1
|
Cao X, Deng Y, Xu Z, Wang T, Tang B, Han J, Guo R, Yin R. A versatile natural gelatin-based hydrogel for emergency wound treatment through hemostasis, antibacterial, and anti-inflammation. Biofabrication 2024; 17:015017. [PMID: 39437818 DOI: 10.1088/1758-5090/ad89ff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Emergency wounds are often accompanied by bacterial infection, oxidative stress, and excessive inflammation due to the inability to quickly close and stop bleeding, resulting in chronic wounds that are difficult to heal. Clinically, surgical suturing is the fastest method for wound closure, but it is only suitable for wounds with small bleeding volumes and causes unsightly scar formation. Consequently, there is a critical need for hemostatic dressings versatile enough to address a spectrum of diverse and intricate wounds, especially in emergency scenarios. In this study, we constructed a unique versatile natural gelatin-based hydrogel with hemostasis, antibacterial, and anti-inflammation properties. The hydrogel was composed of 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butyrylethylenediamine-modified methacrylated gelatin (GelMA-NB) and epigallocatechin gallate-grafted polylysine (EPL-EGCG), which imparts adhesion, antibacterial and antioxidant properties to the hydrogel. Simultaneously, the hydrogel was loaded with GelMA microspheres encapsulating natural resveratrol (RES@GM). This combination not only exhibited outstanding hemostatic capabilities but also preserved the anti-inflammatory potential of RES. In different animal models, the hydrogel exhibited outstanding hemostatic and wound healing effects, down-regulated the expression of IL-1βto promote inflammatory regulation and potential for angiogenesis and anti-scar. In conclusion, unique versatile natural gelatin-based hydrogel suitable for various complex wounds provides a promising strategy for emergency wound dressing applications.
Collapse
Affiliation(s)
- Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Yonghao Deng
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Tingting Wang
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Bing Tang
- Aesthetic Medicine and Photomedicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
- Department of Burns, Wound Repair and Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Jiande Han
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632 Guangdong, People's Republic of China
| | - Rong Yin
- Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
- Aesthetic Medicine and Photomedicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Gupta P, Herring B, Kumar N, Telange R, Garcia-Buntley SS, Caceres TW, Colantonio S, Williams F, Kurup P, Carter AM, Lin D, Chen H, Rose B, Jaskula-Sztul R, Mukhtar S, Reddy S, Bibb JA. Faulty Metabolism: A Potential Instigator of an Aggressive Phenotype in Cdk5-dependent Medullary Thyroid Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544755. [PMID: 37398342 PMCID: PMC10312670 DOI: 10.1101/2023.06.13.544755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mechanistic modeling of cancers such as Medullary Thyroid Carcinoma (MTC) to emulate patient-specific phenotypes is challenging. The discovery of potential diagnostic markers and druggable targets in MTC urgently requires clinically relevant animal models. Here we established orthotopic mouse models of MTC driven by aberrantly active Cdk5 using cell-specific promoters. Each of the two models elicits distinct growth differences that recapitulate the less or more aggressive forms of human tumors. The comparative mutational and transcriptomic landscape of tumors revealed significant alterations in mitotic cell cycle processes coupled with the slow-growing tumor phenotype. Conversely, perturbation in metabolic pathways emerged as critical for aggressive tumor growth. Moreover, an overlapping mutational profile was identified between mouse and human tumors. Gene prioritization revealed putative downstream effectors of Cdk5 which may contribute to the slow and aggressive growth in the mouse MTC models. In addition, Cdk5/p25 phosphorylation sites identified as biomarkers for Cdk5-driven neuroendocrine tumors (NETs) were detected in both slow and rapid onset models and were also histologically present in human MTC. Thus, this study directly relates mouse and human MTC models and uncovers vulnerable pathways potentially responsible for differential tumor growth rates. Functional validation of our findings may lead to better prediction of patient-specific personalized combinational therapies.
Collapse
Affiliation(s)
- Priyanka Gupta
- Department of Translational Neuroscience, University of Arizona School of Medicine in Phoenix, Phoenix, AZ 85004-2230, USA
| | - Brendon Herring
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Nilesh Kumar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rahul Telange
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sandra S. Garcia-Buntley
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tessa W. Caceres
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simona Colantonio
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ford Williams
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Pradeep Kurup
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Angela M. Carter
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Diana Lin
- Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Bart Rose
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sushanth Reddy
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - James A. Bibb
- Department of Translational Neuroscience, University of Arizona School of Medicine in Phoenix, Phoenix, AZ 85004-2230, USA
| |
Collapse
|
4
|
Brunet T, Booth DS. Cell polarity in the protist-to-animal transition. Curr Top Dev Biol 2023; 154:1-36. [PMID: 37100515 DOI: 10.1016/bs.ctdb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.
Collapse
|
5
|
Mechanical coupling of supracellular stress amplification and tissue fluidization during exit from quiescence. Proc Natl Acad Sci U S A 2022; 119:e2201328119. [PMID: 35914175 PMCID: PMC9371707 DOI: 10.1073/pnas.2201328119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Most cells in the human body reside in a dormant state characterized by slow growth and minimal motility. During episodes such as wound healing, stem cell activation, and cancer growth, cells adapt to a more dynamic behavior characterized by proliferation and migration. However, little is known about the mechanical forces controlling the transition from static to motile following exit from dormancy. We demonstrate that keratinocyte monolayers install a mechanical system during dormancy that produces a coordinated burst of intercellular mechanical tension only minutes after dormancy exit. The activated forces are essential for large-scale displacements of otherwise motility-restricted cell sheets. Thus, cells sustain a mechanical system during dormancy that idles in anticipation of cell cycle entry and prompt activation of motion. Cellular quiescence is a state of reversible cell cycle arrest that is associated with tissue dormancy. Timely regulated entry into and exit from quiescence is important for processes such as tissue homeostasis, tissue repair, stem cell maintenance, developmental processes, and immunity. However, little is known about processes that control the mechanical adaption to cell behavior changes during the transition from quiescence to proliferation. Here, we show that quiescent human keratinocyte monolayers sustain an actinomyosin-based system that facilitates global cell sheet displacements upon serum-stimulated exit from quiescence. Mechanistically, exposure of quiescent cells to serum-borne mitogens leads to rapid amplification of preexisting contractile sites, leading to a burst in monolayer tension that subsequently drives large-scale displacements of otherwise motility-restricted monolayers. The stress level after quiescence exit correlates with the level of quiescence depth at the time of activation, and a critical stress magnitude must be reached to overcome the cell sheet displacement barrier. The study shows that static quiescent cell monolayers are mechanically poised for motility, and it identifies global stress amplification as a mechanism for overcoming motility restrictions in confined confluent cell monolayers.
Collapse
|
6
|
Reibring CG, El Shahawy M, Hallberg K, Harfe BD, Linde A, Gritli-Linde A. Loss of BMP2 and BMP4 Signaling in the Dental Epithelium Causes Defective Enamel Maturation and Aberrant Development of Ameloblasts. Int J Mol Sci 2022; 23:6095. [PMID: 35682776 PMCID: PMC9180982 DOI: 10.3390/ijms23116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
BMP signaling is crucial for differentiation of secretory ameloblasts, the cells that secrete enamel matrix. However, whether BMP signaling is required for differentiation of maturation-stage ameloblasts (MA), which are instrumental for enamel maturation into hard tissue, is hitherto unknown. To address this, we used an in vivo genetic approach which revealed that combined deactivation of the Bmp2 and Bmp4 genes in the murine dental epithelium causes development of dysmorphic and dysfunctional MA. These fail to exhibit a ruffled apical plasma membrane and to reabsorb enamel matrix proteins, leading to enamel defects mimicking hypomaturation amelogenesis imperfecta. Furthermore, subsets of mutant MA underwent pathological single or collective cell migration away from the ameloblast layer, forming cysts and/or exuberant tumor-like and gland-like structures. Massive apoptosis in the adjacent stratum intermedium and the abnormal cell-cell contacts and cell-matrix adhesion of MA may contribute to this aberrant behavior. The mutant MA also exhibited severely diminished tissue non-specific alkaline phosphatase activity, revealing that this enzyme's activity in MA crucially depends on BMP2 and BMP4 inputs. Our findings show that combined BMP2 and BMP4 signaling is crucial for survival of the stratum intermedium and for proper development and function of MA to ensure normal enamel maturation.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Maha El Shahawy
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia 61511, Egypt
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (M.E.S.); (K.H.); (A.L.)
| |
Collapse
|
7
|
Shim G, Devenport D, Cohen DJ. Overriding native cell coordination enhances external programming of collective cell migration. Proc Natl Acad Sci U S A 2021; 118:e2101352118. [PMID: 34272284 PMCID: PMC8307614 DOI: 10.1073/pnas.2101352118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue-electrical stimulation and electrotaxis-to primary mouse skin monolayers where we can tune cell-cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell-cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin-dependent cell-cell adhesion, either by disrupting the formation of cell-cell junctions with E-cadherin-specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration.
Collapse
Affiliation(s)
- Gawoon Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Daniel J Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540;
| |
Collapse
|
8
|
Profilin-1; a novel regulator of DNA damage response and repair machinery in keratinocytes. Mol Biol Rep 2021; 48:1439-1452. [PMID: 33590416 PMCID: PMC7925496 DOI: 10.1007/s11033-021-06210-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 10/25/2022]
Abstract
Profilin-1 (PFN1) regulates actin polymerization and cytoskeletal growth. Despite the essential roles of PFN1 in cell integration, its subcellular function in keratinocyte has not been elucidated yet. Here we characterize the specific regulation of PFN1 in DNA damage response and repair machinery. PFN1 depletion accelerated DNA damage-mediated apoptosis exhibiting PTEN loss of function instigated by increased phosphorylated inactivation followed by high levels of AKT activation. PFN1 changed its predominant cytoplasmic localization to the nucleus upon DNA damage and subsequently restored the cytoplasmic compartment during the recovery time. Even though γH2AX was recruited at the sites of DNA double strand breaks in response to DNA damage, PFN1-deficient cells failed to recruit DNA repair factors, whereas control cells exhibited significant increases of these genes. Additionally, PFN1 depletion resulted in disruption of PTEN-AKT cascade upon DNA damage and CHK1-mediated cell cycle arrest was not recovered even after the recovery time exhibiting γH2AX accumulation. This might suggest PFN1 roles in regulating DNA damage response and repair machinery to protect cells from DNA damage. Future studies addressing the crosstalk and regulation of PTEN-related DNA damage sensing and repair pathway choice by PFN1 may further aid to identify new mechanistic insights for various DNA repair disorders.
Collapse
|
9
|
Rab13 and Desmosome Redistribution in Uterine Epithelial Cells During Early Pregnancy. Reprod Sci 2021; 28:1981-1988. [PMID: 33527312 DOI: 10.1007/s43032-021-00478-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The luminal uterine epithelial cells are the first point of contact with the implanting blastocyst. Dramatic changes occur in the structure and function of these cells at the time of receptivity including changes in the lateral junctional complex. While these morphological changes are important for uterine receptivity, currently there is no known mechanism of regulation of the lateral junctional complexes. Rab13, a member of the Rab (Ras-related in the brain) family of GTPases has a critical role in endosomal trafficking to the lateral plasma membrane and is involved in modulation of the tight junction in several cell types. The aim of this study is to investigate the role of Rab13 in changes to the lateral junctional complex at the time of receptivity. Immunofluorescence microscopy demonstrated no association between Rab13 and ZO-1 (a tight junction protein) or Rab13 and E-cadherin (an integral component of adherens junctions). Co-localisation was demonstrated between Rab 13 and desmoglein-2 at the time of fertilization and also at receptivity suggesting involvement of Rab13 in relocalisation of desmoglein-2 and formation of giant desmosomes in the apical part of the lateral plasma membrane at the time of uterine receptivity. We suggest that despite the loss of the adherens junction at the time of receptivity, the presently reported redistribution of desmosomes regulated by Rab13 allows the uterine epithelium to maintain structural integrity.
Collapse
|
10
|
Gryadunova AA, Koudan EV, Rodionov SA, Pereira FDAS, Meteleva NY, Kasyanov VA, Parfenov VA, Kovalev AV, Khesuani YD, Mironov VA, Bulanova EA. Cytoskeleton systems contribute differently to the functional intrinsic properties of chondrospheres. Acta Biomater 2020; 118:141-152. [PMID: 33045401 DOI: 10.1016/j.actbio.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Cytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates. Noc treatment affected spheroids spreading but not the fusion and surprisingly enhanced their stiffness. Vimentin intermediate filaments (VIFs) reorganization affected CSs spreading only. The analysis of all three cytoskeleton systems contribution to spheroids intrinsic properties was performed for the first time.
Collapse
Affiliation(s)
- Anna A Gryadunova
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation.
| | - Elizaveta V Koudan
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation.
| | - Sergey A Rodionov
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russian Federation
| | - F D A S Pereira
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Nina Yu Meteleva
- I.D. Papanin Institute for Biology of Inland Waters RAS, Borok 152742, Russian Federation
| | - Vladimir A Kasyanov
- Riga Stradins University, Riga LV-1007, Latvia; Riga Technical University, Riga LV-1658, Latvia
| | - Vladislav A Parfenov
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Alexey V Kovalev
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russian Federation
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation
| | - Vladimir A Mironov
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | - Elena A Bulanova
- Laboratory for Biotechnological Research 3D Bioprinting Solutions, Moscow 115409, Russian Federation.
| |
Collapse
|
11
|
Buonpane C, Yuan C, Wood D, Ares G, Klonoski SC, Hunter CJ. ROCK1 inhibitor stabilizes E-cadherin and improves barrier function in experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2020; 318:G781-G792. [PMID: 32090605 PMCID: PMC7191467 DOI: 10.1152/ajpgi.00195.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of newborns. Although incompletely understood, NEC is associated with intestinal barrier dysfunction. E-cadherin, an adherens junction, is a protein complex integral in maintaining normal barrier homeostasis. Rho-associated protein kinase-1 (ROCK1) is a kinase that regulates the E-cadherin complex, and p120-catenin is a subunit of the E-cadherin complex that has been implicated in stabilizing the cadherin complex at the plasma membrane. We hypothesized that E-cadherin is decreased in NEC and that inhibition of ROCK1 would protect against adherens junction disruption. To investigate this, a multimodal approach was used: In vitro Caco-2 model of NEC (LPS/TNFα), rap pup model (hypoxia + bacteria-containing formula), and human intestinal samples. E-cadherin was decreased in NEC compared with controls, with relocalization from the cell border to an intracellular location. ROCK1 exhibited a time-dependent response to disease, with increased early expression in NEC and decreased expression at later time points and disease severity. Administration of ROCK1 inhibitor (RI) resulted in preservation of E-cadherin expression at the cell border, preservation of intestinal villi on histological examination, and decreased apoptosis. ROCK1 upregulation in NEC led to decreased association of E-cadherin to p120 and increased intestinal permeability. RI helped maintain the stability of the E-cadherin-p120 complex, leading to improved barrier integrity and protection from experimental NEC.NEW & NOTEWORTHY This paper is the first to describe the effect of ROCK1 on E-cadherin expression in the intestinal epithelium and the protective effects of ROCK inhibitor on E-cadherin stability in necrotizing enterocolitis.
Collapse
Affiliation(s)
- Christie Buonpane
- 1Division of Pediatric Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Carrie Yuan
- 2Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Douglas Wood
- 2Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guillermo Ares
- 1Division of Pediatric Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Samuel C. Klonoski
- 1Division of Pediatric Surgery, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Catherine J. Hunter
- 3Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
12
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
13
|
Vasan R, Maleckar MM, Williams CD, Rangamani P. DLITE Uses Cell-Cell Interface Movement to Better Infer Cell-Cell Tensions. Biophys J 2019; 117:1714-1727. [PMID: 31648791 PMCID: PMC6838938 DOI: 10.1016/j.bpj.2019.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Cell shapes and connectivities evolve over time as the colony changes shape or embryos develop. Shapes of intercellular interfaces are closely coupled with the forces resulting from actomyosin interactions, membrane tension, or cell-cell adhesions. Although it is possible to computationally infer cell-cell forces from a mechanical model of collective cell behavior, doing so for temporally evolving forces in a manner robust to digitization difficulties is challenging. Here, we introduce a method for dynamic local intercellular tension estimation (DLITE) that infers such evolution in temporal force with less sensitivity to digitization ambiguities or errors. This method builds upon previous work on single time points (cellular force-inference toolkit). We validate our method using synthetic geometries. DLITE's inferred cell colony tension evolutions correlate better with ground truth for these synthetic geometries as compared to tension values inferred from methods that consider each time point in isolation. We introduce cell connectivity errors, angle estimate errors, connection mislocalization, and connection topological changes to synthetic data and show that DLITE has reduced sensitivity to these conditions. Finally, we apply DLITE to time series of human-induced pluripotent stem cell colonies with endogenously expressed GFP-tagged zonulae occludentes-1. We show that DLITE offers improved stability in the inference of cell-cell tensions and supports a correlation between the dynamics of cell-cell forces and colony rearrangement.
Collapse
Affiliation(s)
- Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California
| | | | | | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, California.
| |
Collapse
|
14
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Brandán YR, Guaytima EDV, Favale NO, Pescio LG, Sterin-Speziale NB, Márquez MG. The inhibition of sphingomyelin synthase 1 activity induces collecting duct cells to lose their epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:309-322. [PMID: 29128370 DOI: 10.1016/j.bbamcr.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.
Collapse
Affiliation(s)
- Yamila Romina Brandán
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina
| | - Edith Del Valle Guaytima
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina
| | - Nicolás Octavio Favale
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina; Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina; Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - María Gabriela Márquez
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina.
| |
Collapse
|
16
|
Hildebrand S, Hultin S, Subramani A, Petropoulos S, Zhang Y, Cao X, Mpindi J, Kalloniemi O, Johansson S, Majumdar A, Lanner F, Holmgren L. The E-cadherin/AmotL2 complex organizes actin filaments required for epithelial hexagonal packing and blastocyst hatching. Sci Rep 2017; 7:9540. [PMID: 28842668 PMCID: PMC5572699 DOI: 10.1038/s41598-017-10102-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells connect via cell-cell junctions to form sheets of cells with separate cellular compartments. These cellular connections are essential for the generation of cellular forms and shapes consistent with organ function. Tissue modulation is dependent on the fine-tuning of mechanical forces that are transmitted in part through the actin connection to E-cadherin as well as other components in the adherens junctions. In this report we show that p100 amotL2 forms a complex with E-cadherin that associates with radial actin filaments connecting cells over multiple layers. Genetic inactivation or depletion of amotL2 in epithelial cells in vitro or zebrafish and mouse in vivo, resulted in the loss of contractile actin filaments and perturbed epithelial packing geometry. We further showed that AMOTL2 mRNA and protein was expressed in the trophectoderm of human and mouse blastocysts. Genetic inactivation of amotL2 did not affect cellular differentiation but blocked hatching of the blastocysts from the zona pellucida. These results were mimicked by treatment with the myosin II inhibitor blebbistatin. We propose that the tension generated by the E-cadherin/AmotL2/actin filaments plays a crucial role in developmental processes such as epithelial geometrical packing as well as generation of forces required for blastocyst hatching.
Collapse
Affiliation(s)
- Sebastian Hildebrand
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden.,Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Sara Hultin
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Aravindh Subramani
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden
| | - Yuanyuan Zhang
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
| | - Xiaofang Cao
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - John Mpindi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Olli Kalloniemi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | - Arindam Majumdar
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden.
| | - Lars Holmgren
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Zhang Y, Liao K, Li C, Lai ACK, Foo JJ, Chan V. Progress in Integrative Biomaterial Systems to Approach Three-Dimensional Cell Mechanotransduction. Bioengineering (Basel) 2017; 4:E72. [PMID: 28952551 PMCID: PMC5615318 DOI: 10.3390/bioengineering4030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction between cells and the extracellular matrix regulates major cellular functions in physiological and pathological situations. The effect of mechanical cues on biochemical signaling triggered by cell-matrix and cell-cell interactions on model biomimetic surfaces has been extensively investigated by a combination of fabrication, biophysical, and biological methods. To simulate the in vivo physiological microenvironment in vitro, three dimensional (3D) microstructures with tailored bio-functionality have been fabricated on substrates of various materials. However, less attention has been paid to the design of 3D biomaterial systems with geometric variances, such as the possession of precise micro-features and/or bio-sensing elements for probing the mechanical responses of cells to the external microenvironment. Such precisely engineered 3D model experimental platforms pave the way for studying the mechanotransduction of multicellular aggregates under controlled geometric and mechanical parameters. Concurrently with the progress in 3D biomaterial fabrication, cell traction force microscopy (CTFM) developed in the field of cell biophysics has emerged as a highly sensitive technique for probing the mechanical stresses exerted by cells onto the opposing deformable surface. In the current work, we first review the recent advances in the fabrication of 3D micropatterned biomaterials which enable the seamless integration with experimental cell mechanics in a controlled 3D microenvironment. Then, we discuss the role of collective cell-cell interactions in the mechanotransduction of engineered tissue equivalents determined by such integrative biomaterial systems under simulated physiological conditions.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| | - Chuan Li
- Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan.
| | - Alvin C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Ji-Jinn Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| | - Vincent Chan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE.
| |
Collapse
|
18
|
Singh SK, Baker R, Sikkink SK, Nizard C, Schnebert S, Kurfurst R, Tobin DJ. E-cadherin mediates ultraviolet radiation- and calcium-induced melanin transfer in human skin cells. Exp Dermatol 2017. [PMID: 28636748 DOI: 10.1111/exd.13395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skin pigmentation is directed by epidermal melanin units, characterized by long-lived and dendritic epidermal melanocytes (MC) that interact with viable keratinocytes (KC) to contribute melanin to the epidermis. Previously, we reported that MC:KC contact is required for melanosome transfer that can be enhanced by filopodi, and by UVR/UVA irradiation, which can upregulate melanosome transfer via Myosin X-mediated control of MC filopodia. Both MC and KC express Ca2+ -dependent E-cadherins. These homophilic adhesion contacts induce transient increases in intra-KC Ca2+ , while ultraviolet radiation (UVR) raises intra-MC Ca2+ via calcium-selective ORAI1 ion channels; both are associated with regulating melanogenesis. However, how Ca2+ triggers melanin transfer remains unclear. Here we evaluated the role of E-cadherin in UVR-mediated melanin transfer in human skin cells. MC and KC in human epidermis variably express filopodia-associated E-cadherin, Cdc42, VASP and β-catenin, all of which were upregulated by UVR in human MC in vitro. Knockdown of E-cadherin revealed that this cadherin is essential for UVR-induced MC filopodia formation and melanin transfer. Moreover, Ca2+ induced a dose-dependent increase in filopodia formation and melanin transfer, as well as increased β-catenin, Cdc42, Myosin X and E-cadherin expression in these skin cells. Together, these data suggest that filopodial proteins and E-cadherin, which are upregulated by intracellular (UVR-stimulated) and extracellular Ca2+ availability, are required for filopodia formation and melanin transfer. This may open new avenues to explore how Ca2+ signalling influences human pigmentation.
Collapse
Affiliation(s)
- Suman K Singh
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Richard Baker
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Stephen K Sikkink
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | | | | | - Desmond J Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
19
|
Hultin S, Subramani A, Hildebrand S, Zheng Y, Majumdar A, Holmgren L. AmotL2 integrates polarity and junctional cues to modulate cell shape. Sci Rep 2017; 7:7548. [PMID: 28790366 PMCID: PMC5548744 DOI: 10.1038/s41598-017-07968-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The assembly of individual epithelial or endothelial cells into a tight cellular sheet requires stringent control of cell packing and organization. These processes are dependent on the establishment and further integration of cellular junctions, the cytoskeleton and the formation of apical-basal polarity. However, little is known how these subcellular events are coordinated. The (Angiomotin) Amot protein family consists of scaffold proteins that interact with junctional cadherins, polarity proteins and the cytoskeleton. In this report, we have studied how these protein complexes integrate to control cellular shapes consistent with organ function. Using gene-inactivating studies in zebrafish and cell culture systems in vitro, we show that Par3 to be essential for localization of AmotL2 to cellular junctions to associate with VE/E-cadherin and subsequently the organization of radial actin filaments. Our data provide mechanistic insight in how critical processes such as aortic lumen expansion as well as epithelial packing into hexagonal shapes are controlled.
Collapse
Affiliation(s)
- Sara Hultin
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Aravindh Subramani
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Sebastian Hildebrand
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.,Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet and Division of Obstetrics and Gynecology, Karolinska University Hospital, Huddinge, Sweden
| | - Yujuan Zheng
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden
| | - Arindam Majumdar
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.,Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Lars Holmgren
- Department of Oncology and Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institutet, Solna, 171 76, Stockholm, Sweden.
| |
Collapse
|
20
|
Crawford M, Dagnino L. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier. Tissue Barriers 2017; 5:e1341969. [PMID: 28665776 DOI: 10.1080/21688370.2017.1341969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.
Collapse
Affiliation(s)
- Melissa Crawford
- a Department of Physiology and Pharmacology , Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario , London , Ontario , Canada
| | - Lina Dagnino
- a Department of Physiology and Pharmacology , Children's Health Research Institute and Lawson Health Research Institute, The University of Western Ontario , London , Ontario , Canada
| |
Collapse
|
21
|
Zamorano P, Marín N, Córdova F, Aguilar A, Meininger C, Boric MP, Golenhofen N, Contreras JE, Sarmiento J, Durán WN, Sánchez FA. S-nitrosylation of VASP at cysteine 64 mediates the inflammation-stimulated increase in microvascular permeability. Am J Physiol Heart Circ Physiol 2017; 313:H66-H71. [PMID: 28526707 DOI: 10.1152/ajpheart.00135.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
We tested the hypothesis that platelet-activating factor (PAF) induces S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated S-nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosylation of VASP in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Reconstitution of VASP knockout myocardial endothelial cells with cysteine mutants of VASP demonstrated that S-nitrosylation of cysteine 64 is associated with PAF-induced hyperpermeability. We propose that regulation of VASP contributes to endothelial cell barrier integrity and to the onset of hyperpermeability. S-nitrosylation of VASP inhibits its function in barrier integrity and leads to endothelial monolayer hyperpermeability in response to PAF, a representative proinflammatory agonist.NEW & NOTEWORTHY Here, we demonstrate that S-nitrosylation of vasodilator-stimulated phosphoprotein (VASP) on C64 is a mechanism for the onset of platelet-activating factor-induced hyperpermeability. Our results reveal a dual role of VASP in endothelial permeability. In addition to its well-documented function in barrier integrity, we show that S-nitrosylation of VASP contributes to the onset of endothelial permeability.
Collapse
Affiliation(s)
- Patricia Zamorano
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Natalie Marín
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Córdova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Cynthia Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, Temple, Texas
| | - Mauricio P Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany; and
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Walter N Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile;
| |
Collapse
|
22
|
Tehrani M, Sarvestani AS. Force-driven growth of intercellular junctions. J Theor Biol 2017; 421:101-111. [PMID: 28377302 DOI: 10.1016/j.jtbi.2017.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
Mechanical force regulates the formation and growth of cell-cell junctions. Cadherin is a prominent homotypic cell adhesion molecule that plays a crucial role in establishment of intercellular adhesion. It is known that the transmitted force through the cadherin-mediated junctions directly correlates with the growth and enlargement of the junctions. In this paper, we propose a physical model for the structural evolution of cell-cell junctions subjected to pulling tractions, using the Bell-Dembo-Bongard thermodynamic model. Cadherins have multiple adhesive states and may establish slip or catch bonds depending on the Ca2+ concentration. We conducted a comparative study between the force-dependent behavior of clusters of slip and catch bonds. The results show that the clusters of catch bonds feature some hallmarks of cell mechanotransduction in response to the pulling traction. This is a passive thermodynamic response and is entirely controlled by the effect of mechanical work of the pulling force on the free energy landscape of the junction.
Collapse
Affiliation(s)
- Mohammad Tehrani
- Department of Mechanical Engineering, Ohio University, Athens, OH 45701, United States
| | - Alireza S Sarvestani
- Department of Mechanical Engineering, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
23
|
PAK5 mediates cell: cell adhesion integrity via interaction with E-cadherin in bladder cancer cells. Biochem J 2017; 474:1333-1346. [PMID: 28232500 DOI: 10.1042/bcj20160875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
Urothelial bladder cancer is a major cause of morbidity and mortality worldwide, causing an estimated 150 000 deaths per year. Whilst non-muscle-invasive bladder tumours can be effectively treated, with high survival rates, many tumours recur, and some will progress to muscle-invasive disease with a much poorer long-term prognosis. Thus, there is a pressing need to understand the molecular transitions occurring within the progression of bladder cancer to an invasive disease. Tumour invasion is often associated with a down-regulation of E-cadherin expression concomitant with a suppression of cell:cell junctions, and decreased levels of E-cadherin expression have been reported in higher grade urothelial bladder tumours. We find that expression of E-cadherin in a panel of bladder cancer cell lines correlated with the presence of cell:cell junctions and the level of PAK5 expression. Interestingly, exogenous PAK5 has recently been described to be associated with cell:cell junctions and we now find that endogenous PAK5 is localised to cell junctions and interacts with an E-cadherin complex. Moreover, depletion of PAK5 expression significantly reduced junctional integrity. These data suggest a role for PAK5 in maintaining junctional stability and we find that, in both our own patient samples and a commercially available dataset, PAK5mRNA levels are reduced in human bladder cancer compared with normal controls. Taken together, the present study proposes that PAK5 expression levels could be used as a novel prognostic marker for bladder cancer progression.
Collapse
|
24
|
Cheng CC, Chao WT, Liao CC, Tseng YH, Lai YCC, Lai YS, Hsu YH, Liu YH. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment. Cell Adh Migr 2017; 12:19-27. [PMID: 28276928 PMCID: PMC5810502 DOI: 10.1080/19336918.2017.1288789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.
Collapse
Affiliation(s)
- Chiung-Chi Cheng
- a Department of Pathology , Chang Bing Show Chwan Memorial Hospital , Lugang Town , Taiwan ; Center for General Education, Providence University , Taichung City , Taiwan
| | - Wei-Ting Chao
- b Department of Life Science , Tunghai University , Taichung City , Taiwan
| | - Chen-Chun Liao
- b Department of Life Science , Tunghai University , Taichung City , Taiwan
| | - Yu-Hui Tseng
- b Department of Life Science , Tunghai University , Taichung City , Taiwan
| | - Yen-Chang Clark Lai
- c Department of Pathology , Kaohsiung Medical University Hospital , Kaohsiung City , Taiwan
| | - Yih-Shyong Lai
- d Department of Pathology , Chang Bing Show Chwan Memorial Hospital , Lugang Town , Taiwan
| | - Yung-Hsiang Hsu
- e Department of Pathology , Tzu Chi University Hualien City , Taiwan
| | - Yi-Hsiang Liu
- f Department of Pathology , Chang Bing Show Chwan Memorial Hospital , Lugang Town , Taiwan ; Department of Pathology , Show Chwan Memorial Hospital , Changhua City , Taiwan , Department of Pathology , Tzu Chi University , Hualien City , Taiwan
| |
Collapse
|
25
|
Bi R, Pan Y, Shang Q, Peng T, Yang S, Wang S, Xin X, Liu Y, Xi J. Comparative proteomic analysis in Aphis glycines Mutsumura under lambda-cyhalothrin insecticide stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 19:90-96. [PMID: 27395796 DOI: 10.1016/j.cbd.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean.
Collapse
Affiliation(s)
- Rui Bi
- College of Plant Science, Jilin University, ChangChun 130062, PR China; College of Agronomy, Jilin Agricultural University, ChangChun 130118, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Yan Liu
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun 130062, PR China.
| |
Collapse
|
26
|
Jiang Z, Lao T, Qiu W, Polverino F, Gupta K, Guo F, Mancini JD, Naing ZZC, Cho MH, Castaldi PJ, Sun Y, Yu J, Laucho-Contreras ME, Kobzik L, Raby BA, Choi AMK, Perrella MA, Owen CA, Silverman EK, Zhou X. A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of β-Catenin. Am J Respir Crit Care Med 2016; 194:185-97. [PMID: 26862784 PMCID: PMC5003213 DOI: 10.1164/rccm.201505-0999oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022] Open
Abstract
RATIONALE A genetic locus within the FAM13A gene has been consistently associated with chronic obstructive pulmonary disease (COPD) in genome-wide association studies. However, the mechanisms by which FAM13A contributes to COPD susceptibility are unknown. OBJECTIVES To determine the biologic function of FAM13A in human COPD and murine COPD models and discover the molecular mechanism by which FAM13A influences COPD susceptibility. METHODS Fam13a null mice (Fam13a(-/-)) were generated and exposed to cigarette smoke. The lung inflammatory response and airspace size were assessed in Fam13a(-/-) and Fam13a(+/+) littermate control mice. Cellular localization of FAM13A protein and mRNA levels of FAM13A in COPD lungs were assessed using immunofluorescence, Western blotting, and reverse transcriptase-polymerase chain reaction, respectively. Immunoprecipitation followed by mass spectrometry identified cellular proteins that interact with FAM13A to reveal insights on FAM13A's function. MEASUREMENTS AND MAIN RESULTS In murine and human lungs, FAM13A is expressed in airway and alveolar type II epithelial cells and macrophages. Fam13a null mice (Fam13a(-/-)) were resistant to chronic cigarette smoke-induced emphysema compared with Fam13a(+/+) mice. In vitro, FAM13A interacts with protein phosphatase 2A and recruits protein phosphatase 2A with glycogen synthase kinase 3β and β-catenin, inducing β-catenin degradation. Fam13a(-/-) mice were also resistant to elastase-induced emphysema, and this resistance was reversed by coadministration of a β-catenin inhibitor, suggesting that FAM13A could increase the susceptibility of mice to emphysema development by inhibiting β-catenin signaling. Moreover, human COPD lungs had decreased protein levels of β-catenin and increased protein levels of FAM13A. CONCLUSIONS We show that FAM13A may influence COPD susceptibility by promoting β-catenin degradation.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Channing Division of Network Medicine, Department of Medicine
| | - Taotao Lao
- Channing Division of Network Medicine, Department of Medicine
| | - Weiliang Qiu
- Channing Division of Network Medicine, Department of Medicine
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Feng Guo
- Channing Division of Network Medicine, Department of Medicine
| | - John D. Mancini
- Channing Division of Network Medicine, Department of Medicine
| | | | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine
- Division of General Internal Medicine, Department of Medicine, and
| | - Yang Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Jane Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Lester Kobzik
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Mark A. Perrella
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Pediatric Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- The Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
27
|
Parrish AR. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacol Ther 2016; 166:1-8. [PMID: 27343756 DOI: 10.1016/j.pharmthera.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
The incidence of chronic kidney disease (CKD) is increasing, with an estimated prevalence of 12% in the United States (Synder et al., 2009). While CKD may progress to end-stage renal disease (ESRD), which necessitates renal replacement therapy, i.e. dialysis or transplantation, most CKD patients never reach ESRD due to the increased risk of death from cardiovascular disease. It is well-established that regardless of the initiating insult - most often diabetes or hypertension - fibrosis is the common pathogenic pathway that leads to progressive injury and organ dysfunction (Eddy, 2014; Duffield, 2014). As such, there has been extensive research into the molecular and cellular mechanisms of renal fibrosis; however, translation to effective therapeutic strategies has been limited. While a role for the disruption of the cytoskeleton, most notably the actin network, has been established in acute kidney injury over the past two decades, a role in regulating renal fibrosis and CKD is only recently emerging. This review will focus on the role of the cytoskeleton in regulating pro-fibrotic pathways in the kidney, as well as data suggesting that these pathways represent novel therapeutic targets to manage fibrosis and ultimately CKD.
Collapse
Affiliation(s)
- Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
28
|
Dowland SN, Madawala RJ, Lindsay LA, Murphy CR. The adherens junction is lost during normal pregnancy but not during ovarian hyperstimulated pregnancy. Acta Histochem 2016; 118:137-43. [PMID: 26738975 DOI: 10.1016/j.acthis.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
During early pregnancy in the rat, the luminal uterine epithelial cells (UECs) must transform to a receptive state to permit blastocyst attachment and implantation. The implantation process involves penetration of the epithelial barrier, so it is expected that the transformation of UECs includes alterations in the lateral junctional complex. Previous studies have demonstrated a deepening of the tight junction (zonula occludens) and a reduction in the number of desmosomes (macula adherens) in UECs at the time of implantation. However, the adherens junction (zonula adherens), which is primarily responsible for cell-cell adhesion, has been little studied during early pregnancy. This study investigated the adherens junction in rat UECs during the early stages of normal pregnancy and ovarian hyperstimulated (OH) pregnancy using transmission electron microscopy. The adherens junction is present in UECs at the time of fertilisation, but is lost at the time of blastocyst implantation during normal pregnancy. Interestingly, at the time of implantation after OH, adherens junctions are retained and may impede blastocyst penetration of the epithelium. The adherens junction anchors the actin-based terminal web, which is known to be disrupted in UECs during early pregnancy. However, artificial disruption of the terminal web, using cytochalasin D, did not cause removal of the adherens junction in UECs. This study revealed that adherens junction disassembly occurs during early pregnancy, but that this process does not occur during OH pregnancy. Such disassembly does not appear to depend on the disruption of the terminal web.
Collapse
|
29
|
Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int 2016; 40:241-56. [DOI: 10.1002/cbin.10563] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
30
|
Bowser JL, Blackburn MR, Shipley GL, Molina JG, Dunner K, Broaddus RR. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest 2015; 126:220-38. [PMID: 26642367 DOI: 10.1172/jci79380] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is central to the generation of extracellular adenosine. Previous studies have highlighted a detrimental role for extracellular adenosine in cancer, as it dampens T cell-mediated immune responses. Here, we determined that, in contrast to other cancers, CD73 is markedly downregulated in poorly differentiated and advanced-stage endometrial carcinoma compared with levels in normal endometrium and low-grade tumors. In murine models, CD73 deficiency led to a loss of endometrial epithelial barrier function, and pharmacological CD73 inhibition increased in vitro migration and invasion of endometrial carcinoma cells. Given that CD73-generated adenosine is central to regulating tissue protection and physiology in normal tissues, we hypothesized that CD73-generated adenosine in endometrial carcinoma induces an innate reflex to protect epithelial integrity. CD73 associated with cell-cell contacts, filopodia, and membrane zippers, indicative of involvement in cell-cell adhesion and actin polymerization-dependent processes. We determined that CD73-generated adenosine induces cortical actin polymerization via adenosine A1 receptor (A1R) induction of a Rho GTPase CDC42-dependent conformational change of the actin-related proteins 2 and 3 (ARP2/3) actin polymerization complex member N-WASP. Cortical F-actin elevation increased membrane E-cadherin, β-catenin, and Na(+)K(+) ATPase. Together, these findings reveal that CD73-generated adenosine promotes epithelial integrity and suggest why loss of CD73 in endometrial cancer allows for tumor progression. Moreover, our data indicate that the role of CD73 in cancer is more complex than previously described.
Collapse
|
31
|
Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function. J Invest Dermatol 2015; 136:425-435. [PMID: 26967476 DOI: 10.1016/j.jid.2015.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/16/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022]
Abstract
A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties.
Collapse
|
32
|
Ishii Y, Saeki K, Liu M, Sasaki F, Koga T, Kitajima K, Meno C, Okuno T, Yokomizo T. Leukotriene B
4
receptor type 2 (BLT2) enhances skin barrier function by regulating tight junction proteins. FASEB J 2015; 30:933-47. [DOI: 10.1096/fj.15-279653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/19/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Yumiko Ishii
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Research Institute for Diseases of the ChestKyushu UniversityFukuokaJapan
| | - Kazuko Saeki
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Min Liu
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
- Department of EndocrinologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fumiyuki Sasaki
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Tomoaki Koga
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Keiko Kitajima
- Department of Developmental BiologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Chikara Meno
- Department of Developmental BiologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Toshiaki Okuno
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| | - Takehiko Yokomizo
- Department of Medical BiochemistryKyushu UniversityFukuokaJapan
- Department of BiochemistryJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
33
|
Hatta M, Naganuma K, Kato K, Yamazaki J. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line. Biochem Biophys Res Commun 2015; 468:269-73. [PMID: 26505792 DOI: 10.1016/j.bbrc.2015.10.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 01/06/2023]
Abstract
In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial-mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell-cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns.
Collapse
Affiliation(s)
- Mitsutoki Hatta
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Kaori Naganuma
- Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Kenichi Kato
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Yamazaki
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
34
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
35
|
Jiang G, Zhang Y, Zhang X, Fan C, Wang L, Xu H, Yu J, Wang E. ARMc8 indicates aggressive colon cancers and promotes invasiveness and migration of colon cancer cells. Tumour Biol 2015; 36:9005-13. [PMID: 26081621 DOI: 10.1007/s13277-015-3664-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022] Open
Abstract
Recent studies have implicated ARMc8 in promoting tumor formation in non-small cell lung cancer and breast cancer; however, so far, no studies have revealed the expression pattern or cellular function of ARMc8 in colon cancer. In this study, we used immunohistochemical staining to measure ARMc8 expression in 206 cases of colon cancer and matched adjacent normal colon tissue. Clinically important behaviors of cells, including invasiveness and migration, were evaluated after upregulation of ARMc8 expression in HT29 cells through gene transfection or downregulation of expression in LoVo cells using RNAi. We found that ARMc8 was primarily located in the membrane and cytoplasm of tumor cells, and its expression level was significantly higher in colon cancer in comparison to that in the adjacent normal colon tissues (p < 0.001). ARMc8 expression was closely related to TNM stage (p = 0.006), lymph node metastasis (p = 0.001), and poor prognosis (p = 0.002) of colon cancer. The invasiveness and migration capacity of HT29 cells transfected with ARMc8 were significantly greater than those of control cells (p < 0.001), while ARMc8 siRNA treatment significantly reduced cell invasion and migration in LoVo cells (p < 0.001). Furthermore, we demonstrated that ARMc8 could upregulate the expression of MMP7 and snail and downregulate the expression of p120ctn and α-catenin. Therefore, ARMc8 probably enhanced invasiveness and metastatic capacity by affecting these tumor-associated factors, thereby playing a role in enhancing the tumorigenicity of colon cancer cells. ARMc8 is likely to become a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yong Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chuifeng Fan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hongtao Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Juanhan Yu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
36
|
Jiang G, Yang D, Wang L, Zhang X, Xu H, Miao Y, Wang E, Zhang Y. A novel biomarker ARMc8 promotes the malignant progression of ovarian cancer. Hum Pathol 2015; 46:1471-9. [PMID: 26232863 DOI: 10.1016/j.humpath.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy worldwide, and the survival rates have remained low in spite of medical advancements. More research is dedicated to the identification of novel biomarkers for this deadly disease. The association between ARMc8 and ovarian cancer remained unraveled. In this study, immunohistochemical staining was used to examine ARMc8 expression in 247 cases of ovarian cancer, 19 cases of borderline ovarian tumors, 41 cases of benign ovarian tumors, and 9 cases of normal ovarian tissues. It was shown that ARMc8 was predominantly located in the cytoplasm of tumor cells, and its expression was up-regulated in the ovarian cancer (61.9%) and the borderline ovarian tumor tissues (57.9%), in comparison with the benign ovarian tumors (12.2%; P < .05) and the normal ovarian tissues (11.1%; P < .05). In ovarian cancer, ARMc8 expression was closely related to International Federation of Gynecology and Obstetrics stages (P = .002), histology grade (P < .001), lymph node metastasis (P = .008), and poor prognosis (P < .001). Univariate and multivariate Cox analyses revealed that ARMc8 expression was an independent prognostic factor for ovarian cancer (P = .039 and P = .005). In addition, ARMc8 could promote the invasion and migration of ovarian cancer cells. Overexpressing ARMc8 enhanced the invasion and metastasis capacity of ARMc8-low Cavo-3 cells (P < .001), whereas interfering ARMc8 significantly reduced cell invasion and metastasis in ARMc8-high SK-OV-3 cells (P < .001). Furthermore, ARMc8 could up-regulate matrix metalloproteinase-7 and snail and down-regulate α-catenin, p120ctn, and E-cadherin. Collectively, ARMc8 may enhance the invasion and metastasis of ovarian cancer cells and likely to become a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Dalei Yang
- Center for Assisted Reproduction, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, China, 110004
| | - Liang Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Hongtao Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Yuan Miao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001
| | - Yong Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China, 110001.
| |
Collapse
|
37
|
Favale NO, Santacreu BJ, Pescio LG, Marquez MG, Sterin-Speziale NB. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity. J Lipid Res 2015; 56:786-800. [PMID: 25670801 DOI: 10.1194/jlr.m050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype.
Collapse
Affiliation(s)
- Nicolás Octavio Favale
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bruno Jaime Santacreu
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Gabriela Marquez
- IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja , La Rioja, Argentina
| | | |
Collapse
|
38
|
Abstract
Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development.
Collapse
|
39
|
Boer EF, Howell ED, Schilling TF, Jette CA, Stewart RA. Fascin1-dependent Filopodia are required for directional migration of a subset of neural crest cells. PLoS Genet 2015; 11:e1004946. [PMID: 25607881 PMCID: PMC4301650 DOI: 10.1371/journal.pgen.1004946] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/09/2014] [Indexed: 12/03/2022] Open
Abstract
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. During vertebrate embryogenesis, neural crest (NC) cells migrate extensively along stereotypical migration routes and differentiate into diverse derivatives, including the craniofacial skeleton and peripheral nervous system. While defects in NC migration underlie many human birth defects and may be coopted during cancer metastasis, the genetic pathways controlling directional NC migration remain incompletely understood. Filopodia protrusions are thought to act as “cellular antennae” that explore the environment for directional cues to ensure NC cells reach their correct location. To test this idea, we generated zebrafish fascin1a (fscn1a) mutants that have severe loss of filopodia. Surprisingly, we found that most NC cells migrate to their correct locations without robust filopodial protrusions. We found that fscn1a embryos have directional migration defects in a subset of NC cells, resulting in loss of specific craniofacial elements and peripheral neurons. Interestingly, these defects were only observed in ∼20% of fscn1a embryos, but were significantly enhanced by partial loss of the chemokine receptor Cxcr4a or disruption of the localized expression of its ligand Cxcl12b. Our data show that subsets of skeletal and neurogenic NC cells require filopodia to migrate and that fscn1a-dependent filopodia cooperate with chemokine signaling to promote directional migration of a subset of NC cells.
Collapse
Affiliation(s)
- Elena F. Boer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth D. Howell
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
40
|
Liberio MS, Sadowski MC, Soekmadji C, Davis RA, Nelson CC. Differential effects of tissue culture coating substrates on prostate cancer cell adherence, morphology and behavior. PLoS One 2014; 9:e112122. [PMID: 25375165 PMCID: PMC4223027 DOI: 10.1371/journal.pone.0112122] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/12/2014] [Indexed: 12/22/2022] Open
Abstract
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.
Collapse
Affiliation(s)
- Michelle S. Liberio
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Australia
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - Martin C. Sadowski
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - Carolina Soekmadji
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
| | - Rohan A. Davis
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Colleen C. Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
41
|
Jędrzejowska I, Szymusiak K, Mazurkiewicz-Kania M, Garbiec A. Differentiation of somatic cells in the ovariuteri of the apoikogenic scorpion Euscorpius italicus (Chelicerata, Scorpiones, Euscorpiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:361-370. [PMID: 24322052 DOI: 10.1016/j.asd.2013.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 06/03/2023]
Abstract
In apoikogenic scorpions, growing oocytes protrude from the gonad (ovariuterus) and develop in follicles exposed to the mesosomal (i.e. hemocoelic) cavity. During subsequent stages of oogenesis (previtellogenesis and vitellogenesis), the follicles are connected to the gonad surface by prominent somatic stalks. The aim of our study was to analyze the origin, structure and functioning of somatic cells accompanying protruding oocytes. We show that these cells differentiate into two morphologically distinct subpopulations: the follicular cells and stalk cells. The follicular cells gather on the hemocoelic (i.e. facing the hemocoel) surface of the oocyte, where they constitute a cuboidal epithelium. The arrangement of the follicular cells on the oocyte surface is not uniform; moreover, the actin cytoskeleton of these cells undergoes significant modifications during oocyte growth. During initial stages of the stalk formation the stalk cells elongate and form F-actin rich cytoplasmic processes by which the stalk cells are tightly connected to each other. Additionally, the stalk cells develop microvilli directed towards the growing oocyte. Our findings indicate that the follicular cells covering hemocoelic surfaces of the oocyte and the stalk cells represent two distinct subpopulations of epithelial cells, which differ in morphology, behavior and function.
Collapse
Affiliation(s)
- Izabela Jędrzejowska
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Kamil Szymusiak
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Marta Mazurkiewicz-Kania
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Arnold Garbiec
- Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| |
Collapse
|
42
|
Xie C, Jiang G, Fan C, Zhang X, Zhang Y, Miao Y, Lin X, Wu J, Wang L, Liu Y, Yu J, Yang L, Zhang D, Xu K, Wang E. ARMC8α promotes proliferation and invasion of non-small cell lung cancer cells by activating the canonical Wnt signaling pathway. Tumour Biol 2014; 35:8903-11. [PMID: 24894675 DOI: 10.1007/s13277-014-2162-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022] Open
Abstract
ARMC8 proteins are novel armadillo repeat containing proteins, which are well conserved in eukaryotes and are involved in a variety of processes such as cell migration, proliferation, tissue maintenance, signal transduction, and tumorigenesis. Armadillo repeat proteins include well-known proteins such as β-catenin and p120ctn. Our current knowledge of ARMC8, especially its role in cancer, is limited. In this study, we quantified ARMC8 expression in 112 non-small cell lung cancer (NSCLC) tissues and adjacent non-cancerous tissues, and seven lung cancer cell lines using immunohistochemistry staining and Western blotting. ARMC8 level was significantly higher in NSCLC tissues than in the adjacent normal tissues (67.9 % versus 5.4 %, p < 0.05) and was significantly associated with TNM stage (p = 0.022), lymph node metastasis (p = 0.001), and poor prognosis (p < 0.001) in NSCLC patients. Cox regression analysis demonstrated that ARMC8 was an independent prognostic factor for NSCLC. Consistent with this, ARMC8α downregulation by siRNA knockdown inhibited growth, colony formation, and invasion in A549 lung cancer cells, while ARMC8α overexpression promoted growth, colony formation, and invasion in H1299 lung cancer cells. In addition, ARMC8α knockdown downregulated canonical Wnt-signaling pathway activity and cyclin D1 and matrix metalloproteinase (MMP)-7 expression. Consistent with this, ARMC8α overexpression upregulated canonical Wnt-signaling pathway activity and cyclin D1 and MMP-7 expression. These results indicate that ARMC8α upregulates cyclin D1 and MMP7 expression by activating the canonical Wnt-signaling pathway and thereby promoting lung cancer cell proliferation and invasion. Therefore, ARMC8 might serve as a novel therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Chengyao Xie
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Methoxy-poly(ethylene glycol) modified poly(L-lactide) enhanced cell affinity of human bone marrow stromal cells by the upregulation of 1-cadherin and delta-2-catenin. BIOMED RESEARCH INTERNATIONAL 2014; 2014:738239. [PMID: 24834434 PMCID: PMC4009123 DOI: 10.1155/2014/738239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/24/2023]
Abstract
Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation. This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.
Collapse
|
44
|
Feuerborn A, Mathow D, Srivastava PK, Gretz N, Gröne HJ. Basonuclin-1 modulates epithelial plasticity and TGF-β1-induced loss of epithelial cell integrity. Oncogene 2014; 34:1185-95. [PMID: 24662832 DOI: 10.1038/onc.2014.54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine and critically involved in the progression of a variety of cancers. TGF-β1 signaling can impair tumor development by its anti-proliferative and pro-apoptotic features. In contrast, it may actively promote tumor progression and cancer cell dissemination by inducing a gradual switch from epithelial towards mesenchymal-like cell features (EMT-like), including decreased intercellular adhesion. Here, we show that expression of the transcription factor Basonuclin-1 (Bnc1) modulates TGF-β1-induced epithelial dedifferentiation of mammary epithelial cells. RNAi-mediated repression of Bnc1 resulted in enhanced intercellular adhesion and strongly impaired TGF-β1-dependent sheet disintegration and cell scattering. In contrast, forced expression of Bnc1 modifies plasma membrane/cytoskeletal dynamics and seemingly interferes with the initiation of sustainable cell-cell contacts. Follow-up analyses revealed that Bnc1 affects the expression of numerous TGF-β1-responsive genes including distinct EMT-related transcription factors, some of which modulate the expression of Bnc1 themselves. These results suggest that Bnc1 is part of a transcription factor network related to epithelial plasticity with reciprocal feedback-loop connections on which Smad-factors integrate TGF-β1 signaling. Our study demonstrates that Bnc1 regulates epithelial plasticity of mammary epithelial cells and influences outcome of TGF-β1 signaling.
Collapse
Affiliation(s)
- A Feuerborn
- Department of Cellular and Molecular Pathology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - D Mathow
- Department of Cellular and Molecular Pathology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - P K Srivastava
- Physiological Genomics and Medicine, MRC Clinical Sciences, Imperial College, London, UK
| | - N Gretz
- Department of Medical Research, Faculty of Medicine, Medical Research Centre (ZMF), University of Heidelberg, Mannheim, Germany
| | - H-J Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Duluc L, Wojciak-Stothard B. Rho GTPases in the regulation of pulmonary vascular barrier function. Cell Tissue Res 2014; 355:675-85. [PMID: 24599334 DOI: 10.1007/s00441-014-1805-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Pulmonary endothelial permeability is an important determinant of vascular adaptation to changes in oxygen tension, blood pressure, levels of growth factors or inflammatory cytokines. The Ras homologous (Rho) family of guanosine triphosphate phosphatases (Rho GTPases), key regulators of the actin cytoskeleton, regulate endothelial barrier function in response to a variety of environmental factors and signalling agents via the reorganization of the actin cytoskeleton, changes in receptor trafficking or the phosphorylation of junctional proteins. This review provides a brief summary of recent knowledge on Rho-GTPase-mediated effects on pulmonary endothelial barrier function and focuses in particular on their role in pulmonary vascular disorders, including pulmonary hypertension, chronic obstructive pulmonary disease, acute lung injury and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Lucie Duluc
- Centre for Pharmacology & Therapeutics, Imperial College London, London, UK
| | | |
Collapse
|
46
|
Iliopoulos D, Gkretsi V, Tsezou A. Proteomics of osteoarthritic chondrocytes and cartilage. Expert Rev Proteomics 2014; 7:749-60. [DOI: 10.1586/epr.10.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
48
|
Abstract
This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.
Collapse
Affiliation(s)
- Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
49
|
Guillaume E, Comunale F, Do Khoa N, Planchon D, Bodin S, Gauthier-Rouvière C. Flotillin microdomains stabilize cadherins at cell-cell junctions. J Cell Sci 2013; 126:5293-304. [PMID: 24046456 DOI: 10.1242/jcs.133975] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cadherins are essential in many fundamental processes and assemble at regions of cell-cell contact in large macromolecular complexes named adherens junctions. We have identified flotillin 1 and 2 as new partners of the cadherin complexes. We show that flotillins are localised at cell-cell junctions (CCJs) in a cadherin-dependent manner. Flotillins and cadherins are constitutively associated at the plasma membrane and their colocalisation at CCJ increases with CCJ maturation. Using three-dimensional structured illumination super-resolution microscopy, we found that cadherin and flotillin complexes are associated with F-actin bundles at CCJs. The knockdown of flotillins dramatically affected N- and E-cadherin recruitment at CCJs in mesenchymal and epithelial cell types and perturbed CCJ integrity and functionality. Moreover, we determined that flotillins are required for cadherin association with GM1-containing plasma membrane microdomains. This allows p120 catenin binding to the cadherin complex and its stabilization at CCJs. Altogether, these data demonstrate that flotillin microdomains are required for cadherin stabilization at CCJs and for the formation of functional CCJs.
Collapse
Affiliation(s)
- Emilie Guillaume
- Equipe Labellisée Ligue Contre le Cancer, Universités Montpellier 2 et 1, CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | | | | | |
Collapse
|
50
|
Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Arch 2013; 463:379-90. [PMID: 23881279 DOI: 10.1007/s00428-013-1452-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 01/04/2023]
Abstract
Both plakophilins (PKP) 1 and 3 play a role in the progression of prostate cancer. The RNA-binding proteins (RBPs) GAP-SH3-binding protein (G3BP), fragile-X-related protein 1 (FXR1), poly(A)-binding protein, cytoplasmic 1 (PABPC1), and up-frameshift factor 1 (UPF1) are associated with PKP3. All these RBPs have an impact on RNA metabolism. Until recently, the PKP-associated RBPs have not been analyzed in prostate cancer. In the current study, we showed by affinity purification that the PKP3-associated RBPs were also binding partners of PKP1. We examined the expression of PKP1/3-associated RBPs and PKP1/3 in prostate cell lines, tumor-free prostate, and 136 prostatic adenocarcinomas by immunofluorescence and immunoblot. All four RBPs G3BP, FXR1, UPF1, and PABPC1 were expressed in the glandular epithelium of the normal prostate. PKP1 and FXR1 were strongly reduced in tumor tissues with Gleason score >7 and diminished expression of PKP1 and FXR1 also appeared to be associated with a metastatic phenotype. Additionally, the predominant nuclear localization of UPF1 in normal glandular cells and low grade tumors was switched to a more cytoplasmic pattern in carcinomas with Gleason score >7. Our findings suggest that PKP1 and FXR1 may have a tumor-suppressive function and are downregulated in more aggressive tumors. Collectively, PKP1/3-associated RBPs FXR1 and UPF1 may have a functional role in prostate cancer progression and metastasis and highlight the potential importance of posttranscriptional regulation of gene expression and nonsense-mediated decay in cancer.
Collapse
|