1
|
Zhao K, Zhang S, Liu X, Guo X, Guo Z, Zhang X, Yuan W. The game between host antiviral innate immunity and immune evasion strategies of senecavirus A - A cell biological perspective. Front Immunol 2022; 13:1107173. [PMID: 36618383 PMCID: PMC9813683 DOI: 10.3389/fimmu.2022.1107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of the cellular host to defend against viral infection. Upon infection, viruses can be sensed by the cellular host's pattern recognition receptors (PRRs), leading to the activation of the signaling cascade and the robust production of interferons (IFNs) to restrict the infection and replication of the viruses. However, numerous cunning viruses have evolved strategies to evade host innate immunity. The senecavirus A (SVA) is a newly identified member of the Picornaviridae family, causing severe vesicular or ulcerative lesions on the oral mucosa, snout, coronary bands, and hooves of pigs of different ages. During SVA infection, the cellular host will launch the innate immune response and various physiological processes to restrict SVA. In contrast, SVA has evolved several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by SVA to evade pattern recognition receptor signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR) signaling pathway, interferon-stimulated genes (ISGs) and autophagy, and stress granules. Deciphering the antiviral immune evasion mechanisms by SVA will enhance our understanding of SVA's pathogenesis and provide insights into developing antiviral strategies and improving vaccines.
Collapse
Affiliation(s)
- Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaona Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaoran Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaomeng Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Barley TJ, Murphy PR, Wang X, Bowman BA, Mormol JM, Mager CE, Kirk SG, Cash CJ, Linn SC, Meng X, Nelin LD, Chen B, Hafner M, Zhang J, Liu Y. Mitogen-activated protein kinase phosphatase-1 controls PD-L1 expression by regulating type I interferon during systemic Escherichia coli infection. J Biol Chem 2022; 298:101938. [PMID: 35429501 PMCID: PMC9108994 DOI: 10.1016/j.jbc.2022.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase 1 (Mkp-1) KO mice produce elevated cytokines and exhibit increased mortality and bacterial burden following systemic Escherichia coli infection. To understand how Mkp-1 affects immune defense, we analyzed the RNA-Seq datasets previously generated from control and E. coli-infected Mkp-1+/+ and Mkp-1-/- mice. We found that E. coli infection markedly induced programmed death-ligand 1 (PD-L1) expression and that Mkp-1 deficiency further amplified PD-L1 expression. Administration of a PD-L1-neutralizing monoclonal antibody (mAb) to Mkp-1-/- mice increased the mortality of the animals following E. coli infection, although bacterial burden was decreased. In addition, the PD-L1-neutralizing mAb increased serum interferon (IFN)-γ and tumor necrosis factor alpha, as well as lung- and liver-inducible nitric oxide synthase levels, suggesting an enhanced inflammatory response. Interestingly, neutralization of IFN-α/β receptor 1 blocked PD-L1 induction in Mkp-1-/- mice following E. coli infection. PD-L1 was potently induced in macrophages by E. coli and lipopolysaccharide in vitro, and Mkp-1 deficiency exacerbated PD-L1 induction with little effect on the half-life of PD-L1 mRNA. In contrast, inhibitors of Janus kinase 1/2 and tyrosine kinase 2, as well as the IFN-α/β receptor 1-neutralizing mAb, markedly attenuated PD-L1 induction. These results suggest that the beneficial effect of type I IFNs in E. coli-infected Mkp-1-/- mice is, at least in part, mediated by Janus kinase/signal transducer and activator of transcription-driven PD-L1 induction. Our studies also support the notion that enhanced PD-L1 expression contributes to the bactericidal defect of Mkp-1-/- mice.
Collapse
Affiliation(s)
- Timothy J Barley
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Parker R Murphy
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Bridget A Bowman
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Justin M Mormol
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Carli E Mager
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Charles J Cash
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sarah C Linn
- Combined Anatomic Pathology Residency/Graduate Program, Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaomei Meng
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Bernadette Chen
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jian Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Shemesh M, Lochte S, Piehler J, Schreiber G. IFNAR1 and IFNAR2 play distinct roles in initiating type I interferon-induced JAK-STAT signaling and activating STATs. Sci Signal 2021; 14:eabe4627. [PMID: 34813358 DOI: 10.1126/scisignal.abe4627] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maya Shemesh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Lochte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Kirby D, Parmar B, Fathi S, Marwah S, Nayak CR, Cherepanov V, MacParland S, Feld JJ, Altan-Bonnet G, Zilman A. Determinants of Ligand Specificity and Functional Plasticity in Type I Interferon Signaling. Front Immunol 2021; 12:748423. [PMID: 34691060 PMCID: PMC8529159 DOI: 10.3389/fimmu.2021.748423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
The Type I Interferon family of cytokines all act through the same cell surface receptor and induce phosphorylation of the same subset of response regulators of the STAT family. Despite their shared receptor, different Type I Interferons have different functions during immune response to infection. In particular, they differ in the potency of their induced anti-viral and anti-proliferative responses in target cells. It remains not fully understood how these functional differences can arise in a ligand-specific manner both at the level of STAT phosphorylation and the downstream function. We use a minimal computational model of Type I Interferon signaling, focusing on Interferon-α and Interferon-β. We validate the model with quantitative experimental data to identify the key determinants of specificity and functional plasticity in Type I Interferon signaling. We investigate different mechanisms of signal discrimination, and how multiple system components such as binding affinity, receptor expression levels and their variability, receptor internalization, short-term negative feedback by SOCS1 protein, and differential receptor expression play together to ensure ligand specificity on the level of STAT phosphorylation. Based on these results, we propose phenomenological functional mappings from STAT activation to downstream anti-viral and anti-proliferative activity to investigate differential signal processing steps downstream of STAT phosphorylation. We find that the negative feedback by the protein USP18, which enhances differences in signaling between Interferons via ligand-dependent refractoriness, can give rise to functional plasticity in Interferon-α and Interferon-β signaling, and explore other factors that control functional plasticity. Beyond Type I Interferon signaling, our results have a broad applicability to questions of signaling specificity and functional plasticity in signaling systems with multiple ligands acting through a bottleneck of a small number of shared receptors.
Collapse
Affiliation(s)
- Duncan Kirby
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Baljyot Parmar
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sepehr Fathi
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Sagar Marwah
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Chitra R Nayak
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Physics, Tuskegee University, Tuskegee, AL, United States
| | - Vera Cherepanov
- Sandra Rotman Centre for Global Health, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sonya MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD, United States
| | - Anton Zilman
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Wang TY, Sun MX, Zhang HL, Wang G, Zhan G, Tian ZJ, Cai XH, Su C, Tang YD. Evasion of Antiviral Innate Immunity by Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2021; 12:693799. [PMID: 34512570 PMCID: PMC8430839 DOI: 10.3389/fmicb.2021.693799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the front line for antiviral immune responses and bridges adaptive immunity against viral infections. However, various viruses have evolved many strategies to evade host innate immunity. A typical virus is the porcine reproductive and respiratory syndrome virus (PRRSV), one of the most globally devastating viruses threatening the swine industry worldwide. PRRSV engages several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by PRRSV to evade pattern recognition receptors signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV will enhance our understanding of PRRSV’s pathogenesis and help us to develop more effective methods to control and eliminate PRRSV.
Collapse
Affiliation(s)
- Tong-Yun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hong-Liang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guoqing Zhan
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Kirk SG, Murphy PR, Wang X, Cash CJ, Barley TJ, Bowman BA, Batty AJ, Ackerman WE, Zhang J, Nelin LD, Hafner M, Liu Y. Knockout of MAPK Phosphatase-1 Exaggerates Type I IFN Response during Systemic Escherichia coli Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:2966-2979. [PMID: 34039638 DOI: 10.4049/jimmunol.2001468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
We have previously shown that Mkp-1-deficient mice produce elevated TNF-α, IL-6, and IL-10 following systemic Escherichia coli infection, and they exhibited increased mortality, elevated bacterial burden, and profound metabolic alterations. To understand the function of Mkp-1 during bacterial infection, we performed RNA-sequencing analysis to compare the global gene expression between E. coli-infected wild-type and Mkp-1 -/- mice. A large number of IFN-stimulated genes were more robustly expressed in E. coli-infected Mkp-1 -/- mice than in wild-type mice. Multiplex analysis of the serum cytokine levels revealed profound increases in IFN-β, IFN-γ, TNF-α, IL-1α and β, IL-6, IL-10, IL-17A, IL-27, and GMSF levels in E. coli-infected Mkp-1 -/- mice relative to wild-type mice. Administration of a neutralizing Ab against the receptor for type I IFN to Mkp-1 -/- mice prior to E. coli infection augmented mortality and disease severity. Mkp-1 -/- bone marrow-derived macrophages (BMDM) produced higher levels of IFN-β mRNA and protein than did wild-type BMDM upon treatment with LPS, E. coli, polyinosinic:polycytidylic acid, and herring sperm DNA. Augmented IFN-β induction in Mkp-1 -/- BMDM was blocked by a p38 inhibitor but not by an JNK inhibitor. Enhanced Mkp-1 expression abolished IFN-β induction by both LPS and E. coli but had little effect on the IFN-β promoter activity in LPS-stimulated RAW264.7 cells. Mkp-1 deficiency did not have an overt effect on IRF3/7 phosphorylation or IKK activation but modestly enhanced IFN-β mRNA stability in LPS-stimulated BMDM. Our results suggest that Mkp-1 regulates IFN-β production primarily through a p38-mediated mechanism and that IFN-β plays a beneficial role in E. coli-induced sepsis.
Collapse
Affiliation(s)
- Sean G Kirk
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Parker R Murphy
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Charles J Cash
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Timothy J Barley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Bridget A Bowman
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Abel J Batty
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
7
|
Kim JS, Cho E, Mun SJ, Kim S, Kim SY, Kim DG, Son W, Jeon HI, Kim HK, Jeong YJ, Jang S, Kim HS, Yang CS. Multi-Functional MPT Protein as a Therapeutic Agent against Mycobacterium tuberculosis. Biomedicines 2021; 9:biomedicines9050545. [PMID: 34068051 PMCID: PMC8152475 DOI: 10.3390/biomedicines9050545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), avoids the host immune system through its virulence factors. MPT63 and MPT64 are the virulence factors secreted by MTB which regulate host proteins for the survival and proliferation of MTB in the host. Here, we found that MPT63 bound directly with TBK1 and p47phox, whereas MPT64 interacted with TBK1 and HK2. We constructed a MPT63/64-derived multifunctional recombinant protein (rMPT) that was able to interact with TBK1, p47phox, or HK2. rMPT was shown to regulate IFN-β levels and increase inflammation and concentration of reactive oxygen species (ROS), while targeting macrophages and killing MTB, both in vitro and in vivo. Furthermore, the identification of the role of rMPT against MTB was achieved via vaccination in a mouse model. Taken together, we here present rMPT, which, by regulating important immune signaling systems, can be considered an effective vaccine or therapeutic agent against MTB.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
| | - Sojin Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Sun-Young Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Korea; (J.-S.K.); (E.C.); (S.-J.M.); (S.-Y.K.)
| | - Dong-Gyu Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Wooic Son
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Hye-In Jeon
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Hyo-Keun Kim
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Young-Jin Jeong
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Sein Jang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
| | - Hyun-Sung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04673, Korea;
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Korea; (W.S.); (H.-I.J.); (H.-K.K.); (Y.-J.J.); (S.J.)
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Korea; (S.K.); (D.-G.K.)
- Correspondence: ; Tel.: +82-31-400-5519; Fax: +82-31-436-8153
| |
Collapse
|
8
|
Damour A, Garcia M, Seneschal J, Lévêque N, Bodet C. Eczema Herpeticum: Clinical and Pathophysiological Aspects. Clin Rev Allergy Immunol 2021; 59:1-18. [PMID: 31836943 DOI: 10.1007/s12016-019-08768-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the world. AD is a complex pathology mainly characterized by an impaired skin barrier, immune response dysfunction, and unbalanced skin microbiota. Moreover, AD patients exhibit an increased risk of developing bacterial and viral infections. One of the most current, and potentially life-threatening, viral infection is caused by herpes simplex virus (HSV), which occurs in about 3% of AD patients under the name of eczema herpeticum (EH). Following a first part dedicated to the clinical features, virological diagnosis, and current treatments of EH, this review will focus on the description of the pathophysiology and, more particularly, the presently known predisposing factors to herpetic complications in AD patients. These factors include those related to impairment of the skin barrier such as deficit in filaggrin and anomalies in tight and adherens junctions. In addition, low production of the antimicrobial peptides cathelicidin LL-37 and human β-defensins; overexpression of cytokines such as interleukin (IL)-4, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP); or downregulation of type I to III interferons as well as defect in functions of immune cells such as dendritic, natural killer, and regulatory T cells have been involved. Otherwise, genetic polymorphisms and AD topical calcineurin inhibitor treatments have been associated with an increased risk of EH. Finally, dysbiosis of skin microbiota characterized in AD patients by Staphylococcus aureus colonization and toxin secretion, such as α-toxin, has been described as promoting HSV replication and could therefore contribute to EH.
Collapse
Affiliation(s)
- Alexia Damour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.,Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Julien Seneschal
- INSERM U1035, BMGIC, Immuno-dermatologie ATIP-AVENIR, Bordeaux, France.,Département de Dermatologie and Dermatologie Pédiatrique, Centre national de référence pour les maladies rares de la peau, Hôpital Saint-André, Bordeaux, France
| | - Nicolas Lévêque
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.,Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.
| |
Collapse
|
9
|
Smith BN, Oelschlager ML, Abdul Rasheed MS, Dilger RN. Dietary soy isoflavones reduce pathogen-related mortality in growing pigs under porcine reproductive and respiratory syndrome viral challenge. J Anim Sci 2020; 98:skaa024. [PMID: 31960037 PMCID: PMC7023622 DOI: 10.1093/jas/skaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important disease, and ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and antiviral properties. The objective of this experiment was to recreate immunological effects previously observed in young pigs infected with PRRSV receiving ISF and determine how those effects influence growth performance during the entire growth period from weaning to market. In total, 96 weaned barrows were group housed in a biosafety level-2 containment facility and allotted to 1 of 3 experimental treatments that were maintained throughout the study: noninfected pigs received an ISF-devoid control diet (NEG, n = 24), and infected pigs received either the control diet (POS, n = 36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n = 36). Following a 7-d adaptation, weanling pigs were inoculated intranasally with either a sham-control (PBS) or live PRRSV (1 × 105 TCID50/mL, strain NADC20). After inoculation, individual blood samples (n = 8 to 12/treatment) were routinely collected to monitor viral clearance and hematological parameters, including serum neutralizing anti-PRRSV antibody production. Pen-based oral fluids were used to monitor PRRSV clearance at later growth stages. A 1- or 2-way ANOVA was performed to compare experimental treatments depending on whether the outcome was repeatedly measured. In general, PRRSV infection decreased performance during early growth phases, resulting in 5.4% lower final BW for POS vs. NEG pigs (P < 0.05). Dietary ISF elicited inconsistent effects on growth performance, increased (P < 0.05) neutrophil cell counts and the relative proportion of memory T-cells, and decreased (P < 0.05) the time to full PRRSV clearance from oral fluids. Dietary ISF also elicited earlier, more robust anti-PRRSV neutralizing antibody production when compared with POS pigs. Additionally, and most notably, POS pigs experienced ~50% greater infection-related mortality rate vs. ISF pigs (P < 0.05), which may have significant economic implications for producers. Overall, dietary ISF ingestion supported immune responses and reduced mortality in PRRSV-infected pigs when fed to growing pigs though the biological mechanism of these effects remains unclear.
Collapse
Affiliation(s)
- Brooke N Smith
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | | | | | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL
- Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
10
|
Li C, Zhu C, Ren B, Yin X, Shim SH, Gao Y, Zhu J, Zhao P, Liu C, Yu R, Xia X, Zhang L. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem 2019; 183:111686. [DOI: 10.1016/j.ejmech.2019.111686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/25/2019] [Accepted: 09/06/2019] [Indexed: 01/20/2023]
|
11
|
Casey JL, Feld JJ, MacParland SA. Restoration of HCV-Specific Immune Responses with Antiviral Therapy: A Case for DAA Treatment in Acute HCV Infection. Cells 2019; 8:cells8040317. [PMID: 30959825 PMCID: PMC6523849 DOI: 10.3390/cells8040317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022] Open
Abstract
Worldwide, 71 million individuals are chronically infected with Hepatitis C Virus (HCV). Chronic HCV infection can lead to potentially fatal outcomes including liver cirrhosis and hepatocellular carcinoma. HCV-specific immune responses play a major role in viral control and may explain why approximately 20% of infections are spontaneously cleared before the establishment of chronicity. Chronic infection, associated with prolonged antigen exposure, leads to immune exhaustion of HCV-specific T cells. These exhausted T cells are unable to control the viral infection. Before the introduction of direct acting antivirals (DAAs), interferon (IFN)-based therapies demonstrated successful clearance of viral infection in approximately 50% of treated patients. New effective and well-tolerated DAAs lead to a sustained virological response (SVR) in more than 95% of patients regardless of viral genotype. Researchers have investigated whether treatment, and the subsequent elimination of HCV antigen, can reverse this HCV-induced exhausted phenotype. Here we review literature exploring the restoration of HCV-specific immune responses following antiviral therapy, both IFN and DAA-based regimens. IFN treatment during acute HCV infection results in greater immune restoration than IFN treatment of chronically infected patients. Immune restoration data following DAA treatment in chronically HCV infected patients shows varied results but suggests that DAA treatment may lead to partial restoration that could be improved with earlier administration. Future research should investigate immune restoration following DAA therapies administered during acute HCV infection.
Collapse
Affiliation(s)
- Julia L Casey
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jordan J Feld
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| | - Sonya A MacParland
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
- Departments of Laboratory Medicine & Pathobiology and Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
12
|
Sabir N, Hussain T, Shah SZA, Zhao D, Zhou X. IFN-β: A Contentious Player in Host-Pathogen Interaction in Tuberculosis. Int J Mol Sci 2017; 18:ijms18122725. [PMID: 29258190 PMCID: PMC5751326 DOI: 10.3390/ijms18122725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/03/2022] Open
Abstract
Tuberculosis (TB) is a major health threat to the human population worldwide. The etiology of the disease is Mycobacterium tuberculosis (Mtb), a highly successful intracellular pathogen. It has the ability to manipulate the host immune response and to make the intracellular environment suitable for its survival. Many studies have addressed the interactions between the bacteria and the host immune cells as involving many immune mediators and other cellular players. Interferon-β (IFN-β) signaling is crucial for inducing the host innate immune response and it is an important determinant in the fate of mycobacterial infection. The role of IFN-β in protection against viral infections is well established and has been studied for decades, but its role in mycobacterial infections remains much more complicated and debatable. The involvement of IFN-β in immune evasion mechanisms adopted by Mtb has been an important area of investigation in recent years. These advances have widened our understanding of the pro-bacterial role of IFN-β in host–pathogen interactions. This pro-bacterial activity of IFN-β appears to be correlated with its anti-inflammatory characteristics, primarily by antagonizing the production and function of interleukin 1β (IL-1β) and interleukin 18 (IL-18) through increased interleukin 10 (IL-10) production and by inhibiting the nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome. Furthermore, it also fails to provoke a proper T helper 1 (Th1) response and reduces the expression of major histocompatibility complex II (MHC-II) and interferon-γ receptors (IFNGRs). Here we will review some studies to provide a paradigm for the induction, regulation, and role of IFN-β in mycobacterial infection. Indeed, recent studies suggest that IFN-β plays a role in Mtb survival in host cells and its downregulation may be a useful therapeutic strategy to control Mtb infection.
Collapse
Affiliation(s)
- Naveed Sabir
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Tariq Hussain
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Syed Zahid Ali Shah
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Arellano-Galindo J, Barrera AP, Jiménez-Hernández E, Zavala-Vega S, Campos-Valdéz G, Xicohtencatl-Cortes J, Ochoa SA, Cruz-Córdova A, Crisóstomo-Vázquez MDP, Fernández-Macías JC, Mejía-Aranguré JM. Infectious Agents in Childhood Leukemia. Arch Med Res 2017; 48:305-313. [PMID: 29157671 DOI: 10.1016/j.arcmed.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
Acute leukemia is the most common pediatric cancer, representing one-third of all cancers that occurs in under 15 year olds, with a varied incidence worldwide. Although a number of advances have increased the knowledge of leukemia pathophysiology, its etiology remains less well understood. The role of infectious agents, such as viruses, bacteria, or parasites, in the pathogenesis of leukemia has been discussed. To date, several cellular mechanisms involving infectious agents have been proposed to cause leukemia following infections. However, although leukemia can be triggered by contact with such agents, they can also be beneficial in developing immune stimulation and protection despite the risk of leukemic clones. In this review, we analyze the proposed hypotheses concerning how infectious agents may play a role in the origin and development of leukemia, as well as in a possible mechanism of protection following infections. We review reported clinical observations associated with vaccination or breastfeeding, that support hypotheses such as early life exposure and the resulting early immune stimulation that lead to protection.
Collapse
Affiliation(s)
- José Arellano-Galindo
- Área de Virología, Laboratorio de Infectología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Alberto Parra Barrera
- Laboratorio de Cáncer y Hematopoyesis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Elva Jiménez-Hernández
- Departamento de Hematología Pediátrica, Unidad Médica de Alta Especialidad, Centro Médico Nacional la Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Sergio Zavala-Vega
- Área de Virología, Laboratorio de Infectología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Guillermina Campos-Valdéz
- Área de Virología, Laboratorio de Infectología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - Juan Carlos Fernández-Macías
- Área de Virología, Laboratorio de Infectología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación en Epidemiología Clínica, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Ciudad de México, México; Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
14
|
Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol 2017; 14:22-35. [PMID: 27264686 PMCID: PMC5214938 DOI: 10.1038/cmi.2016.25] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past decades the notion of 'inflammation' has been extended beyond the original hallmarks of rubor (redness), calor (heat), tumor (swelling) and dolor (pain) described by Celsus. We have gained a more detailed understanding of the cellular players and molecular mediators of inflammation which is now being applied and extended to areas of biomedical research such as cancer, obesity, heart disease, metabolism, auto-inflammatory disorders, autoimmunity and infectious diseases. Innate cytokines are often central components of inflammatory responses. Here, we discuss how the type I interferon and interleukin-1 cytokine pathways represent distinct and specialized categories of inflammatory responses and how these key mediators of inflammation counter-regulate each other.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bo Yan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
TLR7 Agonist GS-9620 Is a Potent Inhibitor of Acute HIV-1 Infection in Human Peripheral Blood Mononuclear Cells. Antimicrob Agents Chemother 2016; 61:AAC.01369-16. [PMID: 27799218 PMCID: PMC5192112 DOI: 10.1128/aac.01369-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
GS-9620 is a potent and selective oral Toll-like receptor 7 (TLR7) agonist that directly activates plasmacytoid dendritic cells (pDCs). GS-9620 suppressed hepatitis B virus (HBV) in animal models of chronic infection and transiently activated HIV expression ex vivo in latently infected peripheral blood mononuclear cells (PBMCs) from virally suppressed patients. Currently, GS-9620 is under clinical evaluation for treating chronic HBV infection and for reducing latent reservoirs in virally suppressed HIV-infected patients. Here, we investigated the in vitro anti-HIV-1 activity of GS-9620. GS-9620 potently inhibited viral replication in PBMCs, particularly when it was added 24 to 48 h prior to HIV infection (50% effective concentration = 27 nM). Depletion of pDCs but not other immune cell subsets from PBMC cultures suppressed GS-9620 antiviral activity. Although GS-9620 was inactive against HIV in purified CD4+ T cells and macrophages, HIV replication was potently inhibited by conditioned medium derived from GS-9620-treated pDC cultures when added to CD4+ T cells prior to infection. This suggests that GS-9620-mediated stimulation of PBMCs induced the production of a soluble factor(s) inhibiting HIV replication in trans. GS-9620-treated PBMCs primarily showed increased production of interferon alpha (IFN-α), and cotreatment with IFN-α-blocking antibodies reversed the HIV-1-inhibitory effect of GS-9620. Additional studies demonstrated that GS-9620 inhibited a postentry event in HIV replication at a step coincident with or prior to reverse transcription. The simultaneous activation of HIV-1 expression and inhibition of HIV-1 replication are important considerations for the clinical evaluation of GS-9620 since these antiviral effects may help restrict potential local HIV spread upon in vivo latency reversal.
Collapse
|
16
|
Sionov E, Mayer-Barber KD, Chang YC, Kauffman KD, Eckhaus MA, Salazar AM, Barber DL, Kwon-Chung KJ. Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis. PLoS Pathog 2015; 11:e1005040. [PMID: 26252005 PMCID: PMC4529209 DOI: 10.1371/journal.ppat.1005040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/22/2015] [Indexed: 01/10/2023] Open
Abstract
Cryptococcus neoformans is the most common cause of fungal meningoencephalitis in AIDS patients. Depletion of CD4 cells, such as occurs during advanced AIDS, is known to be a critical risk factor for developing cryptococcosis. However, the role of HIV-induced innate inflammation in susceptibility to cryptococcosis has not been evaluated. Thus, we sought to determine the role of Type I IFN induction in host defense against cryptococci by treatment of C. neoformans (H99) infected mice with poly-ICLC (pICLC), a dsRNA virus mimic. Unexpectedly, pICLC treatment greatly extended survival of infected mice and reduced fungal burdens in the brain. Protection from cryptococcosis by pICLC-induced Type I IFN was mediated by MDA5 rather than TLR3. PICLC treatment induced a large, rapid and sustained influx of neutrophils and Ly6Chigh monocytes into the lung while suppressing the development of eosinophilia. The pICLC-mediated protection against H99 was CD4 T cell dependent and analysis of CD4 T cell polyfunctionality showed a reduction in IL-5 producing CD4 T cells, marginal increases in Th1 cells and dramatic increases in RORγt+ Th17 cells in pICLC treated mice. Moreover, the protective effect of pICLC against H99 was diminished in IFNγ KO mice and by IL-17A neutralization with blocking mAbs. Furthermore, pICLC treatment also significantly extended survival of C. gattii infected mice with reduced fungal loads in the lungs. These data demonstrate that induction of type I IFN dramatically improves host resistance against the etiologic agents of cryptococcosis by beneficial alterations in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Edward Sionov
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Keith D Kauffman
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael A Eckhaus
- Division of Veterinary Resources, Office of Research Services, Office of the Director, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
17
|
Nallar SC, Kalvakolanu DV. Interferons, signal transduction pathways, and the central nervous system. J Interferon Cytokine Res 2015; 34:559-76. [PMID: 25084173 DOI: 10.1089/jir.2014.0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | | |
Collapse
|
18
|
Kang HY, Hong EJ, Hwang KC, Kim NH, Hwang WS, Jeung EB. Generation of transgenic fibroblasts producing doxycycline-inducible human interferon-α or erythropoietin for a bovine mammary bioreactor. Mol Med Rep 2015; 12:1137-44. [PMID: 25779628 DOI: 10.3892/mmr.2015.3483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Interferon α (IFN-α) is a cytokine, produced predominantly in immune cells in response to pathogens, which interferes with viral replication in host cells. Another cytokine hormone, erythropoietin (EPO), is synthesized in interstitial fibroblasts of the kidney and acts as a stimulator for the production of red blood cells. Importantly, the two cytokines have been used in the treatment of certain hematological malignancies, including renal anemia. In the production of recombinant proteins, a transgenic expression system in bovine species is an efficient strategy for pharmaceutical production. In the present study, recombinant constructs capable of producing recombinant human IFN-α and EPO proteins were established and were generated containing the mammary gland-specific αS1-casein promoter region (between -175 and + 796 nt), as this promoter was revealed to have the highest level of activity in a previous promoter study. In order to minimize developmental toxicity by constitutive exogenous expression, a doxycycline (dox)-inducible system was introduced to the IFN-α/EPO-expressing constructs. Therefore, a unitary tetracycline (tet)-on the IFN-α/EPO vector was established, which combined a tet-on activator cassette controlled by the αS1-casein promoter, with a responder cassette encoding the IFN-α/EPO gene, controlled by the tetracycline response element (TRE) promoter. In these systems, the tet-controlled transactivator is affected by mammary gland-specific αS1-casein promoter, and binding of the transcriptional activator to the TRE results in transcription of the downstream IFN-α/EPO genes in the presence of dox. To assess this, the unitary tet-on IFN-α/EPO vector was introduced into a bovine mammary gland cell line (MAC-T), and the cells were then treated with 0.1-1 µg/ml dox. A marked increase was observed in the expression levels of IFN-α/EPO. In addition, bovine transgenic fibroblasts containing a mammary gland-specific and dox-inducible IFN-α/EPO construct were generated. These transgenic fibroblasts may provide a source for somatic cell nuclear transfer for the generation of transgenic cattle producing recombinant human IFN-α/EPO protein during lactation.
Collapse
Affiliation(s)
- Hee Young Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Eui-Ju Hong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Kyu-Chan Hwang
- Department of Research and Development, Sooam Biotech Research Foundation, Seoul 137‑851, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Woo-Suk Hwang
- Department of Research and Development, Sooam Biotech Research Foundation, Seoul 137‑851, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| |
Collapse
|
19
|
Gruber-Wackernagel A, Byrne SN, Wolf P. Polymorphous light eruption: clinic aspects and pathogenesis. Dermatol Clin 2015; 32:315-34, viii. [PMID: 24891054 DOI: 10.1016/j.det.2014.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polymorphous light eruption is an immunologically mediated photodermatosis with high prevalence, particularly among young women in temperate climates, characterized by pruritic skin lesions of variable morphology, occurring in spring or early summer on sun-exposed body sites. A resistance to ultraviolet radiation (UVR)-induced immunosuppression and a subsequent delayed-type hypersensitivity response to a photoantigen have been suggested as key factors in the disease. Molecular and immunologic disturbances associated with disease pathogenesis include a failure of skin infiltration by neutrophils and other regulatory immune cells on UVR exposure linked to a disturbed cytokine microenvironment. Standard management is based on prevention.
Collapse
Affiliation(s)
- Alexandra Gruber-Wackernagel
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria
| | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases and Immunology, Department of Dermatology, Sydney Medical School, Royal Prince Alfred Hospital, The University of Sydney, 676, Blackburn Building D06, Darlington, New South Wales 2006, Australia
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
20
|
Inafuku H, Kasem Khan MA, Nagata T, Nonaka S. Cutaneous Ulcerations Following Subcutaneous Interferon β Injection to a Patient with Multiple Sclerosis. J Dermatol 2014; 31:671-7. [PMID: 15492442 DOI: 10.1111/j.1346-8138.2004.tb00575.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 03/23/2004] [Indexed: 11/27/2022]
Abstract
We report a case treated with interferon beta-1b for multiple sclerosis (MS), who developed severe cutaneous ulcers after six months of therapy. Interferon beta-1b had been used in a regimen of 8 million IU administered subcutaneously through oblique direction of the needle, twice a week. The cutaneous ulcers developed at inoculation sites, as a result of penetration of interferon beta into dermis. Other underlying diseases of coagulative or bleeding disorders or secondary infection were excluded. Histological features of non-specific inflammatory reactions including hyperplastic changes of blood vessels without any evidence of vasculitis were the prominent features in this case. Corticosteroid and interferon beta-1b therapy was continued on restricted sites on the extremities with care not to repeat injections at the same sites previously used. The administration of interferon beta into subcutaneous fatty tissues vertically reduced the incidence of dermal penetration of drug and occurrence of ulcerations in this patient. We review other case reports of severe cutaneous reactions associated with interferon beta-1b therapy in MS patients and conclude that local cytokine-mediated, adverse, immune reaction or non-specific cutaneous inflammatory reaction to interferon beta-1b initiated the skin ulceration long after institution of therapy at the injection sites, and the reaction might be related to the depth of injection.
Collapse
Affiliation(s)
- Hisashi Inafuku
- Division of Dermatology, Organ-oriented Medicine, School of Medicine, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | |
Collapse
|
21
|
Xu G, Wang J, Gao GF, Liu CH. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell 2014; 5:728-36. [PMID: 24938416 PMCID: PMC4180456 DOI: 10.1007/s13238-014-0077-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 05/07/2014] [Indexed: 01/11/2023] Open
Abstract
As the first line of immune defense for Mycobacterium tuberculosis (Mtb), macrophages also provide a major habitat for Mtb to reside in the host for years. The battles between Mtb and macrophages have been constant since ancient times. Triggered upon Mtb infection, multiple cellular pathways in macrophages are activated to initiate a tailored immune response toward the invading pathogen and regulate the cellular fates of the host as well. Toll-like receptors (TLRs) expressed on macrophages can recognize pathogen-associated-molecular patterns (PAMPs) on Mtb and mediate the production of immune-regulatory cytokines such as tumor necrosis factor (TNF) and type I Interferons (IFNs). In addition, Vitamin D receptor (VDR) and Vitamin D-1-hydroxylase are up-regulated in Mtb-infected macrophages, by which Vitamin D participates in innate immune responses. The signaling pathways that involve TNF, type I IFNs and Vitamin D are inter-connected, which play critical roles in the regulation of necroptosis, apoptosis, and autophagy of the infected macrophages. This review article summarizes current knowledge about the interactions between Mtb and macrophages, focusing on cellular fates of the Mtb-infected macrophages and the regulatory molecules and cellular pathways involved in those processes.
Collapse
Affiliation(s)
- Guanghua Xu
- CAS key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
22
|
Wallweber HJA, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Structural basis of recognition of interferon-α receptor by tyrosine kinase 2. Nat Struct Mol Biol 2014; 21:443-8. [PMID: 24704786 PMCID: PMC4161281 DOI: 10.1038/nsmb.2807] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/03/2014] [Indexed: 12/25/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family of non-receptor tyrosine kinases, which are essential for proper signaling in immune responses and development. Here we present a 2.0 angstrom resolution crystal structure of a receptor-binding fragment of human TYK2 encompassing the FERM and SH2 domains in complex with a so-called “box2” containing intracellular peptide motif from the IFNα receptor (IFNAR1). The TYK2–IFNAR1 interface reveals an unexpected receptor-binding mode that mimics a SH2 domain–phosphopeptide interaction, with a glutamate replacing the canonical phosphotyrosine residue. This structure provides the first view to our knowledge of a JAK in complex with its cognate receptor and defines the molecular logic through which JAKs evolved to interact with divergent receptor sequences.
Collapse
Affiliation(s)
- Heidi J A Wallweber
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | - Christine Tam
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | - Yvonne Franke
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | | | - Patrick J Lupardus
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| |
Collapse
|
23
|
Wu C, Ma J, Xu Y, Zhang X, Lao S, Yang B. Pleural fluid mononuclear cells (PFMCs) from tuberculous pleurisy can migrate in vitro in response to CXCL10. Tuberculosis (Edinb) 2014; 94:123-30. [DOI: 10.1016/j.tube.2013.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 10/21/2013] [Accepted: 10/27/2013] [Indexed: 01/29/2023]
|
24
|
Rubio D, Xu RH, Remakus S, Krouse TE, Truckenmiller ME, Thapa RJ, Balachandran S, Alcamí A, Norbury CC, Sigal LJ. Crosstalk between the type 1 interferon and nuclear factor kappa B pathways confers resistance to a lethal virus infection. Cell Host Microbe 2013; 13:701-10. [PMID: 23768494 DOI: 10.1016/j.chom.2013.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/28/2013] [Accepted: 04/08/2013] [Indexed: 01/09/2023]
Abstract
Nuclear factor kappa B (NF-κB) and type 1 interferon (T1-IFN) signaling are innate immune mechanisms activated upon viral infection. However, the role of NF-κB and its interplay with T1-IFN in antiviral immunity is poorly understood. We show that NF-κB is essential for resistance to ectromelia virus (ECTV), a mouse orthopoxvirus related to the virus causing human smallpox. Additionally, an ECTV mutant lacking an NF-κB inhibitor activates NF-κB more effectively in vivo, resulting in increased proinflammatory molecule transcription in uninfected cells and organs and decreased viral replication. Unexpectedly, NF-κB activation compensates for genetic defects in the T1-IFN pathway, such as a deficiency in the IRF7 transcription factor, resulting in virus control. Thus, overlap between the T1-IFN and NF-κB pathways allows the host to overcome genetic or pathogen-induced deficiencies in T1-IFN and survive an otherwise lethal poxvirus infection. These findings may also explain why some pathogens target both pathways to cause disease.
Collapse
Affiliation(s)
- Daniel Rubio
- Immune Cell Development and Host Defense Program, Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Waki N, Yajima N, Suganuma H, Buddle BM, Luo D, Heiser A, Zheng T. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Lett Appl Microbiol 2013; 58:87-93. [PMID: 24329975 DOI: 10.1111/lam.12160] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED Lactobacillus brevis KB290 (KB290), isolated from a traditional Japanese pickle 'Suguki', has been reported to have immunomodulatory effects. We investigated whether oral administration of KB290 has protective effects against influenza virus (IFV) infection in mice. After 14 days of administration of lyophilized KB290 suspended in phosphate-buffered saline by oral gavage, BALB/c mice were intranasally infected with 2 × MLD50 (50% mouse lethal dose) of IFV A/PR/8/34 (H1N1). Prophylactically administered KB290 significantly alleviated the loss of body weight and the deterioration in observational physical conditions induced by the infection. In addition, 7 days after infection, the levels of IFV-specific immunoglobulin (Ig)A in bronchoalveolar lavage fluid were significantly increased in mice fed KB290 compared with controls. Moreover, there was a significant elevation of serum interferon (IFN)-α in KB290 group mice, even at three and 7 days after infection, despite the administration of KB290 being stopped before IFV infection. Our results demonstrated that oral administration of KB290 before infection could alleviate IFV-induced clinical symptoms. Alleviation of clinical symptoms by KB290 consumption may have been induced by long-lasting enhancement of IFN-α production and the augmentation of IFV-specific IgA production. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that oral administration of Lactobacillus brevis KB290 (KB290), a probiotic strain derived from a Japanese traditional pickle, could protect against influenza virus (IFV) infection in mice. Our results demonstrated that continual intake of KB290 for 14 days prior to IFV infection alleviated clinical symptoms such as loss of body weight and deterioration in observational physical conditions induced by the infection. The beneficial effects of KB290 consumption may have been elicited by the long-lasting enhancement of interferon-α production and the augmentation of IFV-specific immunoglobulin A production.
Collapse
Affiliation(s)
- N Waki
- Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Gavala ML, Liu YP, Lenertz LY, Zeng L, Blanchette JB, Guadarrama AG, Denlinger LC, Bertics PJ, Smith JA. Nucleotide receptor P2RX7 stimulation enhances LPS-induced interferon-β production in murine macrophages. J Leukoc Biol 2013; 94:759-68. [PMID: 23911869 PMCID: PMC3774844 DOI: 10.1189/jlb.0712351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 05/22/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
Stimulation of P2RX(7) with extracellular ATP potentiates numerous LPS-induced proinflammatory events, including cytokine induction in macrophages, but the molecular mechanisms underlying this process are not well defined. Although P2RX(7) ligation has been proposed to activate several transcription factors, many of the LPS-induced mediators affected by P2RX(7) activation are not induced by P2RX(7) agonists alone, suggesting a complementary role for P2RX(7) in transcriptional regulation. Type I IFN production, whose expression is tightly controlled by multiple transcription factors that form an enhanceosome, is critical for resistance against LPS-containing bacteria. The effect of purinergic receptor signaling on LPS-dependent type I IFN is unknown and would be of great relevance to a diverse array of inflammatory conditions. The present study demonstrates that stimulation of macrophages with P2RX(7) agonists substantially enhances LPS-induced IFN-β expression, and this enhancement is ablated in macrophages that do not express functional P2RX(7) or when the MAPK MEK1/2 pathways are inhibited. Potentiation of LPS-induced IFN-β expression following P2RX(7) stimulation is likely transcriptionally regulated, as this enhancement is observed at the IFN-β promoter level. Furthermore, P2RX(7) stimulation is able to increase the phosphorylation and subsequent IFN-β promoter occupancy of IRF-3, a transcription factor that is critical for IFN-β transcription by TLR agonists. This newly discovered role for P2RX(7) in IFN regulation may have implications in antimicrobial defense, which has been linked to P2RX(7) activation in other studies.
Collapse
Affiliation(s)
- M L Gavala
- 2.University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., CSC H4/472, Madison, WI 53792-9988, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Belcheva A, Green B, Weiss A, Streutker C, Martin A. Elevated incidence of polyp formation in APC(Min/⁺)Msh2⁻/⁻ mice is independent of nitric oxide-induced DNA mutations. PLoS One 2013; 8:e65204. [PMID: 23741483 PMCID: PMC3669241 DOI: 10.1371/journal.pone.0065204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/21/2013] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota has been linked to a number of human diseases including colon cancer. However, the mechanism through which gut bacteria influence colon cancer development and progression remains unclear. Perturbation of the homeostasis between the host immune system and microbiota leads to inflammation and activation of macrophages which produce large amounts of nitric oxide that acts as a genotoxic effector molecule to suppress bacterial growth. However, nitric oxide also has genotoxic effects to host cells by producing mutations that can predispose to colon cancer development. The major DNA lesions caused by nitric oxide are 8oxoG and deamination of deoxycytosine bases. Cellular glycosylases that belong to the base excision repair pathway have been demonstrated to repair these mutations. Recent evidence suggests that the mismatch repair pathway (MMR) might also repair nitric oxide-induced DNA damage. Since deficiency in MMR predisposes to colon cancer, we hypothesized that MMR-deficient colon epithelial cells are incapable of repairing nitric-oxide induced genetic lesions that can promote colon cancer. Indeed, we found that the MMR pathway repairs nitric oxide-induced DNA mutations in cell lines. To test whether nitric oxide promotes colon cancer, we genetically ablated the inducible nitric oxide synthase (iNOS) or inhibited iNOS activity in the APC(Min/+)Msh2(-/-) mouse model of colon cancer. However, despite the fact that nitric oxide production was strongly reduced in the colon using both approaches, colon cancer incidence was not affected. These data show that nitric oxide and iNOS do not promote colon cancer in APC(Min/+)Msh2(-/-) mice.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Blerta Green
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ashley Weiss
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL. Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol 2012; 1:487-96. [PMID: 22347990 DOI: 10.1016/j.coviro.2011.10.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The three types of interferon (IFNs) are essential for immunity against at least some viruses in the mouse model of experimental infections, type I IFNs displaying the broadest and strongest anti-viral activity. Consistently, human genetic studies have shown that type II IFN is largely redundant for immunity against viruses in the course of natural infections. The precise contributions of human type I and III IFNs remain undefined. However, various inborn errors of anti-viral IFN immunity have been described, which can result in either broad or narrow immunological and viral phenotypes. The broad disorders impair the response to (STAT1, TYK2) or the production of at least type I and type III IFNs following multiple stimuli (NEMO), resulting in multiple viral infections at various sites, including herpes simplex encephalitis (HSE). The narrow disorders impair exclusively (TLR3) or mostly (UNC-93B, TRIF, TRAF3) the TLR3-dependent induction of type I and III IFNs, leading to HSE in apparently otherwise healthy individuals. These recent discoveries highlight the importance of human type I and III IFNs in protective immunity against viruses, including the TLR3-IFN pathway in protection against HSE.
Collapse
Affiliation(s)
- Vanessa Sancho-Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, U980, Necker Medical School, Paris 75015, France
| | | | | | | | | |
Collapse
|
29
|
Pivotal role of plasmacytoid dendritic cells in inflammation and NK-cell responses after TLR9 triggering in mice. Blood 2012; 120:90-9. [PMID: 22611152 DOI: 10.1182/blood-2012-02-410936] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The physiologic role played by plasmacytoid dendritic cells (pDCs) in the induction of innate responses and inflammation in response to pathogen signaling is not well understood. Here, we describe a new mouse model lacking pDCs and establish that pDCs are essential for the in vivo induction of NK-cell activity in response to Toll-like receptor 9 (TLR9) triggering. Furthermore, we provide the first evidence that pDCs are critical for the systemic production of a wide variety of chemokines in response to TLR9 activation. Consequently, we observed a profound alteration in monocyte, macrophage, neutrophil, and NK-cell recruitment at the site of inflammation in the absence of pDCs in response to CpG-Dotap and stimulation by microbial pathogens, such as Leishmania major, Escherichia coli, and Mycobacterium bovis. This study, which is based on the development of a constitutively pDC-deficient mouse model, highlights the pivotal role played by pDCs in the induction of innate immune responses and inflammation after TLR9 triggering.
Collapse
|
30
|
Reduced interferon (IFN)-α conditioned by IFNA2 (-173) and IFNA8 (-884) haplotypes is associated with enhanced susceptibility to severe malarial anemia and longitudinal all-cause mortality. Hum Genet 2012; 131:1375-91. [PMID: 22570109 DOI: 10.1007/s00439-012-1175-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
Severe malarial anemia (SMA) is a leading cause of pediatric morbidity and mortality in holoendemic Plasmodium falciparum transmission areas. Although dysregulation in cytokine production is an important etiology of SMA, the role of IFN-α in SMA has not been reported. As such, we investigated the relationship between IFN-α promoter polymorphisms [i.e., IFNA2 (A-173T) and IFNA8 (T-884A)], SMA, and functional changes in IFN-α production in children (n = 663; <36 months) residing in a holoendemic P. falciparum transmission region of Kenya. Children with SMA had lower circulating IFN-α than malaria-infected children without severe anemia (P = 0.025). Multivariate logistic regression analyses revealed that heterozygosity at -884 (TA) was associated with an increased risk of SMA [OR 2.80 (95 % CI 1.22-6.43); P = 0.015] and reduced IFN-α relative to wild type (TT; P = 0.038). Additional analyses demonstrated that carriage of the -173T/-884A (TA) haplotype was associated with increased susceptibility to SMA [OR 3.98 (95 % CI 1.17-13.52); P = 0.026] and lower IFN-α (P = 0.031). Follow-up of these children for 36 months revealed that carriers of TA haplotype had greater all-cause mortality than non-carriers (P < 0.001). Generation of reporter constructs showed that the IFNA8 wild-type -884TT exhibited higher levels of luciferase expression than the variant alleles (P < 0.001). Analyses of malaria-associated inflammatory mediators demonstrated that carriers of TA haplotype had altered production of IL-1β, MIG, and IL-13 compared to non-carriers (P < 0.050). Thus, variation at IFNA2 -173 and IFNA8 -884 conditions reduced IFN-α production, and increased susceptibility to SMA and mortality.
Collapse
|
31
|
Yount JS, Karssemeijer RA, Hang HC. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem 2012; 287:19631-41. [PMID: 22511783 DOI: 10.1074/jbc.m112.362095] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that inhibits infection by influenza virus and many other pathogenic viruses. IFITM3 prevents endocytosed virus particles from accessing the host cytoplasm although little is known regarding its regulatory mechanisms. Here we demonstrate that IFITM3 localization to and antiviral remodeling of endolysosomes is differentially regulated by S-palmitoylation and lysine ubiquitination. Although S-palmitoylation enhances IFITM3 membrane affinity and antiviral activity, ubiquitination decreases localization with endolysosomes and decreases antiviral activity. Interestingly, autophagy reportedly induced by IFITM3 expression is also negatively regulated by ubiquitination. However, the canonical ATG5-dependent autophagy pathway is not required for IFITM3 activity, indicating that virus trafficking from endolysosomes to autophagosomes is not a prerequisite for influenza virus restriction. Our characterization of IFITM3 ubiquitination sites also challenges the dual-pass membrane topology predicted for this protein family. We thus evaluated topology by N-linked glycosylation site insertion and protein lipidation mapping in conjunction with cellular fractionation and fluorescence imaging. Based on these studies, we propose that IFITM3 is predominantly an intramembrane protein where both the N and C termini face the cytoplasm. In sum, by characterizing S-palmitoylation and ubiquitination of IFITM3, we have gained a better understanding of the trafficking, activity, and intramembrane topology of this important IFN-induced effector protein.
Collapse
Affiliation(s)
- Jacob S Yount
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
32
|
Abstract
Cytokines are non-immunoglobulin proteins and glycoproteins produced by a wide variety of cells, in response to any immune stimulus. Cytokines are signaling molecules that send downstream signals to various cells through a number of signal transduction pathways and act further by binding to specific membrane receptors (cytokine receptors) on the cell surface. They are emergency molecules, which are released transiently. Cytokines play an important role in cellular communication. They regulate immunity, inflammation, cell activation, cell migration, cell proliferation, apoptosis, and hematopoiesis. However, when released persistently they can produce chronic disease
Collapse
Affiliation(s)
- Arijit Coondoo
- Department of Dermatology, KPC Medical College, Kolkata, West Bengal, India
| |
Collapse
|
33
|
Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE, Glenn JS, Nolan GP, Piehler J, Schreiber G, Garcia KC. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 2011; 146:621-32. [PMID: 21854986 PMCID: PMC3166218 DOI: 10.1016/j.cell.2011.06.048] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/17/2011] [Accepted: 06/15/2011] [Indexed: 11/16/2022]
Abstract
Type I Interferons (IFNs) are important cytokines for innate immunity against viruses and cancer. Sixteen human type I IFN variants signal through the same cell-surface receptors, IFNAR1 and IFNAR2, yet they can evoke markedly different physiological effects. The crystal structures of two human type I IFN ternary signaling complexes containing IFNα2 and IFNω reveal recognition modes and heterotrimeric architectures that are unique among the cytokine receptor superfamily but conserved between different type I IFNs. Receptor-ligand cross-reactivity is enabled by conserved receptor-ligand "anchor points" interspersed among ligand-specific interactions that "tune" the relative IFN-binding affinities, in an apparent extracellular "ligand proofreading" mechanism that modulates biological activity. Functional differences between IFNs are linked to their respective receptor recognition chemistries, in concert with a ligand-induced conformational change in IFNAR1, that collectively control signal initiation and complex stability, ultimately regulating differential STAT phosphorylation profiles, receptor internalization rates, and downstream gene expression patterns.
Collapse
Affiliation(s)
- Christoph Thomas
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ignacio Moraga
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Doron Levin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter O. Krutzik
- Department of Microbiology and Immunology, Baxter Lab in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yulia Podoplelova
- Division of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Angelica Trejo
- Department of Microbiology and Immunology, Baxter Lab in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Choongho Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ganit Yarden
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Susan E. Vleck
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey S. Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P. Nolan
- Department of Microbiology and Immunology, Baxter Lab in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob Piehler
- Division of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Gafa V, Remoli ME, Giacomini E, Severa M, Grillot R, Coccia EM. Enhancement of anti-Aspergillus T helper type 1 response by interferon-β-conditioned dendritic cells. Immunology 2011; 131:282-8. [PMID: 20518826 DOI: 10.1111/j.1365-2567.2010.03302.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although data show the importance of type I interferons (IFNs) in the regulation of the innate and adaptive immunity elicited in response to viral, bacterial and parasitic infections, the functional activities of these cytokines during fungal infections are poorly understood. We examined here the impact of IFN-β on the response of human monocyte-derived dendritic cells (DCs) infected in vitro with Aspergillus fumigatus. Having found that A. fumigatus-infected DCs do not express IFN-β, we evaluated the effect of the exogenous addition of IFN-β on the maturation of human DCs induced by the infection with A. fumigatus conidia. Although the phagocytosis of the fungus was not affected by IFN-β treatment, the expression of CD86 and CD83 induced upon A. fumigatus challenge was enhanced in IFN-β-conditioned DCs, which also showed an increased expression of IL-27 and IL-12p70, members of IL-12 family. Through these modifications, IFN-β improved the capacity of DCs to promote an anti-Aspergillus T helper type 1 response, as evaluated by mixed leucocyte reaction, which plays a crucial role in the control of invasive aspergillosis. Our results identified a novel effect of IFN-β on anti-Aspergillus immune responses which, in turn, might open new perspectives on the use of IFN-β in immunotherapy for fungal infections aimed at enhancing the immunological functions of DCs.
Collapse
Affiliation(s)
- Valérie Gafa
- Department of Infectious, Parasitic, Immuno-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Katashiba Y, Miyamoto R, Hyo A, Shimamoto K, Murakami N, Ogata M, Amakawa R, Inaba M, Nomura S, Fukuhara S, Ito T. Interferon-α and interleukin-12 are induced, respectively, by double-stranded DNA and single-stranded RNA in human myeloid dendritic cells. Immunology 2010; 132:165-73. [PMID: 20875078 DOI: 10.1111/j.1365-2567.2010.03350.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are initiators of innate immunity and acquired immunity as cells linking these two bio-defence systems through the production of cytokines such as interferon-α (IFN-α) and interleukin-12 (IL-12). Nucleic acids such as DNA from damaged cells or pathogens are important activators not only for anti-microbial innate immune responses but also in the pathogenesis of IFN-related autoimmune diseases. Plasmacytoid DCs are regarded as the main effectors for the DNA-mediated innate immunity by possessing DNA-sensing toll-like receptor 9 (TLR9). We here found that double-stranded DNA (dsDNA) complexed with lipotransfectants triggered activation of human monocyte-derived DCs (moDCs), leading to the preferential production of IFN-α but not IL-12. This indicates that myeloid DCs also function as supportive effectors against the invasion of pathogenic microbes through the DNA-mediated activation in innate immunity. The dsDNA with lipotransfectants can be taken up by moDCs without co-localization of endosomal LAMP1 staining, and the dsDNA-mediated IFN-α production was not impaired by chloroquine. These findings indicate that moDC activation by dsDNA does not involve the endosomal TLR pathway. In contrast, single-stranded RNA (ssRNA) stimulated moDCs to secrete IL-12 but not IFN-α. This process was inhibited by chloroquine, suggesting an involvement of the TLR pathway in ssRNA-mediated moDC activation. As might be inferred from our findings, myeloid DCs may function as a traffic control between innate immunity via IFN-α production and acquired immunity via IL-12 production, depending on the type of nucleic acids. Our results provide a new insight into the biological action of myeloid DCs underlying the DNA-mediated activation of protective or pathogenic immunity.
Collapse
Affiliation(s)
- Yuichi Katashiba
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ibuki M, Kovacs-Nolan J, Fukui K, Kanatani H, Mine Y. Analysis of gut immune-modulating activity of β-1,4-mannobiose using microarray and real-time reverse transcription polymerase chain reaction. Poult Sci 2010; 89:1894-904. [DOI: 10.3382/ps.2010-00791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
37
|
Swanson CL, Wilson TJ, Strauch P, Colonna M, Pelanda R, Torres RM. Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. ACTA ACUST UNITED AC 2010; 207:1485-500. [PMID: 20566717 PMCID: PMC2901065 DOI: 10.1084/jem.20092695] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Humoral immunity to viruses and encapsulated bacteria is comprised of T cell-independent type 2 (TI-2) antibody responses that are characterized by rapid antibody production by marginal zone and B1 B cells. We demonstrate that toll-like receptor (TLR) ligands influence the TI-2 antibody response not only by enhancing the overall magnitude but also by skewing this response to one that is dominated by IgG isotypes. Importantly, TLR ligands facilitate this response by inducing type I interferon (IFN), which in turn elicits rapid and significant amounts of antigen-specific IgG2c predominantly from FO (follicular) B cells. Furthermore, we show that although the IgG2c antibody response requires B cell-autonomous IFN-alpha receptor signaling, it is independent of B cell-intrinsic TLR signaling. Thus, innate signals have the capacity to enhance TI-2 antibody responses by promoting participation of FO B cells, which then elaborate effective IgG anti-pathogen antibodies.
Collapse
Affiliation(s)
- Cristina L Swanson
- Integrated Department of Immunology, University of Colorado, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
38
|
Bae GS, Kim MS, Jung WS, Seo SW, Yun SW, Kim SG, Park RK, Kim EC, Song HJ, Park SJ. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur J Pharmacol 2010; 642:154-62. [PMID: 20621590 DOI: 10.1016/j.ejphar.2010.05.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 04/23/2010] [Accepted: 05/23/2010] [Indexed: 12/16/2022]
Abstract
Piperine, a main component of Piper longum Linn. and Piper nigrum Linn., is a plant alkaloid with a long history of medical use. Piperine exhibits anti-inflammatory activity; however, the underlying mechanism remains unknown. We examined the effects of piperine on lipopolysaccharide (LPS)-induced inflammatory responses. Administration of piperine inhibited LPS-induced endotoxin shock, leukocyte accumulation and the production of tumor necrosis factor-alpha (TNF-alpha), but not of interleukin (IL)-1beta and IL-6. In peritoneal macrophages, piperine inhibited LPS/poly (I:C)/CpG-ODN-induced TNF-alpha production. Piperine also inhibited LPS-induced endotoxin shock in TNF-alpha knockout (KO) mice. To clarify the inhibitory mechanism of LPS-induced endotoxin shock, type 1 interferon (IFN) mRNA expression was determined. Piperine inhibited LPS-induced expression of type 1 IFN mRNA. Piperine inhibited the levels of interferon regulatory factor (IRF)-1 and IRF-7 mRNA, and the phosphorylation and nuclear translocation of IRF-3. Piperine also reduced activation of signal transducer and activator of transcription (STAT)-1. In addition, activation of STAT-1 was inhibited in IFN-alpha/beta-treated cells by piperine. These results suggest that piperine inhibits LPS-induced endotoxin shock through inhibition of type 1 IFN production.
Collapse
Affiliation(s)
- Gi-Sang Bae
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, 540-749 Jeonbuk, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Antonelli LRV, Gigliotti Rothfuchs A, Gonçalves R, Roffê E, Cheever AW, Bafica A, Salazar AM, Feng CG, Sher A. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 2010; 120:1674-82. [PMID: 20389020 DOI: 10.1172/jci40817] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 02/17/2010] [Indexed: 12/24/2022] Open
Abstract
Type I IFN has been demonstrated to have major regulatory effects on the outcome of bacterial infections. To assess the effects of exogenously induced type I IFN on the outcome of Mycobacterium tuberculosis infection, we treated pathogen-exposed mice intranasally with polyinosinic-polycytidylic acid condensed with poly-l-lysine and carboxymethylcellulose (Poly-ICLC), an agent designed to stimulate prolonged, high-level production of type I IFN. Drug-treated, M. tuberculosis-infected WT mice, but not mice lacking IFN-alphabeta receptor 1 (IFNalphabetaR; also known as IFNAR1), displayed marked elevations in lung bacillary loads, accompanied by widespread pulmonary necrosis without detectable impairment of Th1 effector function. Importantly, lungs from Poly-ICLC-treated M. tuberculosis-infected mice exhibited a striking increase in CD11b+F4/80+Gr1int cells that displayed decreased MHC II expression and enhanced bacterial levels relative to the same subset of cells purified from infected, untreated controls. Moreover, both the Poly-ICLC-triggered pulmonary recruitment of the CD11b+F4/80+Gr1int population and the accompanying exacerbation of infection correlated with type I IFN-induced upregulation of the chemokine-encoding gene Ccl2 and were dependent on host expression of the chemokine receptor CCR2. The above findings suggest that Poly-ICLC treatment can detrimentally affect the outcome of M. tuberculosis infection, by promoting the accumulation of a permissive myeloid population in the lung. In addition, these data suggest that agents that stimulate type I IFN should be used with caution in patients exposed to this pathogen.
Collapse
Affiliation(s)
- Lis R V Antonelli
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tan KS, Chen Y, Lim YC, Tan GYG, Liu Y, Lim YT, Macary P, Gan YH. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. THE JOURNAL OF IMMUNOLOGY 2010; 184:5160-71. [PMID: 20335533 DOI: 10.4049/jimmunol.0902663] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative saprophyte that is the causative agent of melioidosis, a severe infectious disease endemic in Northern Australia and Southeast Asia. This organism has sparked much scientific interest in the West because of its classification as a potential bioterrorism agent by the U.S. Centers for Disease Control and Prevention. However, relatively little is known about its pathogenesis. We demonstrate that B. pseudomallei actively inhibits NF-kappaB and type I IFN pathway activation, thereby downregulating host inflammatory responses. We found the virulence factor TssM to be responsible for this activity. TssM interferes with the ubiquitination of critical signaling intermediates, including TNFR-associated factor-3, TNFR-associated factor-6, and IkappaBalpha. The expression but not secretion of TssM is regulated by the type III secretion system. We demonstrate that TssM is important for B. pseudomallei infection in vivo as inflammation in the tssM mutant-infected mice is more severe and corresponds to a more rapid death compared with wild-type bacteria-infected mice. Abs to TssM can be detected in the sera of melioidosis patients, indicating that TssM is functionally expressed in vivo and thus could contribute to bacterial pathogenesis in human melioidosis.
Collapse
Affiliation(s)
- Kai Soo Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Boo KH, Yang JS. Intrinsic cellular defenses against virus infection by antiviral type I interferon. Yonsei Med J 2010; 51:9-17. [PMID: 20046508 PMCID: PMC2799977 DOI: 10.3349/ymj.2010.51.1.9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 02/07/2023] Open
Abstract
Intrinsic cellular defenses are non-specific antiviral activities by recognizing pathogen-associated molecular patterns (PAMPs). Toll-like receptors (TLRs), one of the pathogen recognize receptor (PRR), sense various microbial ligands. Especially, TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 recognize viral ligands such as glycoprotein, single- or double-stranded RNA and CpG nucleotides. The binding of viral ligands to TLRs transmits its signal to Toll/interleukin-1 receptor (TIR) to activate transcription factors via signal transduction pathway. Through activation of transcription factors, such as interferon regulatory factor-3, 5, and 7 (IRF-3, 5, 7) or nuclear factor-kappaB (NF-kappaB), type I interferons are induced, and antiviral proteins such as myxovirus-resistance protein (Mx) GTPase, RNA-dependent Protein Kinase (PKR), ribonuclease L (RNase L), Oligo-adenylate Synthetase (OAS) and Interferon Stimulated Gene (ISG) are further expressed. These antiviral proteins play an important role of antiviral resistancy against several viral pathogens in infected cells and further activate innate immune responses.
Collapse
Affiliation(s)
- Kyung-Hyun Boo
- BioTherapeutics Engineering Laboratory, Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Joo-Sung Yang
- BioTherapeutics Engineering Laboratory, Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
42
|
|
43
|
Walberg K, Baron S, Poast J, Schwartz B, Izotova L, Pestka S, Peterson JW. Interferon protects mice against inhalation anthrax. J Interferon Cytokine Res 2009; 28:597-601. [PMID: 18778201 DOI: 10.1089/jir.2007.0143] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferons (IFNs) play a role in innate immunity during many viral, bacterial, and protozoal infections. With the increasing threat of bioterrorist attacks with Bacillus anthracis, its high lethality, and the limited effectiveness of antibiotics, alternative treatments are being studied. Antibodies to protective antigen (PA) are promising, as is IFN. During many bacterial infections, production of and protection by IFNs has been reported, including B. anthracis in vitro. In vivo, we find that (1) the type I IFN inducer, Poly-ICLC, strongly and rapidly protects mice; (2) the protection is IFN-mediated since recombinant murine IFN-beta can protect, and protection by Poly-ICLC is abrogated in IFN type I receptor knockout mice. The greatest protection by Poly-ICLC was conferred by intranasal treatment. A delay in death was observed with the intramuscular route alone, but was not significant. Together, the results suggest the IFN defense could protect mice, up to 60%, against lethal inhalational anthrax, and thus have important medical implications for therapy of human anthrax.
Collapse
Affiliation(s)
- Kristin Walberg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Trepiakas R, Pedersen AE, Met O, Svane IM. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function. Vaccine 2009; 27:2213-9. [PMID: 19428835 DOI: 10.1016/j.vaccine.2009.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 01/08/2023]
Abstract
Monocyte-derived dendritic cells (DCs) are used as adjuvant cells in cancer immunotherapy and have shown promising results. In order to obtain full functional capacity, these DCs need to be maturated, and the current "gold standard" for this process is maturation with TNF-alpha, IL-1beta, IL-6 and PGE(2) used for generating standard DCs (sDC). Several studies indicate that IFN-alpha might also be important for DC differentiation and maturation. In this study, we tested the effect of IFN-alpha alone or as addition to the gold standard sDC cocktail. We observed that maturation by IFN-alpha differs from sDC maturation: The major phenotypic change after IFN-alpha maturation was dose-dependent up-regulation of CD38 but not CD83, while sDCs expressed the opposite profile with low CD38 and high CD83 expression. Similarly, maturation by Poly I:C leads to CD38high, CD83low DCs indicating a functional relationship between CD38, IFN-alpha and TLR3. Thus, CD38 appear to be a relevant marker for activation by TLR3 or IFN-alpha. Addition of IFN-alpha to the sDC cocktail results in up-regulation of both CD38 and CD83 and improved capacity for induction of autologous T-cell responses despite few other changes in DC phenotype and cytokine secretion. Our observations suggest that IFN-alpha could be included in maturation protocols for clinical grade DCs used for immunotherapy against cancer and should be included if DCs are used for CD8+ T-cell stimulation in vitro.
Collapse
Affiliation(s)
- Redas Trepiakas
- Center for Cancer Immune Therapy-CCIT, Department of Hematology, Herlev University Hospital, Denmark
| | | | | | | |
Collapse
|
45
|
Karpala AJ, Morris KR, Broadway MM, McWaters PGD, O'Neil TE, Goossens KE, Lowenthal JW, Bean AGD. Molecular cloning, expression, and characterization of chicken IFN -lambda. J Interferon Cytokine Res 2009; 28:341-50. [PMID: 18593329 DOI: 10.1089/jir.2007.0117] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferons (IFN) provide a critical first line of defense against viral infection in vertebrates. Moreover, IFN-lambda, a recently identified group of mammalian IFN, has demonstrated antiviral potential in the treatment of mammalian viruses. With the growing concern over such diseases as avian influenza (AI), there is a pressing need for new antiviral strategies to manage problem viruses in poultry. Furthermore, the use of immune molecules, such as IFN-lambda, provides an attractive option for treating poultry by augmenting the host response to virus. With this in mind, we report here the first cloning, expression, and analysis of biologic activity of chicken IFN-lambda (ChIFN-lambda). We compared the similarity of ChIFN-lambda to those identified in other species and demonstrate that ChIFN-lambda has antiviral properties similar to those of human IFN-lambda (HuIFN-lambda). Our results demonstrate that in the chicken, as in human, the antiviral activity demonstrated by ChIFN-lambda supports its inclusion in therapeutic strategies directed against viral infections.
Collapse
Affiliation(s)
- Adam J Karpala
- CSIRO, Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang SY, Boisson-Dupuis S, Chapgier A, Yang K, Bustamante J, Puel A, Picard C, Abel L, Jouanguy E, Casanova JL. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol Rev 2009; 226:29-40. [PMID: 19161414 DOI: 10.1111/j.1600-065x.2008.00698.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interferon (IFN) was originally identified as a substance 'interfering' with viral replication in vitro. The first IFNs to be identified were classified as type I IFNs (IFN-alpha/beta and related molecules), two other types have since been identified: type II IFN (IFN-gamma) and type III IFNs (IFN-lambda). Each IFN binds to one of three type-specific receptors. In the mouse model of experimental infections in vivo, IFN-alpha/beta are essential for immunity to most viruses tested, whereas IFN-gamma is important for immunity to a smaller number of viruses, together with bacteria, fungi, and parasites, consistent with IFN-gamma acting as the 'macrophage activating factor.' The precise role of IFN-lambda remains unclear. In recent years, inborn errors affecting the production of, or the response to, IFNs have been reported in human patients, shedding light onto the function of IFNs in natura. Disorders of IFN-gamma production, caused by IL12B, IL12RB1, and specific NEMO mutations, or of IFN-gamma responses, caused by IFNGR1, IFNGR2, and dominant STAT1 mutations, confer predisposition to mycobacterial disease in patients resistant to most viruses. By contrast, disorders of IFN-alpha/beta and IFN-lambda production, caused by UNC93B1 and TLR3 mutations, confer predisposition to herpes simplex encephalitis (HSE) in otherwise healthy patients. Consistently, patients with impaired responses to IFN-alpha/beta, IFN-gamma, and presumably IFN-lambda (carrying recessive mutations in STAT1), or with impaired responses to IFN-alpha/beta and impaired IFN-gamma production (carrying mutations in TYK2), or with impaired production of IFN-alpha/beta, IFN-gamma, and IFN-lambda (carrying specific mutations in NEMO), are vulnerable to mycobacterial and viral infections, including HSE. These experiments of nature suggest that the three types of IFNs play at least two different roles in host defense. IFN-gamma is essential for anti-mycobacterial immunity, whereas IFN-alpha/beta and IFN-lambda are essential for anti-viral immunity. Future studies in humans aim to define the specific roles of IFN-alpha/beta and IFN-lambda types and individual molecules in host defense in natura.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Institut National de Santé et de Recherche Médicale, U550, Paris, France, EU
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stout-Delgado HW, Yang X, Walker WE, Tesar BM, Goldstein DR. Aging impairs IFN regulatory factor 7 up-regulation in plasmacytoid dendritic cells during TLR9 activation. THE JOURNAL OF IMMUNOLOGY 2008; 181:6747-56. [PMID: 18981092 DOI: 10.4049/jimmunol.181.10.6747] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are innate sensors that produce IFN-alpha in response to viral infections. Determining how aging alters the cellular and molecular function of these cells may provide an explanation of increased susceptibility of older people to viral infections. Hence, we examined whether aging critically impairs pDC function during infection with HSV-2, a viral pathogen that activates TLR9. We found that impaired IFN-alpha production by aged murine pDCs led to impaired viral clearance with aging. Upon TLR9 activation, aged pDCs displayed defective up-regulation of IFN-regulatory factor 7, a key adaptor in the type I IFN pathway, as compared with younger counterparts. Aged pDCs had more oxidative stress, and reducing oxidative stress in aged pDCs partly recovered the age-induced IFN-alpha defect during TLR9 activation. In sum, aging impairs the type I IFN pathway in pDCs, and this alteration may contribute to the increased susceptibility of older people to certain viral infections.
Collapse
Affiliation(s)
- Heather W Stout-Delgado
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
48
|
Polymorphisms of interferons and their receptors in the genetics of severe RSV-associated diseases. Arch Virol 2008; 153:2133-7. [PMID: 18953482 DOI: 10.1007/s00705-008-0232-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/06/2008] [Indexed: 01/25/2023]
Abstract
Because of their important role in the pathophysiology of severe RSV infection, IFNs represent an ideal group of candidate genes for determining RSV disease severity. We studied 14 polymorphisms within 7 genes involved in IFNs signalling. Our study populations consisted of 156 infants with severe RSV infection and 296 healthy control children. None of the genes showed association with severe RSV infection in children. Thus, despite the involvement of different IFNs in the pathophysiology of RSV infection, genetic variants in IFNG and related genes might not alter the risk for the development of severe RSV-associated diseases.
Collapse
|
49
|
Amjad M, Abdel-Haq N, Faisal M, Kamal M, Moudgal V. Decreased interferon-alpha production and impaired regulatory function of plasmacytoid dendritic cells induced by the hepatitis C virus NS 5 protein. Microbiol Immunol 2008; 52:499-507. [PMID: 18822084 DOI: 10.1111/j.1348-0421.2008.00067.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
pDC are known to produce large amount of IFN-alpha/beta in response to viruses, and act as a major link between the innate and adaptive immune response. This study concentrated on the interaction of human peripheral blood derived pDC with HCV NS3, NS4, and NS5 proteins, and their maturation, cytokine secretion and functional properties. It was shown that HCV NS5 interferes with CD40L induced maturation of pDC as indicated by decreased expression of CD83 and CD86 markers. CpG ODN stimulated HCV NS3 and NS5 treated pDC showed decreased production of IFN-alpha. In the case of NS3, IFN-alpha production was reduced to 126 pg/ml as compared to 245 pg/ml in controls (P < 0.01), and with NS5, IFN-alpha production was reduced to 92 pg/ml as compared to 238 pg/ml in controls (P < 0.05). In the presence of HCV NS5, the T cell stimulatory capacity of pDC was impaired, as indicated by decreased proliferation of T cells, and decreased production by the T cells of IFN-gamma, which were down to 86 pg/ml as compared to 260 pg/ml in controls (P < 0.05). These results suggest that HCV NS5 impairs pDC function and is in agreement with several other in vivo studies indicating decreased numbers of, and dysfunctional pDC, in chronic HCV infected patients.
Collapse
Affiliation(s)
- Muhammad Amjad
- Clinical Laboratory Science Program, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
50
|
Tramice A, Arena A, De Gregorio A, Ottanà R, Maccari R, Pavone B, Arena N, Iannello D, Vigorita MG, Trincone A. Facile biocatalytic access to 9-fluorenylmethyl polyglycosides: evaluation of antiviral activity on immunocompetent cells. ChemMedChem 2008; 3:1419-26. [PMID: 18576391 DOI: 10.1002/cmdc.200800086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biological activities of a series of mono- and oligosaccharides (beta-xylosides and alpha-glucosides) of 9-fluorenylmethanol were investigated together with mono-beta-galactoside and beta-glucoside of this aglycone, produced by biocatalytic routes. By using marine glycoside hydrolases and inexpensive donors such as maltose or xylan, access to mono-alpha-glucoside or mono-beta-xyloside of 9-fluorenylmethanol was obtained. Additionally, interesting polyglycoside derivatives were isolated. Biological testing indicated that in vitro treatment with these carbohydrate derivatives may influence the balance of cytokines in the environment of human peripheral blood mononuclear cells (PBMC), restricting the harmful effect of herpes simplex type 2 replication. In fact, these carbohydrate derivatives tested in WISH cells did not show any significant antiviral activity.
Collapse
Affiliation(s)
- Annabella Tramice
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80072 Pozzuoli, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|