1
|
Yamagata K, Takasuga S, Tatematsu M, Fuchimukai A, Yamada T, Mizuno M, Morii M, Ebihara T. FoxD1 expression identifies a distinct subset of hepatic stellate cells involved in liver fibrosis. Biochem Biophys Res Commun 2024; 734:150632. [PMID: 39226736 DOI: 10.1016/j.bbrc.2024.150632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Hepatic stellate cells (HSCs) are pericytes of the liver responsible for liver fibrosis and cirrhosis, which are the end stages of chronic liver diseases. TGF-β activates HSCs, leading to the differentiation of myofibroblasts in the process of liver fibrosis. While the heterogeneity of HSCs is appreciated in the fibrotic liver, it remains elusive which HSC subsets mainly contribute to fibrosis. Here, we show that the expression of the pericyte marker FoxD1 specifically marks a subset of HSCs in FoxD1-fate tracer mice. HSCs fate-mapped by FoxD1 were preferentially localized in the portal and peripheral areas of both the homeostatic and fibrotic liver induced by carbon tetrachloride. Furthermore, the deletion of Cbfβ, which is necessary for TGF-β signaling, in FoxD1-expressing cells ameliorated liver fibrosis. Thus, we identified an HSC subset that preferentially responds to liver injuries.
Collapse
Affiliation(s)
- Kenki Yamagata
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan; Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Masaru Mizuno
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan
| | - Mayako Morii
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita, 0108543, Japan.
| | - Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, 0108543, Japan; Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita, 0108543, Japan.
| |
Collapse
|
2
|
Bian X, Piipponen M, Liu Z, Luo L, Geara J, Chen Y, Sangsuwan T, Maselli M, Diaz C, Bain CA, Eenjes E, Genander M, Crichton M, Cash JL, Archambault L, Haghdoost S, Fradette J, Sommar P, Halle M, Xu Landén N. Epigenetic memory of radiotherapy in dermal fibroblasts impairs wound repair capacity in cancer survivors. Nat Commun 2024; 15:9286. [PMID: 39468077 PMCID: PMC11519383 DOI: 10.1038/s41467-024-53295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Radiotherapy (RT), a common cancer treatment, unintentionally harms surrounding tissues, including the skin, and hinders wound healing years after treatment. This study aims to understand the mechanisms behind these late-onset adverse effects. We compare skin biopsies from previously irradiated (RT+) and non-irradiated (RT-) sites in breast cancer survivors who underwent RT years ago. Here we show that the RT+ skin has compromised healing capacity and fibroblast functions. Using ATAC-seq, we discover altered chromatin landscapes in RT+ fibroblasts, with THBS1 identified as a crucial epigenetically primed wound repair-related gene. This is further confirmed by single-cell RNA-sequencing and spatial transcriptomic analysis of human wounds. Notably, fibroblasts in both murine and human post-radiation wound models show heightened and sustained THBS1 expression, impairing fibroblast motility and contractility. Treatment with anti-THBS1 antibodies promotes ex vivo wound closure in RT+ skin from breast cancer survivors. Our findings suggest that fibroblasts retain a long-term radiation memory in the form of epigenetic changes. Targeting this maladaptive epigenetic memory could mitigate RT's late-onset adverse effects, improving the quality of life for cancer survivors.
Collapse
Affiliation(s)
- Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Traimate Sangsuwan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Monica Maselli
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Candice Diaz
- Centre de recherche en organogénèse expérimentale de l'Université Laval / LOEX, Québec, QC, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Centre, Québec, QC, Canada
| | - Connor A Bain
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Evelien Eenjes
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Michael Crichton
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Jenna L Cash
- Centre for Inflammation Research, Institute for Regeneration and Repair, 4-5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Louis Archambault
- Department of Physics, Université Laval/Centre de Recherche sur le Cancer, Université Laval/Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ABTE/ToxEMAC laboratory, University of Caen Normandy, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), Caen, France
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval / LOEX, Québec, QC, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Centre, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Halle
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Zheng M, Li H, Sun L, Cui S, Zhang W, Gao Y, Gao R. Calcipotriol abrogates TGF-β1/pSmad3-mediated collagen 1 synthesis in pancreatic stellate cells by downregulating RUNX1. Toxicol Appl Pharmacol 2024; 491:117078. [PMID: 39214171 DOI: 10.1016/j.taap.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
RUNX1 with CBFβ functions as an activator or repressor of critical mediators regulating cellular function. The aims of this study were to clarify the role of RUNX1 on regulating TGF-β1-induced COL1 synthesis and the mechanism of calcipotriol (Cal) on antagonizing COL1 synthesis in PSCs. RT-qPCR and Western Blot for determining the mRNAs and proteins of RUNX1 and COL1A1/1A2 in rat PSC line (RP-2 cell). Luciferase activities driven by RUNX1 or COL1A1 or COL1A2 promoter, co-immunoprecipitation and immunoblotting for pSmad3/RUNX1 or CBFβ/RUNX1, and knockdown or upregulation of Smad3 and RUNX1 were used. RUNX1 production was regulated by TGF-β1/pSmad3 signaling pathway in RP-2 cells. RUNX1 formed a coactivator with CBFβ in TGF-β1-treated RP-2 cells to regulate the transcriptions of COL1A1/1A2 mRNAs under a fashion of pSmad3/RUNX1/CBFβ complex. However, Cal effectively abrogated the levels of COL1A1/1A2 transcripts in TGF-β1-treated RP-2 cells by downregulating RUNX1 production and hindering the formation of pSmad3/RUNX1/CBFβ complexes. This study suggests that RUNX1 may be a promising antifibrotic target for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Meifang Zheng
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Shiyuan Cui
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Runping Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Kim MK, Han SH, Park TG, Song SH, Lee JY, Lee YS, Yoo SY, Chi XZ, Kim EG, Jang JW, Lim DS, van Wijnen AJ, Lee JW, Bae SC. The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1. Mol Cells 2023; 46:592-610. [PMID: 37706312 PMCID: PMC10590711 DOI: 10.14348/molcells.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023] Open
Abstract
The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hyun Han
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Tae-Geun Park
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Soo-Hyun Song
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Ja-Youl Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - You-Soub Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Seo-Yeong Yoo
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Xin-Zi Chi
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Ju-Won Jang
- Department of Biomedical Science, Cheongju University, Cheongju 28503, Korea
| | - Dae Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Jung-Won Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
6
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
7
|
Wang Y, Lifshitz L, Silverstein NJ, Mintzer E, Luk K, StLouis P, Brehm MA, Wolfe SA, Deeks SG, Luban J. Transcriptional and chromatin profiling of human blood innate lymphoid cell subsets sheds light on HIV-1 pathogenesis. EMBO J 2023; 42:e114153. [PMID: 37382276 PMCID: PMC10425848 DOI: 10.15252/embj.2023114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of cells that include NK cells and contribute to tissue homeostasis and repair, inflammation, and provide protection from infection. The interplay between human blood ILCs, as well as their responses to HIV-1 infection, remains poorly understood. This study used transcriptional and chromatin profiling to explore these questions. Transcriptional profiling and flow cytometry analysis support that there are four main ILC subsets found in human blood. Unlike in mice, human NK cells expressed the tissue repair protein amphiregulin (AREG). AREG production was induced by TCF7/WNT, IL-2, and IL-15, and inhibited by TGFB1, a cytokine increased in people living with HIV-1. In HIV-1 infection, the percentage of AREG+ NK cells correlated positively with the numbers of ILCs and CD4+ T cells but negatively with the concentration of inflammatory cytokine IL-6. NK-cell knockout of the TGFB1-stimulated WNT antagonist RUNX3 increased AREG production. Antiviral gene expression was increased in all ILC subsets from HIV-1 viremic people, and anti-inflammatory gene MYDGF was increased in an NK-cell subset from HIV-1-infected people whose viral load was undetectable in the absence of antiretroviral therapy. The percentage of defective NK cells in people living with HIV-1 correlated inversely with ILC percentage and CD4+ T-cell counts. CD4+ T cells and their production of IL-2 prevented the loss of NK-cell function by activating mTOR. These studies clarify how ILC subsets are interrelated and provide insight into how HIV-1 infection disrupts NK cells, including an uncharacterized homeostatic function in NK cells.
Collapse
Affiliation(s)
- Yetao Wang
- Hospital for Skin Diseases (Institute of Dermatology)Chinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Key Laboratory of Basic and Translational Research on Immune‐Mediated Skin DiseasesChinese Academy of Medical SciencesNanjingChina
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Lawrence Lifshitz
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Noah J Silverstein
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Pamela StLouis
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michael A Brehm
- Diabetes Center of ExcellenceUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Steven G Deeks
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Jeremy Luban
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Ragon Institute of MGH, MIT, and HarvardCambridgeMAUSA
- Massachusetts Consortium on Pathogen ReadinessBostonMAUSA
| |
Collapse
|
8
|
Pritzl CJ, Luera D, Knudson KM, Quaney MJ, Calcutt MJ, Daniels MA, Teixeiro E. IKK2/NFkB signaling controls lung resident CD8 + T cell memory during influenza infection. Nat Commun 2023; 14:4331. [PMID: 37468506 DOI: 10.1038/s41467-023-40107-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
CD8+ T cell tissue resident memory (TRM) cells are especially suited to control pathogen spread at mucosal sites. However, their maintenance in lung is short-lived. TCR-dependent NFkB signaling is crucial for T cell memory but how and when NFkB signaling modulates tissue resident and circulating T cell memory during the immune response is unknown. Here, we find that enhancing NFkB signaling in T cells once memory to influenza is established, increases pro-survival Bcl-2 and CD122 levels thus boosting lung CD8+ TRM maintenance. By contrast, enhancing NFkB signals during the contraction phase of the response leads to a defect in CD8+ TRM differentiation without impairing recirculating memory subsets. Specifically, inducible activation of NFkB via constitutive active IKK2 or TNF interferes with TGFβ signaling, resulting in defects of lung CD8+ TRM imprinting molecules CD69, CD103, Runx3 and Eomes. Conversely, inhibiting NFkB signals not only recovers but improves the transcriptional signature and generation of lung CD8+ TRM. Thus, NFkB signaling is a critical regulator of tissue resident memory, whose levels can be tuned at specific times during infection to boost lung CD8+ TRM.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Karin M Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Michael J Quaney
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Michael J Calcutt
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Huang X, Jie S, Li W, Liu C. GATA4-activated lncRNA MALAT1 promotes osteogenic differentiation through inhibiting NEDD4-mediated RUNX1 degradation. Cell Death Discov 2023; 9:150. [PMID: 37156809 PMCID: PMC10167365 DOI: 10.1038/s41420-023-01422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) brings a lot of inconvenience to patients and serious economic burden to society. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays vital role in the process of PMOP treatment. However, the functional mechanism remains unclear. In this study, GATA4, MALAT1 and KHSRP were downregulated in bone tissues of PMOP patients, while NEDD4 was overexpressed. Through functional experiments, GATA4 overexpression strikingly accelerated osteogenic differentiation of BMSCs and promoted bone formation in vitro and in vivo, while these effects were dramatically reversed after MALAT1 silence. Intermolecular interaction experiments confirmed that GATA4 activated the transcription of MALAT1, which could form a 'RNA-protein' complex with KHSRP to decay NEDD4 mRNA. NEDD4 promoted the degradation of Runx1 by ubiquitination. Moreover, NEDD4 silencing blocked the inhibitory effects of MALAT1 knockdown on BMSCs osteogenic differentiation. In sum up, GATA4-activated MALAT1 promoted BMSCs osteogenic differentiation via regulating KHSPR/NEDD4 axis-regulated RUNX1 degradation, ultimately improving PMOP.
Collapse
Affiliation(s)
- Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
10
|
Cai C, Zhu Y, Mu J, Liu S, Yang Z, Wu Z, Zhao C, Song X, Ye Y, Gu J, Sang Y, Wu X, Gong W. DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell Signal 2023; 108:110710. [PMID: 37156453 DOI: 10.1016/j.cellsig.2023.110710] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Gallbladder cancer (GBC) is a type of rare but highly aggressive cancer with a dismal prognosis. Runt-related transcription factor 3 (RUNX3), a member of the runt-domain family, and its promoter methylation have been widely observed in a variety of human malignancies. However, the biological function and underlying mechanism of RUNX3 in GBC remain elusive. In this study, bisulfate sequencing PCR (BSP), Western blot, and qPCR were applied to identify the expression level and DNA methylation level of RUNX3 in GBC tissues and cells. The transcriptional relationship between RUNX3 and Inhibitor of growth 1 (ING1) was validated by dual-luciferase reporter assay and ChIP assay. A series of gain-of-function and loss-of-function assays were performed to detect the function and the regulatory relationship of RUNX3 in vitro and in vivo. RUNX3 was aberrantly downregulated in GBC cells and tissues caused by DNA Methyltransferase 1 (DNMT1)-mediated methylation, and downregulation of RUNX3 is associated with poor prognosis of GBC patients. Functional experiments reveal that RUNX3 can induce ferroptosis of GBC cells in vitro and in vivo. Mechanistically, RUNX3 induces ferroptosis by activating ING1 transcription, thereby repressing SLC7A11 in a p53-dependent manner. In conclusion, the downregulation of RUNX3 is mediated by DNA methylation, which promotes the pathogenesis of gallbladder cancer through attenuating SLC7A11-mediated ferroptosis. This study gives novel insights into the role of RUNX3 in the ferroptosis of GBC cells, which may contribute to developing potential treatment targets for GBC.
Collapse
Affiliation(s)
- Chen Cai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyou Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Cheng Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jun Gu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch. No. 25 Nanmen Road, Shanghai 202150, China
| | - Yuer Sang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
11
|
Che X, Jin X, Park NR, Kim HJ, Kyung HS, Kim HJ, Lian JB, Stein JL, Stein GS, Choi JY. Cbfβ Is a Novel Modulator against Osteoarthritis by Maintaining Articular Cartilage Homeostasis through TGF-β Signaling. Cells 2023; 12:cells12071064. [PMID: 37048137 PMCID: PMC10093452 DOI: 10.3390/cells12071064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
TGF-β signaling is a vital regulator for maintaining articular cartilage homeostasis. Runx transcription factors, downstream targets of TGF-β signaling, have been studied in the context of osteoarthritis (OA). Although Runx partner core binding factor β (Cbfβ) is known to play a pivotal role in chondrocyte and osteoblast differentiation, the role of Cbfβ in maintaining articular cartilage integrity remains obscure. This study investigated Cbfβ as a novel anabolic modulator of TGF-β signaling and determined its role in articular cartilage homeostasis. Cbfβ significantly decreased in aged mouse articular cartilage and human OA cartilage. Articular chondrocyte-specific Cbfb-deficient mice (Cbfb△ac/△ac) exhibited early cartilage degeneration at 20 weeks of age and developed OA at 12 months. Cbfb△ac/△ac mice showed enhanced OA progression under the surgically induced OA model in mice. Mechanistically, forced expression of Cbfβ rescued Type II collagen (Col2α1) and Runx1 expression in Cbfβ-deficient chondrocytes. TGF-β1-mediated Col2α1 expression failed despite the p-Smad3 activation under TGF-β1 treatment in Cbfβ-deficient chondrocytes. Cbfβ protected Runx1 from proteasomal degradation through Cbfβ/Runx1 complex formation. These results indicate that Cbfβ is a novel anabolic regulator for cartilage homeostasis, suggesting that Cbfβ could protect OA development by maintaining the integrity of the TGF-β signaling pathway in articular cartilage.
Collapse
|
12
|
Selven H, Busund LTR, Andersen S, Pedersen MI, Lombardi APG, Kilvaer TK. High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I-III Colon Cancer. Cancers (Basel) 2023; 15:cancers15051448. [PMID: 36900240 PMCID: PMC10000923 DOI: 10.3390/cancers15051448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Colon cancer is a common malignancy and a major contributor to human morbidity and mortality. In this study, we explore the expression and prognostic impact of IRS-1, IRS-2, RUNx3, and SMAD4 in colon cancer. Furthermore, we elucidate their correlations with miRs 126, 17-5p, and 20a-5p, which are identified as potential regulators of these proteins. Tumor tissue from 452 patients operated for stage I-III colon cancer was retrospectively collected and assembled into tissue microarrays. Biomarkers' expressions were examined by immunohistochemistry and analyzed using digital pathology. In univariate analyses, high expression levels of IRS1 in stromal cytoplasm, RUNX3 in tumor (nucleus and cytoplasm) and stroma (nucleus and cytoplasm), and SMAD4 in tumor (nucleus and cytoplasm) and stromal cytoplasm were related to increased disease-specific survival (DSS). In multivariate analyses, high expression of IRS1 in stromal cytoplasm, RUNX3 in tumor nucleus and stromal cytoplasm, and high expression of SMAD4 in tumor and stromal cytoplasm remained independent predictors of improved DSS. Surprisingly, with the exception of weak correlations (0.2 < r < 0.25) between miR-126 and SMAD4, the investigated markers were mostly uncorrelated with the miRs. However, weak to moderate/strong correlations (0.3 < r < 0.6) were observed between CD3 and CD8 positive lymphocyte density and stromal RUNX3 expression. High expression levels of IRS1, RUNX3, and SMAD4 are positive prognostic factors in stage I-III colon cancer. Furthermore, stromal expression of RUNX3 is associated with increased lymphocyte density, suggesting that RUNX3 is an important mediator during recruitment and activation of immune cells in colon cancer.
Collapse
Affiliation(s)
- Hallgeir Selven
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | - Sigve Andersen
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | - Mona Irene Pedersen
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | | | - Thomas Karsten Kilvaer
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
- Correspondence: ; Tel.: +47-905-24-635
| |
Collapse
|
13
|
Xia S, Vila Ellis L, Winkley K, Menden H, Mabry SM, Venkatraman A, Louiselle D, Gibson M, Grundberg E, Chen J, Sampath V. Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L123-L140. [PMID: 36537711 PMCID: PMC9902224 DOI: 10.1152/ajplung.00252.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hyperoxia disrupts lung development in mice and causes bronchopulmonary dysplasia (BPD) in neonates. To investigate sex-dependent molecular and cellular programming involved in hyperoxia, we surveyed the mouse lung using single cell RNA sequencing (scRNA-seq), and validated our findings in human neonatal lung cells in vitro. Hyperoxia-induced inflammation in alveolar type (AT) 2 cells gave rise to damage-associated transient progenitors (DATPs). It also induced a new subpopulation of AT1 cells with reduced expression of growth factors normally secreted by AT1 cells, but increased mitochondrial gene expression. Female alveolar epithelial cells had less EMT and pulmonary fibrosis signaling in hyperoxia. In the endothelium, expansion of Car4+ EC (Cap2) was seen in hyperoxia along with an emergent subpopulation of Cap2 with repressed VEGF signaling. This regenerative response was increased in females exposed to hyperoxia. Mesenchymal cells had inflammatory signatures in hyperoxia, with a new distal interstitial fibroblast subcluster characterized by repressed lipid biosynthesis and a transcriptomic signature resembling myofibroblasts. Hyperoxia-induced gene expression signatures in human neonatal fibroblasts and alveolar epithelial cells in vitro resembled mouse scRNA-seq data. These findings suggest that neonatal exposure to hyperoxia programs distinct sex-specific stem cell progenitor and cellular reparative responses that underpin lung remodeling in BPD.
Collapse
Affiliation(s)
- Sheng Xia
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Konner Winkley
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Heather Menden
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Sherry M Mabry
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Aparna Venkatraman
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Daniel Louiselle
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Margaret Gibson
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
- Children's Mercy Research Institute, Kansas City, Missouri
| | - Jichao Chen
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Venkatesh Sampath
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
- Children's Mercy Research Institute, Kansas City, Missouri
| |
Collapse
|
14
|
Bhuyan ZA, Rahman MA, Maradana MR, Mehdi AM, Bergot AS, Simone D, El-Kurdi M, Garrido-Mesa J, Cai CBB, Cameron AJ, Hanson AL, Nel HJ, Kenna T, Leo P, Rehaume L, Brown MA, Ciccia F, Thomas R. Genetically encoded Runx3 and CD4 + intestinal epithelial lymphocyte deficiencies link SKG mouse and human predisposition to spondyloarthropathy. Clin Immunol 2023; 247:109220. [PMID: 36596403 DOI: 10.1016/j.clim.2022.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/02/2023]
Abstract
Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαβ+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-β and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-β/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.
Collapse
Affiliation(s)
- Zaied Ahmed Bhuyan
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - M Arifur Rahman
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Muralidhara Rao Maradana
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Ahmed M Mehdi
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Anne-Sophie Bergot
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Davide Simone
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Marya El-Kurdi
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Cheng Bang Benjamin Cai
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Amy J Cameron
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Aimee L Hanson
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Hendrik J Nel
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Tony Kenna
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Paul Leo
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland 4006, Australia
| | - Linda Rehaume
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Genomics England Ltd, Charterhouse Square, London, United Kingdom
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, Section of Rheumatology, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Ranjeny Thomas
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
15
|
Müller L, Keil R, Hatzfeld M. Plakophilin 3 facilitates G1/S phase transition and enhances proliferation by capturing RB protein in the cytoplasm and promoting EGFR signaling. Cell Rep 2023; 42:112031. [PMID: 36689330 DOI: 10.1016/j.celrep.2023.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Plakophilin 3 (PKP3) is a component of desmosomes and is frequently overexpressed in cancer. Using keratinocytes either lacking or overexpressing PKP3, we identify a signaling axis from ERK to the retinoblastoma (RB) protein and the E2F1 transcription factor that is controlled by PKP3. RB and E2F1 are key components controlling G1/S transition in the cell cycle. We show that PKP3 stimulates the activity of ERK and its target RSK1. This inhibits expression of the transcription factor RUNX3, a positive regulator of the CDK inhibitor CDKN1A/p21, which is also downregulated by PKP3. Elevated CDKN1A prevents RB phosphorylation and E2F1 target gene expression, leading to delayed S phase entry and reduced proliferation in PKP3-depleted cells. Elevated PKP3 expression not only increases ERK activity but also captures phosphorylated RB (phospho-RB) in the cytoplasm to promote E2F1 activity and cell-cycle progression. These data identify a mechanism by which PKP3 promotes proliferation and acts as an oncogene.
Collapse
Affiliation(s)
- Lisa Müller
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| | - René Keil
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Mechthild Hatzfeld
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| |
Collapse
|
16
|
Wang X, Li F, Cheng J, Hou N, Pu Z, Zhang H, Chen Y, Huang C. MicroRNA-17 Family Targets RUNX3 to Increase Proliferation and Migration of Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 2023; 33:71-84. [PMID: 37017671 DOI: 10.1615/critreveukaryotgeneexpr.v33.i3.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one common cancer in the world. Previous studies have shown that miR-17 family members are elevated in most tumors and promote tumor progression. However, there is no comprehensive analysis of the expression and functional mechanism of the microRNA-17 (miR-17) family in HCC. The aim of this study is to comprehensively analyze the function of the miR-17 family in HCC and the molecular mechanism of its role. Bioinfoimatics analysis of the miR-17 family expression profile and its relationship to clinical significance using The Cancer Genome Atlas (TCGA) database, and this result was confirmed using quantitative real-time polymerase chain reaction. miR-17 family members were tested for functional effects through transfection of miRNA precursors and inhibitors, and monitoring cell viability and migration by cell count and wound healing assays. In addition, we using dual-luciferase assay and Western blot demonstrated the targeting relationship between the miRNA-17 family and RUNX3. These members of miR-17 family were highly expressed in HCC tissues, and the overexpression of the miR-17 family promoted the proliferation and migration of SMMC-7721 cells, whereas treatment with anti-miR17 inhibitors caused the opposite effects. Notably, we also found that inhibitors anti-each member of miR-17 can suppress the expression of the entire family member. In addition, they can bind to the 3' untranslated region of RUNX3 to regulate its expression at the translational level. Our results proved that miR-17 family has oncogenic characteristics, overexpression every member of the family contributed to HCC cell proliferation and migration by reducing the translation of RUNX3.
Collapse
Affiliation(s)
- Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Zhiying Pu
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710021, Shaanxi, China
| | - Hua Zhang
- First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Huang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
17
|
BMP/Smad Pathway Is Involved in Lithium Carbonate-Induced Neural-Tube Defects in Mice and Neural Stem Cells. Int J Mol Sci 2022; 23:ijms232314831. [PMID: 36499158 PMCID: PMC9735442 DOI: 10.3390/ijms232314831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Neural-tube defects (NTDs) are one type of the most serious birth defects. Studies have shown that inositol deficiency is closely related to the occurrence of NTDs. Bone morphogenetic protein (BMP)-mediated Smad signaling pathways have been implicated in neurogenesis and neural-tube closure. However, the role of the BMP/Smad pathway in inositol-deficiency-induced NTDs remains unclear. Inositol-deficiency models in C57 mice and mouse neural stem cells (mNSCs) were induced with Li2CO3 treatment or inositol withdrawal. The role of the BMP/Smad pathway in the regulation of cell proliferation and the development of NTDs was determined utilizing qRT-PCR, HE staining, Western blot, immunostaining, MTT assay, EdU staining, and flow cytometry. The intraperitoneal injection of Li2CO3 at Embryonic Day 7.5 induced the occurrence of NTDs. The mRNA levels of Bmp2, Bmp4, Smad1, Smad5, Smad8 and Runx2, the phosphorylation of Smad1/5/8, and the nuclear translocation of Runx2 were significantly increased in NTD embryonic brain tissues and mNSCs exposed to Li2CO3 or an inositol-free medium, which were suppressed by BMP receptor selective inhibitor LDN-193189. The Li2CO3-induced phosphorylation of Smad1/5/8 was inhibited by inositol supplementation. Cell proliferation was significantly promoted by Li2CO3 exposure or the absence of inositol in mNSCs, which was reversed by LDN-193189. These results suggest that the activation of the BMP/Smad signaling pathway might play an important role in the development of NTDs induced by maternal Li2CO3 exposure via inositol deficiency.
Collapse
|
18
|
Ye Z, Kilic G, Dabelsteen S, Marinova IN, Thøfner JF, Song M, Rudjord-Levann AM, Bagdonaite I, Vakhrushev SY, Brakebusch CH, Olsen JV, Wandall HH. Characterization of TGF-β signaling in a human organotypic skin model reveals that loss of TGF-βRII induces invasive tissue growth. Sci Signal 2022; 15:eabo2206. [DOI: 10.1126/scisignal.abo2206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transforming growth factor–β (TGF-β) signaling regulates various aspects of cell growth and differentiation and is often dysregulated in human cancers. We combined genetic engineering of a human organotypic three-dimensional (3D) skin model with global quantitative proteomics and phosphoproteomics to dissect the importance of essential components of the TGF-β signaling pathway, including the ligands TGF-β1, TGF-β2, and TGF-β3, the receptor TGF-βRII, and the intracellular effector SMAD4. Consistent with the antiproliferative effects of TGF-β signaling, the loss of TGF-β1 or SMAD4 promoted cell cycling and delayed epidermal differentiation. The loss of TGF-βRII, which abrogates both SMAD4-dependent and SMAD4-independent downstream signaling, more strongly affected cell proliferation and differentiation than did loss of SMAD4, and it induced invasive growth. TGF-βRII knockout reduced cell-matrix interactions, and the production of matrix proteins increased the production of cancer-associated cell-cell adhesion proteins and proinflammatory mediators and increased mitogen-activated protein kinase (MAPK) signaling. Inhibiting the activation of the ERK and p38 MAPK pathways blocked the development of the invasive phenotype upon the loss of TGF-βRII. This study provides a framework for exploring TGF-β signaling pathways in human epithelial tissue homeostasis and transformation using genetic engineering, 3D tissue models, and high-throughput quantitative proteomics and phosphoproteomics.
Collapse
Affiliation(s)
- Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülcan Kilic
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section of Oral Biology and Immunopathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Section of Oral Biology and Immunopathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Irina N. Marinova
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. B. Thøfner
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ming Song
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asha M. Rudjord-Levann
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cord H. Brakebusch
- Biotech Research and Innovation Centre, Biomedical Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Halperin C, Hey J, Weichenhan D, Stein Y, Mayer S, Lutsik P, Plass C, Scherz-Shouval R. Global DNA Methylation Analysis of Cancer-Associated Fibroblasts Reveals Extensive Epigenetic Rewiring Linked with RUNX1 Upregulation in Breast Cancer Stroma. Cancer Res 2022; 82:4139-4152. [PMID: 36287637 DOI: 10.1158/0008-5472.can-22-0209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Cancer cells recruit and rewire normal fibroblasts in their microenvironment to become protumorigenic cancer-associated fibroblasts (CAF). These CAFs are genomically stable, yet their transcriptional programs are distinct from those of their normal counterparts. Transcriptional regulation plays a major role in this reprogramming, but the extent to which epigenetic modifications of DNA also contribute to the rewiring of CAF transcription is not clear. Here we address this question by dissecting the epigenetic landscape of breast CAFs. Applying tagmentation-based whole-genome bisulfite sequencing in a mouse model of breast cancer, we found that fibroblasts undergo massive DNA methylation changes as they transition into CAFs. Transcriptional and epigenetic analyses revealed RUNX1 as a potential mediator of this process and identified a RUNX1-dependent stromal gene signature. Coculture and mouse models showed that both RUNX1 and its stromal signature are induced as normal fibroblasts transition into CAFs. In breast cancer patients, RUNX1 was upregulated in CAFs, and expression of the RUNX1 signature was associated with poor disease outcome, highlighting the relevance of these findings to human disease. This work presents a comprehensive genome-wide map of DNA methylation in CAFs and reveals a previously unknown facet of the dynamic plasticity of the stroma. SIGNIFICANCE The first genome-wide map of DNA methylation in breast cancer-associated fibroblasts unravels a previously unknown facet of the dynamic plasticity of the stroma, with far-reaching therapeutic implications.
Collapse
Affiliation(s)
- Coral Halperin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Gupta S, Fink MK, Kempuraj D, Sinha NR, Martin LM, Keele LM, Sinha PR, Giuliano EA, Hesemann NP, Raikwar SP, Chaurasia SS, Mohan RR. Corneal fibrosis abrogation by a localized AAV-mediated inhibitor of differentiation 3 (Id3) gene therapy in rabbit eyes in vivo. Mol Ther 2022; 30:3257-3269. [PMID: 35780298 PMCID: PMC9552811 DOI: 10.1016/j.ymthe.2022.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022] Open
Abstract
Previously we found that inhibitor of differentiation 3 (Id3) gene, a transcriptional repressor, efficiently inhibits corneal keratocyte differentiation to myofibroblasts in vitro. This study evaluated the potential of adeno-associated virus 5 (AAV5)-mediated Id3 gene therapy to treat corneal scarring using an established rabbit in vivo disease model. Corneal scarring/fibrosis in rabbit eyes was induced by alkali trauma, and 24 h thereafter corneas were administered with either balanced salt solution AAV5-naked vector, or AAV5-Id3 vector (n = 6/group) via an optimized reported method. Therapeutic effects of AAV5-Id3 gene therapy on corneal pathology and ocular health were evaluated with clinical, histological, and molecular techniques. Localized AAV5-Id3 gene therapy significantly inhibited corneal fibrosis/haze clinically from 2.7 to 0.7 on the Fantes scale in live animals (AAV5-naked versus AAV5-Id3; p < 0.001). Furthermore, AAV5-Id3 treatment significantly reduced profibrotic gene mRNA levels: α-smooth muscle actin (α-SMA) (2.8-fold; p < 0.001), fibronectin (3.2-fold; p < 0.001), collagen I (0.8-fold; p < 0.001), and collagen III (1.4-fold; p < 0.001), as well as protein levels of α-SMA (23.8%; p < 0.001) and collagens (1.8-fold; p < 0.001). The anti-fibrotic activity of AAV5-Id3 is attributed to reduced myofibroblast formation by disrupting the binding of E-box proteins to the promoter of α-SMA, a transforming growth factor-β signaling downstream target gene. In conclusion, these results indicate that localized AAV5-Id3 delivery in stroma caused no clinically relevant ocular symptoms or corneal cellular toxicity in the rabbit eyes.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Michael K Fink
- Department of Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Lynn M Martin
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Landon M Keele
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Elizabeth A Giuliano
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Nathan P Hesemann
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Department of Pathology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA
| | - Shyam S Chaurasia
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA; Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, 1600 East Rollins Street, Columbia, MO 65212, USA.
| |
Collapse
|
21
|
Fu J, Sun H, Xu F, Chen R, Wang X, Ding Q, Xia T. RUNX regulated immune-associated genes predicts prognosis in breast cancer. Front Genet 2022; 13:960489. [PMID: 36092942 PMCID: PMC9459239 DOI: 10.3389/fgene.2022.960489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Breast cancer is the most common malignant tumor in women. RUNX family has been involved in the regulation of different carcinogenic processes and signaling pathways with cancer, which is closely related to immunity and prognosis of various tumors, and also plays an important role in the development and prognosis of breast cancer. Methods: We discovered the expression of RUNX family through GEPIA Dataset and then evaluated the relationship between RUNX family and immune-related genes and the prognosis of breast cancer through analyzing TCGA database. A prognostic model was established and verified via cox proportional hazards regression model using R packages. We evaluated the accuracy of the prognostic model by Kaplan-Meier curves and receiver operating characteristic (ROC) curves. Additionally, we obtained the relationship between the RUNX family and immune infiltration by TIMER database. Finally, the dual luciferase reporter assay was used to verify the regulation of RUNX3 on potential target genes ULBP2 and TRDV1, and the effects of ULBP2 and TRDV1 on the growth of breast cancer cells were explored by CCK-8, colony formation and wound healing assays. Results: We screened out RUNX family-regulated immune-related genes associated with the prognosis of breast cancer. These predictors included PSME2, ULBP2, IL-18, TSLP, NPR3, TRDV1. Then a prognosis-related risk score model was built using the independent risk factors to provide a clinically appropriate method predicting the overall survival (OS) probability of the patients with breast cancer. In addition, a further research was made on the functions of high risk immune gene ULBP2 and low risk immune gene TRDV1 which regulated by RUNX3, the results showed that down-regulation of ULBP2 suppressed breast cancer cell proliferation and TRDV1 had the opposite functions. The prognostic model we constructed could promote the development of prognostic, and was associated with lower immune infiltration. Conclusion: The expression of RUNX family was closely related to the prognosis of breast cancer. At the same time, RUNX family could modulate the functions of immune-related genes, and affect the development and prognosis of breast cancer. These immune-related genes regulated by RUNX family could be promising prognostic biomarkers and therapeutic targets in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiang Ding
- *Correspondence: Tiansong Xia, ; Qiang Ding,
| | | |
Collapse
|
22
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|
23
|
Gultian KA, Gandhi R, DeCesari K, Romiyo V, Kleinbart EP, Martin K, Gentile PM, Kim TWB, Vega SL. Injectable hydrogel with immobilized BMP-2 mimetic peptide for local bone regeneration. FRONTIERS IN BIOMATERIALS SCIENCE 2022; 1. [PMID: 37090104 PMCID: PMC10120851 DOI: 10.3389/fbiom.2022.948493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Osteoporosis is a disease characterized by a decrease in bone mineral density, thereby increasing the risk of sustaining a fragility fracture. Most medical therapies are systemic and do not restore bone in areas of need, leading to undesirable side effects. Injectable hydrogels can locally deliver therapeutics with spatial precision, and this study reports the development of an injectable hydrogel containing a peptide mimic of bone morphogenetic protein-2 (BMP-2). To create injectable hydrogels, hyaluronic acid was modified with norbornene (HANor) or tetrazine (HATet) which upon mixing click into covalently crosslinked Nor-Tet hydrogels. By modifying HANor macromers with methacrylates (Me), thiolated BMP-2 mimetic peptides were immobilized to HANor via a Michael addition reaction, and coupling was confirmed with 1H NMR spectroscopy. BMP-2 peptides presented in soluble and immobilized form increased alkaline phosphatase (ALP) expression in MSCs cultured on 2D and encapsulated in 3D Nor-Tet hydrogels. Injection of bioactive Nor-Tet hydrogels into hollow intramedullary canals of Lewis rat femurs showed a local increase in trabecular bone density as determined by micro-CT imaging. The presented work shows that injectable hydrogels with immobilized BMP-2 peptides are a promising biomaterial for the local regeneration of bone tissue and for the potential local treatment of osteoporosis.
Collapse
Affiliation(s)
- Kirstene A. Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Roshni Gandhi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Kayla DeCesari
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
| | - Vineeth Romiyo
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Emily P. Kleinbart
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Kelsey Martin
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Pietro M. Gentile
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Tae Won B. Kim
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- Department of Orthopaedic Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- CORRESPONDENCE Sebastián L. Vega,
| |
Collapse
|
24
|
Genetic Polymorphisms in the 3'-Untranslated Regions of SMAD5, FN3KRP, and RUNX-1 Are Associated with Recurrent Pregnancy Loss. Biomedicines 2022; 10:biomedicines10071481. [PMID: 35884785 PMCID: PMC9313017 DOI: 10.3390/biomedicines10071481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is typically defined as two or more consecutive pregnancy losses prior to 20 weeks of gestation. Although the causes of idiopathic RPL are not completely understood, vascular development and glucose concentration were reported to correlate with the pregnancy loss. The TGF-β signaling pathway which plays a significant role in pregnancy is activated by the interaction between high glucose and SMAD signaling and affects the vascular cells. SMAD5 and RUNX-1 are involved in the TGF-β signaling pathway and contribute to advanced glycation end products (AGEs) production and vascular development. FN3KRP, a newly described gene, is also associated with vascular diseases and suggested to relate to AGEs. Therefore, in the present study, we investigated associations between RPL risk and genetic polymorphisms of SMAD5, FN3KRP, and RUNX-1 in 388 women with RPL and 280 healthy control women of Korean ethnicity. Participants were genotyped using real-time polymerase chain reaction and restriction fragment length polymorphism assay to determine the frequency of SMAD5 rs10515478 C>G, FN3KRP rs1046875 G>A, and RUNX-1 rs15285 G>A polymorphisms. We found that women with RPL had lower likelihoods of the FN3KRP rs1046875 AA genotype (adjusted odds ratio (AOR), 0.553; p = 0.010) and recessive model (AOR, 0.631; p = 0.017). Furthermore, combination analysis showed that SMAD5 rs10515478 C>G and FN3KRP rs1046875 G>A mutant alleles were together associated with reduced RPL risk. These findings suggest that the FN3KRP rs1046875 G>A polymorphism has a significant role on the prevalence of RPL in Korean women. Considering that it is the first study indicating a significant association between FN3KRP and pregnancy disease, RPL, our results suggest the need for further investigation of the role of FN3KRP in pregnancy loss.
Collapse
|
25
|
Inflammatory Cytokine Profiles Do Not Differ Between Patients With Idiopathic Cytopenias of Undetermined Significance and Myelodysplastic Syndromes. Hemasphere 2022; 6:e0713. [PMID: 35495296 PMCID: PMC9038488 DOI: 10.1097/hs9.0000000000000713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/18/2022] [Indexed: 02/03/2023] Open
Abstract
Immune dysregulation has been highlighted as a key player in the pathogenesis of myelodysplastic syndromes (MDS), but little is known about cytokine profiles in patients with unexplained cytopenia with or without mutations in MDS-associated genes (clonal cytopenias of undetermined significance [CCUS] and idiopathic cytopenias of undetermined significance [ICUS], respectively), which often precede MDS. Here, we study the cytokine profiles in 111 patients with ICUS (N = 41), CCUS (N = 30), lower-risk MDS (LR-MDS; N = 22) and higher-risk MDS (HR-MDS; N = 18), and in healthy elderly controls (N = 21). Twenty cytokines were examined in blood plasma at time of diagnosis using Luminex assays and enzyme linked immunosorbent assays. The cytokine levels were compared between patient groups, and in patients versus controls. Associations between cytokines and MDS-associated mutations were evaluated. An aberrant cytokine profile was observed in all patient groups relative to healthy elderly controls. Patients had significantly higher levels of IL-6 (P< 0 .001), tumor necrosis factor α (P < 0.001), IL-10 (P < 0.001), and C-X-C motif chemokine 10 (P < 0.001) and lower levels of transforming growth factor beta 1 (P < 0.001), CCL5/regulated on activation normal T-cell expressed and secreted (P < 0.001), and S100A4 (P < 0.001) compared with healthy controls. Survival was significantly shorter in CCUS and MDS patients with a high systemic inflammatory cytokine load (median overall survival [OS] 21 months) compared with those with low-moderate systemic inflammatory cytokine load (median OS 64 months; P < 0.0001). These data suggest that patients with ICUS and CCUS have cytokine levels as abnormal as in LR-MDS. Indeed, high cytokine levels are present before MDS is diagnosed and cytokine levels are elevated irrespective of the presence or size of the myeloid clones. Cytokines may have a prognostic impact at a very early premalignant stage of myeloid disorders.
Collapse
|
26
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
27
|
RUNX1 overexpression triggers TGF-β signaling to upregulate p15 and thereby blocks early hematopoiesis by inducing cell cycle arrest. Stem Cell Res 2022; 60:102694. [DOI: 10.1016/j.scr.2022.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
|
28
|
Ye Y, Ke Y, Liu L, Xiao T, Yu J. CircRNA FAT1 Regulates Osteoblastic Differentiation of Periodontal Ligament Stem Cells via miR-4781-3p/SMAD5 Pathway. Stem Cells Int 2021; 2021:5177488. [PMID: 35003269 PMCID: PMC8731273 DOI: 10.1155/2021/5177488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of human periodontal ligament stem cells (PDLSCs) to differentiate into osteoblasts is significant in periodontal regeneration tissue engineering. In this study, we explored the role and mechanism of circRNA FAT1 (circFAT1) in the osteogenic differentiation of human PDLSCs. The proliferation capacity of PDLSCs was evaluated by EdU and CCK-8 assay. The abilities of circFAT1 and miR-4781-3p in regulating PDLSC differentiation were analyzed by western blot, reverse transcription-polymerase chain reaction (RT-PCR), alkaline phosphatase (ALP), and Alizarin red staining (ARS). A nucleocytoplasmic separation experiment was utilized for circFAT1 localization. A dual-luciferase reporter assay confirmed the binding relationship between miR-4781-3p and circFAT1. It was showed that circFAT1 does not affect the proliferation of PDLSCs. The osteogenic differentiation of PDLSCs was benefited from circFAT1, which serves as a miRNA sponge for miR-4781-3p targeting SMAD5. Both knockdown of circFAT1 and overexpression of miR-4781-3p suppressed the osteogenic differentiation of PDLSCs. Thus, circFAT1 might be considered as a potential target of PDLSCs mediated periodontal bone regeneration.
Collapse
Affiliation(s)
- Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yue Ke
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tong Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
29
|
Zhang X, Chen Y, Zhang C, Zhang X, Xia T, Han J, Song S, Xu C, Chen F. Effects of icariin on the fracture healing in young and old rats and its mechanism. PHARMACEUTICAL BIOLOGY 2021; 59:1245-1255. [PMID: 34511043 PMCID: PMC8439244 DOI: 10.1080/13880209.2021.1972121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Icariin has attracted increasing attention because of its wide variety of pharmacological effects. OBJECTIVE This study investigates whether icariin could promote fracture healing in young and old rats and its mechanisms. MATERIALS AND METHODS A Wistar rat model for the tibia fracture in relatively young and old rats, respectively, was established. The rats were divided into four groups: model group, L-icariin (50 mg/kg icariin), M-icariin (100 mg/kg icariin) and H-icariin (200 mg/kg icariin), and intragastric administration of icariin was performed for 10 days or 20 days. In addition, isolated and cultured rat bone mesenchymal stem cells (rBMSCs) from young and old rats were cultured with 5% and 20% of icariin-containing serum, respectively, then cell viability and alkaline phosphatase (ALP) activity were measured. RESULTS Icariin administration induced the expression of Runx2, Osterix, BMP-2, p-Smad5 and osteocalcin secretion (young rats: model: 2.50 ± 0.71; L-icariin: 10.10 ± 1.55; M-icariin: 24.95 ± 2.19; H-icariin: 36.80 ± 2.26; old rats: model: 1.55 ± 0.49; L-icariin:6.55 ± 0.50; M-icariin: 15.00 ± 0.85; H-icariin:20.50 ± 2.27) at the fracture site, and increased the levels of bone formation markers (OC, BAP, NTX-1 and CTX-1) in a dose-dependent manner. In vitro, icariin treatment promoted rBMSC viability, increased ALP activity and the expression of BMP-2/Smad5/Runx2 pathway proteins. DISCUSSION AND CONCLUSIONS Icariin may accelerate fracture healing by activating the BMP-2/Smad5/Runx2 pathway in relatively young and old rats. The research on the mechanism of icariin to promote fracture healing can provide a theoretical basis for the clinical application and promotion of icariin.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Clinical Medical School, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Yueping Chen
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Chi Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Xuan Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Tian Xia
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Han
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Shilei Song
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Canhong Xu
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Chen
- Department of Orthopedics, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
30
|
Jemmerson R. Paradoxical Roles of Leucine-Rich α 2-Glycoprotein-1 in Cell Death and Survival Modulated by Transforming Growth Factor-Beta 1 and Cytochrome c. Front Cell Dev Biol 2021; 9:744908. [PMID: 34692699 PMCID: PMC8531642 DOI: 10.3389/fcell.2021.744908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich α2-glycoprotein-1 (LRG1) has been shown to impact both apoptosis and cell survival, pleiotropic effects similar to one of its known ligands, transforming growth factor-beta 1 (TGF-β1). Recent studies have given insight into the TGF-β1 signaling pathways involved in LRG1-mediated death versus survival signaling, i.e., canonical or non-canonical. Interaction of LRG1 with another ligand, extracellular cytochrome c (Cyt c), promotes cell survival, at least for lymphocytes. LRG1 has been shown to bind Cyt c with high affinity, higher than it binds TGF-β1, making it sensitive to small changes in the level of extracellular Cyt c within a microenvironment that may arise from cell death. Evidence is presented here that LRG1 can bind TGF-β1 and Cyt c simultaneously, raising the possibility that the ternary complex may present a signaling module with the net effect of signaling, cell death versus survival, determined by the relative extent to which the LRG1 binding sites are occupied by these two ligands. A possible role for LRG1 should be considered in studies where extracellular effects of TGF-β1 and Cyt c have been observed in media supplemented with LRG1-containing serum.
Collapse
Affiliation(s)
- Ronald Jemmerson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
The Potential of Tissue-Resident Memory T Cells for Adoptive Immunotherapy against Cancer. Cells 2021; 10:cells10092234. [PMID: 34571883 PMCID: PMC8465847 DOI: 10.3390/cells10092234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident memory T cells (TRM) comprise an important memory T cell subset that mediates local protection upon pathogen re-encounter. TRM populations preferentially localize at entry sites of pathogens, including epithelia of the skin, lungs and intestine, but have also been observed in secondary lymphoid tissue, brain, liver and kidney. More recently, memory T cells characterized as TRM have also been identified in tumors, including but not limited to melanoma, lung carcinoma, cervical carcinoma, gastric carcinoma and ovarian carcinoma. The presence of these memory T cells has been strongly associated with favorable clinical outcomes, which has generated an interest in targeting TRM cells to improve immunotherapy of cancer patients. Nevertheless, intratumoral TRM have also been found to express checkpoint inhibitory receptors, such as PD-1 and LAG-3. Triggering of such inhibitory receptors could induce dysfunction, often referred to as exhaustion, which may limit the effectiveness of TRM in countering tumor growth. A better understanding of the differentiation and function of TRM in tumor settings is crucial to deploy these memory T cells in future treatment options of cancer patients. The purpose of this review is to provide the current status of an important cancer immunotherapy known as TIL therapy, insight into the role of TRM in the context of antitumor immunity, and the challenges and opportunities to exploit these cells for TIL therapy to ultimately improve cancer treatment.
Collapse
|
32
|
Zhang J, Xu N, Yu C, Miao K, Wang Q. LncRNA PART1/miR-185-5p/RUNX3 feedback loop modulates osteogenic differentiation of bone marrow mesenchymal stem cells. Autoimmunity 2021; 54:422-429. [PMID: 34431433 DOI: 10.1080/08916934.2021.1966771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for bone formation, and its dysfunction is reported to be associated with osteoporosis (OP). Recent researches have determined that lncRNA PART1 participates in the pathogenesis of multiple diseases. However, its role in modulating osteogenic differentiation of hBMSCs is unclear. METHODS PART1, miR-185-5p, and RUNX3 levels were assessed via RT-qPCR. The protein levels of OCN, OSN, and COL1A1 were measured by western blotting. The osteoblastic phenotype was evaluated via ALP activity and ARS staining. The relationship between miR-185-5p and PART1 or RUNX3 was validated by luciferase reporter, RIP assays. RESULTS PART1 and RUNX3 expression were enhanced during hBMSC osteogenic differentiation. PART1 deletion decreased OCN, OSN, and COL1A1 levels and weakened ALP activity, but promoted the apoptosis of hBMSCs. Moreover, PART1 served as a ceRNA to influence the RUNX3 level via targeting miR-185-5p. In addition, RUNX3 was verified to activate the transcription of PART1 in hBMSCs. Finally, rescue assays indicated that suppression of miR-185-5p or addition of RUNX3 partially abolished the effects of PART1 knockdown on the levels of OCN, OSX, and COL1A1 levels, ALP activity, and apoptosis. CONCLUSION Our study elaborated that PART1/miR-185-5p/RUNX3 feedback contributed to osteogenic differentiation and inhibited the hBMSCs apoptosis, suggesting that PART1 might be a novel target for OP treatment.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Orthopedics and Traumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Nanwei Xu
- Department of Spinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Changlin Yu
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Kaisong Miao
- Department of Orthopedics and Traumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Qiugen Wang
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
33
|
Pritzl CJ, Daniels MA, Teixeiro E. Interplay of Inflammatory, Antigen and Tissue-Derived Signals in the Development of Resident CD8 Memory T Cells. Front Immunol 2021; 12:636240. [PMID: 34234771 PMCID: PMC8255970 DOI: 10.3389/fimmu.2021.636240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
CD8 positive, tissue resident memory T cells (TRM) are a specialized subset of CD8 memory T cells that surveil tissues and provide critical first-line protection against tumors and pathogen re-infection. Recently, much effort has been dedicated to understanding the function, phenotype and development of TRM. A myriad of signals is involved in the development and maintenance of resident memory T cells in tissue. Much of the initial research focused on the roles tissue-derived signals play in the development of TRM, including TGFß and IL-33 which are critical for the upregulation of CD69 and CD103. However, more recent data suggest further roles for antigenic and pro-inflammatory cytokines. This review will focus on the interplay of pro-inflammatory, tissue and antigenic signals in the establishment of resident memory T cells.
Collapse
Affiliation(s)
| | | | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
34
|
Zhang Y, Zhang Z, Chen P, Ma CY, Li C, Au TYK, Tam V, Peng Y, Wu R, Cheung KMC, Sham PC, Tse HF, Chan D, Leung VY, Cheah KSE, Lian Q. Directed Differentiation of Notochord-like and Nucleus Pulposus-like Cells Using Human Pluripotent Stem Cells. Cell Rep 2021; 30:2791-2806.e5. [PMID: 32101752 DOI: 10.1016/j.celrep.2020.01.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 10/15/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
Intervertebral disc degeneration might be amenable to stem cell therapy, but the required cells are scarce. Here, we report the development of a protocol for directed in vitro differentiation of human pluripotent stem cells (hPSCs) into notochord-like and nucleus pulposus (NP)-like cells of the disc. The first step combines enhancement of ACTIVIN/NODAL and WNT and inhibition of BMP pathways. By day 5 of differentiation, hPSC-derived cells express notochordal cell characteristic genes. After activating the TGF-β pathway for an additional 15 days, qPCR, immunostaining, and transcriptome data show that a wide array of NP markers are expressed. Transcriptomically, the in vitro-derived cells become more like in vivo adolescent human NP cells, driven by a set of influential genes enriched with motifs bound by BRACHYURY and FOXA2, consistent with an NP cell-like identity. Transplantation of these NP-like cells attenuates fibrotic changes in a rat disc injury model of disc degeneration.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Zhao Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Peikai Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Chui Yan Ma
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Cheng Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Tiffany Y K Au
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Yan Peng
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ron Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Pak C Sham
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China; The State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong.
| |
Collapse
|
35
|
Sampath TK, Vukicevic S. Biology of bone morphogenetic protein in bone repair and regeneration: A role for autologous blood coagulum as carrier. Bone 2020; 141:115602. [PMID: 32841742 DOI: 10.1016/j.bone.2020.115602] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
BMPs were purified from demineralized bone matrix based on their ability to induce new bone in vivo and they represent a large member of the TGF-β superfamily of proteins. BMPs serve as morphogenic signals for mesenchymal stem cell migration, proliferation and subsequently differentiation into cartilage and bone during embryonic development. A BMP when implanted with a collagenous carrier in a rat subcutaneous site is capable of inducing new bone by mimicking the cellular events of embryonic bone formation. Based on this biological principle, BMP2 and BMP7 containing collagenous matrix as carrier have been developed as bone graft substitutes for spine fusion and long bone fractures. Here, we describe a novel autologous bone graft substitute that contains BMP6 delivered within an autologous blood coagulum as carrier and summarize the biology of osteogenic BMPs in the context of bone repair and regeneration specifically the critical role that carrier plays to support osteogenesis.
Collapse
Affiliation(s)
- T Kuber Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
36
|
Behr FM, Beumer-Chuwonpad A, Kragten NAM, Wesselink TH, Stark R, van Gisbergen KPJM. Circulating memory CD8 + T cells are limited in forming CD103 + tissue-resident memory T cells at mucosal sites after reinfection. Eur J Immunol 2020; 51:151-166. [PMID: 32762051 DOI: 10.1002/eji.202048737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Tissue-resident memory CD8+ T cells (TRM ) localize to barrier tissues and mediate local protection against reinvading pathogens. Circulating central memory (TCM ) and effector memory CD8+ T cells (TEM ) also contribute to tissue recall responses, but their potential to form mucosal TRM remains unclear. Here, we employed adoptive transfer and lymphocytic choriomeningitis virus reinfection models to specifically assess secondary responses of TCM and TEM at mucosal sites. Donor TCM and TEM exhibited robust systemic recall responses, but only limited accumulation in the small intestine, consistent with reduced expression of tissue-homing and -retention molecules. Murine and human circulating memory T cells also exhibited limited CD103 upregulation following TGF-β stimulation. Upon pathogen clearance, TCM and TEM readily gave rise to secondary TEM . TCM also formed secondary central memory in lymphoid tissues and TRM in internal tissues, for example, the liver. Both TCM and TEM failed to substantially contribute to resident mucosal memory in the small intestine, while activated intestinal TRM , but not liver TRM , efficiently reformed CD103+ TRM . Our findings demonstrate that circulating TCM and TEM are limited in generating mucosal TRM upon reinfection. This may pose important implications on cell therapy and vaccination strategies employing memory CD8+ T cells for protection at mucosal sites.
Collapse
Affiliation(s)
- Felix M Behr
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ammarina Beumer-Chuwonpad
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Natasja A M Kragten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas H Wesselink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Xiao Z, Tian Y, Jia Y, Shen Q, Jiang W, Chen G, Shang B, Shi M, Wang Z, Zhao X. RUNX3 inhibits the invasion and migration of esophageal squamous cell carcinoma by reversing the epithelial‑mesenchymal transition through TGF‑β/Smad signaling. Oncol Rep 2020; 43:1289-1299. [PMID: 32323849 PMCID: PMC7057941 DOI: 10.3892/or.2020.7508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Runt‑related transcription factor 3 (RUNX3) is a candidate tumor suppressor, and its inactivation may play a crucial role in the carcinogenesis process of numerous cancer types, including esophageal squamous cell carcinoma (ESCC). We previously revealed that RUNX3 inactivation was correlated with lymph node metastasis (LNM) and ESCC recurrence. However, the exact mechanisms of this process are still under investigation. The aim of the present study was to examine the potential roles and underlying molecular mechanisms of RUNX3 in ESCC metastasis and the epithelial‑mesenchymal transition (EMT). According to the results, RUNX3 expression in ESCC tissue was significantly reduced compared with that in adjacent normal tissue (0.50±0.20 vs. 0.83±0.16; P<0.001). In addition, statistical analysis revealed a close association between decreased RUNX3 expression and T status (P=0.027) and LNM (P=0.017) in ESCC patients. Pearson's correlation coefficient analysis was then used to evaluate correlations between RUNX3 and EMT‑related marker expression. The results revealed that RUNX3 expression in ESCC tissues was negatively correlated with the expression of N‑cadherin (r=‑0.429; P<0.01) and Snail (r=‑0.364; P<0.01) and positively correlated with the expression of E‑cadherin (r=0.580; P<0.01). Moreover, Eca109 and EC9706 cell invasion, migration, MMP‑9 expression and EMT were significantly inhibited by RUNX3 overexpression. Notably, further analysis revealed that RUNX3 overexpression markedly inhibited the phosphorylation of Smad2/3; RUNX3‑overexpressing cells also displayed less sensitivity to TGF‑β1‑induced EMT than control cells. Thus, RUNX3 may inhibit the invasion and migration of ESCC cells by reversing EMT through TGF‑β/Smad signaling and may be useful as a therapeutic target.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yu Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qi Shen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenpeng Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Gang Chen
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
- Correspondence to: Professor Zhou Wang, Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, P.R. China, E-mail:
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
- Key Laboratory of Thoracic Cancer in Universities of Shandong, Jinan, Shandong 250033, P.R. China
- Professor Xiaogang Zhao, Department of Thoracic Surgery, The Second Hospital of Shandong University, 247 Beiyuan Avenue, Jinan, Shandong 250033, P.R. China, E-mail:
| |
Collapse
|
38
|
Mani V, Bromley SK, Äijö T, Mora-Buch R, Carrizosa E, Warner RD, Hamze M, Sen DR, Chasse AY, Lorant A, Griffith JW, Rahimi RA, McEntee CP, Jeffrey KL, Marangoni F, Travis MA, Lacy-Hulbert A, Luster AD, Mempel TR. Migratory DCs activate TGF-β to precondition naïve CD8 + T cells for tissue-resident memory fate. Science 2020; 366:366/6462/eaav5728. [PMID: 31601741 DOI: 10.1126/science.aav5728] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/22/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
Epithelial resident memory T (eTRM) cells serve as sentinels in barrier tissues to guard against previously encountered pathogens. How eTRM cells are generated has important implications for efforts to elicit their formation through vaccination or prevent it in autoimmune disease. Here, we show that during immune homeostasis, the cytokine transforming growth factor β (TGF-β) epigenetically conditions resting naïve CD8+ T cells and prepares them for the formation of eTRM cells in a mouse model of skin vaccination. Naïve T cell conditioning occurs in lymph nodes (LNs), but not in the spleen, through major histocompatibility complex class I-dependent interactions with peripheral tissue-derived migratory dendritic cells (DCs) and depends on DC expression of TGF-β-activating αV integrins. Thus, the preimmune T cell repertoire is actively conditioned for a specialized memory differentiation fate through signals restricted to LNs.
Collapse
Affiliation(s)
- Vinidhra Mani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Immunology Graduate Program, Harvard Medical School, Boston, MA, USA
| | - Shannon K Bromley
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Tarmo Äijö
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Rut Mora-Buch
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Esteban Carrizosa
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Bluebird Bio, 60 Binney Street, Cambridge, MA 02142, USA
| | - Ross D Warner
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Moustafa Hamze
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Debattama R Sen
- Immunology Graduate Program, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexandra Y Chasse
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jason W Griffith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Craig P McEntee
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Kate L Jeffrey
- Harvard Medical School, Boston, MA, USA.,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Francesco Marangoni
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Mark A Travis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Gao QQ, Zhou B, Yu XZ, Zhang Z, Wang YY, Song YP, Zhang L, Luo H, Xi MR. Transcriptome changes induced by RUNX3 in cervical cancer cells in vitro. Oncol Lett 2020; 19:651-662. [PMID: 31897181 PMCID: PMC6924183 DOI: 10.3892/ol.2019.11128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) is a member of Runt domain family that is known to play key roles in various different types of tumor. It was recently demonstrated that RUNX3 may also be associated with cervical cancer. The aim of the present study was to investigate the potential association between transcriptome changes and RUNX3 expression in cervical cancer. A RUNX3 overexpression model was constructed using cervical cancer cell lines by RUNX3 plasmid transfection. It was demonstrated that the upregulated expression of RUNX3 inhibited proliferation of cervical cancer cell lines, particularly SiHa cells, and was associated with the expression of the IL-6, PTGS2, FOSL1 and TNF genes. In addition, it was revealed that the TNF and FoxO pathways may also be affected by RUNX3. Therefore, the expression of the RUNX3 gene may be involved in the occurrence and progression of cervical cancer.
Collapse
Affiliation(s)
- Qian-Qian Gao
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiu-Zhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhu Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Yun Wang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ping Song
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Luo
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ming-Rong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
40
|
Oncosuppressive Role of RUNX3 in Human Astrocytomas. JOURNAL OF ONCOLOGY 2019; 2019:1232434. [PMID: 31467531 PMCID: PMC6699290 DOI: 10.1155/2019/1232434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/29/2023]
Abstract
Background Gliomas are the most common and aggressive among primary malignant brain tumours with significant inter- and intratumour heterogeneity in histology, molecular profile, and patient outcome. However, molecular targets that could provide reliable diagnostic and prognostic information on this type of cancer are currently unknown. Recent studies show that certain phenotypes of gliomas such as malignancy, resistance to therapy, and relapses are associated with the epigenetic alterations of tumour-specific genes. Runt-related transcription factor 3 (RUNX3) is feasible tumour suppressor gene since its inactivation was shown to be related to carcinogenesis. Aim The aim of the study was to elucidate RUNX3 changes in different regulation levels of molecular biology starting from epigenetics to function in particular cases of astrocytic origin tumours of different grade evaluating significance of molecular changes of RUNX3 for patient clinical characteristics as well as evaluate RUNX3 reexpression effect to GBM cells. Methods The methylation status and protein expression levels of RUNX3 were measured by methylation-specific PCR and Western blot in 136 and 72 different malignancy grade glioma tissues, respectively. Lipotransfection and MTT were applied for proliferation assessment in U87-MG cells. Results We found that RUNX3 was highly methylated and downregulated in GBM. RUNX3 promoter methylation was detected in 69.4% of GBM (n=49) as compared to 0 to 17.2% in I-III grade astrocytomas (n=87). Weighty lower RUNX3 protein level was observed in GMB specimens compared to grade II-III astrocytomas. Correlation test revealed a weak but significant link among Runx3 methylation and protein level. Kaplan-Meier analysis showed that increased RUNX3 methylation and low protein level were both associated with shorter patient survival (p<0.05). Reexpression of RUNX3 in U87-MG cells significantly reduced glioma cell viability compared to control transfection. Conclusions The results demonstrate that RUNX3 gene methylation and protein expression downregulation are glioma malignancy dependent and contribute to tumour progression.
Collapse
|
41
|
Affandi AJ, Carvalheiro T, Ottria A, Broen JCA, Bossini-Castillo L, Tieland RG, Bon LV, Chouri E, Rossato M, Mertens JS, Garcia S, Pandit A, de Kroon LMG, Christmann RB, Martin J, van Roon JAG, Radstake TRDJ, Marut W. Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis. Ann Rheum Dis 2019; 78:1249-1259. [DOI: 10.1136/annrheumdis-2018-214991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
ObjectivesSystemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology.MethodsIn total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model.ResultsHere, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis.ConclusionsWe show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.
Collapse
|
42
|
Zhu X, Niu X, Ge C. Inhibition of LINC00994 represses malignant behaviors of pancreatic cancer cells: interacting with miR-765-3p/RUNX2 axis. Cancer Biol Ther 2019; 20:799-811. [PMID: 30739523 DOI: 10.1080/15384047.2018.1564566] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer exhibits one of the worst prognosis of all human cancers, and it is associated with gene dysregulation. Our microarray results first indicated long intergenic non-protein coding RNA 994 (LINC00994) as an upregulated long non-coding RNA (lncRNA) and miR-765-3p as a downregulated microRNA (miRNA) in pancreatic cancer tissues (Fold change ≥ 2 and P < 0.05; three paired samples). To investigate the role of LINC00994 in pancreatic carcinogenesis, a pair of short hairpin RNA (shRNA) was used to stably knock down the endogenous expression of LINC00994 in Panc-1 and AsPC-1 pancreatic cancer cells in vitro. We found that LINC00994 silencing inhibited the growth, migration and invasion, and promoted the G1 cell cycle arrest and apoptosis in Panc-1 and AsPC-1 cells. Furthermore, the expression of LINC00994 was negatively correlated with that of miR-765-3p in 10 pancreatic cancer specimens. Runt-related transcription factor 2 (RUNX2), a molecule that contributes to the aggressive behaviors of pancreatic cancer, was herein verified as a novel target for miR-765-3p. Like LINC00994, its expression was elevated in pancreatic cancers. Silencing of LINC00994 and RUNX2 reduced each other's expression in both Panc-1 and AsPC-1 cells. RUNX2 3'UTR and LINC00994 competed to bind miR-765-3p. Additionally, LINC00994-silenced cells regained their aggressive behaviors when miR-765-3p was antagonized, which was accompanied with RUNX2 re-expression. Collectively, our study reveals that LINC00994 contributes to the malignant behaviors of pancreatic cancer cells by preventing miR-765-3p from targeting RUNX2. LINC00994 can be considered as a novel therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- Xuan Zhu
- a Department of Pancreatic and Biliary Surgery , The First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China.,b Department of General Surgery, Anshan Hospital , The First Affiliated Hospital of China Medical University , Anshan , Liaoning , China
| | - Xing Niu
- c The Second Clinical Medical School , China Medical University , Shenyang , Liaoning , China
| | - Chunlin Ge
- a Department of Pancreatic and Biliary Surgery , The First Affiliated Hospital of China Medical University , Shenyang , Liaoning , China
| |
Collapse
|
43
|
Gao F, Peng C, Zheng C, Zhang S, Wu M. miRNA-101 promotes chondrogenic differentiation in rat bone marrow mesenchymal stem cells. Exp Ther Med 2018; 17:175-180. [PMID: 30651779 PMCID: PMC6307415 DOI: 10.3892/etm.2018.6959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023] Open
Abstract
Effect and related mechanisms of miR-101 on the chondrogenic differentiation of rat bone marrow mesenchymal stem cells (MSCs) were investigated. The expression level of miR-101 was detected during chondrogenic differentiation. Three groups were established to study the potential function between miR-101 and chondrogenic differentiation: miR-NC group (negative control), miR-101 mimics (BMSCs transfected by miR-101 mimics) and mimics + inhibitor (BMSCs transfected by miR-101 mimics and inhibitor), after the induction of chondrogenic differentiation, the cell viability of MSCs and chondrogenic markers were determined, further, the expression level of Sox9 and Runx2 were detected. In our present research, miR-101 was found upregulated during chondrogenic differentiation of MSCs. Compared with the miR-NC group, the cell viability of MSCs was enhanced and the expression level of chondrogenic markers were respectively gained. The expression level of Sox9 was increased but the expression level of Runx2 was decreased by treatment of miR-101 mimics after induction of chondrogenic differentiation. However, these variations of the indicators were reversed by the intervention using the miR-101 inhibitor. Collectively, our research revealed promotion function of miR-101 on chondrogenic differentiation of MSCs, indicating that miR-101 could be a potential therapeutic strategy for the treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Chuangang Peng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Changjun Zheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Shanyong Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
44
|
Yao F, Yin L, Feng S, Wang X, Zhang A, Zhou H. Functional characterization of grass carp runt-related transcription factor 3: Involvement in TGF-β1-mediated c-Myc transcription in fish cells. FISH & SHELLFISH IMMUNOLOGY 2018; 82:130-135. [PMID: 30099141 DOI: 10.1016/j.fsi.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
In mammals, both runt-related transcription factor 3 (RUNX3) and c-Myc are the downstream effectors of transforming growth factor-β1 (TGF-β1) signaling to mediate various cellular responses. However, information of their interaction especially in fish is lacking. In the present study, grass carp (Ctenopharyngodon idella) runx3 (gcrunx3) cDNA was cloned and identified. Interestingly, opposing effects of recombinant grass carp TGF-β1 (rgcTGF-β1) on c-myc and runx3 mRNA expression were observed in grass carp periphery blood lymphocytes (PBLs). Parallelly, Runx3 protein levels were enhanced by rgcTGF-β1 in the cells. These findings prompted us to examine whether Runx3 can mediate the inhibition of TGF-β1 on c-myc expression in fish cells. In line with this, overexpression of grass carp Runx3 and Runx3 DN (a dominant-negative form of Runx3) in grass carp kidney cell line (CIK) cells decreased and increased c-myc transcript levels, respectively. Particularly, the regulation of Runx3 and Runx3 DN on c-myc mRNA expression was direct since they were presented in the nucleus without any stimulation. In addition, rgcTGF-β1 alone suppressed c-myc mRNA expression in CIK cells as in PBLs. Moreover, this inhibitory effect was also observed when grass carp Runx3 and Runx3 DN were overexpressed. These results strengthened the role of TGF-β1 signaling in controlling c-myc transcription. Taken together, TGF-β1-mediated c-myc expression was affected at least in part by Runx3, thereby firstly exploring the functional role of Runx3 in TGF-β1 down-regulation on c-myc mRNA expression in fish.
Collapse
Affiliation(s)
- Fuli Yao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Department of Biochemistry and Molecular Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
45
|
Runx3 regulates folliculogenesis and steroidogenesis in granulosa cells of immature mice. Cell Tissue Res 2018; 375:743-754. [DOI: 10.1007/s00441-018-2947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
|
46
|
RUNX3 inhibits glioma survival and invasion via suppression of the β-catenin/TCF-4 signaling pathway. J Neurooncol 2018; 140:15-26. [PMID: 29916101 DOI: 10.1007/s11060-018-2927-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/09/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Runt-related transcription factor 3 (RUNX3) exerts a tumor suppressor gene associated with gastric and other cancers, including glioma. However, how its anti-tumor mechanism in functions glioma is unclear. METHODS We assayed expression of RUNX3 with a tissue microarray (TMA), frozen cancer tissues and malignant glioma cell lines using immunohistochemistry, qRT-PCR and Western bolt analysis. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm the effect of RUNX3 medicated malignant phenotype. TOP/FOP experiment was used to detect the β-catenin/Tcf-4 transcription activity by RUNX3. RESULTS Enforced RUNX3 expression inhibited proliferation and invasion, induced cell cycle arrest and promoted apoptosis in vitro and in vivo, Bim siRNA partically reversed the effect of RUNX3-induced apoptosis in LN229 and U87 cells, suggesting a dependent role of Bim-caspase pathway. Moreover, Mechanism investigations revealed that restoration of RUNX3 suppressed β-catenin/Tcf-4 transcription activity. CONCLUSIONS RUNX3 plays a pivotal role in glioma initiation and progression as a tumor suppressor via attenuation of Wnt signaling, highlighting it as a potential therapeutic target for glioma.
Collapse
|
47
|
Sukumaran S, Watanabe N, Bajgain P, Raja K, Mohammed S, Fisher WE, Brenner MK, Leen AM, Vera JF. Enhancing the Potency and Specificity of Engineered T Cells for Cancer Treatment. Cancer Discov 2018; 8:972-987. [PMID: 29880586 DOI: 10.1158/2159-8290.cd-17-1298] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
The adoptive transfer of chimeric antigen receptor (CAR)-modified T cells has produced tumor responses even in patients with refractory diseases. However, the paucity of antigens that are tumor selective has resulted, on occasion, in "on-target, off-tumor" toxicities. To address this issue, we developed an approach to render T cells responsive to an expression pattern present exclusively at the tumor by using a trio of novel chimeric receptors. Using pancreatic cancer as a model, we demonstrate how T cells engineered with receptors that recognize prostate stem cell antigen, TGFβ, and IL4, and whose endodomains recapitulate physiologic T-cell signaling by providing signals for activation, costimulation, and cytokine support, produce potent antitumor effects selectively at the tumor site. In addition, this strategy has the benefit of rendering our cells resistant to otherwise immunosuppressive cytokines (TGFβ and IL4) and can be readily extended to other inhibitory molecules present at the tumor site (e.g., PD-L1, IL10, and IL13).Significance: This proof-of-concept study demonstrates how sophisticated engineering approaches can be utilized to both enhance the antitumor efficacy and increase the safety profile of transgenic T cells by incorporating a combination of receptors that ensure that cells are active exclusively at the tumor site. Cancer Discov; 8(8); 972-87. ©2018 AACR.See related commentary by Achkova and Pule, p. 918This article is highlighted in the In This Issue feature, p. 899.
Collapse
Affiliation(s)
- Sujita Sukumaran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Pradip Bajgain
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Kanchana Raja
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Somala Mohammed
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - William E Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|
48
|
Li Z, Fan P, Deng M, Zeng C. The roles of RUNX3 in cervical cancer cells in vitro. Oncol Lett 2018; 15:8729-8734. [PMID: 29805611 DOI: 10.3892/ol.2018.8419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
RUNX3 serves an important role in development of various types of human cancer. The purpose of the present study was to investigate the potential biological function of RUNX3 in cervical cancer cells. In the present study, a RUNX3 overexpressed model was constructed in Hce1 cells by PCDNA3.1-RUNX3 transfection. Western blot analysis was used to measure RUNX3 expression in cervical cancer cells. Immunofluorescence analysis was performed to examine subcellular localization of RUNX3 in cervical cancer cells. Effects of RUNX3 expression on proliferation, migration and invasion of cervical cancer cells were detected by colony formation assay, wound healing assay and Transwell assay, respectively. Immunofluorescence confirmed the nuclear location of RUNX3 in cervical cancer cell. Result sindicated that upregulation of RUNX3 expression inhibited proliferation, migration and invasion of cervical cancer cells. However, knockdown of RUNX3 expression promoted the proliferation, migration and invasion of cervical cancer cells. Hence, RUNX3 may serve as a tumor suppressor gene in cervical cancer.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Pan Fan
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Min Deng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Chao Zeng
- Department of Pathology, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
49
|
Runt-Related Transcription Factor 1 (RUNX1) Promotes TGF-β-Induced Renal Tubular Epithelial-to-Mesenchymal Transition (EMT) and Renal Fibrosis through the PI3K Subunit p110δ. EBioMedicine 2018; 31:217-225. [PMID: 29759484 PMCID: PMC6013935 DOI: 10.1016/j.ebiom.2018.04.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
Renal fibrosis is widely considered a common mechanism leading to end-stage renal failure. Epithelial-to-mesenchymal transition (EMT) plays important roles in the pathogenesis of renal fibrosis. Runt-related transcription factor 1(RUNX1) plays a vital role in hematopoiesis via Endothelial-to-Hematopoietic Transition (EHT), a process that is conceptually similar to EMT, but its role in EMT and renal fibrosis is unclear. Here, we demonstrate that RUNX1 is overexpressed in the processes of TGF-β-induced partial EMT and renal fibrosis and that the expression level of RUNX1 is SMAD3-dependent. Knockdown of RUNX1 attenuated both TGF-β-induced phenotypic changes and the expression levels of EMT marker genes in renal tubular epithelial cells (RTECs). In addition, overexpression of RUNX1 promoted the expression of EMT marker genes in renal tubular epithelial cells. Moreover, RUNX1 promoted TGF-β-induced partial EMT by increasing transcription of the PI3K subunit p110δ, which mediated Akt activation. Specific deletion of Runx1 in mouse RTECs attenuated renal fibrosis, which was induced by both unilateral ureteral obstruction (UUO) and folic acid (FA) treatment. These findings suggest that RUNX1 is a potential target for preventing renal fibrosis. RUNX1 is required for TGF-β induced renal tubular EMT, which increases p110δ transcription for Akt activation. Ablation of RUNX1 in mouse RTECs inhibits renal fibrosis induced by unilateral ureteral obstruction or folic acid. These findings suggest that RUNX1 might be used as a potential target to prevent renal fibrosis.
Kidney fibrosis is a critical pathologic step during the development of renal failure, while epithelial-to-mesenchymal transition (EMT) contributes to the pathogenesis of renal fibrosis. Exploring the new effectors as potential targets to inhibit renal fibrosis is currently under extensive investigation. This manuscript has identified that RUNX1 is required for TGF-β induced renal tubular EMT via increasing expression levels of the PI3K subunit p110δ and Akt activation. Importantly, ablation of Runx1 in mouse renal tubular epithelial cells or the RUNX1 inhibitor could reduce renal fibrosis in response to unilateral ureteral obstruction or under the treatment of folic acid. These findings suggest that the RUNX1 inhibitor might be used to prevent renal fibrosis.
Collapse
|
50
|
Jeong D, Kim H, Ryu A, Sunwoo J, Choi SD, Nam GH, Jeon S. Loss of RUNX3 is significantly associated with advanced tumor grade and stage in endometrial cancers. Mol Med Rep 2018; 17:8173-8179. [PMID: 29693143 PMCID: PMC5983989 DOI: 10.3892/mmr.2018.8915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Loss of runt-related transcription factor 3 (RUNX3) has been reported in various cancers, and one of the mechanisms mediating loss of RUNX3 expression is DNA methylation. However, the role of RUNX3 expression and its DNA methylation status as prognostic factors in endometrial cancer remain unclear. In the present study, the expression and promoter methylation of RUNX3 was examined in endometrial cancer tissues and cell lines, as well as their association with endometrial cancer prognosis. Fifty-five endometrial cancer tissues and two endometrial cancer cell lines (HEC1-α and Ishikawa) were studied. RUNX3 expression and promoter methylation were examined using reverse transcription-polymerase chain reaction (RT-PCR), methylation specific PCR (MS-PCR), and immunohistochemical staining. The demethylating agent 5-aza-2′-deoxycytidine (ADC) was used to reverse the methylation of the RUNX3 promoter. Loss of RUNX3 expression was observed in 50.9% (27/53) of endometrial cancer tissues and in the HEC1-α cell line by immunohistochemistry and RT-PCR, respectively. Methylation of the RUNX3 promoter was observed in 62.2% (33/53) of endometrial cancer tissues, 12.5% (1/8) of normal endometrial tissues, and the HEC1-α cell line by MS-PCR. Tumor grade and stage were significantly correlated with loss of RUNX3 expression. The expression of RUNX3 was restored by treatment with ADC and resulted in growth inhibition in HEC1-α cells. The present results suggested that methylation may serve a critical role in the silencing of RUNX3 and loss of RUNX3 expression may serve as a prognostic marker in endometrial cancer.
Collapse
Affiliation(s)
- Dongjun Jeong
- Soonchunhyang Medical Science Research Institute, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Hyungjoo Kim
- Soonchunhyang Medical Science Research Institute, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Aeli Ryu
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Jaegun Sunwoo
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Seung Do Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| | - Gye Hyun Nam
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi 14584, Republic of Korea
| | - Seob Jeon
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| |
Collapse
|