1
|
Dening TJ, Douglas JT, Hageman MJ. Do Macrocyclic Peptide Drugs Interact with Bile Salts under Simulated Gastrointestinal Conditions? Mol Pharm 2021; 18:3086-3098. [PMID: 34255531 DOI: 10.1021/acs.molpharmaceut.1c00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide drugs face several barriers to oral delivery, including enzymatic degradation in the gastrointestinal tract and low membrane permeability. Importantly, the direct interaction between various biorelevant colloids (i.e., bile salt micelles and bile salt-phospholipid mixed micelles) present in the aqueous gastrointestinal environment and peptide drug molecules has not been studied. In this work, we systematically characterized interactions between a water-soluble model peptide drug, octreotide, and a range of physiologically relevant bile salts in solution. Octreotide membrane flux in pure bile salt solutions and commercially available biorelevant media, i.e., fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF), was evaluated using a side-by-side diffusion cell equipped with a cellulose dialysis membrane. All seven micellar bile salt solutions as well as FaSSIF and FeSSIF decreased octreotide membrane flux, and dihydroxy bile salts were found to have a much larger effect than trihydroxy bile salts. An inverse relationship between octreotide membrane flux and pancreatic enzymatic stability was also observed; bile salt micelles and bile salt-phospholipid mixed micelles provided a protective effect toward enzymatic degradation and prolonged octreotide half-life in vitro. Diffusion ordered nuclear magnetic resonance (DOSY NMR) spectroscopy and dynamic light scattering (DLS) were used as complementary experimental techniques to confirm peptide-micelle interactions in solution. Experiments were also performed using desmopressin as a second model peptide drug; desmopressin interacted with bile salts in solution, albeit to a lower extent relative to octreotide. The findings described herein demonstrate that amphiphilic, water-soluble peptide drugs do interact with bile salts and phospholipids in solution, with an effect on peptide membrane flux and enzymatic stability. Correspondingly, oral peptide drug absorption and bioavailability may be impacted.
Collapse
Affiliation(s)
- Tahnee J Dening
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Justin T Douglas
- Nuclear Magnetic Resonance Core Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
2
|
Park JH, Baek MJ, Lee JY, Kim KT, Cho HJ, Kim DD. Preparation and characterization of sorafenib-loaded microprecipitated bulk powder for enhancing oral bioavailability. Int J Pharm 2020; 589:119836. [PMID: 32946979 DOI: 10.1016/j.ijpharm.2020.119836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
The aim of this study was to prepare and evaluate Eudragit-based microprecipitated bulk powder (MBP) formulations to enhance the oral bioavailability of sorafenib. Cationic Eudragit E PO and anionic Eudragit S100 were selected for MBP preparation. Ursodeoxycholic acid (UDCA)-incorporated MBP was also prepared to study the synergistic effect of UDCA in enhancing the bioavailability of sorafenib. Sorafenib-loaded MBPs were successfully prepared by a pH-controlled precipitation method using an aqueous antisolvent. Submicron-sized particles of MBPs were observed by scanning electron microscopy, and the amorphous form of sorafenib in MBPs was confirmed by powder X-ray diffraction. MBPs of cationic and anionic Eudragits showed different in vitro dissolution and pharmacokinetic profiles in rats. Sorafenib in Eudragit E PO-based MBP (E PO-MBP) was rapidly dissolved at low pH conditions (pH 1.2 and 4.0), but was precipitated again at pH 4.0 within 4 h. Dissolution of sorafenib from Eudragit S100-based MBP (S100-MBP) was high at pH 7.4 and did not precipitate for up to 4 h. After oral administration to rats, all MBPs, compared with powder, improved the oral absorption of sorafenib, with S100-MBP showing 1.5-fold higher relative oral bioavailability than E PO-MBP. Moreover, incorporation of UDCA in S100-MBP (S100-UDCA-MBP) further increased the Cmax and oral bioavailability of sorafenib, although the dissolution was not significantly different from that of S100-MBP. Taken together, Eudragit-based MBP formulations could be a promising strategy for enhancing the oral bioavailability of sorafenib.
Collapse
Affiliation(s)
- Ju-Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ki-Taek Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Gangwon 24341, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Bile acid transporter-mediated oral drug delivery. J Control Release 2020; 327:100-116. [PMID: 32711025 DOI: 10.1016/j.jconrel.2020.07.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized in the liver, stored in the gallbladder, and secreted into the duodenum at meals. Apical sodium-dependent bile acid transporter (ASBT), an ileal Na+-dependent transporter, plays the leading role of bile acid absorption into enterocytes, where bile acids are delivered to basolateral side by ileal bile acid binding protein (IBABP) and then released by organic solute transporter OSTα/β. The absorbed bile acids are delivered to the liver via portal vein. In this process called "enterohepatic recycling", only 5% of the bile acid pool (~3 g in human) is excreted in feces, indicating the large recycling capacity and high transport efficacy of ASBT-mediated absorption. Therefore, bile acid transporter-mediated oral drug delivery has been regarded as a feasible and potential strategy to improve the oral bioavailability. This review introduces the key factors in enterohepatic recycling, especially the mechanism of bile acid uptake by ASBT, and the development of bile acid-based oral drug delivery for ASBT-targeting, including bile acid-based prodrugs, bile acid/drug electrostatic complexation and bile acid-containing nanocarriers. Furthermore, the specific transport pathways of bile acid in enterocytes are described and the recent finding of lymphatic delivery of bile acid-containing nanocarriers is discussed.
Collapse
|
4
|
Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol 2018; 9:1283. [PMID: 30467479 DOI: 10.3389/fphar.2018.01283/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 05/27/2023] Open
Abstract
Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
5
|
Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol 2018; 9:1283. [PMID: 30467479 PMCID: PMC6237018 DOI: 10.3389/fphar.2018.01283] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
6
|
Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev 2016; 106:277-319. [PMID: 27320643 DOI: 10.1016/j.addr.2016.06.005] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
Collapse
|
7
|
Cholic Acid-Derived Facial Surfactants with Long Side-Chain Quaternary Ammonium: Synthesis and Antimicrobial Activity Study. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1837-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Bak A, Kozik V, Smolinski A, Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: investigation of activity profile for a series of drug absorption promoters. RSC Adv 2016. [DOI: 10.1039/c6ra15820j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hybrid approach that combines 3D and 4D-QSAR methods based on grid and neural paradigms with automated IVE-PLS procedure was examined to identify the pharmacophore pattern for cholic acid derivatives as potential drug absorption promoters.
Collapse
Affiliation(s)
- A. Bak
- Department of Organic Chemistry
- Institute of Chemistry
- University of Silesia
- Katowice
- Poland
| | - V. Kozik
- Department of Synthesis Chemistry
- Institute of Chemistry
- University of Silesia
- Katowice
- Poland
| | - A. Smolinski
- Department of Energy Saving and Air Protection
- Central Mining Institute
- Katowice
- Poland
| | - J. Jampilek
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Comenius University
- Bratislava
- Slovakia
| |
Collapse
|
9
|
Welling SH, Clemmensen LKH, Buckley ST, Hovgaard L, Brockhoff PB, Refsgaard HHF. In silico modelling of permeation enhancement potency in Caco-2 monolayers based on molecular descriptors and random forest. Eur J Pharm Biopharm 2015; 94:152-9. [PMID: 26004819 DOI: 10.1016/j.ejpb.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
Structural traits of permeation enhancers are important determinants of their capacity to promote enhanced drug absorption. Therefore, in order to obtain a better understanding of structure-activity relationships for permeation enhancers, a Quantitative Structural Activity Relationship (QSAR) model has been developed. The random forest-QSAR model was based upon Caco-2 data for 41 surfactant-like permeation enhancers from Whitehead et al. (2008) and molecular descriptors calculated from their structure. The QSAR model was validated by two test-sets: (i) an eleven compound experimental set with Caco-2 data and (ii) nine compounds with Caco-2 data from literature. Feature contributions, a recent developed diagnostic tool, was applied to elucidate the contribution of individual molecular descriptors to the predicted potency. Feature contributions provided easy interpretable suggestions of important structural properties for potent permeation enhancers such as segregation of hydrophilic and lipophilic domains. Focusing on surfactant-like properties, it is possible to model the potency of the complex pharmaceutical excipients, permeation enhancers. For the first time, a QSAR model has been developed for permeation enhancement. The model is a valuable in silico approach for both screening of new permeation enhancers and physicochemical optimisation of surfactant enhancer systems.
Collapse
Affiliation(s)
- Søren H Welling
- Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark; Technical University of Denmark, DTU Compute, 2800 Kgs. Lyngby, Denmark
| | | | - Stephen T Buckley
- Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Lars Hovgaard
- Global Research, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Per B Brockhoff
- Technical University of Denmark, DTU Compute, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
10
|
A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv 2014; 32:1269-1282. [DOI: 10.1016/j.biotechadv.2014.07.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/26/2022]
|
11
|
Smart AL, Gaisford S, Basit AW. Oral peptide and protein delivery: intestinal obstacles and commercial prospects. Expert Opin Drug Deliv 2014; 11:1323-35. [DOI: 10.1517/17425247.2014.917077] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Christie MP, Simerská P, Jen FEC, Hussein WM, Rawi MFM, Hartley-Tassell LE, Day CJ, Jennings MP, Toth I. A drug delivery strategy: binding enkephalin to asialoglycoprotein receptor by enzymatic galactosylation. PLoS One 2014; 9:e95024. [PMID: 24736570 PMCID: PMC3988166 DOI: 10.1371/journal.pone.0095024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/21/2014] [Indexed: 11/23/2022] Open
Abstract
Glycosylation of biopharmaceuticals can mediate cell specific delivery by targeting carbohydrate receptors. Additionally, glycosylation can improve the physico-chemical (drug-like) properties of peptide based drug candidates. The main purpose of this study was to examine if glycosylation of the peptide enkephalin could facilitate its binding to the carbohydrate receptor, asialoglycoprotein. Firstly, we described the one-pot enzymatic galactosylation of lactose modified enkephalin in the presence of uridine-5'-diphosphogalactose 4-epimerase and lipopolysaccharyl α-1,4-galactosyltransferase. Stability experiments using human plasma and Caco-2 cell homogenates showed that glycosylation considerably improved the stability of enkephalin (at least 60% remained stable after a 2 hr incubation at 37°C). In vitro permeability experiments using Caco-2 cells revealed that the permeability of mono- and trisaccharide conjugated enkephalins was 14 and 28 times higher, respectively, than that of enkephalin alone (Papp 3.1×10-8 cm/s). By the methods of surface plasmon resonance and molecular modeling, we demonstrated that the enzymatic glycosylation of enkephalin enabled binding the asialoglycoprotein receptor. The addition of a trisaccharide moiety to enkephalin improved the binding of enkephalin to the asialoglycoprotein receptor two fold (KD = 91 µM). The docking scores from molecular modeling showed that the binding modes and affinities of the glycosylated enkephalin derivatives to the asialoglycoprotein receptor complemented the results from the surface plasmon resonance experiments.
Collapse
Affiliation(s)
- Michelle P. Christie
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Pavla Simerská
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mohamad F. M. Rawi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Christopher J. Day
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, Queensland, Australia
| |
Collapse
|
13
|
Tuvia S, Pelled D, Marom K, Salama P, Levin-Arama M, Karmeli I, Idelson GH, Landau I, Mamluk R. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm Res 2014; 31:2010-21. [PMID: 24558008 PMCID: PMC4153969 DOI: 10.1007/s11095-014-1303-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/14/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE Medium chain fatty acid salts promote absorption by increasing paracellular permeability of the intestinal epithelium. Novel oily suspension (OS) formulation disperses a powder containing sodium caprylate and macromolecules such as octreotide or fluorescent dextran (FD). Formulation safety, macromolecule absorption and pharmacokinetic (PK)/pharmacodynamic (PD) were evaluated. METHODS Octreotide/OS toxicity was evaluated in monkeys following 9 months of daily oral enteric-coated capsule administration. The OS permeation effect was also assessed in rats, using FD/OS and octreotide/OS preparations. Octreotide/OS effects on circulating growth hormone (GH) levels were also measured. RESULTS Safety assessment of octreotide/OS in monkeys after 9 months showed minor drug-related findings, comparable to the injectable octreotide. Octreotide exposure levels were similar across the treatment periods. In rats, OS facilitated FD permeation up to 70 kDa in a reversible, spatial and dose-dependent manner, independent of the intestinal dosing site. Following OS administration, the staining pattern of the tight-junction protein, ZO-1, changed transiently, and a paracellular penetration marker, LC-biotin, permeated between adjacent epithelial cells. Enteral octreotide/OS absorption was dose-dependent and suppressed rat GH levels. CONCLUSIONS Oral octreotide/OS dosing was shown to be safe in monkeys. OS enhances intestinal absorption of active octreotide, likely by transient alteration of the tight junction protein complex.
Collapse
Affiliation(s)
- Shmuel Tuvia
- Chiasma, 10 Hartom St., POB 45182, Jerusalem, 91450 Israel
| | - Dori Pelled
- Chiasma, 10 Hartom St., POB 45182, Jerusalem, 91450 Israel
| | - Karen Marom
- Chiasma, 10 Hartom St., POB 45182, Jerusalem, 91450 Israel
| | - Paul Salama
- Chiasma, 10 Hartom St., POB 45182, Jerusalem, 91450 Israel
| | | | - Irina Karmeli
- Chiasma, 10 Hartom St., POB 45182, Jerusalem, 91450 Israel
| | | | - Isaac Landau
- Chiasma, 10 Hartom St., POB 45182, Jerusalem, 91450 Israel
| | - Roni Mamluk
- Chiasma, 10 Hartom St., POB 45182, Jerusalem, 91450 Israel
| |
Collapse
|
14
|
Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. FRONTIERS IN LIFE SCIENCE 2014. [DOI: 10.1080/21553769.2013.879925] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Synthesis and antibacterial activity of new long-chain-alkyl bile acid-based amphiphiles. Bioorg Chem 2013; 51:1-7. [DOI: 10.1016/j.bioorg.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022]
|
16
|
Mrózek L, Coufalová L, Rárová L, Plaček L, Opatřilová R, Dohnal J, Kráľová K, Paleta O, Král V, Drašar P, Jampílek J. New polyfluorothiopropanoyloxy derivatives of 5β-cholan-24-oic acid designed as drug absorption modifiers. Steroids 2013; 78:832-44. [PMID: 23707574 DOI: 10.1016/j.steroids.2013.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/04/2013] [Accepted: 05/09/2013] [Indexed: 11/26/2022]
Abstract
A series of final six propanoyloxy derivatives of 5β-cholan-24-oic acid (tridecafluoroctylsulfanyl- and tridecafluoroctylsulfinylethoxycarbonylpropanoyloxy derivatives) as potential drug absorption promoters (skin penetration enhancers, intestinal absorption promoters) was generated by multistep synthesis. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (RM) was determined. The hydrophobicity (log P), solubility (logS), polar surface area (PSA) and molar volume (MV) of the studied compounds were also calculated. All the target compounds were tested for their in vitro transdermal penetration effect and as potential intestinal absorption enhancers. The cytotoxicity of all the evaluated compounds was evaluated against normal human skin fibroblast cells. Their anti-proliferative activity was also assessed against human cancer cell lines: T-lymphoblastic leukaemia cell line and breast adenocarcinoma cell line. One compound showed high selective cytotoxicity against human skin fibroblast cells and another compound possessed high cytotoxicity against breast adenocarcinoma cell line and skin fibroblast cells. Only one compound expressed anti-proliferative effect on leukaemia and breast adenocarcinoma cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC50>37μM), indicating they would have moderate cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity/polarity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and penetration enhancement effect are discussed in this article.
Collapse
Affiliation(s)
- Lech Mrózek
- BorsodChem MCHZ, s.r.o., Chemická 1/2039, 709 03 Ostrava-Mariánské Hory, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Coufalová L, Mrózek L, Rárová L, Plaček L, Opatřilová R, Dohnal J, Král'ová K, Paleta O, Král V, Drašar P, Jampílek J. New propanoyloxy derivatives of 5β-cholan-24-oic acid as drug absorption modifiers. Steroids 2013; 78:435-53. [PMID: 23435200 DOI: 10.1016/j.steroids.2013.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/18/2013] [Accepted: 02/09/2013] [Indexed: 11/16/2022]
Abstract
A series of final twelve propanoyloxy derivatives of 5β-cholan-24-oic acid (O-propanoyl derivatives of cholic acid) as potential drug absorption modifiers (skin penetration enhancers, intestinal absorption promoters) was generated by multistep synthesis. Structure confirmation of all generated compounds was accomplished by 1H NMR, 13C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (RM) was determined. The hydrophobicity (log P), solubility (log S), polar surface area (PSA) and molar volume (MV) of the studied compounds were also calculated. All the target compounds were tested for their in vitro transdermal penetration effect and as potential intestinal absorption enhancers. The cytotoxicity of all the evaluated compounds was evaluated against normal human skin fibroblast cells. Their anti-proliferative activity was also assessed against human cancer cell lines: T-lymphoblastic leukemia cell line and breast adenocarcinoma cell line. One compound showed selective cytotoxicity against human skin fibroblast cells and another compound possessed the highest cytotoxicity against all the tested cell lines. Only one compound expressed anti-proliferative effect on leukemia cancer cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC50>37 μM), indicating they would have moderate cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity/polarity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and enhancement effect are discussed in this article.
Collapse
Affiliation(s)
- Lenka Coufalová
- Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A review of enteral strategies in infant short bowel syndrome: evidence-based or NICU culture? J Pediatr Surg 2013; 48:1099-112. [PMID: 23701789 DOI: 10.1016/j.jpedsurg.2013.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/01/2013] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Short bowel syndrome (SBS) is an increasingly common condition encountered across neonatal intensive care units. Improvements in parenteral nutrition (PN), neonatal intensive care and surgical techniques, in addition to an improved understanding of SBS pathophysiology, have contributed in equal parts to the survival of this fragile subset of infants. Prevention of intestinal failure associated liver disease (IFALD) and promotion of intestinal adaptation are primary goals of all involved in the care of these patients. While enteral nutritional and pharmacological strategies are necessary to achieve these goals, there remains great variability in the application of therapeutic strategies in units that are not necessarily evidence-based. MATERIALS AND METHODS A search of major English language medical databases (SCOPUS, Index Medicus, Medline, and the Cochrane database) was conducted for the key words short bowel syndrome, medical management, nutritional management and intestinal adaptation. All pharmacological and nutritional agents encountered in the literature search were classified based on their effects on absorptive capacity, intestinal adaptation and bowel motility that are the three major strategies employed in the management of SBS. The Oxford Center for Evidence-Based Medicine (CEBM) classification for levels of evidence was used to develop grades of clinical recommendation for each variable studied. RESULTS We reviewed various medications used and nutritional strategies included soluble fiber, enteral fat, glutamine, probiotics and sodium supplementation. Most interventions have scientific rationale but little evidence to support their role in the management of infant SBS. While some of these agents symptomatically improve diarrhea, they can adversely influence pancreatico-biliary function or actually impair intestinal adaptation. Surgical anatomy and liver function are two important variables that should determine the selection of pharmacological and nutritional interventions. DISCUSSION There is a paucity of research investigating optimal clinical practice in infant SBS and the little evidence available is consistently of lower quality, resulting in a wide variation of clinical practices among NICUs. Prospective trials should be encouraged to bridge the evidence gap between research and clinical practice to promote further progress in the field.
Collapse
|
19
|
Jeon OC, Hwang SR, Al-Hilal TA, Park JW, Moon HT, Lee S, Park JH, Byun Y. Oral delivery of ionic complex of ceftriaxone with bile acid derivative in non-human primates. Pharm Res 2013; 30:959-67. [PMID: 23292220 DOI: 10.1007/s11095-012-0932-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/05/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE Since the absorption of ceftriaxone (CTO) in the intestine is restricted by its natural physiological characteristics, we developed a series of small synthetic compounds derived from bile acids to promote the absorption of CTO in the gastrointestinal tract. METHODS Several bile acid derivatives were screened by measuring water solubility and partition coefficient of their complexes with CTO. The pharmacokinetic parameters of the selected CTO/HDCK ionic complex in monkeys were evaluated. The absorption pathway of CTO/HDCK complex was evaluated using Caco-2 cells and MDCK cells transfected with ASBT gene. RESULTS HDCK enhanced the apparent membrane permeability of CTO 5.8-fold in the parallel artificial membrane permeability assay model. CTO/HDCK complex permeated Caco-2 cell via transcellular pathway, and interaction of the HDCK complex with ASBT was important to enhance uptake. When CTO/HDCK (equivalent to 50 mg/kg of ceftriaxone) formulated with lactose, poloxamer 407 and Labrasol was orally administered to monkeys, its maximum plasma concentration was 19.5 ± 1.8 μg/ml and oral bioavailability 28.5 ± 3.1%. CONCLUSIONS The CTO/HDCK formulation could enhance oral bioavailability of CTO in non-human primates. This oral formulation could be an alternative to injectable CTO with enhanced clinical effects.
Collapse
Affiliation(s)
- Ok-Cheol Jeon
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen G, Yang L, Zhang H, Tucker IG, Fawcett JP. Effect of ketocholate derivatives on methotrexate uptake in Caco-2 cell monolayers. Int J Pharm 2012; 433:89-93. [DOI: 10.1016/j.ijpharm.2012.04.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/14/2012] [Accepted: 04/30/2012] [Indexed: 01/22/2023]
|
21
|
Cakir-Kiefer C, Miclo L, Balandras F, Dary A, Soligot C, Le Roux Y. Transport across Caco-2 cell monolayer and sensitivity to hydrolysis of two anxiolytic peptides from αs1-casein, α-casozepine, and αs1-casein-f91-97: effect of bile salts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11956-11965. [PMID: 21981611 DOI: 10.1021/jf202890e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
α-Casozepine and f91-97, peptides from α(s1)-casein, display anxiolytic activity in rats and may have to cross the intestinal epithelium to exert this central effect. We evaluated their resistance to hydrolysis by the peptidases of Caco-2 cells and their ability to cross the cell monolayer. To mimic physiological conditions, two preparations of bile salts were used in noncytotoxic concentrations: porcine bile extract and an equimolar mixture of taurocholate, cholate, and deoxycholate. The presence and composition of bile salts appeared to modulate the peptidase activities of the Caco-2 cells involved (i) in the hydrolysis of α-casozepine, leading to much higher formation of fragments f91-99, f91-98, and f91-97, and (ii) in the hydrolysis of f91-97, leading to lower degradation of this peptide. Transport of α-casozepine across Caco-2 monolayer increased significantly, in the presence of bile extract, and of fragment f91-97, in the presence of bile salts.
Collapse
Affiliation(s)
- Céline Cakir-Kiefer
- Unité de Recherche, Animal & Fonctionnalités des Produits Animaux (UR AFPA)-Équipe, Protéolyse & Biofonctionnalités des Protéines et des Peptides, Nancy-Université, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
22
|
Mrózek L, Dvořáková L, Mandelová Z, Rárová L, Řezáčová A, Plaček L, Opatřilová R, Dohnal J, Paleta O, Král V, Drašar P, Jampílek J. Investigation of new acyloxy derivatives of cholic acid and their esters as drug absorption modifiers. Steroids 2011; 76:1082-97. [PMID: 21557961 DOI: 10.1016/j.steroids.2011.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/12/2011] [Accepted: 04/21/2011] [Indexed: 11/20/2022]
Abstract
Skin penetration enhancers are used in the formulation of transdermal delivery systems for drugs that are otherwise not sufficiently skin-permeable. Intestinal absorption promoters/enhancers are used as excipients in oral formulations of poorly oral-bioavailable drugs. Series of fourteen acyloxy derivatives of 5β-cholic acid as potential drug absorption modifiers was generated by multistep synthesis. The synthesis of all newly prepared compounds is presented here. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (R(M)) was determined. The hydrophobicity (logP) and solubility (logS) of the studied compounds were also calculated using two commercially available programs. All the target compounds were tested for their in vitro transdermal penetration activity and as potential intestinal absorption enhancers. The anti-proliferative activity of all the final compounds was also assessed against the human cancer cell lines: T-lymphoblastic leukemia cell line and the breast adenocarcinoma cell line. Their cytotoxicity was also evaluated against the normal human skin fibroblast cells. Two compounds showed anti-proliferative effect on cancer cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC(50)>37 μM), indicating they would have low cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and enhancement effects are discussed in this article.
Collapse
Affiliation(s)
- Lech Mrózek
- BorsodChem MCHZ, s.r.o., Chemicka 1/2039, 709 03 Ostrava-Marianske Hory, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Parmentier J, Thewes B, Gropp F, Fricker G. Oral peptide delivery by tetraether lipid liposomes. Int J Pharm 2011; 415:150-7. [DOI: 10.1016/j.ijpharm.2011.05.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/21/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
24
|
Parmentier J, Hartmann FJ, Fricker G. In vitro evaluation of liposomes containing bio-enhancers for the oral delivery of macromolecules. Eur J Pharm Biopharm 2010; 76:394-403. [DOI: 10.1016/j.ejpb.2010.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/31/2010] [Accepted: 09/03/2010] [Indexed: 11/15/2022]
|
25
|
Wu L, Zhang G, Lu Q, Sun Q, Wang M, Li N, Gao Z, Sun Y, Li T, Han D, Yu X, Wang L, Sun W, Zhao D, Wu Y, Lu Y, Chen X. Evaluation of salmon calcitonin (sCT) enteric-coated capsule for enhanced absorption and GI tolerability in rats. Drug Dev Ind Pharm 2010. [DOI: 10.3109/03639040903173580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Abstract
The pharmacokinetics of the aminoglycoside tobramycin was evaluated after oral administration to fed or fasting (15 h) mice. As expected, under normal feeding conditions, oral absorption was negligible; however, fasting induced a dramatic increase in tobramycin bioavailability. The dual-sugar test with lactulose and l-rhamnose confirmed increased small bowel permeability via the paracellular route in fasting animals. When experiments aimed at increasing the oral bioavailability of hydrophilic compounds are performed, timing of fasting should be extremely accurate.
Collapse
|
27
|
Simerska P, Moyle PM, Toth I. Modern lipid-, carbohydrate-, and peptide-based delivery systems for peptide, vaccine, and gene products. Med Res Rev 2009; 31:520-47. [DOI: 10.1002/med.20191] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Golocorbin-Kon S, Mikov M, Arafat M, Lepojevic Z, Mikov I, Sahman-Zaimovic M, Tomic Z. Cefotaxime pharmacokinetics after oral application in the form of 3alpha,7alpha-dihydroxy-12-keto-5beta-cholanate microvesicles in rat. Eur J Drug Metab Pharmacokinet 2009; 34:31-6. [PMID: 19462926 DOI: 10.1007/bf03191381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of ths study was to investigate the pharmacokinetics of cefotaxime sodium (CEF) pharmacokinetics after oral application in the form of sodium 3alpha,7alpha-dihydroxy-12-keto-5beta-cholanate (MKC) microvesicles (MV) in rat. Thirty Male Wister rats were divided into six groups (n=5 per group). Groups were treated orally with: (i) CEF (15 mg/kg) saline solution (15 mg/kg); (ii) CEF (15 mg/kg) saline solution with MKC (2 mg/kg); (iii) CEF saline solution mixed with blank microvesicles; (iv) CEF (15 mg/kg) encapsulated in microvesicles with saline solution; (v) CEF saline solution (15 mg/kg) mixed with blank MKC microvesicules; (vi) CEF (15 mg/kg) encapsulated in MKC microvesicules with saline solution. Data were analyzed using noncompartmental model. CEF oral bioavailability was increased twofold when coadministered with MKC and when encapsulated in microvesicles and ninefold when encapsulated in MKC microvesicles compared to the same CEF dose administered orally as saline solution. The increased bioavailability of CEF resulting from CEF encapsulation in microvesicules with MKC suggests that this formulation can extend the application of CEF from parenteral only to oral application.
Collapse
|
29
|
Influence of sodium monoketocholate on the hypolipidemic activity of lovastatin in healthy and diabetic rats. Eur J Drug Metab Pharmacokinet 2008; 33:77-84. [DOI: 10.1007/bf03191024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Tsutsumi K, Li SK, Hymas RV, Teng CL, Tillman LG, Hardee GE, Higuchi WI, Ho NFH. Systematic studies on the paracellular permeation of model permeants and oligonucleotides in the rat small intestine with chenodeoxycholate as enhancer. J Pharm Sci 2008; 97:350-67. [PMID: 17847071 DOI: 10.1002/jps.21093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this study was to mechanistically and quantitatively analyze chenodeoxycholate-enhanced paracellular transport of polar permeants and oligonucleotides in the rat jejunum and ileum. Micellar chenodeoxycholate solutions were used to perturbate the tight junctions. Supporting studies included assessment of the aqueous boundary layer (ABL) with ABL-controlled permeants, measurements of the permeability coefficients and fluxes of the bile acid in dilute and micellar concentrations, and determinations of pore sizes with paracellular probes (urea, mannitol, and raffinose). The paracellular permeability coefficients, P(para), of two model oligonucleotides (ON3 and ON6; 12- and 24-mers with 11 and 23 negative charges, respectively) were determined. The enhanced permeabilities paralleled the increased fluxes of micellar bile salt solutions into mesenteric blood and the opening of the tight junctions as compared to controls. As the pore radius increased from 0.7 nm to a maximum of 2.4 nm in the jejunum and ileum, the absorption of ON3 was enhanced up to sixfold in the jejunum and about 14-fold in the ileum with P(para) values between 0.5 x 10(-6) and 6 x 10(-6) cm/s, whereas ON6 was enhanced up to twofold in the jejunum and fivefold in the ileum with permeabilities between 0.3 x 10(-6) and 2 x 10(-6) cm/s.
Collapse
Affiliation(s)
- Keiko Tsutsumi
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Membranolytic activity of bile salts: influence of biological membrane properties and composition. Molecules 2007; 12:2292-326. [PMID: 17978759 DOI: 10.3390/12102292] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/15/2007] [Accepted: 10/15/2007] [Indexed: 01/15/2023] Open
Abstract
The two main steps of the membranolytic activity of detergents: 1) the partitioning of detergent molecules in the membrane and 2) the solubilisation of the membrane are systematically investigated. The interactions of two bile salt molecules, sodium cholate (NaC) and sodium deoxycholate (NaDC) with biological phospholipid model membranes are considered. The membranolytic activity is analysed as a function of the hydrophobicity of the bile salt, ionic strength, temperature, membrane phase properties, membrane surface charge and composition of the acyl chains of the lipids. The results are derived from calorimetric measurements (ITC, isothermal titration calorimetry). A thermodynamic model is described, taking into consideration electrostatic interactions, which is used for the calculation of the partition coefficient as well as to derive the complete thermodynamic parameters describing the interaction of detergents with biological membranes (change in enthalpy, change in free energy, change in entropy etc). The solubilisation properties are described in a so-called vesicle-to-micelle phase transition diagram. The obtained results are supplemented and confirmed by data obtained from other biophysical techniques (DSC differential scanning calorimetry, DLS dynamic light scattering, SANS small angle neutron scattering).
Collapse
|
32
|
Föger F, Kopf A, Loretz B, Albrecht K, Bernkop-Schnürch A. Correlation of in vitro and in vivo models for the oral absorption of peptide drugs. Amino Acids 2007; 35:233-41. [PMID: 17726639 DOI: 10.1007/s00726-007-0581-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/12/2006] [Indexed: 12/28/2022]
Abstract
The aim of this study was to evaluate two in vitro models, Caco-2 monolayer and rat intestinal mucosa, regarding their linear correlation with in vivo bioavailability data of therapeutic peptide drugs after oral administration in rat and human. Furthermore the impact of molecular mass (Mm) of the according peptides on their permeability was evaluated. Transport experiments with commercially available water soluble peptide drugs were conducted using Caco-2 cell monolayer grown on transwell filter membranes and with freshly excised rat intestinal mucosa mounted in Using type chambers. Apparent permeability coefficients (P (app)) were calculated and compared with in vivo data derived from the literature. It was shown that, besides a few exceptions, the Mm of peptides linearly correlates with permeability across rat intestinal mucosa (R (2) = 0.86; y = -196.22x + 1354.24), with rat oral bioavailability (R (2) = 0.64; y = -401.90x + 1268.86) as well as with human oral bioavailability (R (2) = 0.91; y = -359.43x + 1103.83). Furthermore it was shown that P (app) values of investigated hydrophilic peptides across Caco-2 monolayer displayed lower permeability than across rat intestinal mucosa. A correlation between P (app) values across rat intestinal mucosa and in vivo oral bioavailability in human (R (2) = 0.98; y = 2.11x + 0.34) attests the rat in vitro model to be a very useful prediction model for human oral bioavailability of hydrophilic peptide drugs. Presented correlations encourage the use of the rat in vitro model for the prediction of human oral bioavailabilities of hydrophilic peptide drugs.
Collapse
Affiliation(s)
- F Föger
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
33
|
Bravo-Osuna I, Ponchel G, Vauthier C. Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles. Eur J Pharm Sci 2007; 30:143-54. [PMID: 17157487 DOI: 10.1016/j.ejps.2006.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/05/2006] [Accepted: 10/28/2006] [Indexed: 11/27/2022]
Abstract
The aim of the work was to develop a new family of chitosan-coated acrylic nanoparticles to increase the specificity of absorption of drugs associated given by the mucosal route. To achieve this goal, techniques of radical and anionic emulsion polymerisation of isobutylcyanoacrylate (IBCA) were used. Changes in the shell composition were made by using chitosan of different molecular weight and thiolated chitosan to modify the particle surface properties in order to vary the mucosae-nanoparticle interactions. The core was also modified by the inclusion of methyl methacrylate (MMA) as second monomer potentially able to improve the control of drug release. Finally, the labelling of nanoparticles core with a fluorophore, methacryloxyethyl thiocarbamoyl rhodamine B (Polyfluor), was successfully achieved, necessary for the in vitro and in vivo evaluation of the systems created. Results showed that nanoparticle size varied from 200 to 500 nm, depending on the molecular weight of chitosan used. Positive surface charge values were obtained in all cases. In addition, evidences of the presence of thiol groups were obtained (0.03-0.16 x 10(-3)micromol/cm(2) of nanoparticle).
Collapse
Affiliation(s)
- I Bravo-Osuna
- CNRS, UMR CNRS 8612, Faculté de Pharmacie, 5 Rue J.B. Clément, 92296 Chatenay-Malabry, France
| | | | | |
Collapse
|
34
|
Mikov M, Fawcett JP, Kuhajda K, Kevresan S. Pharmacology of bile acids and their derivatives: Absorption promoters and therapeutic agents. Eur J Drug Metab Pharmacokinet 2006; 31:237-51. [PMID: 17136862 DOI: 10.1007/bf03190714] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of bile acids in pharmacotherapy is reviewed in this article. The therapeutic use of bile has been recognized since ancient times. Previously bile acids were the standard treatment for gallstones where chenodeoxycholic acid and ursodeoxycholic acid were effective in promoting the dissolution of cholesterol gallstones. Today their therapeutic role looks set to expand enormously. Bile acids as absorption promoters have the potential to aid intestinal, buccal, transdermal, ocular, nasal, rectal and pulmonary absorption of various drugs at concentrations that are non-toxic. Keto derivatives of cholic acid, such as 3a,7a,dihydroxy-12-keto-5alpha-cholic acid (sodium salt and methyl ester) are potential modifiers of blood-brain barrier transport and have been shown to promote quinine uptake, enhance the analgesic effect of morphine and prolong the sleeping time induced by pentobarbital. They have also been shown to be hypoglycaemic. Bile acids as therapeutic agents have the potential to produce beneficial effects in sexually transmitted diseases, primary biliary cirrhosis, primary sclerosing cholangitis, gallstones, digestive tract diseases, cystic fibrosis, cancer and diabetes.
Collapse
Affiliation(s)
- M Mikov
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
35
|
Takatsuka S, Morita T, Koguchi A, Horikiri Y, Yamahara H, Yoshino H. Synergistic absorption enhancement of salmon calcitonin and reversible mucosal injury by applying a mucolytic agent and a non-ionic surfactant. Int J Pharm 2006; 316:124-30. [PMID: 16600541 DOI: 10.1016/j.ijpharm.2006.02.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/11/2006] [Accepted: 02/24/2006] [Indexed: 11/30/2022]
Abstract
The present study investigated the intestinal absorption enhancement of salmon calcitonin (SCT) and the intestinal mucosal damage when a mucolytic agent and a non-ionic surfactant were administered simultaneously to rats. N-acetylcysteine (NAC) and p-t-octyl phenol polyoxyethylene-9.5 (Triton X -100, TX-100) were chosen as the model mucolytic agent and the non-ionic surfactant, respectively. Dosing solutions containing these agents were administered directly into the rat jejunum, and the bioavailability of SCT up to 2 h was determined. NAC and TX-100, when they were used alone at a dose of 1 mg/head, did not show the apparent enhancement compared to the control. However, simultaneous use of NAC and TX-100 enhanced the intestinal absorption of SCT in a synergistic manner, and absolute bioavailability increased 12.5-fold compared to the control. The effect of NAC and TX-100 on SCT absorption was not dependent on their doses over the range of 0.2-2 mg/head, and the maximum effect was obtained at a dose of 1mg/head. Absorption enhancement of SCT by a combination of NAC and TX-100 was compared to those from the classical absorption enhancers. Absorption-enhancing ability of the combination of NAC and TX-100 was significantly higher than those of sodium deoxycholate, citrate, and the combination of citrate and taurocholate, and was comparable with that of the combination of citrate and taurodeoxycholate. Finally, the intestinal mucosal damage caused by the combination of NAC and TX-100 was assessed using a capsule device. Acute damage on intestinal mucosa was observed when they were exposed into rat intestine, but this morphological damage was found to be reversible. All these results suggest that simultaneous use of a mucolytic agent and a non-ionic surfactant would offer a potentiality for peroral delivery of peptide drugs like SCT.
Collapse
Affiliation(s)
- Shinya Takatsuka
- Pharmaceutical Development Laboratories, Tanabe Seiyaku Co. Ltd., 3-16-89 Kashima, Yodogawa-ku, Osaka 532-8505, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Lee S, Lee J, Lee DY, Kim SK, Lee Y, Byun Y. A new drug carrier, Nalpha-deoxycholyl-L: -lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia 2005; 48:405-11. [PMID: 15739118 DOI: 10.1007/s00125-004-1658-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 10/28/2004] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The development of an orally active insulin formulation will offer great advantages over conventional injectable insulin therapy in the treatment of patients with diabetes mellitus. Since insulin absorption in the intestine is restricted by the natural physiological characteristics of insulin, we developed a small synthetic compound, Nalpha-deoxycholyl-L: -lysyl-methylester (DCK), as an insulin carrier to enhance oral delivery. METHODS Streptozotocin-induced diabetic rats orally received single doses of insulin (42 U/kg) or insulin/DCK formulation (10, 21, 30 and 42 U/kg) under fasting conditions. Blood glucose levels and plasma insulin concentrations were measured for 6 h following the administration of the agents. An OGTT was also performed immediately after the administration of the oral insulin/DCK formulation. RESULTS The administration of 21, 30 and 42 U/kg (based on insulin activity) of insulin/DCK formulation reduced plasma glucose levels by up to 33.0% (median; range 30.6-70.2%), 78.5% (39.4-86.8%) and 75.2% (67.0-87.4%), respectively, compared with baseline levels. Furthermore, plasma insulin concentrations were observed to rapidly increase. In the OGTT, the insulin/DCK formulation reduced the AUC0-240 for glucose by 30.8% (22.3-54.9%) (p<0.01), and stabilized glycaemia for up to 4 h. CONCLUSIONS/INTERPRETATION The results of this study demonstrate that the insulin/DCK formulation can be absorbed in the intestine and that it is biologically efficacious. We therefore suggest that this oral formulation could be used as an alternative to injectable insulin with enhanced clinical effects.
Collapse
Affiliation(s)
- S Lee
- Center for Cell and Macromolecular Therapy, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | | | | | | | | |
Collapse
|
38
|
Salama NN, Fasano A, Thakar M, Eddington ND. The impact of DeltaG on the oral bioavailability of low bioavailable therapeutic agents. J Pharmacol Exp Ther 2004; 312:199-205. [PMID: 15448170 DOI: 10.1124/jpet.104.073205] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low oral bioavailability continues to drive research toward identifying novel approaches to enhance drug delivery. Over the past few years, emphasis on the use of absorption enhancers has been overwhelming despite their major adverse effects. Zonula occludens toxin (Zot) was recently established as a safe and effective absorption enhancer, reversibly opening the tight junctions for hydrophilic markers and hydrophobic drugs across the small intestine and the blood brain barrier. DeltaG, the biologically active fragment of Zot, was isolated and shown to increase the in vitro transport and in vivo absorption of paracellular markers. The objective of this study was to examine the effect of DeltaG on the oral bioavailability of low bioavailable therapeutic agents. Jugular vein cannulated Sprague-Dawley rats were randomly assigned to receive the following treatments intraduodenally (ID): [(3)H]cyclosporin A, [(3)H]ritonavir, [(3)H]saquinavir, or [(3)H]acyclovir at (120 microCi/kg) alone, with protease inhibitors (PIs), or with DeltaG (720 microg/kg)/PI. Serial blood samples were collected, and plasma was analyzed for radioactivity. After ID administration with DeltaG/PI, C(max) significantly (p < 0.05) increased over a range of 197 to 5700%, whereas area under the plasma concentration time curve displayed significant increases extending over a range of 123.8 to 4990.3% for the investigated drugs. DeltaG significantly increased the in vivo oral absorption of some low bioavailable drugs in the presence of PI. This study suggests that DeltaG-mediated tight junction modulation, combined with metabolic protection, may be used to enhance the low oral bioavailability of certain drugs when administered concurrently.
Collapse
Affiliation(s)
- Noha N Salama
- Pharmacokinetics-Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
39
|
Dorkoosh FA, Broekhuizen CAN, Borchard G, Rafiee-Tehrani M, Verhoef JC, Junginger HE. Transport of Octreotide and Evaluation of Mechanism of Opening the Paracellular Tight Junctions Using Superporous Hydrogel Polymers In Caco-2 Cell Monolayers. J Pharm Sci 2004; 93:743-52. [PMID: 14762912 DOI: 10.1002/jps.10570] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The purpose of this study was to investigate the mechanism of opening of tight junctions in Caco-2 cell monolayers using superporous hydrogel (SPH) and SPH composite (SPHC) polymers as permeation enhancers for peptide drug delivery. Moreover, the transport of octreotide across Caco-2 cell monolayers was assessed by application of SPH and SPHC polymers on Caco-2 cell monolayers. In these experiments, N,N,N-trimethyl chitosan chloride with 60% quaternization (TMC60) was used as a positive control for opening of tight junctions. Transepithelial electrical resistance (TEER) studies showed that all three polymers (TMC60, SPH, and SPHC) were able to decrease TEER values to approximately 30% of the initial values, indicating the ability of these polymers to open the tight junctions. Recovery TEER studies showed that the effects of the polymers on Caco-2 cell monolayers were reversible, indicating viability of the cells after incubation with polymers. Both SPH and SPHC (compared with TMC60) were able to increase the paracellular transport of octreotide by their mechanical pressures on tight junctions. The mechanistic studies showed that junctional proteins, including actin, occludin, and claudin-1, were influenced by application of SPH and SPHC polymers to the Caco-2 cell monolayers. SPH and SPHC induced clear changes in the staining pattern of all three proteins compared with the control, indicating that the expression of these proteins in the tight junctions was increased, most likely due to the mechanical pressure of the polymers on the junctional proteins.
Collapse
Affiliation(s)
- Farid A Dorkoosh
- Department of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Kim IW, Yoo HJ, Song IS, Chung YB, Moon DC, Chung SJ, Shim CK. Effect of excipients on the stability and transport of recombinant human epidermal growth factor (rhEGF) across Caco-2 cell monolayers. Arch Pharm Res 2003; 26:330-7. [PMID: 12735693 DOI: 10.1007/bf02976964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of sixteen excipients on the transport of recombinant human epidermal growth factor (rhEGF) across Caco-2 cell monolayers was examined at 37 degrees C. The apparent apical to basolateral (A-B) permeability (Papp) of 30 microM rhEGF was 8.15 x 10(-7) cm/sec, indicative of a poor level of absorption in the GI tract. The Papp was 1.7- and 6.3-fold greater than the Papp in the basolateral to apical (B-A) direction and the A-B permeability of mannitol, respectively, and decreased dramatically to a negligible level at 4 degrees C, consistent with a receptor mediated transcytosis of rhEGF. The stability of rhEGF was very poor, undergoing more than 85% degradation in 2 h in the transport medium at 37 degrees C. A significant increase in the Papp could be achieved by the addition of certain excipients, as exemplified by 23, 21, 20 and 16-fold increases, in the presence of sodium taurochenodeoxycholate (NaTCDC), sodium taurodeoxycholate (NaTDC), sodium glycodeoxycholate (NaGDC) and sodium laurylsulfate (SLS) (all at a concentration of 1% w/v), respectively. A significant increase in stability could also be achieved by the addition of some of the excipients, as represented by 1% SLS, which nearly completely stabilized the rhEGF. Unfortunately, however, an increase in the Papp of rhEGF could not be achieved without a simultaneous and extensive decrease in the integrity of the cell membranes. Thus, more efficient excipients, that specifically enhance the permeation of rhEGF and do not alter the membrane integrity, should be pursued in order to safely enhance the permeation of rhEGF.
Collapse
Affiliation(s)
- In-Wha Kim
- Research Institute Development of Pharmaceutical Resources, Chungbuk National University, San 48, Gaeshin-dong, Hungduk-gu, Cheongju, Chungbuk 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Dorkoosh FA, Verhoef JC, Borchard G, Rafiee-Tehrani M, Verheijden JHM, Junginger HE. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers. Int J Pharm 2002; 247:47-55. [PMID: 12429484 DOI: 10.1016/s0378-5173(02)00361-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this in vivo study, novel delivery systems based on superporous hydrogel (SPH) and SPH composite (SPHC) polymers were used to improve the intestinal absorption of insulin in healthy pigs. Six female pigs of approximately 35 kg body weight were used. A cannula was inserted into the jugular vein for blood sampling and a silicone fistula in the duodenum for administration of gelatin capsules containing the delivery systems or insulin solutions. The delivery systems consisted of two components, (1) conveyor system made of SPH and SPHC; (2) core containing insulin. The core was inserted either into the conveyor system (core inside, c.i.) or attached to the surface of conveyor system (core outside, c.o.). The following intestinal formulations were investigated: c.i., c.o. and intraduodenal (i.d.) administration of insulin solutions. Subcutaneous (s.c.) injection of insulin was also investigated for reasons of comparison. Blood samples were taken and analyzed for insulin and glucose concentrations. Relative bioavalibility values of 1.3+/-0.4 and 1.9+/-0.7% were achieved for c.o. and c.i. administrations, respectively. The bioavalibility for i.d. administration of insulin solution was 0.5+/-0.2%. These results indicate that the absorption of insulin was slightly increased using SPH/SPHC-based delivery systems. Furthermore, a large variability was observed, probably due to physiological and metabolic changes during the experiments. Blood glucose levels were slightly decreased after the c.o. and c.i administrations, whereas these levels did not decrease after i.d. administration of insulin solutions. In conclusion, SPH/SPHC-based delivery systems are able to enhance the intestinal absorption of insulin and are, therefore, considered as promising systems for peroral peptide drug delivery. However, insulin delivery from these delivery systems under in vivo have to be improved.
Collapse
Affiliation(s)
- F A Dorkoosh
- Department of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Sood A, Panchagnula R. Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 2001; 101:3275-303. [PMID: 11840987 DOI: 10.1021/cr000700m] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A Sood
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | | |
Collapse
|