sall1 that is sufficient for the recruitment of NuRD. Single amino acid substitutions defined the critical amino acid peptide motif as RRKQXK-PXXF. This motif probably exhibits a more general role in regulating gene expression, since other proteins containing this domain, including all Sall family members and an unrelated zinc finger protein Ebfaz, mediate transcriptional repression and associate with NuRD. These results also have important implications for the pathogenesis of Townes-Brocks, a syndrome caused by SALL1 mutations.
Collapse
Affiliation(s)
- Shannon M Lauberth
- Department of Biochemistry and Molecular Biology, Veterans Affairs Medical Center, Saint Louis University, St. Louis, Missouri 63106, USA
| | | |
Collapse
|
33
|
Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM, Lai R, Ritz J, Krause DS, Chai L. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 2006; 108:2726-35. [PMID: 16763212 PMCID: PMC1895586 DOI: 10.1182/blood-2006-02-001594] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SALL4, a human homolog to Drosophila spalt, is a novel zinc finger transcriptional factor essential for development. We cloned SALL4 and its isoforms (SALL4A and SALL4B). Through immunohistochemistry and real-time reverse-transcription-polymerase chain reaction (RT-PCR), we demonstrated that SALL4 was constitutively expressed in human primary acute myeloid leukemia (AML, n = 81), and directly tested the leukemogenic potential of constitutive expression of SALL4 in a murine model. SALL4B transgenic mice developed myelodysplastic syndrome (MDS)-like features and subsequently AML that was transplantable. Increased apoptosis associated with dysmyelopoiesis was evident in transgenic mouse marrow and colony-formation (CFU) assays. Both isoforms could bind to beta-catenin and synergistically enhanced the Wnt/beta-catenin signaling pathway. Our data suggest that the constitutive expression of SALL4 causes MDS/AML, most likely through the Wnt/beta-catenin pathway. Our murine model provides a useful platform to study human MDS/AML transformation, as well as the Wnt/beta-catenin pathway's role in the pathogenesis of leukemia stem cells.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Apoptosis
- Base Sequence
- Cloning, Molecular
- Colony-Forming Units Assay
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Neoplasm Transplantation
- Oncogenes
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wnt Proteins/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Yupo Ma
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Franch-Marro X, Martín N, Averof M, Casanova J. Association of tracheal placodes with leg primordia inDrosophilaand implications for the origin of insect tracheal systems. Development 2006; 133:785-90. [PMID: 16469971 DOI: 10.1242/dev.02260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adaptation to diverse habitats has prompted the development of distinct organs in different animals to better exploit their living conditions. This is the case for the respiratory organs of arthropods, ranging from tracheae in terrestrial insects to gills in aquatic crustaceans. Although Drosophila tracheal development has been studied extensively, the origin of the tracheal system has been a long-standing mystery. Here, we show that tracheal placodes and leg primordia arise from a common pool of cells in Drosophila, with differences in their fate controlled by the activation state of the wingless signalling pathway. We have also been able to elucidate early events that trigger leg specification and to show that cryptic appendage primordia are associated with the tracheal placodes even in abdominal segments. The association between tracheal and appendage primordia in Drosophila is reminiscent of the association between gills and appendages in crustaceans. This similarity is strengthened by the finding that homologues of tracheal inducer genes are specifically expressed in the gills of crustaceans. We conclude that crustacean gills and insect tracheae share a number of features that raise the possibility of an evolutionary relationship between these structures. We propose an evolutionary scenario that accommodates the available data.
Collapse
Affiliation(s)
- Xavier Franch-Marro
- Institut de Biologia Molecular de Barcelona, CSIC, Barcelona, C/Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
Rizzoti K, Lovell-Badge R. Early development of the pituitary gland: induction and shaping of Rathke's pouch. Rev Endocr Metab Disord 2005; 6:161-72. [PMID: 16151620 DOI: 10.1007/s11154-005-3047-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Karine Rizzoti
- Division of Developmental Genetics, MRC National Institute for Medical Research, Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | | |
Collapse
|
36
|
Merabet S, Hombria JCG, Hu N, Pradel J, Graba Y. Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis. Development 2005; 132:3093-102. [PMID: 15930099 DOI: 10.1242/dev.01889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox proteins provide axial positional information and control segment morphology in development and evolution. Yet how they specify morphological traits that confer segment identity and how axial positional information interferes with intrasegmental patterning cues during organogenesis remain poorly understood. We have investigated the control of Drosophilaposterior spiracle morphogenesis, a segment-specific structure that forms under Abdominal-B (AbdB) Hox control in the eighth abdominal segment (A8). We show that the Hedgehog (Hh), Wingless (Wg) and Epidermal Growth Factor Receptor (Egfr) pathways provide specific inputs for posterior spiracle morphogenesis and act in a genetic network made of multiple and rapidly evolving Hox/signalling interplays. A major function of AbdB during posterior spiracle organogenesis is to reset A8 intrasegmental patterning cues, first by reshaping wg and rhomboid expression patterns, then by reallocating the Hh signal and later by initiating de novo expression of the posterior compartment gene engrailed in anterior compartment cells. These changes in expression patterns confer axial specificity to otherwise reiteratively used segmental patterning cues, linking intrasegmental polarity and acquisition of segment identity.
Collapse
Affiliation(s)
- Samir Merabet
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS, Université de la méditerranée, Parc Scientifique de Luminy, Case 907, 13288, Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
37
|
Sonnenfeld MJ, Delvecchio C, Sun X. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. Dev Genes Evol 2005; 215:221-9. [PMID: 15818484 DOI: 10.1007/s00427-004-0462-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
Basic-helix-loop-helix-PAS transcription factors play important roles in diverse biological processes including cellular differentiation and specification, oxygen tension regulation and dioxin metabolism. Drosophila tango is orthologous to mammalian Arnt and acts as a common dimerization partner for bHLH-PAS proteins during embryogenesis. A transient transfection assay using Drosophila S2 tissue culture cells and wild-type and mutant Drosophila tango cDNAs was used to localize the activation domain of the Tango protein. An activation domain was identified in the C-terminus of TGO consisting of poly-glutamine and histidine-proline repeats. Transcriptional activation of the fibroblast growth factor receptor (breathless) gene required an intact TGO C-terminus, in vitro. Co-expression assays of trachealess and tgo in the developing eye imaginal disc showed a requirement for the C-terminal transactivation domain of TGO for a cellular response. Genetic analysis of tgo(3) shows that the paired repeat is necessary for tracheal tubule formation in all branches. Lastly, expression of a C-terminal truncated tgo transgene specifically in the CNS midline and trachea resulted in reductions in the number of breathless-expressing cells. These results together identify TGO's transactivation domain and establish its importance for proper target gene regulation and cellular specification.
Collapse
Affiliation(s)
- Margaret J Sonnenfeld
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada K1H 8M5.
| | | | | |
Collapse
|
38
|
Tanaka H, Takasu E, Aigaki T, Kato K, Hayashi S, Nose A. Formin3 is required for assembly of the F-actin structure that mediates tracheal fusion in Drosophila. Dev Biol 2004; 274:413-25. [PMID: 15385168 DOI: 10.1016/j.ydbio.2004.07.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 07/08/2004] [Accepted: 07/19/2004] [Indexed: 01/19/2023]
Abstract
During tracheal development in Drosophila, some branches join to form a continuous luminal network. Specialized cells at the branch tip, called fusion cells, extend filopodia to make contact and become doughnut shaped to allow passage of the lumen. These morphogenetic processes accompany the highly regulated cytoskeletal reorganization of fusion cells. We identified the Drosophila formin3 (form3) gene that encodes a novel formin and plays a role in tracheal fusion. Formins are a family of proteins characterized by highly conserved formin homology (FH) domains. The formin family functions in various actin-based processes, including cytokinesis and cell polarity. During embryogenesis, form3 mRNA is expressed mainly in the tracheal system. In form3 mutant embryos, the tracheal fusion does not occur at some points. This phenotype is rescued by the forced expression of form3 in the trachea. We used live imaging of GFP-moesin during tracheal fusion to show that an F-actin structure that spans the adjoining fusion cells and mediates the luminal connection does not form at abnormal anastomosis sites in form3 mutants. These results suggested that Form3 plays a role in the F-actin assembly, which is essential for cellular rearrangement during tracheal fusion.
Collapse
Affiliation(s)
- Hiromasa Tanaka
- Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Sato A, Kishida S, Tanaka T, Kikuchi A, Kodama T, Asashima M, Nishinakamura R. Sall1, a causative gene for Townes–Brocks syndrome, enhances the canonical Wnt signaling by localizing to heterochromatin. Biochem Biophys Res Commun 2004; 319:103-13. [PMID: 15158448 DOI: 10.1016/j.bbrc.2004.04.156] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Indexed: 01/30/2023]
Abstract
The Spalt (sal) gene family plays an important role in regulating developmental processes of many organisms. Mutations of human SALL1 cause the autosomal dominant disorder, Townes-Brocks syndrome (TBS), and result in ear, limb, anal, renal, and heart anomalies. Targeted deletion of mouse Sall1 results in kidney agenesis or severe dysgenesis. Molecular mechanisms of Sall1, however, have remained largely unknown. Here we report that Sall1 synergistically activates canonical Wnt signaling. The transcriptional activity of Sall1 is related to its nuclear localization to punctate nuclear foci (pericentromeric heterochromatin), but not to its localization or association with beta-catenin, the nuclear component of Wnt signaling. In contrast, the RNA interference of Sall1 reduces reporter activities of canonical Wnt signaling. The N-terminal truncated Sall1, produced by mutations often found in TBS, disturbs localization of native Sall1 to heterochromatin, and also down-regulates the synergistic transcriptional enhancement for Wnt signal by native Sall1. Thus, we propose a new mechanism for Wnt signaling activation, that is the heterochromatin localization of Sall1.
Collapse
Affiliation(s)
- Akira Sato
- Department of Stem Cell Regulation, The Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Many organs including the mammalian lung and vascular system consist of branched tubular networks that transport essential gases or fluids, but the genetic programs that control the development of these complex three-dimensional structures are not well understood. The Drosophila melanogaster tracheal (respiratory) system is a network of interconnected epithelial tubes that transports oxygen and other gases in the body and provides a paradigm of branching morphogenesis. It develops by sequential sprouting of primary, secondary, and terminal branches from an epithelial sac of approximately 80 cells in each body segment of the embryo. Mapping of the cell movements and shape changes during the sprouting process has revealed that distinct mechanisms of epithelial migration and tube formation are used at each stage of branching. Genetic dissection of the process has identified a general program in which a fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) are used repeatedly to control branch budding and outgrowth. At each stage of branching, the mechanisms controlling FGF expression and the downstream signal transduction pathway change, altering the pattern and structure of the branches that form. During terminal branching, FGF expression is regulated by hypoxia, ensuring that tracheal structure matches cellular oxygen need. A branch diversification program operates in parallel to the general budding program: Regional signals locally modify the general program, conferring specific structural features and other properties on individual branches, such as their substrate outgrowth preferences, differences in tube size and shape, and the ability to fuse to other branches to interconnect the network.
Collapse
Affiliation(s)
- Amin Ghabrial
- Howard Hughes Medical Institute, Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | | | |
Collapse
|
41
|
Ribeiro C, Petit V, Affolter M. Signaling systems, guided cell migration, and organogenesis: insights from genetic studies in Drosophila. Dev Biol 2003; 260:1-8. [PMID: 12885551 DOI: 10.1016/s0012-1606(03)00211-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During development, cells change their position extensively. Although the basic cellular mechanisms involved in cell locomotion have been studied mostly in cultured cells, genetic and molecular approaches using model organisms are starting to shed light on the complex events influencing cell migration during development. Recent technical advances in following and analyzing migrating cells inside the living embryo offer the possibility of understanding how different signaling systems regulate the fundamental cellular processes underlying guided cell migration in vivo. In Drosophila melanogaster, studies of migrating cells have concentrated mainly on hemocytes, germ cells, border cells, and tracheal cells. Interestingly, most of these cells were recently shown to make different cellular extensions and to use receptor tyrosine kinases to sense the chemoattractive signal. This review describes our current understanding of how different signaling networks control guided migration in these four systems and discusses the impact of novel imaging techniques on the study of guided cell migration during development.
Collapse
Affiliation(s)
- Carlos Ribeiro
- Biozentrum der Universität Basel, Department of Cell Biology, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
42
|
Jiang L, Crews ST. The Drosophila dysfusion basic helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein. Mol Cell Biol 2003; 23:5625-37. [PMID: 12897136 PMCID: PMC166316 DOI: 10.1128/mcb.23.16.5625-5637.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of the mature insect trachea requires a complex series of cellular events, including tracheal cell specification, cell migration, tubule branching, and tubule fusion. Here we describe the identification of the Drosophila melanogaster dysfusion gene, which encodes a novel basic helix-loop-helix (bHLH)-PAS protein conserved between Caenorhabditis elegans, insects, and humans, and controls tracheal fusion events. The Dysfusion protein functions as a heterodimer with the Tango bHLH-PAS protein in vivo to form a putative DNA-binding complex. The dysfusion gene is expressed in a variety of embryonic cell types, including tracheal-fusion, leading-edge, foregut atrium cells, nervous system, hindgut, and anal pad cells. RNAi experiments indicate that dysfusion is required for dorsal branch, lateral trunk, and ganglionic branch fusion but not for fusion of the dorsal trunk. The escargot gene, which is also expressed in fusion cells and is required for tracheal fusion, precedes dysfusion expression. Analysis of escargot mutants indicates a complex pattern of dysfusion regulation, such that dysfusion expression is dependent on escargot in the dorsal and ganglionic branches but not the dorsal trunk. Early in tracheal development, the Trachealess bHLH-PAS protein is present at uniformly high levels in all tracheal cells, but since the levels of Dysfusion rise in wild-type fusion cells, the levels of Trachealess in fusion cells decline. The downregulation of Trachealess is dependent on dysfusion function. These results suggest the possibility that competitive interactions between basic helix-loop-helix-PAS proteins (Dysfusion, Trachealess, and possibly Similar) may be important for the proper development of the trachea.
Collapse
Affiliation(s)
- Lan Jiang
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
43
|
Inbal A, Levanon D, Salzberg A. Multiple roles for u-turn/ventral veinless in the development of Drosophila PNS. Development 2003; 130:2467-78. [PMID: 12702660 DOI: 10.1242/dev.00475] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most of the cells in the embryonic peripheral nervous system (PNS) of Drosophila are born in their final location. One known exception is the group of lateral chordotonal organs (lch5) whose precursors form in a dorsal position, yet the mature organs are located in the lateral PNS cluster. Mutations in the u-turn (ut) locus perturb the localization of lch5 neurons and result in a 'dorsal chordotonals' phenotype. We show that ut is allelic to ventral veinless (vvl), also known as drifter. VVL, a POU-domain transcription factor, has been shown to participate in the development of tracheae and CNS in the embryo, and in wing development in the adult; however, its role in PNS development has not been described. Characterization of the 'dorsal chordotonals' phenotype of vvl mutant embryos revealed that in the absence of VVL, cell fates within the lch5 lineage are determined properly and the entire organ is misplaced. Based on the positions of lch5 cells relative to each other in mutant embryos, and in normal embryos at different developmental stages, we propose a two-step model for lch5 localization. lch5 organs must first rotate to assume a correct polarity and are then stretched ventrally to their final position. In this process, VVL function is required in the ectoderm and possibly in the lch5 organs too. VVL is also expressed in developing external sensory organs in the embryo and in the adult. In the embryo, loss of VVL function results in increased apoptosis in specific es organs. Analysis of vvl mutant clones in adults revealed a requirement for VVL in the control of cell number within the bristle lineage.
Collapse
Affiliation(s)
- Adi Inbal
- Department of Genetics and the Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | | | | |
Collapse
|
44
|
Franch-Marro X, Casanova J. spalt-Induced Specification of Distinct Dorsal and Ventral Domains Is Required for Drosophila Tracheal Patterning. Dev Biol 2002. [DOI: 10.1006/dbio.2002.0799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Sedaghat Y, Miranda WF, Sonnenfeld MJ. ThejingZn-finger transcription factor is a mediator of cellular differentiation in theDrosophilaCNS midline and trachea. Development 2002; 129:2591-606. [PMID: 12015288 DOI: 10.1242/dev.129.11.2591] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We establish that the jing zinc-finger transcription factor plays an essential role in controlling CNS midline and tracheal cell differentiation. jing transcripts and protein accumulate from stage 9 in the CNS midline, trachea and in segmental ectodermal stripes. JING protein localizes to the nuclei of CNS midline and tracheal cells implying a regulatory role during their development. Loss of jing-lacZ expression in homozygous sim mutants and induction of jing-lacZ by ectopic sim expression establish that jing is part of the CNS midline lineage. We have isolated embryonic recessive lethal jing mutations that display genetic interactions in the embryonic CNS midline and trachea, with mutations in the bHLH-PAS genes single-minded and trachealess, and their downstream target genes (slit and breathless). Loss- and gain-of-function jing is associated with defects in CNS axon and tracheal tubule patterning. In jing homozygous mutant embryos, reductions in marker gene expression and inappropriate apoptosis in the CNS midline and trachea establish that jing is essential for the proper differentiation and survival of these lineages. These results establish that jing is a key component of CNS midline and tracheal cell development. Given the similarities between JING and the vertebrate CCAAT-binding protein AEBP2, we propose that jing regulates transcriptional mechanisms in Drosophila embryos and promotes cellular differentiation in ectodermal derivatives.
Collapse
Affiliation(s)
- Yalda Sedaghat
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | |
Collapse
|
46
|
Kiefer SM, McDill BW, Yang J, Rauchman M. Murine Sall1 represses transcription by recruiting a histone deacetylase complex. J Biol Chem 2002; 277:14869-76. [PMID: 11836251 DOI: 10.1074/jbc.m200052200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multi-zinc finger proteins of the Sal family regulate organogenesis. Genetic evidence from Drosophila has shown that spalt (sal) can alter gene expression in a cell autonomous fashion, but Sal proteins have never been directly analyzed for their ability to activate or repress transcription. In this report, we show that a member of the Sal family, mouse Sall1, is a potent transcriptional repressor. When fused to a heterologous DNA-binding domain, Sall1 represses transcription of a luciferase reporter by over 100-fold. Expression of the N terminus alone is sufficient for dose-responsive repression that, as shown by deletion analysis, requires the extreme N-terminal amino acids of the protein. The N terminus of Sall1 can repress at both short and long range relative to the promoter, and treatment with the histone deacetylase (HDAC) inhibitor, trichostatin A, alleviates repression by 3-fold. The same regions of the protein that are required for repression physically interact with components of chromatin remodeling complexes, HDAC1, HDAC2, RbAp46/48, MTA-1, and MTA-2. Finally, we demonstrate that Sall1 is localized to discrete nuclear foci and this localization depends on the N-terminal repression domain. Together, these results suggest that the N terminus of mouse Sall1 can recruit HDAC complexes to mediate transcriptional repression.
Collapse
Affiliation(s)
- Susan McLeskey Kiefer
- Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
47
|
Meyer CA, Kramer I, Dittrich R, Marzodko S, Emmerich J, Lehner CF. Drosophilap27Dacapo expression during embryogenesis is controlled by a complex regulatory region independent of cell cycle progression. Development 2002; 129:319-28. [PMID: 11807025 DOI: 10.1242/dev.129.2.319] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
dacapo encodes a CIP/KIP-type inhibitor of Cyclin E/Cdk2 complexes in Drosophila melanogaster. In the embryonic epidermis, dacapo expression starts during G2 of the final division cycle and is required for the arrest of cell cycle progression in G1 after the final mitosis. The onset of dacapo transcription is the earliest event known to be required for the epidermal cell proliferation arrest. To advance our understanding of the regulatory mechanisms that terminate cell proliferation at the appropriate stage, we have analyzed the control of dacapo transcription. We show that dacapo transcription is not coupled to cell cycle progression. It is not affected in mutants where proliferation is arrested either too early or too late. Moreover, upregulation of dacapo expression is not an obligatory event of the cell cycle exit process. During early development of the central nervous system, we cannot detect p27Dacapo during the final division cycle of ganglion mother cells, while it is expressed at later stages. The control of dacapo expression therefore varies in different stages and tissues. The dacapo regulatory region includes many independent cis-regulatory elements. The elements that control epidermal expression integrate developmental cues that time the arrest of cell proliferation.
Collapse
Affiliation(s)
- Claas A Meyer
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Brown S, Hu N, Hombría JC. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol 2001; 11:1700-5. [PMID: 11696329 DOI: 10.1016/s0960-9822(01)00524-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The JAK/STAT signaling pathway plays important roles in vertebrate development and the regulation of complex cellular processes. Components of the pathway are conserved in Dictyostelium, Caenorhabditis, and Drosophila, yet the complete sequencing and annotation of the D. melanogaster and C. elegans genomes has failed to identify a receptor, raising the possibility that an alternative type of receptor exists for the invertebrate JAK/STAT pathway. Here we show that domeless (dome) codes for a transmembrane protein required for all JAK/STAT functions in the Drosophila embryo. This includes its known requirement for embryonic segmentation and a newly discovered function in trachea specification. The DOME protein has a similar extracellular structure to the vertebrate cytokine class I receptors, although its sequence has greatly diverged. Like many interleukin receptors, DOME has a cytokine binding homology module (CBM) and three extracellular fibronectin-type-III domains (FnIII). Despite its low degree of overall similarity, key amino acids required for signaling in the vertebrate cytokine class I receptors [3] are conserved in the CBM region. DOME is a signal-transducing receptor with most similarities to the IL-6 receptor family, but it also has characteristics found in the IL-3 receptor family. This suggests that the vertebrate families evolved from a single ancestral receptor that also gave rise to dome.
Collapse
Affiliation(s)
- S Brown
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | | | | |
Collapse
|
49
|
Bradley PL, Andrew DJ. ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster. Development 2001; 128:3001-15. [PMID: 11532922 DOI: 10.1242/dev.128.15.3001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development, directed cell migration is crucial for achieving proper shape and function of organs. One well-studied example is the embryonic development of the larval tracheal system of Drosophila, in which at least four signaling pathways coordinate cell migration to form an elaborate branched network essential for oxygen delivery throughout the larva. FGF signaling is required for guided migration of all tracheal branches, whereas the DPP, EGF receptor, and Wingless/WNT signaling pathways each mediate the formation of specific subsets of branches. Here, we characterize ribbon, which encodes a BTB/POZ-containing protein required for specific tracheal branch migration. In ribbon mutant tracheae, the dorsal trunk fails to form, and ventral branches are stunted; however, directed migrations of the dorsal and visceral branches are largely unaffected. The dorsal trunk also fails to form when FGF or Wingless/WNT signaling is lost, and we show that ribbon functions downstream of, or parallel to, these pathways to promote anterior-posterior migration. Directed cell migration of the salivary gland and dorsal epidermis are also affected in ribbon mutants, suggesting that conserved mechanisms may be employed to orient cell migrations in multiple tissues during development.
Collapse
Affiliation(s)
- P L Bradley
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
50
|
Elstob PR, Brodu V, Gould AP. spalt-dependent switching between two cell fates that are induced by the Drosophila EGF receptor. Development 2001; 128:723-32. [PMID: 11171397 DOI: 10.1242/dev.128.5.723] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signaling from the EGF receptor (EGFR) can trigger the differentiation of a wide variety of cell types in many animal species. We have explored the mechanisms that generate this diversity using the Drosophila peripheral nervous system. In this context, Spitz (SPI) ligand can induce two alternative cell fates from the dorsolateral ectoderm: chordotonal sensory organs and non-neural oenocytes. We show that the overall number of both cell types that are induced is controlled by the degree of EGFR signaling. In addition, the spalt (sal) gene is identified as a critical component of the oenocyte/chordotonal fate switch. Genetic and expression analyses indicate that the SAL zinc-finger protein promotes oenocyte formation and supresses chordotonal organ induction by acting both downstream and in parallel to the EGFR. To explain these findings, we propose a prime-and-respond model. Here, sal functions prior to signaling as a necessary but not sufficient component of the oenocyte prepattern that also serves to raise the apparent threshold for induction by SPI. Subsequently, sal-dependent SAL upregulation is triggered as part of the oenocyte-specific EGFR response. Thus, a combination of SAL in the responding nucleus and increased SPI ligand production sets the binary cell-fate switch in favour of oenocytes. Together, these studies help to explain how one generic signaling pathway can trigger the differentiation of two distinct cell types.
Collapse
Affiliation(s)
- P R Elstob
- Medical Research Council, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | | | | |
Collapse
|