1
|
Berini F, Montali A, Liguori R, Venturini G, Bonelli M, Shaltiel-Harpaz L, Reguzzoni M, Siti M, Marinelli F, Casartelli M, Tettamanti G. Production and characterization of Trichoderma asperellum chitinases and their use in synergy with Bacillus thuringiensis for lepidopteran control. PEST MANAGEMENT SCIENCE 2024; 80:3401-3411. [PMID: 38407453 DOI: 10.1002/ps.8045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Despite their known negative effects on ecosystems and human health, synthetic pesticides are still largely used to control crop insect pests. Currently, the biopesticide market for insect biocontrol mainly relies on the entomopathogenic bacterium Bacillus thuringiensis (Bt). New biocontrol tools for crop protection might derive from fungi, in particular from Trichoderma spp., which are known producers of chitinases and other bioactive compounds able to negatively affect insect survival. RESULTS In this study, we first developed an environmentally sustainable production process for obtaining chitinases from Trichoderma asperellum ICC012. Then, we investigated the biological effects of this chitinase preparation - alone or in combination with a Bt-based product - when orally administered to two lepidopteran species. Our results demonstrate that T. asperellum efficiently produces a multi-enzymatic cocktail able to alter the chitin microfibril network of the insect peritrophic matrix, resulting in delayed development and larval death. The co-administration of T. asperellum chitinases and sublethal concentrations of Bt toxins increased larval mortality. This synergistic effect was likely due to the higher amount of Bt toxins that passed the damaged peritrophic matrix and reached the target receptors on the midgut cells of chitinase-treated insects. CONCLUSION Our findings may contribute to the development of an integrated pest management technology based on fungal chitinases that increase the efficacy of Bt-based products, mitigating the risk of Bt-resistance development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Riccardo Liguori
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Giovanni Venturini
- Isagro Research Centre affiliated to Gowan Crop Protection Ltd, Novara, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Liora Shaltiel-Harpaz
- Integrated Pest Management Laboratory Northern R&D, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- Environmental Sciences Department, Faculty of Sciences and Technology, Tel Hai College, Kiryat Shmona, Israel
| | - Marcella Reguzzoni
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Moran Siti
- Luxembourg Industries Ltd, Tel-Aviv, Israel
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| | - Morena Casartelli
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Centre for Studies on Bioinspired Agro-Environmental Technology (BAT Centre), University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Yu G, Liu G, Liu T, Fink EH, Esker AR. Activities of Family 18 Chitinases on Amorphous Regenerated Chitin Thin Films and Dissolved Chitin Oligosaccharides: Comparison with Family 19 Chitinases. Biomacromolecules 2023; 24:566-575. [PMID: 36715568 DOI: 10.1021/acs.biomac.2c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in mass and viscoelasticity of chitin layers in fungal cell walls during chitinase attack are vital for understanding bacterial invasion of and human defense against fungi. In this work, regenerated chitin (RChitin) thin films mimicked the fungal chitin layers and facilitated studies of degradation by family 18 chitinases from Trichoderma viride (T. viride) and family 19 chitinases from Streptomyces griseus (S. griseus) that possessed chitin-binding domains (CBDs) that were absent in the family 18 chitinases. Degradation was monitored via a quartz crystal microbalance with dissipation monitoring (QCM-D) in real time at various pH and temperatures. Compared to substrates of colloidal chitin or dissolved chitin derivatives and analogues, the degradation of RChitin films was deeply affected by chitinase adsorption. While the family 18 chitinases had greater solution activity on chitin oligosaccharides, the family 19 chitinases exhibited greater surface activity on RChitin films, illustrating the importance of CBDs for insoluble substrates.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Gehui Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Tianyi Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Ethan H Fink
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Alan R Esker
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia24061, United States
| |
Collapse
|
3
|
Goughenour KD, Whalin J, Slot JC, Rappleye CA. Diversification of Fungal Chitinases and Their Functional Differentiation in Histoplasma capsulatum. Mol Biol Evol 2021; 38:1339-1355. [PMID: 33185664 PMCID: PMC8042737 DOI: 10.1093/molbev/msaa293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chitinases enzymatically hydrolyze chitin, a highly abundant and utilized polymer of N-acetyl-glucosamine. Fungi are a rich source of chitinases; however, the phylogenetic and functional diversity of fungal chitinases are not well understood. We surveyed fungal chitinases from 373 publicly available genomes, characterized domain architecture, and conducted phylogenetic analyses of the glycoside hydrolase (GH18) domain. This large-scale analysis does not support the previous division of fungal chitinases into three major clades (A, B, C) as chitinases previously assigned to the “C” clade are not resolved as distinct from the “A” clade. Fungal chitinase diversity was partly shaped by horizontal gene transfer, and at least one clade of bacterial origin occurs among chitinases previously assigned to the “B” clade. Furthermore, chitin-binding domains (including the LysM domain) do not define specific clades, but instead are found more broadly across clades of chitinases. To gain insight into biological function diversity, we characterized all eight chitinases (Cts) from the thermally dimorphic fungus, Histoplasma capsulatum: six A clade, one B clade, and one formerly classified C clade chitinases. Expression analyses showed variable induction of chitinase genes in the presence of chitin but preferential expression of CTS3 in the mycelial stage. Activity assays demonstrated that Cts1 (B-I), Cts2 (A-V), Cts3 (A-V), Cts4 (A-V) have endochitinase activities with varying degrees of chitobiosidase function. Cts6 (C-I) has activity consistent with N-acetyl-glucosaminidase exochitinase function and Cts8 (A-II) has chitobiase activity. These results suggest chitinase activity is variable even within subclades and that predictions of functionality require more sophisticated models.
Collapse
Affiliation(s)
| | - Janice Whalin
- Department of Microbiology, Ohio State University, Columbus, OH
| | - Jason C Slot
- Department of Plant Pathology, Ohio State University, Columbus, OH
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH
| |
Collapse
|
4
|
Pellan L, Dieye CAT, Durand N, Fontana A, Strub C, Schorr-Galindo S. Biocontrol Agents: Toolbox for the Screening of Weapons against Mycotoxigenic Fusarium. J Fungi (Basel) 2021; 7:446. [PMID: 34205071 PMCID: PMC8226957 DOI: 10.3390/jof7060446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to develop a set of experiments to screen and decipher the mechanisms of biocontrol agents (BCAs), isolated from commercial formulation, against two major mycotoxigenic fungi in cereals, Fusarium graminearum and Fusarium verticillioides. These two phytopathogens produce mycotoxins harmful to human and animal health and are responsible for the massive use of pesticides, for the protection of cereals. It is therefore essential to better understand the mechanisms of action of alternative control strategies such as the use of BCAs in order to optimize their applications. The early and late stages of interaction between BCAs and pathogens were investigated from germination of spores to the effects on perithecia (survival form of pathogen). The analysis of antagonist activities of BCAs revealed different strategies of biocontrol where chronological, process combination and specialization aspects of interactions are discussed. Streptomyces griseoviridis main strategy is based on antibiosis with the secretion of several compounds with anti-fungal and anti-germination activity, but also a mixture of hydrolytic enzymes to attack pathogens, which compensates for an important deficit in terms of spatial colonization capacity. It has good abilities in terms of nutritional competition. Trichoderma asperellum is capable of activating a very wide range of defenses and attacks combining the synthesis of various antifungal compounds (metabolite, enzymes, VOCs), with different targets (spores, mycelium, mycotoxins), and direct action by mycoparasitism and mycophagy. Concerning Pythium oligandrum, its efficiency is mainly due to its strong capacity to colonize the environment, with a direct action via microbial predation, stimulation of its reproduction at the contact of pathogens and the reduction of perithecia formation.
Collapse
Affiliation(s)
- Lucile Pellan
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Cheikh Ahmeth Tidiane Dieye
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Noël Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, 34398 Montpellier, France
| | - Angélique Fontana
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Caroline Strub
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; (L.P.); (C.A.T.D.); (N.D.); (A.F.); (S.S.-G.)
| |
Collapse
|
5
|
Swiontek Brzezinska M, Kalwasińska A, Świątczak J, Żero K, Jankiewicz U. Exploring the properties of chitinolytic Bacillus isolates for the pathogens biological control. Microb Pathog 2020; 148:104462. [PMID: 32835774 DOI: 10.1016/j.micpath.2020.104462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Plant fungal diseases generate serious losses in the agriculture. The bacteria producing biologically active substances that inhibit the growth of fungal pathogens can be an alternative to the chemicals. The chitinolytic bacteria were isolated from the rhizosphere of wheat (Triticum aestivum L.) and their physiological properties which may be useful in the promotion of plant growth have been investigated. Their chitinases and antifungal activity were studied. The isolates were also tested for indirect growth-promoting traits such as ammonia production, siderophore production, hydrogen cyanide production, and salicylic acid production. Two chitinolytic strains B3 and B5 were identified as Bacillus subtilis and Bacillus sp., respectively. They produced active chitinases on a medium containing shrimp shell powder. The purified chitinases having the molecular weight of 35-45 kDa inhibited the growth of important plant pathogens such as Alternaria alternata, and Fusarium oxysporum. Additionally, the isolates showed the ability to produce a broad range of biological substances promoting the growth of plants.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Klaudia Żero
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Urszula Jankiewicz
- Department of Biochemistry, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| |
Collapse
|
6
|
Rabinal C, Bhat S. Identification of Differentially Expressed Genes in Trichoderma koningii IABT1252 During Its Interaction with Sclerotium rolfsii. Curr Microbiol 2019; 77:396-404. [PMID: 31844935 DOI: 10.1007/s00284-019-01838-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Sclerotium rolfsii, a soil-borne fungal pathogen, infects more than 500 crop species and causes stem rot/collar rot/seed rot/southern blight/wilt in a wide variety of crops which results in significant yield loses. Presently, antagonistic microbes are gaining more importance in managing plant pathogens because they control the pathogen in an environment-friendly manner. Trichoderma is an antagonistic fungi and most popularly used biocontrol agent against phytopathogenic fungi. It is predominantly used to treat soil and seed for the control of Sclerotium rolfsii infestation. In this study, the Trichoderma koningii IABT1252 that performed better in controlling groundnut seed/ seedling rot caused by S. rolfsii in pot experiments were selected to know the molecular basis for the control. Differentially expressed genes in Trichoderma at two different stages of interaction (prior to contact and after contact with S. rolfsii) were identified. In both the stages, some of the differentially expressed genes included ones coding for hydrolytic enzymes, secondary metabolite biosynthesis, transcription factors, signaling proteins, transporter proteins, and proteins involved in mycoparasitic process of Trichoderma.
Collapse
Affiliation(s)
- Chidanand Rabinal
- Department of Biotechnology, College of Agriculture, UAS Dharwad, Karnataka, 580005, India.
| | - Sumangala Bhat
- Department of Genetics and Plant Breeding, College of Agriculture, UAS Dharwad, Karnataka, 580005, India
| |
Collapse
|
7
|
Deng JJ, Shi D, Mao HH, Li ZW, Liang S, Ke Y, Luo XC. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. Int J Biol Macromol 2019; 134:113-121. [DOI: 10.1016/j.ijbiomac.2019.04.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
|
8
|
Khalid SAL, Ramadan AB. Internal transcribed spacers (ITS) based identification of Trichoderma isolates and biocontrol activity against Macrophomina phaseolina, Aspergillus niger and Meloidogyne incognita. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajmr2018.8915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Labroussaa F, Ionescu M, Zeilinger AR, Lindow SE, Almeida RPP. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts. MICROBIOLOGY-SGM 2017; 163:502-509. [PMID: 28141489 DOI: 10.1099/mic.0.000438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.
Collapse
Affiliation(s)
- Fabien Labroussaa
- Departments of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA.,Present address: INRA and University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Michael Ionescu
- Plant and Microbial Biology, University of California, Berkeley, CA 94720-3114, USA
| | - Adam R Zeilinger
- Departments of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| | - Steven E Lindow
- Plant and Microbial Biology, University of California, Berkeley, CA 94720-3114, USA
| | - Rodrigo P P Almeida
- Departments of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| |
Collapse
|
10
|
|
11
|
Kivlin SN, Treseder KK. Initial phylogenetic relatedness of saprotrophic fungal communities affects subsequent litter decomposition rates. MICROBIAL ECOLOGY 2015; 69:748-757. [PMID: 25331109 DOI: 10.1007/s00248-014-0509-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change.
Collapse
Affiliation(s)
- Stephanie N Kivlin
- Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA,
| | | |
Collapse
|
12
|
Soliman HM, El-Metwall MA, Elkahky MT, Badawi WE. Alternatives to Chemical Control of Grey Mold Disease on Cucumber Caused
by Botrytis cinerea Pers. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajppaj.2015.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Staats CC, Kmetzsch L, Lubeck I, Junges A, Vainstein MH, Schrank A. Metarhizium anisopliae chitinase CHIT30 is involved in heat-shock stress and contributes to virulence against Dysdercus peruvianus. Fungal Biol 2013; 117:137-44. [DOI: 10.1016/j.funbio.2012.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022]
|
15
|
Mishra P, Kshirsagar PR, Nilegaonkar SS, Singh SK. Statistical optimization of medium components for production of extracellular chitinase by Basidiobolus ranarum: a novel biocontrol agent against plant pathogenic fungi. J Basic Microbiol 2012; 52:539-48. [PMID: 22359366 DOI: 10.1002/jobm.201100446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/12/2011] [Indexed: 11/11/2022]
Abstract
The influence of concentration of medium components such as colloidal chitin, lactose, malt extract, yeast extract, and peptone on the chitinase production from Basidiobolous ranarum at the flask level were studied by using statistical tool Central Composite Design (CCD) and analysed by Response Surface Methodology (RSM). The results revealed that colloidal chitin, malt extract and peptone had significant effect (P < 0.01) on the chitinase production at their individual levels. The polynomial equation of the model developed incorporates 3 linear, 3 quadratic and 5 interactive terms. Maximum chitinase production of 3.47 U ml(-1) was achieved with 1.5% colloidal chitin, 0.125% lactose, 0.025% malt extract and 0.075% peptone. After optimization, chitinase activity was increased by 7.71 fold. A second order polynomial equation was found to be useful for the development of efficient bioprocess for chitinase production. To screen the biotechnological potential of this enzyme, degradation of fungal mycelia by ammonium sulphate precipitate of the same was studied for several pathogenic fungi-in vitro which showed promising results particularly against Rhizoctonia solani and Fusarium solani. This study provides the first evidence showing the effectiveness of RSM for the development of a robust statistical model for the chitinase production by Basidiobolus and for its application in the biocontrol of phytopathogenic fungi.
Collapse
Affiliation(s)
- P Mishra
- Microbial Sciences Division, Agharkar Research Institute, Pune, India
| | | | | | | |
Collapse
|
16
|
Talbot JM, Treseder KK. Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 2012; 93:345-54. [DOI: 10.1890/11-0843.1] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Loc NH, Quang HT, Hung NB, Huy ND, Phuong TTB, Ha TTT. Trichoderma asperellumChi42 Genes Encode Chitinase. MYCOBIOLOGY 2011; 39:182-6. [PMID: 22783101 PMCID: PMC3385114 DOI: 10.5941/myco.2011.39.3.182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/09/2011] [Indexed: 05/03/2023]
Abstract
Four Trichoderma strains (CH2, SH16, PQ34, and TN42) were isolated from soil samples collected from Quang Tri and Thua Thien Hue provinces in Vietnam. The strains exhibited high chitinolytic secretion. Strain PQ34 formed the largest zone of chitinase-mediated clearance (> 4 cm in diameter) in agar containing 1% (w/v) colloidal chitin. Analysis of the internal transcribed spacer regions of these strains indicated that they were Trichoderma asperellum. The molecular weights of the chitinases were approximately 42 kDa. Chitinase genes (chi42) of T. asperellum strains TN42, CH2, SH16, and PQ34 were 98~99% homologous to the ech42 gene of T. harzianum CB-Pin-01 (accession No. DQ166036). The deduced amino acid sequences of both T. asperellum strains SH16 and TN42 shared 100% similarity.
Collapse
Affiliation(s)
- Nguyen Hoang Loc
- Institute of Resources, Environment and Biotechnology, Hue University, 27 Phan Dinh Phung St., Hue, Vietnam
| | | | | | | | | | | |
Collapse
|
18
|
Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa. Appl Environ Microbiol 2010; 76:6134-40. [PMID: 20656858 DOI: 10.1128/aem.01036-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.
Collapse
|
19
|
Asran-Amal A, Moustafa-Mahmoud SM, Sabet KK, El Banna OH. In vitro antagonism of cotton seedlings fungi and characterization of chitinase isozyme activities in Trichoderma harzianum. Saudi J Biol Sci 2010; 17:153-7. [PMID: 23961072 DOI: 10.1016/j.sjbs.2010.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 07/20/2009] [Indexed: 11/18/2022] Open
Abstract
The antagonistic fungus Trichoderma harzianum is widely recognized as a potential biocontrol agent against several soil-borne plant pathogens. T. harzinum is rich source of chitinoltic enzymes. In vitro screening of 5 isolates of T. harzinum, one isolate of Chaetomium globosum and one isolate of Conetherium mentance, revealed that all of them had reduced growth area of Macrophomina phaseolina, Fusarium solani and Rhizoctonia solani on PDA medium, significantly. The inhibition percentage ranged from 77.9 % to 55.9% for M. phaseolina and 59.2% to 40.4% for R. solani by T. harzinum and C. mentance, respectively. Inhibition for F. solani ranged from 76.5% to 55.7% by T. harzinum and C. globosum, respectively. Isozyme gel electrophoresis was used to assess chitinase activity secreted by selected isolates of T. harzinum under different pH degrees and temperatures. Obtained results indicated that activity of chitinase isozyme produced at 30 °C was higher than 15-20 °C for all tested isolates and activity of chitinase produced by isolates No. 4 and 5 of T. harzinum at pH (7-7.5) was higher than at pH 6, respectively.
Collapse
Affiliation(s)
- A Asran-Amal
- King Saud University, College of Science, Botany and Microbiology Department, Saudi Arabia
| | | | | | | |
Collapse
|
20
|
Determination of the growth and solubilization capabilities of Trichoderma harzianum T1. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0045-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Deng S, Lorito M, Penttilä M, Harman GE. Overexpression of an endochitinase gene (ThEn-42) in Trichoderma atroviride for increased production of antifungal enzymes and enhanced antagonist action against pathogenic fungi. Appl Biochem Biotechnol 2008; 142:81-94. [PMID: 18025571 DOI: 10.1007/s12010-007-0012-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/13/2006] [Accepted: 08/25/2006] [Indexed: 11/29/2022]
Abstract
Trichoderma is one of the most promising biocontrol agents against plant fungal diseases. In this study, a transgenic strain of Trichoderma atroviride was characterized. The transgenic strain contains an endochitinase gene (ThEn-42) driven by the cellulase promoter cbh1 of T. reesei for overexpression of ThEn-42. The culture filtrates of the transformant and the parental strain grown in eight different media were evaluated for chitinase and antifungal enzyme production based on activity gels, protein profiles, and antifungal activities. Results demonstrated that chitinases are important components and synergistic interactions play a key role in the antagonistic action of T. atroviride. Moreover, altering medium nutrient concentration and composition led to enhanced production of antifungal enzymes, a potential strategy for mass production. Two of the culture filtrates contained almost pure endochitinase, and could be excellent commercial sources for this enzyme. Several culture filtrates were highly antifungal. Two filtrates were so effective in biocontrol of a fungal pathogen, Penicillium digitatum, that they not only inhibited spore germination but destroyed the spores completely when 20 microl of culture filtrate (corresponding to approximately 104 microg of total protein) was applied in a total volume of 150 microl (approximately 0.7 mg protein ml(-1)).
Collapse
Affiliation(s)
- Shiping Deng
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
22
|
Nagy V, Seidl V, Szakacs G, Komoń-Zelazowska M, Kubicek CP, Druzhinina IS. Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation. Appl Environ Microbiol 2007; 73:7048-58. [PMID: 17827332 PMCID: PMC2074977 DOI: 10.1128/aem.00995-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selection of suitable strains for biotechnological purposes is frequently a random process supported by high-throughput methods. Using chitinase production by Hypocrea lixii/Trichoderma harzianum as a model, we tested whether fungal strains with superior enzyme formation may be diagnosed by DNA bar codes. We analyzed sequences of two phylogenetic marker loci, internal transcribed spacer 1 (ITS1) and ITS2 of the rRNA-encoding gene cluster and the large intron of the elongation factor 1-alpha gene, tef1, from 50 isolates of H. lixii/T. harzianum, which were also tested to determine their ability to produce chitinases in solid-state fermentation (SSF). Statistically supported superior chitinase production was obtained for strains carrying one of the observed ITS1 and ITS2 and tef1 alleles corresponding to an allele of T. harzianum type strain CBS 226.95. A tef1-based DNA bar code tool, TrichoCHIT, for rapid identification of these strains was developed. The geographic origin of the strains was irrelevant for chitinase production. The improved chitinase production by strains containing this haplotype was not due to better growth on N-acetyl-beta-D-glucosamine or glucosamine. Isoenzyme electrophoresis showed that neither the isoenzyme profile of N-acetyl-beta-glucosaminidases or the endochitinases nor the intensity of staining of individual chitinase bands correlated with total chitinase in the culture filtrate. The superior chitinase producers did not exhibit similarly increased cellulase formation. Biolog Phenotype MicroArray analysis identified lack of N-acetyl-beta-D-mannosamine utilization as a specific trait of strains with the chitinase-overproducing haplotype. This observation was used to develop a plate screening assay for rapid microbiological identification of the strains. The data illustrate that desired industrial properties may be an attribute of certain populations within a species, and screening procedures should thus include a balanced mixture of all genotypes of a given species.
Collapse
Affiliation(s)
- Viviana Nagy
- Department of Agricultural Chemical Technology, Technical University of Budapest, Gellert ter 4, 1111 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
23
|
Guthrie JL, Castle AJ. Chitinase production during interaction of Trichoderma aggressivum and Agaricus bisporus. Can J Microbiol 2006; 52:961-7. [PMID: 17110964 DOI: 10.1139/w06-054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The competitor fungus Trichoderma aggressivum causes green mould disease, a potentially devastating problem of the commercial mushroom Agaricus bisporus. Due to the recent appearance of this problem, very little is known about the mechanisms by which T. aggressivum interacts with and inhibits A. bisporus. A mechanism generally used by Trichoderma species in the antagonism of other fungi is the secretion of cell wall degrading enzymes. In this study, we determined the activities of chitinases produced in dual cultures of these fungi over a 2 week period. Both intracellular and extracellular enzymes were studied. Agaricus bisporus produced N-acetylglucosaminidases with apparent molecular masses of 111, 105, and 96 kDa. Two resistant brown strains produced greater activities of the 96 kDa N-acetylglucosaminidase than susceptible off-white and white strains. This result suggested that this enzyme might have a role in the resistance of commercial brown strains to green mould disease. Trichoderma aggressivum produced three N-acetylglucosaminidases with apparent molecular masses of 131, 125, and 122 kDa, a 40 kDa chitobiosidase, and a 36 kDa endochitinase. The 122 kDa N-acetylglucosaminidase showed the greatest activity and may be an important predictor of antifungal activity.Key words: mushrooms, chitinases, Trichoderma, Agaricus.
Collapse
Affiliation(s)
- Jennifer L Guthrie
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | | |
Collapse
|
24
|
Abstract
Chitin is the second most abundant organic and renewable source in nature, after cellulose. Chitinases are chitin-degrading enzymes. Chitinases have important biophysiological functions and immense potential applications. In recent years, researches on fungal chitinases have made fast progress, especially in molecular levels. Therefore, the present review will focus on recent advances of fungal chitinases, containing their nomenclature and assays, purification and characterization, molecular cloning and expression, family and structure, regulation, and function and application.
Collapse
Affiliation(s)
- Li Duo-Chuan
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
25
|
Inglis PW, Peberdy JF. Production and purification of a chitinase from Ewingella americana, a recently described pathogen of the mushroom, Agaricus bisporus. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb12772.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
26
|
Lindahl BD, Finlay RD. Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi. THE NEW PHYTOLOGIST 2006; 169:389-97. [PMID: 16411941 DOI: 10.1111/j.1469-8137.2005.01581.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The nitrogen (N) content of wood is usually suboptimal for fungal colonization. During decomposition of wood, an increasing fraction of the N becomes incorporated into fungal mycelium. Between 5 and 50% of the N in wood-degrading mycelium may be incorporated into chitin. Chitinolytic enzymes render this N available for re-utilization. Here, the activities of chitinolytic enzymes produced by wood-rotting fungi during degradation of spruce (Picea abies) wood were quantified in situ using fluorogenic 4-methylumbelliferyl substrates. A new method was developed that enables spatial quantification of enzyme activities on solid surfaces. All of the three tested fungi produced endochitinases, chitobiosidases and N-acetylhexosaminidases during colonization of wood. N-acetylhexosaminidase activity, and in some cases also chitobiosidase and endochitinase activities, were higher during secondary overgrowth of another fungus than during primary colonization of noncolonized wood. The results suggest that wood-degrading fungi degrade their own cell walls as well as the hyphae of earlier colonizers. Recycling of cell wall material within single mycelia and between fungal individuals during succession may lead to retention of N within woody debris.
Collapse
Affiliation(s)
- Björn D Lindahl
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden.
| | | |
Collapse
|
27
|
Ike M, Nagamatsu K, Shioya A, Nogawa M, Ogasawara W, Okada H, Morikawa Y. Purification, characterization, and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its expression in Escherichia coli. Appl Microbiol Biotechnol 2005; 71:294-303. [PMID: 16341861 DOI: 10.1007/s00253-005-0171-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/31/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
We purified a chitinase (named Chi46), with a molecular mass of 46 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, from the culture filtrate of Trichoderma reesei PC-3-7 grown on N-acetylglucosamine (GlcNAc). The relative activity of this enzyme reduced when the degrees of acetylation (DA) of chitosan decreased. Furthermore, the enzyme was able to hydrolyze colloidal chitin and ethylene glycol chitin. The gene chi46 was cloned and sequenced. chi46 encodes a protein of 424 amino acid residues containing a 35-amino acid prepro-type secretion signal peptide. The molecular mass of mature Chi46 calculated from deduced amino acid sequence was 42,265 Da. The chi46 transcript was biphasic when the mycelia were grown on GlcNAc, suggesting that the multiple regulatory proteins are involved in the chi46 expression. The chi46 cDNA was expressed in Escherichia coli (ca. 0.23 mg/ml culture). To determine substrate cleavage fashion of Chi46 in more detail, we carried out high-performance liquid chromatography analysis and viscosimetric assay using recombinant Chi46 (rChi46). Chi46 was shown to release mainly (GlcNAc)(2) from colloidal chitin (insoluble chitin) as an exo-type manner and to act on chitosan 7B (DA ca. 30%) and N-acetylchitooligosaccharides (soluble chitins) in an endo-type one.
Collapse
Affiliation(s)
- Masakazu Ike
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
McLean M, Angilletta M, Williams K. If you can’t stand the heat, stay out of the city: Thermal reaction norms of chitinolytic fungi in an urban heat island. J Therm Biol 2005. [DOI: 10.1016/j.jtherbio.2005.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Guthrie JL, Khalif S, Castle AJ. An improved method for detection and quantification of chitinase activities. Can J Microbiol 2005; 51:491-5. [PMID: 16121227 DOI: 10.1139/w05-020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chitinases are enzymes that serve critical roles in fungal growth and development, in resistance of plants to fungal pathogens, and in parasitism of insects by entomopathogenic fungi. The term "chitinase" is used for 3 enzymatic activities: N-acetylglucosaminidases, which sequentially release N-acetylglucosamine residues from the chitin polymer; chitobiosidases, which release disaccharides; and endochitinases, which cleave within the polymer and release oligosaccharides. We describe a technique where chitinases are separated on non-denaturing polyacrylamide gels, activities are visualized and characterized with chitinase specific substrates, and specific activities are estimated by image analysis. This technique permits a rapid determination of all of the types of chitinases present within a sample as well as their activities.Key words: chitinases, electrophoresis, non-denaturing gels.
Collapse
Affiliation(s)
- Jennifer L Guthrie
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | | |
Collapse
|
30
|
Huang CJ, Chen CY. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem Biophys Res Commun 2005; 327:8-17. [PMID: 15629422 DOI: 10.1016/j.bbrc.2004.11.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Indexed: 10/26/2022]
Abstract
Many chitinase genes have been cloned and sequenced from prokaryotes and eukaryotes but overexpression of chitinases in Escherichia coli cells was less reported. ChiCH and ChiCW of Bacillus cereus 28-9 belong to two distinct groups based on their amino acid sequences of catalytic domains, and in addition, domain structures of two enzymes are different. In this study, we established an ideal method for high-level expression of chitinases in E. coli as glutathione-S-transferase fusion proteins using pGEX-6P-1 vector. Both ChiCH and ChiCW were successfully highly expressed in E. coli cells as soluble GST-chitinase fusion proteins, and recombinant native ChiCH and ChiCW could be purified after cleavage with PreScission protease to remove GST tag. Purified chitinases were used for biochemical characterization of kinetics, hydrolysis products, and binding activities. The results indicate that ChiCW is an endo-chitinase and effectively hydrolyzes chitin and chito-multimers to chito-oligomers and the end product chitobiose, and ChiCH is an exo-chitinase and degrades chito-oligomers to produce chitobiose. Furthermore, due to higher affinity of ChiCW toward colloidal chitin than Avicel, C-terminal domain of ChiCW should be classified as a chitin-binding domain not a cellulose-binding domain although that was revealed as a cellulose-binding domain by conserved domain analysis. Therefore, the method of high-level expression of chitinases is helpful to studies and applications of chitinases.
Collapse
Affiliation(s)
- Chien-Jui Huang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106, Taiwan.
| | | |
Collapse
|
31
|
Duo-Chuan LI, Chen S, Jing LU. Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia 2005; 159:223-9. [PMID: 15770448 DOI: 10.1007/s11046-004-9096-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 05/03/2004] [Indexed: 11/30/2022]
Abstract
Chitinases were produced by Talaromyces flavus CGMCC 3.4301 when it was grown in the presence of chitin. Two chitinases from the culture filtrate of T. flavus were purified to homogeneity by fractional ammonium sulphate precipitation, ion-exchange chromatography on DEAE-Sepharose and Phenyl-Sepharose hydrophobic interaction chromatography. By SDS-PAGE, the molecular weight of the two enzymes was estimated to be 41 and 32 kDa, respectively. The 41 kDa chitinase (CHIT41) had a 4.0 pH optimum; the 32 kDa chitinase (CHIT32) optimum activity was at pH 5.0. The optimum temperature for the two chitinase activities was 40 degrees C. The two chitinases had activity against cell wall of Verticillium dahliae, Sclerotinia sclerotiorum and Rhizoctonia solani, and inhibited spore germination and germ tube elongation of Alternaria alternata, Fusarium moniliforme, and Magnaporthe grisea.
Collapse
Affiliation(s)
- L I Duo-Chuan
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong, 271018, P.R.China.
| | | | | |
Collapse
|
32
|
Hoell IA, Klemsdal SS, Vaaje-Kolstad G, Horn SJ, Eijsink VGH. Overexpression and characterization of a novel chitinase from Trichoderma atroviride strain P1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1748:180-90. [PMID: 15769595 DOI: 10.1016/j.bbapap.2005.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/20/2004] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
We describe the overexpression and characterization of a new 30 kDa family 18 chitinase (Ech30) from Trichoderma atroviride strain P1. Sequence alignments indicate that the active site architecture of Ech30 resembles that of endochitinases such as hevamine from the rubber tree (Hevea brasiliensis). The ech30 gene was overexpressed in Escherichia coli without its signal peptide and with an N-terminal His-tag. The enzyme was produced as inclusion bodies, from which active chitinase could be recovered using a simple refolding procedure. The enzyme displayed an acidic pH-optimum (pH 4.5-5.0), probably due to the presence of a conserved Asn residue near the catalytic glutamate, which is characteristic for acidic family 18 chitinases. Studies with oligomers of N-acetylglucosamine [(GlcNAc)(n)], 4-methylumbelliferyl (4-MU) labelled GlcNAc oligomers and beta-chitin reveal enzymatic properties typical of an endochitinase: 1) low activity towards short substrates (kinetic parameters for the hydrolysis of 4-MU-(GlcNAc)2 were K(m), 149+/-29 microM and k(cat), 0.0048+/-0.0005 s(-1)), and 2) production of relatively large amounts of trimers and tetramers during degradation of beta-chitin. Detailed studies with GlcNAc oligomers indicated that Ech30 has as many as seven subsites for sugar binding. As expected for a family 18 chitinase, catalysis proceeded with retention of the beta-anomeric configuration.
Collapse
Affiliation(s)
- Ingunn A Hoell
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 As, Norway
| | | | | | | | | |
Collapse
|
33
|
Lindahl BD, Taylor AFS. Occurrence of N-acetylhexosaminidase-encoding genes in ectomycorrhizal basidiomycetes. THE NEW PHYTOLOGIST 2004; 164:193-199. [PMID: 33873479 DOI: 10.1111/j.1469-8137.2004.01147.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The genetic potential of ectomycorrhizal fungi to produce N-acetylhexosaminidases was investigated here. N-acetylhexosaminidases are enzymes that cleave monosaccharides from oligomers of N-acetylhexosamines and play an important role in the degradation of chitin. • Degenerate PCR-primers were designed against genes coding for N-acetylhexosaminidases in basidiomycetes. PCR was performed with DNA templates extracted from sporocarps of 26 ectomycorrhizal fungal species and two saprotrophs. • PCR-products were obtained from 18 species representing 12 genera distributed throughout the basidiomycete phylogeny. Sequencing confirmed that the products were homologous with N-acetylhexosaminidase genes from plants, animals and other fungi. Some species yielded two PCR-products representing isoenzymes. • Chitin constitutes a potentially important nitrogen source in soil. Our results demonstrate that a wide range of ectomycorrhizal fungi have the genetic potential to produce N-acetylhexosaminidases, and the expression of this potential would enable them to exploit polymers of amino sugars as a source of nitrogen for themselves and their host plants.
Collapse
Affiliation(s)
- Björn D Lindahl
- Department of Forest Mycology and Pathology, SLU, Box 7026, SE-750 07 Uppsala, Sweden
| | - Andy F S Taylor
- Department of Forest Mycology and Pathology, SLU, Box 7026, SE-750 07 Uppsala, Sweden
| |
Collapse
|
34
|
Andronopoulou E, Vorgias CE. Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus. Appl Microbiol Biotechnol 2004; 65:694-702. [PMID: 15322771 DOI: 10.1007/s00253-004-1640-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/22/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Thermococcus chitonophagus produces several, cellular and extracellular chitinolytic enzymes following induction with various types of chitin and chitin oligomers, as well as cellulose. Factors affecting the anaerobic culture of this archaeon, such as optimal temperature, agitation speed and type of chitin, were investigated. A series of chitinases, co-isolated with the major, cell membrane-associated endochitinase (Chi70), and a periplasmic chitobiase (Chi90) were subsequently isolated. In addition, a distinct chitinolytic activity was detected in the culture supernatant and partially purified. This enzyme exhibited an apparent molecular mass of 50 kDa (Chi50) and was optimally active at 80 degrees C and pH 6.0. Chi50 was classified as an exochitinase based on its ability to release chitobiose as the exclusive hydrolysis product of colloidal chitin. A multi-component enzymatic apparatus, consisting of an extracellular exochitinase (Chi50), a periplasmic chitobiase (Chi90) and at least one cell-membrane-anchored endochitinase (Chi70), seems to be sufficient for effective synergistic in vivo degradation of chitin. Induction with chitin stimulates the coordinated expression of a combination of chitinolytic enzymes exhibiting different specificities for polymeric chitin and its degradation products. Among all investigated potential inducers and nutrient substrates, colloidal chitin was the strongest inducer of chitinase synthesis, whereas the highest growth rate was obtained following the addition of yeast extract and/or peptone to the minimal, mineralic culture medium in the absence of chitin. In rich medium, chitin monomer acted as a repressor of total chitinolytic activity, indicating the presence of a negative feedback regulatory mechanism. Despite the undisputable fact that the multi-component chitinolytic system of this archaeon is strongly induced by chitin, it is clear that, even in the absence of any chitinous substrates, there is low-level, basal, constitutive production of chitinolytic enzymes, which can be attributed to the presence of traces of chito-oligosaccharides and other structurally related molecules (in the undefined, rich, non-inducing medium) that act as potential inducers of chitinolytic activity. The low, basal and constitutive levels of chitinase gene expression may be sufficient to initiate chitin degradation and to release soluble oligomers, which, in turn, induce chitinase synthesis.
Collapse
Affiliation(s)
- Evi Andronopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis-Zographou, 15701 Athens, Greece
| | | |
Collapse
|
35
|
Kredics L, Manczinger L, Antal Z, Pénzes Z, Szekeres A, Kevei F, Nagy E. In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 2004; 96:491-8. [PMID: 14962129 DOI: 10.1111/j.1365-2672.2004.02167.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Water activity (aw) and pH are probably the most important environmental parameters affecting the activities of mycoparasitic Trichoderma strains. Therefore it is important to collect information on the effects of these factors on mycelial growth and on the in vitro activities of extracellular enzymes involved in nutrient competition (e.g. beta-glucosidase, cellobiohydrolase and beta-xylosidase) and mycoparasitism (e.g. N-acetyl-beta-glucosaminidase, trypsin-like protease and chymotrypsin-like protease) of Trichoderma strains with biocontrol potential. METHODS AND RESULTS Water activity and pH dependence of the linear mycelial growth of five examined Trichoderma strains belonging to three different species groups was examined on yeast extract and soil extract media. Maximal growth rates were observed at aw 0.997 and pH 4.0 in the case of all strains. The activities of the examined extracellular enzymes at different aw and pH values were determined spectrophotometrically after incubation with chromogenic p-nitrophenyl and p-nitroaniline substrates. Maximal enzyme activities were measured at aw 0.950 for beta-glucosidase, trypsin-like protease and chymotrypsin-like protease, at 0.910 for cellobiohydrolase and at 0.993 for beta-xylosidase and N-acetyl-beta-glucosaminidase enzymes. Optimal pH values are suggested to be at 5.0 for beta-glucosidase, cellobiohydrolase and N-acetyl-beta-glucosaminidase, at 3.0 for beta-xylosidase, at 6.0 for trypsin-like protease and between 6.0 and 7.0 for chymotrypsin-like protease activities, respectively. CONCLUSIONS Extracellular enzymes of the examined mycoparasitic Trichoderma strains are able to display activities under a wider range of aw and pH values than those allowing mycelial growth. SIGNIFICANCE AND IMPACT OF THE STUDY Data about the effects of aw and pH on mycelial growth and extracellular enzyme activities of Trichoderma reveal useful information about the applicability of biocontrol strains in agricultural soils with specific water and pH relations.
Collapse
Affiliation(s)
- L Kredics
- Microbiological Research Group, Hungarian Academy of Sciences and University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
36
|
Li DC, Zhang SH, Liu KQ, Lu J. Purification and partial characterization of a chitinase from the mycoparasitic fungus Trichothecium roseum. J GEN APPL MICROBIOL 2004; 50:35-9. [PMID: 15057709 DOI: 10.2323/jgam.50.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Duo-Chuan Li
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | | | | | |
Collapse
|
37
|
Fodor E, Dósa E, Nagy A, Nagy E, Ferenczy L. Karyotyping of Candida albicans and Candida glabrata isolates from recurrent vaginal infections by pulsed-field gel electrophoresis. Acta Microbiol Immunol Hung 2002; 49:59-68. [PMID: 12073826 DOI: 10.1556/amicr.49.2002.1.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, 16 women with recurrent vulvovaginal candidiasis (RVVC) due to Candida albicans and Candida (Torulopsis) glabrata were followed for a period of 4 to 12 months, and 36 vaginal isolates were evaluated by pulsed-field gel electrophoresis (PFGE). Eleven women were infected by C. albicans and 5 by C. glabrata. Three electrophoretic karyotypes of C. albicans and 3 of C. glabrata were identified throughout the follow-up. All patients but one was infected with the same karyotype of C. albicans or C. glabrata during the follow-up period. Two different karyotypes of C. glabrata were identified in one patient in the course of 12 months. The results confirmed the diversity of the karyotypes of C. albicans and C. glabrata causing vulvovaginitis, and demonstrated the persistence of colonization with the same strain over different periods of time despite therapy (15/16 women).
Collapse
Affiliation(s)
- Eleonóra Fodor
- Department of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
38
|
Hatvani N, Kredics L, Antal Z, Mécs I. Changes in activity of extracellular enzymes in dual cultures of Lentinula edodes and mycoparasitic Trichoderma strains. J Appl Microbiol 2002; 92:415-23. [PMID: 11872116 DOI: 10.1046/j.1365-2672.2002.01542.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The main problem that arises during the cultivation of Lentinula edodes, the Asian Shiitake mushroom, is that the logs on which the cultivation is performed are contaminated by competing micro-organisms, especially Trichoderma spp. The aim of this study was to examine the changes in activity of extracellular enzymes in dual cultures of Trichoderma spp. and L. edodes. METHODS AND RESULTS Extracellular enzyme activities were determined spectrophotometrically. Trichoderma enzymes important for the degradation of fungal cell walls (N-acetyl-beta-glucosaminidase and laminarinase) were shown to be induced by inactive L. edodes mycelia in liquid culture. The changes that occurred in the extracellular enzyme activities of L. edodes and mycoparasitic Trichoderma spp. (T. aureoviride, T. harzianum and T. viride) were examined during antagonistic interactions on solid medium. The extracellular enzyme patterns of both partners proved to be altered. Trichoderma spp. were induced to produce N-acetyl-beta-glucosaminidase and laminarinase in the presence of active L. edodes mycelia, similarly as observed in liquid culture. The activities of both laccase and manganese peroxidase of L. edodes decreased after physical contact with active Trichoderma mycelia, possibly in consequence of the beginning of degradation of L. edodes by the Trichoderma enzymes. However, besides a decrease in manganese peroxidase activity, an enhancement of L. edodes laccase activity was observed on solid media containing crude culture fluids from Trichoderma liquid cultures. The metabolites responsible for these effects proved to be heat stable. CONCLUSIONS Induction and inhibition of several extracellular enzymes of both partners were shown in dual cultures of L. edodes and Trichoderma strains, indicating the important role of these enzymes in the antagonistic interaction between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY As the main problem during the large-scale cultivation of L. edodes is the contamination of the growth substrate by Trichoderma mycelia, the particular knowledge of the mechanism of this competition might be relevant.
Collapse
Affiliation(s)
- N Hatvani
- Institute for Biotechnology, Zoltan Bay Foundation for Applied Research, PO Box 2337, H-6701 Szeged, Hungary.
| | | | | | | |
Collapse
|
39
|
Taylor G, Jabaji-Hare S, Charest PM, Khan W. Purification and characterization of an extracellular exochitinase, beta-N-acetylhexosaminidase, from the fungal mycoparasite Stachybotrys elegans. Can J Microbiol 2002; 48:311-9. [PMID: 12030703 DOI: 10.1139/w02-020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mycoparasite Stachybotrys elegans produces two exo- and one endo-acting chitinases when grown on chitin. We purified to homogeneity one of the exo-acting chitinases, beta-N-acetylhexosaminidase and partially characterized its physical and biochemical properties. The native enzyme has a molecular mass of 120 kDa when determined by gel filtration and 68 kDa by sodium dodecyl sulfate - polyacrylamide gel electrophoresis indicating that the native protein probably occurs as a dimer in solution. The purified beta-N-acetylhexosaminidase is most active at pH 5.0 and 40 degrees C and hydrolyzes the p-nitrophenyl-N-acetyl-beta-D-glucosaminide with apparent Km of 84.6 microM. Polyclonal antibodies raised against the 68-kDa beta-N-acetylhexosaminidase (NAG-68) indicated that the antibody is highly specific and recognizes the protein in crude filtrate preparation. This suggests that the protein is a not a proteolytic product of another protein. Western blot analysis showed that the activity of NAG-68 was induced when S. elegans was grown on purified cell wall fragments of its host, Rhizoctonia solani, as well as during antagonistic interaction of the mycoparasite and host when both were grown on synthetic medium with or without supplemental carbon source.
Collapse
Affiliation(s)
- Greg Taylor
- Department of Plant Science, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
40
|
Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 2002; 35:67-78. [PMID: 11860266 DOI: 10.1006/fgbi.2001.1312] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Culture filtrates of the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium growing on colloidal chitin showed increasing chitinolytic activity and production of two (32- and 43-kDa) main proteins. Maximum activity was found 18-20 days after inoculation, but V. suchlasporium always displayed higher activity. Zymography of such filtrates on carboxymethyl-chitin-Remazol brilliant violet 5R/acrylamide gels showed five bands of substrate degradation for V. suchlasporium and three for V. chlamydosporium. Filtrates with maximum activity were chromatographed on macroporous cross-linked chitin affinity matrix, showing a peak of main (50-60%) activity, which only contained a 43-kDa protein for both fungi. Zymography and colloidal chitin degradation showed that it was a single endochitinase (CHI43) with optimum pH range of 5.2-5.7. The main isoforms had pIs of 7.6 for V. suchlasporium and 7.9 for V. chlamydosporium. Eggs of the nematode Globodera pallida treated with CHI43 and the serine protease P32 from V. suchlasporium alone or in combination showed surface damage in comparison with controls when examined by scanning electron microscopy.
Collapse
Affiliation(s)
- Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilow St., 28, Moscow, Russia
| | | | | | | |
Collapse
|
41
|
Witkowska D, Maj A. Production of lytic enzymes by Trichoderma spp. and their effect on the growth of phytopathogenic fungi. Folia Microbiol (Praha) 2002; 47:279-82. [PMID: 12094738 DOI: 10.1007/bf02817652] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The production of beta-1,3-glucanases and chitinases by three strains of Trichoderma in submerged cultures was determined. The synthesis of enzymes was induced by cell wall biopolymers of phytopathogenic fungi (Botrytis cinerea, Fusarium culmorum and F. oxysporum). T. hamatum produced the highest beta-1,3-glucanase activity; the most effective inducer of enzyme synthesis was the biomass of F. oxysporum. All examined strains of Trichoderma inhibited phytopathogen growth in biotic tests. The diffusion tests showed that the lytic enzymes take part in growth inhibition of phytopathogenic fungi.
Collapse
Affiliation(s)
- D Witkowska
- Department of Biotechnology and Food Microbiology, Agricultural University of Wrocław, 50-375 Wrocław, Poland
| | | |
Collapse
|
42
|
Inglis GD, Kawchuk LM. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 2002; 48:60-70. [PMID: 11888164 DOI: 10.1139/w01-130] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourteen fungi (primarily representing mycoparasitic and biocontrol fungi) were tested for their ability to grow on and degrade cell walls (CWs) of an oomycete (Pythium ultimum), ascomycete (Fusarium equisetii), and basidiomycete (Rhizoctonia solani), and their hydrolytic enzymes were characterized. Protein was detected in the cultural medium of eleven of the test isolates, and these fungi significantly degraded CWs over the 14-day duration of the experiment. In general, a greater level of CW degradation occurred for F. equisetii and P. ultimum than for R. solani. Fungi that degraded F. equisetii CWs were Coniothyrium minitans, Gliocladium roseum, Myrothecium verrucaria, Talaromyces flavus, and Trichoderma harzianum. Taxa degrading P ultimum CWs included Chaetomium globosum, Coniothyrium minitans, M. verrucaria, Seimatosporium sp., Talaromyces flavus, Trichoderma hamatum, Trichoderma harzianum, and Trichoderma viride. Production of extracellular protein was highly correlated with CW degradation. Considerable variation in the molecular weights of CW-degrading enzymes were detected among the test fungi and the CW substrates in zymogram electrophoresis. Multivariate analysis between CW degradation and hydrolysis of barley beta-glucan (beta1,3- and beta1,4-glucanases), laminarin (beta1,3- and beta1,6-glucanases), carboxymethyl cellulose (endo-beta1,4-glucanases), colloidal chitin (chitinases), and chitosan (chitosanases) was conducted. For F. equisetii CWs, the regression model accounted for 80% of the variability, and carboxymethyl cellulases acting together with beta-glucanases contributed an R2 of 0.52, whereas chitinases and beta-glucanases alone contributed an R2 of 0.11 and 0.12, respectively. Only 61% of the variability observed in the degradation of P. ultimum CWs was explained by the enzyme classes tested, and primarily beta-glucanases (R2 of 0.53) and carboxymethyl cellulases (R2 of 0.08) alone contributed to CW break down. Too few of the test fungi degraded R. solani CWs to perform multivariate analysis effectively. This study identified several fungi that degraded ascomyceteous and oomyceteous, and to a lesser extent, basidiomycetous CWs. An array of enzymes were implicated in CW degradation.
Collapse
Affiliation(s)
- G D Inglis
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB.
| | | |
Collapse
|
43
|
Viterbo A, Haran S, Friesem D, Ramot O, Chet I. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 2001; 200:169-74. [PMID: 11425470 DOI: 10.1111/j.1574-6968.2001.tb10710.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A novel 36-kDa endochitinase named chit36 has been isolated and characterized from Trichoderma harzianum Rifai TM. Partial amino acid sequences from the purified protein were used to clone the fungal cDNA, based on polymerase chain reaction with degenerate primers. The complete open reading frame encodes a 344-amino acid protein which shows 84% similarity to a putative chitinase from Streptomyces coelicolor. Chit36 was overexpressed under the pki1 constitutive promoter from Trichoderma reesei via biolistic transformation of T. harzianum TM. Stable transformants showed expression and endochitinase activity of chit36 in glucose-rich medium. Culture filtrates containing secreted CHIT36 as the sole chitinolytic enzyme completely inhibited the germination of Botrytis cinerea conidia. Growth of Fusarium oxysporum f. sp. melonis and Sclerotium rolfsii were significantly inhibited on agar plates on which the Trichoderma transformants had previously been grown.
Collapse
Affiliation(s)
- A Viterbo
- Otto-Warburg-Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, Faculty of Agriculture, P.O. Box 12, 76100, Rehovot, Israel.
| | | | | | | | | |
Collapse
|
44
|
Abstract
The public concern over the harmful effects of chemical pesticides on the environment and human health has enhanced the search for safer, environmentally friendly control alternatives. Control of plant pests by the application of biological agents holds great promise as an alternative to the use of chemicals. It is generally recognized that biological control agents are safer and more environmentally sound than is reliance on the use of high volumes of pesticides. Due to the importance of chitinolytic enzymes in insect, nematode, and fungal growth and development, they are receiving attention in regard to their development as biopesticides or chemical defense proteins in transgenic plants and microbial biocontrol agents. In this sense, biological control of some soil-borne fungal diseases has been correlated with chitinase production. Fungi- and bacteria-producing chitinases exhibit antagonism against fungi, and inhibition of fungal growth by plant chitinases has been demonstrated. Insect pathogenic fungi have considerable potential for the biological control of insect pests. Entomopathogenic fungi apparently overcome physical barriers of the host by producing multiple extracellular enzymes including chitinolytic enzymes, which help to penetrate the cuticle and facilitate infection. In this chapter, the role of chitinases in biological control and their potential use in the improvement of biocontrol agents and crop plants by genetic engineering is analyzed in view of recent findings.
Collapse
Affiliation(s)
- A Herrera-Estrella
- Centro de Investigación y Estudios Avanzados, Unidad Irapuato, Irapuato, Gto., Méxixo
| | | |
Collapse
|
45
|
Regulation of β-1,3-glucanase by carbon starvation in the mycoparasite Trichoderma harzianum. ACTA ACUST UNITED AC 2000. [DOI: 10.1017/s0953756299001471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Induction of defense responses in cucumber plants (Cucumis sativus L. ) By the biocontrol agent trichoderma harzianum. Appl Environ Microbiol 1999; 65:1061-70. [PMID: 10049864 PMCID: PMC91145 DOI: 10.1128/aem.65.3.1061-1070.1999] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential of the biocontrol agent Trichoderma harzianum T-203 to trigger plant defense responses was investigated by inoculating roots of cucumber seedlings with Trichoderma in an aseptic, hydroponic system. Trichoderma-treated plants were more developed than nontreated plants throughout the experiment. Electron microscopy of ultrathin sections from Trichoderma-treated roots revealed penetration of Trichoderma into the roots, restricted mainly to the epidermis and outer cortex. Strengthening of the epidermal and cortical cell walls was observed, as was the deposition of newly formed barriers. These typical host reactions were found beyond the sites of potential fungal penetration. Wall appositions contained large amounts of callose and infiltrations of cellulose. The wall-bound chitin in Trichoderma hyphae was preserved, even when the hyphae had undergone substantial disorganization. Biochemical analyses revealed that inoculation with Trichoderma initiated increased peroxidase and chitinase activities within 48 and 72 h, respectively. These results were observed for both the roots and the leaves of treated seedlings, providing evidence that T. harzianum may induce systemic resistance mechanisms in cucumber plants.
Collapse
|
47
|
Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, Chet I, Herrera-Estrella A. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 1999; 65:929-35. [PMID: 10049844 PMCID: PMC91125 DOI: 10.1128/aem.65.3.929-935.1999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the Trichoderma harzianum endochitinase (Ech42) in mycoparasitism was studied by genetically manipulating the gene that encodes Ech42, ech42. We constructed several transgenic T. harzianum strains carrying multiple copies of ech42 and the corresponding gene disruptants. The level of extracellular endochitinase activity when T. harzianum was grown under inducing conditions increased up to 42-fold in multicopy strains as compared with the wild type, whereas gene disruptants exhibited practically no activity. The densities of chitin labeling of Rhizoctonia solani cell walls, after interactions with gene disruptants were not statistically significantly different than the density of chitin labeling after interactions with the wild type. Finally, no major differences in the efficacies of the strains generated as biocontrol agents against R. solani or Sclerotium rolfsii were observed in greenhouse experiments.
Collapse
Affiliation(s)
- C Carsolio
- Centro de Investigación y Estudios Avanzados, Plant Biotechnology and Genetic Engineering Unit, Irapuato, México
| | | | | | | | | | | | | |
Collapse
|
48
|
Induction of the Trichoderma harzianum chitinolytic system is triggered by the chitin monomer, N-acetylglucosamine. ACTA ACUST UNITED AC 1998. [DOI: 10.1017/s0953756298006261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart GS. Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 1998; 180:4435-41. [PMID: 9721280 PMCID: PMC107452 DOI: 10.1128/jb.180.17.4435-4441.1998] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing control mediated by N-acyl homoserine lactone (AHL) signaling molecules has been established as a key feature of the regulation of exoenzyme production in many gram-negative bacteria. In Chromobacterium violaceum ATCC 31532 a number of phenotypic characteristics, including production of the purple pigment violacein, hydrogen cyanide, antibiotics, and exoproteases are known to be regulated by the endogenous AHL N-hexanoyl-L-homoserine lactone (HHL). In this study we show that C. violaceum produces a set of chitinolytic enzymes whose production is regulated by HHL. The chitinolytic activity was induced in strains grown in the presence of chitin as the sole carbon source and quantitated in the secreted proteins by using p-nitrophenol analogs of disaccharide, trisaccharide, and tetrasaccharide oligomers of N-acetylglucosamine. By using 4-methylumbelliferyl analogs of the same oligomers of N-acetylglucosamine as substrates for proteins separated and renatured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, at least six enzymes were detected: a chitobiase with high specificity to a dimeric substrate of 87 kDa, two N-acetylglucosaminidases with apparent molecular masses of 162 and 133 kDa, two endochitinases of 108 and 67 kDa, and a chitobiosidase of 56 kDa. In addition, two unidentified bands of >205 kDa were found where a tetrameric chitin derivative was used as a substrate. A pleiotropic mini-Tn5 mutant of C. violaceum (CV026) that is defective in HHL production and other quorum-sensing-regulated factors was also found to be completely deficient in chitinolytic activity. Growth of this mutant on minimal medium with chitin supplemented with culture supernatant from the C. violaceum wild-type strain or 10 microM synthetic HHL restored chitinase production to the level shown by the parental strain. These results constitute the most complete evidence so far for regulation of chitinolytic activity by AHL signaling in a gram-negative bacterium.
Collapse
Affiliation(s)
- L S Chernin
- The Otto Warburg Center for Biotechnology in Agriculture and the Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Deane EE, Whipps JM, Lynch JM, Peberdy JF. The purification and characterization of a Trichoderma harzianum exochitinase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1383:101-10. [PMID: 9546051 DOI: 10.1016/s0167-4838(97)00183-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A chitinolytic enzyme was purified from the culture filtrate of T. harzianum (T198) by precipitation with ammonium sulphate followed by affinity binding to swollen chitin and release with 10% (v/v) acetic acid. The molecular weight of the enzyme was calculated to be 28 and 27.5 kD by gel filtration chromatography and SDS-PAGE, respectively. The isoelectric point of the enzyme was 7.4. The pH optimum for activity was 3.5 and maximum activity was obtained at 50 degrees C. The enzyme displayed activity on a wide array of chitin substrates of more than two N-acetylglucosamine units in length. HPLC analysis of hydrolysis products demonstrated that the enzyme was an exochitinase releasing N-acetylglucosamine only.
Collapse
Affiliation(s)
- E E Deane
- Department of Life Science, University of Nottingham, UK
| | | | | | | |
Collapse
|