1
|
Babu AT, Abdul Vahid A, Reselammal DS, Kizhakkeduth ST, Pinhero F, Vijayan V. Exploring the Potential Interaction between the Functional Prion Protein CPEB3 and the Amyloidogenic Pathogenic Protein Tau. J Phys Chem B 2025. [PMID: 39908090 DOI: 10.1021/acs.jpcb.4c06423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Abnormal aggregation of tau protein is pathologically linked to Alzheimer's disease, while the aggregation of the prion-like RNA-binding protein (RBP) CPEB3 is functional and is associated with long-term memory. However, the interaction between these two memory-related proteins has not yet been explored. Our residue-specific NMR relaxation study revealed that the first prion domain of CPEB3 (PRD1) interacts with the 306VQIVYKPVDLSKV318 segment of tau and prevents the aggregation of tau-K18. Notably, this interaction is synergistic as it not only inhibits tau-K18 aggregation but also enhances PRD1 fibril formation. We also studied the interaction of different PRD1 subdomains with tau-K18 to elucidate the precise region of PRD1 that inhibits tau-K18 aggregation. This revealed that the PRD1-Q region is responsible for preventing tau-K18 aggregation. Inspired by this, we synthesized a 15 amino acid Poly-Q peptide that inhibits tau-K18 aggregation, suggesting its potential as a small drug-like molecule for Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Ann Teres Babu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Dhanya S Reselammal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
2
|
Maikap S, Lucaciu A, Chakraborty A, Kestner RI, Vutukuri R, Annamneedi A. Targeting the Neuro-vascular Presynaptic Signalling in STROKE: Evidence and Therapeutic Implications. Ann Neurosci 2025:09727531241310048. [PMID: 39886458 PMCID: PMC11775937 DOI: 10.1177/09727531241310048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 02/01/2025] Open
Abstract
Background Stroke is one of the leading causes of death and long-term adult disability worldwide. Stroke causes neurodegeneration and impairs synaptic function. Understanding the role of synaptic proteins and associated signalling pathways in stroke pathology could offer insights into therapeutic approaches as well as improving rehabilitation-related treatment regimes. Purpose The current study aims to analyse synaptic transcriptome changes in acute and long-term post-stroke (1 day, 7 day timepoints), especially focusing on pre- and postsynaptic genes. Methods We performed data mining of the recent mRNA sequence from isolated mouse brain micro-vessels (MBMVs) after transient middle cerebral artery occlusion (tMCAO) stroke model. Using the SynGO (Synaptic Gene Ontologies and annotations) bioinformatics platform we assessed synaptic protein expression and associated pathways, and compared synaptic protein changes at 1 day and 7 day post-stroke. Results Enrichment analysis of the MBMVs identified significant alterations in the expression of genes related to synaptic physiology, synaptic transmission, neuronal structure, and organisation. We identified that the synaptic changes observed at the 7 day timepoint were initiated by the regulation of specific presynaptic candidates 1 day (24h) post-stroke, highlighting the significance of presynaptic regulation in mediating organising of synaptic structures and physiology. Analysis of transcriptomic data from human postmortem stroke brains confirmed similar presynaptic signalling patterns. Conclusion Our findings identify the changes in presynaptic gene regulation in micro-vessels following ischaemic stroke. Targeting presynaptic active zone protein signalling could represent a promising therapeutic target in mitigating ischaemic stroke.
Collapse
Affiliation(s)
- Shimantika Maikap
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Alexandra Lucaciu
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Aheli Chakraborty
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Roxane Isabelle Kestner
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anil Annamneedi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Fang Z, Ford AJ, Hu T, Zhang N, Mantalaris A, Coskun AF. Subcellular spatially resolved gene neighborhood networks in single cells. CELL REPORTS METHODS 2023; 3:100476. [PMID: 37323566 PMCID: PMC10261906 DOI: 10.1016/j.crmeth.2023.100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/18/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Image-based spatial omics methods such as fluorescence in situ hybridization (FISH) generate molecular profiles of single cells at single-molecule resolution. Current spatial transcriptomics methods focus on the distribution of single genes. However, the spatial proximity of RNA transcripts can play an important role in cellular function. We demonstrate a spatially resolved gene neighborhood network (spaGNN) pipeline for the analysis of subcellular gene proximity relationships. In spaGNN, machine-learning-based clustering of subcellular spatial transcriptomics data yields subcellular density classes of multiplexed transcript features. The nearest-neighbor analysis produces heterogeneous gene proximity maps in distinct subcellular regions. We illustrate the cell-type-distinguishing capability of spaGNN using multiplexed error-robust FISH data of fibroblast and U2-OS cells and sequential FISH data of mesenchymal stem cells (MSCs), revealing tissue-source-specific MSC transcriptomics and spatial distribution characteristics. Overall, the spaGNN approach expands the spatial features that can be used for cell-type classification tasks.
Collapse
Affiliation(s)
- Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adam J. Ford
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Cornuti S, Chen S, Lupori L, Finamore F, Carli F, Samad M, Fenizia S, Caldarelli M, Damiani F, Raimondi F, Mazziotti R, Magnan C, Rocchiccioli S, Gastaldelli A, Baldi P, Tognini P. Brain histone beta-hydroxybutyrylation couples metabolism with gene expression. Cell Mol Life Sci 2023; 80:28. [PMID: 36607453 PMCID: PMC11072080 DOI: 10.1007/s00018-022-04673-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
Little is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting). We found that fasting enhanced K-bhb in a variety of proteins including histone H3. ChIP-seq experiments showed that K9 beta-hydroxybutyrylation of H3 (H3K9-bhb) was significantly enriched by fasting on more than 8000 DNA loci. Transcriptomic analysis showed that H3K9-bhb on enhancers and promoters correlated with active gene expression. One of the most enriched functional annotations both at the epigenetic and transcriptional level was "circadian rhythms''. Indeed, we found that the diurnal oscillation of specific transcripts was modulated by fasting at distinct zeitgeber times both in the cortex and suprachiasmatic nucleus. Moreover, specific changes in locomotor activity daily features were observed during re-feeding after 48-h fasting. Thus, our results suggest that fasting remarkably impinges on the cerebral cortex transcriptional and epigenetic landscape, and BHB acts as a powerful epigenetic molecule in the brain through direct and specific histone marks remodeling in neural tissue cells.
Collapse
Affiliation(s)
- Sara Cornuti
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Francesco Finamore
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Simona Fenizia
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Matteo Caldarelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Christophe Magnan
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
| | - Paola Tognini
- Bio@SNS Lab, Scuola Normale Superiore, Pisa, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Maternal Hyperhomocysteinemia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Cells 2022; 12:cells12010058. [PMID: 36611852 PMCID: PMC9818716 DOI: 10.3390/cells12010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Maternal hyperhomocysteinemia (HCY) is a common pregnancy complication caused by high levels of the homocysteine in maternal and fetal blood, which leads to the alterations of the cognitive functions, including learning and memory. In the present study, we investigated the mechanisms of these alterations in a rat model of maternal HCY. The behavioral tests confirmed the memory impairments in young and adult rats following the prenatal HCY exposure. Field potential recordings in hippocampal slices demonstrated that the long-term potentiation (LTP) was significantly reduced in HCY rats. The whole-cell patch-clamp recordings in hippocampal slices demonstrated that the magnitude of NMDA receptor-mediated currents did not change while their desensitization decreased in HCY rats. No significant alterations of glutamate receptor subunit expression except GluN1 were detected in the hippocampus of HCY rats using the quantitative real-time PCR and Western blot methods. The immunofluorescence microscopy revealed that the number of synaptopodin-positive spines is reduced, while the analysis of the ultrastructure of hippocampus using the electron microscopy revealed the indications of delayed hippocampal maturation in young HCY rats. Thus, the obtained results suggest that maternal HCY disturbs the maturation of hippocampus during the first month of life, which disrupts LTP formation and causes memory impairments.
Collapse
|
6
|
Wang DO. Epitranscriptomic regulation of cognitive development and decline. Semin Cell Dev Biol 2021; 129:3-13. [PMID: 34857470 DOI: 10.1016/j.semcdb.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Functional genomics and systems biology have opened new doors to previously inaccessible genomic information and holistic approaches to study complex networks of genes and proteins in the central nervous system. The advances are revolutionizing our understanding of the genetic underpinning of cognitive development and decline by facilitating identifications of novel molecular regulators and physiological pathways underlying brain function, and by associating polymorphism and mutations to cognitive dysfunction and neurological diseases. However, our current understanding of these complex gene regulatory mechanisms has yet lacked sufficient mechanistic resolution for further translational breakthroughs. Here we review recent findings from the burgeoning field of epitranscriptomics in association of cognitive functions with a special focus on the epitranscritomic regulation in subcellular locations such as chromosome, synapse, and mitochondria. Although there are important gaps in knowledge, current evidence is suggesting that this layer of RNA regulation may be of particular interest for the spatiotemporally coordinated regulation of gene networks in developing and maintaining brain function that underlie cognitive changes.
Collapse
Affiliation(s)
- Dan Ohtan Wang
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Yoshida Hon-machi, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
8
|
Pandey K, Yu XW, Steinmetz A, Alberini CM. Autophagy coupled to translation is required for long-term memory. Autophagy 2021; 17:1614-1635. [PMID: 32501746 PMCID: PMC8354608 DOI: 10.1080/15548627.2020.1775393] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
An increase in protein synthesis following learning is a fundamental and evolutionarily conserved mechanism of long-term memory. To maintain homeostasis, this protein synthesis must be counterbalanced by mechanisms such as protein degradation. Recent studies reported that macroautophagy/autophagy, a major protein degradation mechanism, is required for long-term memory formation. However, how learning regulates autophagy and recruits it into long-term memory formation remains to be established. Here, we show that inhibitory avoidance in rats significantly increases the levels of autophagy and lysosomal degradation proteins, including BECN1/beclin 1, LC3-II, SQSTM1/p62 and LAMP1, as well as autophagic flux in the hippocampus. Moreover, pharmacological inhibition or targeted molecular disruption of the learning-induced autophagy impairs long-term memory, leaving short-term memory intact. The increase in autophagy proteins results from active translation of their mRNA and not from changes in their total mRNA levels. Additionally, the induction of autophagy requires the immediate early gene Arc/Arg3.1. Finally, in contrast to classical regulation of autophagy in other systems, we found that the increase in autophagy upon learning is dispensable for the increase in protein synthesis. We conclude that coupling between learning-induced translation and autophagy, rather than translation per se, is an essential mechanism of long-term memory.Abbreviations: AAV: adeno-associated virus; ARC/ARG3.1: activity regulated cytoskeletal-associated protein; ATG: autophagy related; DG: dentate gyrus; GFP: green fluorescent protein; IA: inhibitory avoidance; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; ODN: oligodeoxynucleotide; qPCR: quantitative polymerase chain reaction; SBI: SBI0206965; SQSTM1/p62: sequestosome 1; SUnSET: surface sensing of translation; TRAP: translating ribosome affinity purification; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Kiran Pandey
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiao-Wen Yu
- Center for Neural Science, New York University, New York, NY, USA
| | - Adam Steinmetz
- Center for Neural Science, New York University, New York, NY, USA
| | | |
Collapse
|
9
|
Reselammal DS, Pinhero F, Sharma R, Oliyantakath Hassan MS, Srinivasula SM, Vijayan V. Mapping the Fibril Core of the Prion Subdomain of the Mammalian CPEB3 that is Involved in Long Term Memory Retention. J Mol Biol 2021; 433:167084. [PMID: 34081983 DOI: 10.1016/j.jmb.2021.167084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
Long-term memory storage is modulated by the prion nature of CPEB3 forming the molecular basis for the maintenance of synaptic facilitation. Here we report that the first prion sub-domain PRD1 of mouse CPEB3 can autonomously form amyloid fibrils in vitro and punctate-like structures in vivo. A ninety-four amino acid sequence within the PRD1 domain, PRD1-core, displays high propensity towards aggregation and associated amyloid characteristics. PRD1-core is characterized using electron microscopy, X-ray diffraction, and solution-state NMR deuterium exchange experiments. Secondary structure elements deduced from solid-state NMR reveal a β-rich core comprising of forty amino acids at the N-terminus of PRD1-core. The synthesized twenty-three amino acid long peptide containing the longest rigid segment (E124-H145) of the PRD1-core rapidly self-aggregates and forms fibrils, indicating a limited aggregation-prone region that could potentially activate the aggregation of the full-length protein. This study provides the first step in identifying the structural trigger for the CPEB3 aggregation process.
Collapse
Affiliation(s)
- Dhanya S Reselammal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | | | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India.
| |
Collapse
|
10
|
Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. J Neurosci 2021; 41:873-882. [PMID: 33446519 PMCID: PMC7880276 DOI: 10.1523/jneurosci.1649-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell. This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use disorder. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epigenome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior relevant to mental health and disease.
Collapse
Affiliation(s)
- Philipp Mews
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10129
| | - Erin S Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37323
| | - Jeremy Day
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Timothy Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
11
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
12
|
Lackovic J, Price TJ, Dussor G. De novo protein synthesis is necessary for priming in preclinical models of migraine. Cephalalgia 2020; 41:237-246. [PMID: 33200943 DOI: 10.1177/0333102420970514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Migraine attacks are often triggered by normally innocuous stimuli, suggesting that sensitization within the nervous system is present. One mechanism that may contribute to neuronal sensitization in this context is translation regulation of new protein synthesis. The goal of this study was to determine whether protein synthesis contributes to behavioral responses and priming in preclinical models of migraine. METHODS Mice received a dural injection of interleukin-6 in the absence or presence of the protein synthesis inhibitor anisomycin or the translation initiation inhibitor 4EGI-1 and were tested for facial hypersensitivity. Upon returning to baseline, mice were given a second, non-noxious dural injection of pH 7.0 to test for priming. Additionally, eIF4ES209Amice lacking phosphorylation of mRNA cap-binding protein eIF4E received dural interleukin-6 or were subjected to repeated restraint stress and then tested for facial hypersensitivity. After returning to baseline, mice were given either dural pH 7.0 or a systemic sub-threshold dose of the nitric oxide donor sodium nitroprusside and tested for priming. RESULTS Dural injection of interleukin-6 in the presence of anisomycin or 4EGI-1 or in eIF4ES209Amice resulted in the partial attenuation of acute facial hypersensitivity and complete block of hyperalgesic priming. Additionally, hyperalgesic priming following repeated restraint stress was blocked in eIF4ES209Amice. CONCLUSIONS These studies show that de novo protein synthesis regulated by activity-dependent translation is critical to the development of priming in two preclinical models of migraine. This suggests that targeting the regulation of protein synthesis may be a novel approach for new migraine treatment strategies.
Collapse
Affiliation(s)
- Jacob Lackovic
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
13
|
Park AJ, Shetty MS, Baraban JM, Abel T. Selective role of the translin/trax RNase complex in hippocampal synaptic plasticity. Mol Brain 2020; 13:145. [PMID: 33172471 PMCID: PMC7653721 DOI: 10.1186/s13041-020-00691-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Activity-dependent local protein synthesis is critical for synapse-specific, persistent plasticity. Abnormalities in local protein synthesis have been implicated in psychiatric disorders. We have recently identified the translin/trax microRNA-degrading enzyme as a novel mediator of protein synthesis at activated synapses. Additionally, translin knockout (KO) mice, which lack translin/trax, exhibit some of the behavioral abnormalities found in a mouse model of fragile X syndrome (fragile X mental retardation protein-FMRP-KO mice). Therefore, identifying signaling pathways interacting with translin/trax to support persistent synaptic plasticity is a translationally relevant goal. Here, as a first step to achieve this goal, we have assessed the requirement of translin/trax for multiple hippocampal synaptic plasticity paradigms that rely on distinct molecular mechanisms. We found that mice lacking translin/trax exhibited selective impairment in a form of persistent hippocampal plasticity, which requires postsynaptic protein kinase A (PKA) activity. In contrast, enduring forms of plasticity that are dependent on presynaptic PKA were unaffected. Furthermore, these mice did not display exaggerated metabotropic glutamate receptor-mediated long-term synaptic depression (mGluR-LTD), a hallmark of the FMRP KO mice. On the contrary, translin KO mice exhibited deficits in N-methyl-d-aspartate receptor (NMDAR) dependent LTD, a phenotype not observed in the FMRP knockouts. Taken together, these findings demonstrate that translin/trax mediates long-term synaptic plasticity that is dependent on postsynaptic PKA signaling and suggest that translin/trax and FMRP play distinct roles in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Gogos Lab, Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, Columbia University, L5-053, 3227 Broadway, New York, NY, 10027, USA.
| | - Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-471 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 2312 Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, 52242, IA, USA
| | - Jay M Baraban
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-471 Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA. .,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 2312 Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, 52242, IA, USA.
| |
Collapse
|
14
|
Lai A, Valdez-Sinon AN, Bassell GJ. Regulation of RNA granules by FMRP and implications for neurological diseases. Traffic 2020; 21:454-462. [PMID: 32374065 PMCID: PMC7377269 DOI: 10.1111/tra.12733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
RNA granule formation, which can be regulated by RNA-binding proteins (RBPs) such as fragile X mental retardation protein (FMRP), acts as a mechanism to control both the repression and subcellular localization of translation. Dysregulated assembly of RNA granules has been implicated in multiple neurological disorders, such as amyotrophic lateral sclerosis. Thus, it is crucial to understand the cellular pathways impinging upon granule assembly or disassembly. The goal of this review is to summarize recent advances in our understanding of the role of the RBP, FMRP, in translational repression underlying RNA granule dynamics, mRNA transport and localized. We summarize the known mechanisms of translational regulation by FMRP, the role of FMRP in RNA transport granules, fragile X granules and stress granules. Focusing on the emerging link between FMRP and stress granules, we propose a model for how hyperassembly and hypoassembly of RNA granules may contribute to neurological diseases.
Collapse
Affiliation(s)
- Austin Lai
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Dinel AL, Lucas C, Guillemet D, Layé S, Pallet V, Joffre C. Chronic Supplementation with a Mix of Salvia officinalis and Salvia lavandulaefolia Improves Morris Water Maze Learning in Normal Adult C57Bl/6J Mice. Nutrients 2020; 12:nu12061777. [PMID: 32549250 PMCID: PMC7353372 DOI: 10.3390/nu12061777] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Two different species of sage, Salvia officinalis and Salvia lavandulaefolia, have demonstrated activities in cognitive function during preclinical and clinical studies related to impaired health situations or single administration. Different memory processes have been described to be significantly and positively impacted. Objective: Our objective is to explore the potential of these Salvia, and their additional activities, in healthy situations, and during prolonged administration, on memory and subsequent mechanisms of action related to putative effects. Design: This mouse study has implicated four investigational arms dedicated to control, Salvia officinalis aqueous extract, Salvia lavandulaefolia-encapsulated essential oil and a mix thereof (Cognivia™) for 2 weeks of administration. Cognitive functions have been assessed throughout Y-maze and Morris water maze models. The impact of supplementation on lipid peroxidation, oxidative stress, neurogenesis, neuronal activity, neurotrophins, neurotrophin receptors, CaM kinase II and glucocorticoid receptors has been assessed via post-interventional tissue collection. Results: All Salvia groups had a significant effect on Y-maze markers on day 1 of administration. Only the mix of two Salvia species demonstrated significant improvements in Morris water maze markers at the end of administration. Considering all biological and histological markers, we did not observe any significant effect of S. officinalis, S. lavandulaefolia and a mix of Salvia supplementation on lipid peroxidation, oxidative stress and neuronal plasticity (neurogenesis, neuronal activity, neurotrophins). Interestingly, CaM kinase II protein expression is significantly increased in animals supplemented with Salvia. Conclusion: The activities of Salvia alone after one intake have been confirmed; however, a particular combination of different types of Salvia have been shown to improve memory and present specific synergistic effects after chronic administration in healthy mice.
Collapse
Affiliation(s)
- Anne-Laure Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France; (S.L.); (V.P.); (C.J.)
- NutriBrain Research and Technology Transfer, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France;
- Correspondence:
| | - Céline Lucas
- NutriBrain Research and Technology Transfer, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France;
| | | | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France; (S.L.); (V.P.); (C.J.)
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France; (S.L.); (V.P.); (C.J.)
| | - Corinne Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro laboratory, 146 rue Léo Saignat, 33076 Bordeaux, France; (S.L.); (V.P.); (C.J.)
| |
Collapse
|
16
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
17
|
Ponce-Lina R, Serafín N, Carranza M, Arámburo C, Prado-Alcalá RA, Luna M, Quirarte GL. Differential Phosphorylation of the Glucocorticoid Receptor in Hippocampal Subregions Induced by Contextual Fear Conditioning Training. Front Behav Neurosci 2020; 14:12. [PMID: 32116592 PMCID: PMC7031480 DOI: 10.3389/fnbeh.2020.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
Aversive events induce the release of glucocorticoid stress hormones that facilitate long-term memory consolidation, an effect that depends on the activation of glucocorticoid receptors (GRs). GRs are distributed widely in the hippocampus. The dorsal region of the hippocampus has been related to cognitive functions and the ventral region to stress and emotion. GR acts as a transcription factor which after hormone binding becomes phosphorylated, affecting its cellular distribution and transcriptional activity. Two functionally well-described GR phosphorylation sites are serine 232 (pSer232), which enhances gene expression, and serine 246 (pSer246), having the opposite effect. Since gene expression is one of the plastic mechanisms needed for memory consolidation, we investigated if an aversive learning task would induce GR phosphorylation in the dorsal (DH) and the ventral (VH) hippocampus. We trained rats in contextual fear conditioning (CFC) using different foot-shock intensities (0.0, 0.5, or 1.5 mA). One subgroup of animals trained with each intensity was sacrificed 15 min after training and blood was collected to quantify corticosterone (CORT) levels in serum. Another subgroup was sacrificed 1 h after training and brains were collected to evaluate the immunoreactivity (IR) to GR, pSer232 and pSer246 by SDS-PAGE/Western blot in DH and VH, and by immunohistochemistry in dorsal and ventral CA1, CA2, CA3, and dentate gyrus (DG) hippocampal regions. The conditioned freezing response increased in animals trained with 0.5 and 1.5 mA during training and extinction sessions. The degree of retention and CORT levels were directly related to the intensity of the foot-shock. Although total GR-IR remained unaffected after conditioning, we observed a significant increase of pSer246-IR in the dorsal region of CA1 and in both dorsal and ventral DG. The only region in which pSer232-IR was significantly elevated was ventral CA3. Our results indicate that fear conditioning training is related to GR phosphorylation in specific subregions of the hippocampus, suggesting that its transcriptional activity for gene expression is favored in ventral CA3, whereas its repressor activity for gene-silencing is increased in dorsal CA1 and in both dorsal and ventral DG.
Collapse
Affiliation(s)
- Renata Ponce-Lina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Norma Serafín
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
18
|
Zhuravin IA, Dubrovskaya NM, Vasilev DS, Postnikova TY, Zaitsev AV. Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats. Neurobiol Learn Mem 2019; 164:107066. [PMID: 31400467 DOI: 10.1016/j.nlm.2019.107066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Prenatal hypoxia often results in dramatic alterations in developmental profiles and behavioral characteristics, including learning and memory, in later life. Despite the accumulation of considerable amounts of experimental data, the mechanisms underlying developmental deficits caused by prenatal hypoxia remain unclear. In the present study, we investigated whether prenatal hypoxia on embryonic day 14 (E14) affected synaptic properties in the hippocampus and hippocampal-related cognitive functions in young rats. We found that 20- to 30-d-old rats subjected to prenatal hypoxia had significantly disturbed basal synaptic transmission in CA3-CA1 synapses and a two-fold decrease in hippocampal long-term synaptic potentiation. These alterations were accompanied by a significant decline in the protein level of GluN2B but not GluN2A NMDA receptor subunits. In addition, the number of synaptopodin-positive dendritic spines in the CA1 area of the hippocampus was reduced in the rats exposed to prenatal hypoxia. These changes resulted in significant learning and memory deficits in a novel object recognition test.
Collapse
Affiliation(s)
- Igor A Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Nadezhda M Dubrovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Dmitry S Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Tatyana Yu Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, Saint Petersburg 197341, Russia.
| |
Collapse
|
19
|
Sossin WS, Costa-Mattioli M. Translational Control in the Brain in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032912. [PMID: 30082469 DOI: 10.1101/cshperspect.a032912] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Translational control in neurons is crucially required for long-lasting changes in synaptic function and memory storage. The importance of protein synthesis control to brain processes is underscored by the large number of neurological disorders in which translation rates are perturbed, such as autism and neurodegenerative disorders. Here we review the general principles of neuronal translation, focusing on the particular relevance of several key regulators of nervous system translation, including eukaryotic initiation factor 2α (eIF2α), the mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1), and the eukaryotic elongation factor 2 (eEF2). These pathways regulate the overall rate of protein synthesis in neurons and have selective effects on the translation of specific messenger RNAs (mRNAs). The importance of these general and specific translational control mechanisms is considered in the normal functioning of the nervous system, particularly during synaptic plasticity underlying memory, and in the context of neurological disorders.
Collapse
Affiliation(s)
- Wayne S Sossin
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
20
|
Theobromine Improves Working Memory by Activating the CaMKII/CREB/BDNF Pathway in Rats. Nutrients 2019; 11:nu11040888. [PMID: 31010016 PMCID: PMC6520707 DOI: 10.3390/nu11040888] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023] Open
Abstract
Theobromine (TB) is a primary methylxanthine found in cacao beans. cAMP-response element-binding protein (CREB) is a transcription factor, which is involved in different brain processes that bring about cellular changes in response to discrete sets of instructions, including the induction of brain-derived neurotropic factor (BDNF). Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been strongly implicated in the memory formation of different species as a key regulator of gene expression. Here we investigated whether TB acts on the CaMKII/CREB/BDNF pathway in a way that might improve the cognitive and learning function in rats. Male Wistar rats (5 weeks old) were divided into two groups. For 73 days, the control rats (CN rats) were fed a normal diet, while the TB-fed rats (TB rats) received the same food, but with a 0.05% TB supplement. To assess the effects of TB on cognitive and learning ability in rats: The radial arm maze task, novel object recognition test, and Y-maze test were used. Then, the brain was removed and the medial prefrontal cortex (mPFC) was isolated for Western Blot, real-time PCR and enzyme-linked immunosorbent assay. Phosphorylated CaMKII (p-CaMKII), phosphorylated CREB (p-CREB), and BDNF level in the mPFC were measured. In all the behavior tests, working memory seemed to be improved by TB ingestion. In addition, p-CaMKII and p-CREB levels were significantly elevated in the mPFC of TB rats in comparison to those of CN rats. We also found that cortical BDNF protein and mRNA levels in TB rats were significantly greater than those in CN rats. These results suggest that orally supplemented TB upregulates the CaMKII/CREB/BDNF pathway in the mPFC, which may then improve working memory in rats.
Collapse
|
21
|
Baranes K, Hibsh D, Cohen S, Yamin T, Efroni S, Sharoni A, Shefi O. Comparing Transcriptome Profiles of Neurons Interfacing Adjacent Cells and Nanopatterned Substrates Reveals Fundamental Neuronal Interactions. NANO LETTERS 2019; 19:1451-1459. [PMID: 30704243 DOI: 10.1021/acs.nanolett.8b03879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Developing neuronal axons are directed by chemical and physical signals toward a myriad of target cells. According to current dogma, the resulting network architecture is critically shaped by electrical interconnections, the synapses; however, key mechanisms translating neuronal interactions into neuronal growth behavior during network formation are still unresolved. To elucidate these mechanisms, we examined neurons interfacing nanopatterned substrates and compared them to natural interneuron interactions. We grew similar neuronal populations under three connectivity conditions, (1) the neurons are isolated, (2) the neurons are interconnected, and (3) the neurons are connected only to artificial substrates, then quantitatively compared both the cell morphologies and the transcriptome-expression profiles. Our analysis shows that whereas axon-guidance signaling pathways in isolated neurons are predominant, in isolated neurons interfacing nanotopography, these pathways are downregulated, similar to the interconnected neurons. Moreover, in nanotopography, interfacing neuron genes related to synaptogenesis and synaptic regulation are highly expressed, that is, again resembling the behavior of interconnected neurons. These molecular findings demonstrate that interactions with nanotopographies, although not leading to electrical coupling, play a comparable functional role in two major routes, neuronal guidance and network formation, with high relevance to the design of regenerative interfaces.
Collapse
Affiliation(s)
- Koby Baranes
- Faculty of Engineering , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Dror Hibsh
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Faculty of Life Sciences , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Sharon Cohen
- Faculty of Engineering , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Gonda Multidisciplinary Brain Research Center , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Tony Yamin
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Department of Physics , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Sol Efroni
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Faculty of Life Sciences , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Amos Sharoni
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Department of Physics , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Orit Shefi
- Faculty of Engineering , Bar-Ilan University , Ramat-Gan 5290002 , Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| |
Collapse
|
22
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
23
|
Autocrine signaling by an Aplysia neurotrophin forms a presynaptic positive feedback loop. Proc Natl Acad Sci U S A 2018; 115:E11168-E11177. [PMID: 30397154 DOI: 10.1073/pnas.1810649115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Whereas short-term plasticity is often initiated on one side of the synapse, long-term plasticity involves coordinated changes on both sides, implying extracellular signaling. We have investigated the possible signaling role of an Aplysia neurotrophin (ApNT) in facilitation induced by serotonin (5HT) at sensory-to-motor neuron synapses in culture. ApNT is an ortholog of mammalian BDNF, which has been reported to act as either an anterograde, retrograde, or autocrine signal, so that its pre- and postsynaptic sources and targets remain unclear. We now report that ApNT acts as a presynaptic autocrine signal that forms part of a positive feedback loop with ApTrk and PKA. That loop stimulates spontaneous transmitter release, which recruits postsynaptic mechanisms, and presynaptic protein synthesis during the transition from short- to intermediate-term facilitation and may also initiate gene regulation to trigger the transition to long-term facilitation. These results suggest that a presynaptic ApNT feedback loop plays several key roles during consolidation of learning-related synaptic plasticity.
Collapse
|
24
|
Bayés À. Setting the stage for a role of the postsynaptic proteome in inherited neurometabolic disorders. J Inherit Metab Dis 2018; 41:1093-1101. [PMID: 30132229 PMCID: PMC6326985 DOI: 10.1007/s10545-018-0240-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Neurotransmitter diseases are a well-defined group of metabolic conditions caused, in most instances, by genes specifically expressed in the presynaptic button. Better understanding of presynaptic molecular physiology, both in normal and pathological conditions, should help develop therapeutical strategies. The clinical relevance of the presynapse in inherited metabolic disorders is in glaring contrast with that of the postsynaptic component, which so far does not seem to play a relevant role in these disorders. This is somewhat surprising, as postsynaptic proteins are known to be involved in many nervous system diseases, particularly in neurodevelopmental and psychiatric disorders. The goal of this article is to explore if defects in the sophisticated postsynaptic machinery could also have a role in neurometabolic disorders.
Collapse
Affiliation(s)
- Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), C/Sant Antoni M. Claret, 167, 08025, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
25
|
Samson J, Cronin S, Dean K. BC200 (BCYRN1) - The shortest, long, non-coding RNA associated with cancer. Noncoding RNA Res 2018; 3:131-143. [PMID: 30175286 PMCID: PMC6114260 DOI: 10.1016/j.ncrna.2018.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
With the discovery that the level of RNA synthesis in human cells far exceeds what is required to express protein-coding genes, there has been a concerted scientific effort to identify, catalogue and uncover the biological functions of the non-coding transcriptome. Long, non-coding RNAs (lncRNAs) are a diverse group of RNAs with equally wide-ranging biological roles in the cell. An increasing number of studies have reported alterations in the expression of lncRNAs in various cancers, although unravelling how they contribute specifically to the disease is a bigger challenge. Originally described as a brain-specific, non-coding RNA, BC200 (BCYRN1) is a 200-nucleotide, predominantly cytoplasmic lncRNA that has been linked to neurodegenerative disease and several types of cancer. Here we summarise what is known about BC200, primarily from studies in neuronal systems, before turning to a review of recent work that aims to understand how this lncRNA contributes to cancer initiation, progression and metastasis, along with its possible clinical utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | - K. Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Antoniou A, Khudayberdiev S, Idziak A, Bicker S, Jacob R, Schratt G. The dynamic recruitment of TRBP to neuronal membranes mediates dendritogenesis during development. EMBO Rep 2017; 19:embr.201744853. [PMID: 29263199 PMCID: PMC5835843 DOI: 10.15252/embr.201744853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are important regulators of local protein synthesis during neuronal development. We investigated the dynamic regulation of microRNA production and found that the majority of the microRNA‐generating complex, consisting of Dicer, TRBP, and PACT, specifically associates with intracellular membranes in developing neurons. Stimulation with brain‐derived neurotrophic factor (BDNF), which promotes dendritogenesis, caused the redistribution of TRBP from the endoplasmic reticulum into the cytoplasm, and its dissociation from Dicer, in a Ca2+‐dependent manner. As a result, the processing of a subset of neuronal precursor microRNAs, among them the dendritically localized pre‐miR16, was impaired. Decreased production of miR‐16‐5p, which targeted the BDNF mRNA itself, was rescued by expression of a membrane‐targeted TRBP. Moreover, miR‐16‐5p or membrane‐targeted TRBP expression blocked BDNF‐induced dendritogenesis, demonstrating the importance of neuronal TRBP dynamics for activity‐dependent neuronal development. We propose that neurons employ specialized mechanisms to modulate local gene expression in dendrites, via the dynamic regulation of microRNA biogenesis factors at intracellular membranes of the endoplasmic reticulum, which in turn is crucial for neuronal dendrite complexity and therefore neuronal circuit formation and function.
Collapse
Affiliation(s)
- Anna Antoniou
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Sharof Khudayberdiev
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Agata Idziak
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Silvia Bicker
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University of Marburg, Marburg, Germany
| | - Gerhard Schratt
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
28
|
Sunkaria A, Yadav A, Bhardwaj S, Sandhir R. Postnatal Proteasome Inhibition Promotes Amyloid-β Aggregation in Hippocampus and Impairs Spatial Learning in Adult Mice. Neuroscience 2017; 367:47-59. [DOI: 10.1016/j.neuroscience.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
|
29
|
Price TJ, Das V, Dussor G. Adenosine Monophosphate-activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain. Curr Drug Targets 2017; 17:908-20. [PMID: 26521775 DOI: 10.2174/1389450116666151102095046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Pathological pain is an enormous medical problem that places a significant burden on patients and can result from an injury that has long since healed or be due to an unidentifiable cause. Although treatments exist, they often either lack efficacy or have intolerable side effects. More importantly, they do not reverse the changes in the nervous system mediating pathological pain, and thus symptoms often return when therapies are discontinued. Consequently, novel therapies are urgently needed that have both improved efficacy and disease-modifying properties. Here we highlight an emerging target for novel pain therapies, adenosine monophosphate-activated protein kinase (AMPK). AMPK is capable of regulating a variety of cellular processes including protein translation, activity of other kinases, and mitochondrial metabolism, many of which are thought to contribute to pathological pain. Consistent with these properties, preclinical studies show positive, and in some cases disease-modifying effects of either pharmacological activation or genetic regulation of AMPK in models of nerve injury, chemotherapy-induced peripheral neuropathy (CIPN), postsurgical pain, inflammatory pain, and diabetic neuropathy. Given the AMPK-activating ability of metformin, a widely prescribed and well-tolerated drug, these preclinical studies provide a strong rationale for both retrospective and prospective human pain trials with this drug. They also argue for the development of novel AMPK activators, whether orthosteric, allosteric, or modulators of events upstream of the kinase. Together, this review will present the case for AMPK as a novel therapeutic target for pain and will discuss future challenges in the path toward development of AMPK-based pain therapeutics.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, JO 4.212 800 W Campbell Rd, Richardson TX 75080, USA.
| | | | | |
Collapse
|
30
|
Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis. J Neurosci 2017; 36:7325-39. [PMID: 27383604 DOI: 10.1523/jneurosci.4282-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/28/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced behavioral plasticity in vivo.
Collapse
|
31
|
Bakhtiari M, Panahi Y, Ameli J, Darvishi B. Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomed Pharmacother 2017. [PMID: 28641164 DOI: 10.1016/j.biopha.2017.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Senile ages of human life is mostly associated with developmental of several neurological complicated conditions including decreased cognition and reasoning, increased memory loss and impaired language performance. Alzheimer's disease (AD) is the most prevalent neural disorder associated with dementia, consisting of about 70% of dementia reported cases. Failure of currently approved chemical anti-AD therapeutic agents has once again brought up the idea of administering naturally occurring compounds as effective alternative and/or complementary regimens in AD treatment. Polyphenol structured neuroprotecting agents are group of biologically active compounds abundantly found in plants with significant protecting effects against neural injuries and degeneration. As a subclass of this family, Flavonoids are potent anti-oxidant, anti-inflammatory and signalling pathways modulatory agents. Phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK) pathways are both affected by Flavonoids. Regulation of pro-survival transcription factors and induction of specific genes expression in hippocampus are other important anti AD therapeutic activities of Flavonoids. These agents are also capable of inhibiting specific enzymes involved in phosphorylation of tau proteins including β-secretases, cyclin dependent kinase 5 and glycogen synthase. Other significant anti AD effects of Flavonoids include neural rehabilitation and lost cognitive performance recovery. In this review, first we briefly describe the pathophysiology and important pathways involved in pathology of AD and then describe the most important mechanisms through which Flavonoids demonstrate their significant neuroprotective effects in AD therapy.
Collapse
Affiliation(s)
- Mahsa Bakhtiari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University, IAUPS, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Baghiatallah University of Medical Science, Tehran, Iran
| | - Javad Ameli
- Department of Neurology, Baghiatallah University of Medical Science, Tehran, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
32
|
Simor A, Györffy BA, Gulyássy P, Völgyi K, Tóth V, Todorov MI, Kis V, Borhegyi Z, Szabó Z, Janáky T, Drahos L, Juhász G, Kékesi KA. The short- and long-term proteomic effects of sleep deprivation on the cortical and thalamic synapses. Mol Cell Neurosci 2017; 79:64-80. [PMID: 28087334 DOI: 10.1016/j.mcn.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022] Open
Abstract
Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain.
Collapse
Affiliation(s)
- Attila Simor
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Balázs András Györffy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin Völgyi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Vilmos Tóth
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Mihail Ivilinov Todorov
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Zsolt Borhegyi
- MTA-ELTE-NAP B Opto-Neuropharmacology Group, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Zoltán Szabó
- Institute of Medical Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Tamás Janáky
- Institute of Medical Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
33
|
Cui Y, Liu J, Irudayaraj J. Beyond quantification: in situ analysis of transcriptome and pre-mRNA alternative splicing at the nanoscale. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27813271 DOI: 10.1002/wnan.1443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/02/2016] [Accepted: 10/02/2016] [Indexed: 11/08/2022]
Abstract
In situ analysis offers a venue for dissecting the complex transcriptome in its natural context to tap into cellular processes that could explain the phenotypic physiology and pathology yet to be understood. Over the past decades, enormous progress has been made to improve the resolution, sensitivity, and specificity of single-cell technologies. The continued efforts in RNA research not only facilitates mechanistic studies of molecular biology but also provides state-of-the-art strategies for diagnostic purposes. The implementation of novel bio-imaging platforms has yielded valuable information for inspecting gene expression, mapping regulatory networks, and classifying cell types. In this article, we discuss the merits and technical challenges in single-molecule in situ RNA profiling. Advanced in situ hybridization methodologies developed for a variety of detection modalities are reviewed. Considering the fact that in mammalian cells the number of protein products immensely exceeds that of the actual coding genes due to pre-mRNA alternative splicing, tools capable of elucidating this process in intact cells are highlighted. To conclude, we point out future directions for in situ transcriptome analysis and expect a plethora of opportunities and discoveries in this field. WIREs Nanomed Nanobiotechnol 2017, 9:e1443. doi: 10.1002/wnan.1443 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jing Liu
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, Rapid City, SD, USA
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
34
|
Wei L, Hu F, Chen Z, Shen Y, Zhang L, Min W. Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes. Acc Chem Res 2016; 49:1494-502. [PMID: 27486796 PMCID: PMC5704954 DOI: 10.1021/acs.accounts.6b00210] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. In particular, fluorescence microscopy with the expanding choices of fluorescent probes has provided a comprehensive toolkit to tag and visualize various molecules of interest with exquisite specificity and high sensitivity. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because common fluorescent labels, which are relatively bulky, could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, a bioorthogonal chemical imaging platform has recently been introduced. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes and stable isotopes), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, and biocompatibility for imaging small biomolecules in live systems. In this Account, we review recent technical achievements for visualizing a broad spectrum of small biomolecules, including ribonucleosides and deoxyribonucleosides, amino acids, fatty acids, choline, glucose, cholesterol, and small-molecule drugs in live biological systems ranging from individual cells to animal tissues and model organisms. Importantly, this platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, we discuss further chemical and spectroscopic strategies for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". As a unique tool for biological discovery, this platform has been applied to studying various metabolic processes under both physiological and pathological states, including protein synthesis activity of neuronal systems, protein aggregations in Huntington disease models, glucose uptake in tumor xenografts, and drug penetration through skin tissues. We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species.
Collapse
Affiliation(s)
- Lu Wei
- Department of Chemistry, Columbia University, New York, 10027
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, 10027
| | - Zhixing Chen
- Department of Chemistry, Columbia University, New York, 10027
| | - Yihui Shen
- Department of Chemistry, Columbia University, New York, 10027
| | - Luyuan Zhang
- Department of Chemistry, Columbia University, New York, 10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, 10027
- Kavli Institute for Brain Science, Columbia University, New York, 10027
| |
Collapse
|
35
|
Onufriev MV, Semenova TP, Volkova EP, Sergun’kina MA, Yakovlev AA, Zakharova NM, Gulyaeva NV. The characteristics of the expression of the Cdk1 and Cyclin B1 Proteins in the brain of the Yakut ground squirrel (Spermophilus undulatus) at different stages of the hibernation cycle. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Intra-axonal protein synthesis in development and beyond. Int J Dev Neurosci 2016; 55:140-149. [PMID: 26970010 DOI: 10.1016/j.ijdevneu.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Proteins can be locally produced in the periphery of a cell, allowing a rapid and spatially precise response to the changes in its environment. This process is especially relevant in highly polarized and morphologically complex cells such as neurons. The study of local translation in axons has evolved from being primarily focused on developing axons, to the notion that also mature axons can produce proteins. Axonal translation has been implied in several physiological and pathological conditions, and in all cases it shares common molecular actors and pathways as well as regulatory mechanisms. Here, we review the main findings in these fields, and attempt to highlight shared principles.
Collapse
|
37
|
Steinman MQ, Gao V, Alberini CM. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation. Front Integr Neurosci 2016; 10:10. [PMID: 26973477 PMCID: PMC4776217 DOI: 10.3389/fnint.2016.00010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual's identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation.
Collapse
Affiliation(s)
| | - Virginia Gao
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
38
|
Bensalem J, Servant L, Alfos S, Gaudout D, Layé S, Pallet V, Lafenetre P. Dietary Polyphenol Supplementation Prevents Alterations of Spatial Navigation in Middle-Aged Mice. Front Behav Neurosci 2016; 10:9. [PMID: 26903826 PMCID: PMC4746350 DOI: 10.3389/fnbeh.2016.00009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/25/2016] [Indexed: 11/25/2022] Open
Abstract
Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to their navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB; from the Neurophenols Consortium) with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal calmodulin kinase II (CaMKII) mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of nerve growth neurotrophic factor (NGF) mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline.
Collapse
Affiliation(s)
- Julien Bensalem
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Activ'InsideLibourne, France
| | - Laure Servant
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France
| | - Serge Alfos
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Nutrition et Neurobiologie Intégrée, Bordeaux INP, UMR 1286Bordeaux, France
| | | | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France
| | - Véronique Pallet
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Nutrition et Neurobiologie Intégrée, Bordeaux INP, UMR 1286Bordeaux, France
| | - Pauline Lafenetre
- Nutrition et Neurobiologie Intégrée, Université de Bordeaux, UMR 1286Bordeaux, France; INRA, Nutrition et Neurobiologie Intégrée, UMR 1286Bordeaux, France; Nutrition et Neurobiologie Intégrée, Bordeaux INP, UMR 1286Bordeaux, France
| |
Collapse
|
39
|
RNA synthesis and turnover in the molluscan nervous system studied by Click-iT method. Brain Res 2016; 1633:139-148. [PMID: 26749075 DOI: 10.1016/j.brainres.2015.12.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022]
Abstract
RNA synthesis can be detected by means of the in vivo incorporation of 5-ethynyluridine (EU) in newly-synthesized RNA with the relatively simple Click-iT method. We used this method to study the RNA synthesis in the CNS tissue of adult and juvenile terrestrial snails Helix lucorum L. Temporally, first labeled neurons were detected in the adult CNS after 4-h of isolated CNS incubation in EU solution, while 12-h of incubation led to extensive labeling of most CNS neurons. The EU labeling was present as the nuclear and nucleolar staining. The cytoplasm staining was observed after 2-3 days of CNS washout following the EU exposure for 16 h. In juvenile CNS, the first staining reaction was apparent as the staining of apical region in the procerebral lobe of cerebral ganglia after 1h of CNS incubation in EU, while the maximum pattern of staining was obtained after 4h of CNS incubation. Thus, age-related differences in RNA synthesis are present. Activation of neurons elicited by serotonin and caffeine applications noticeably increased the intensity of staining. EU readily penetrates into the bodies of juvenile snails immersed in the EU solution. When the intact juvenile animals were immersed in the EU solution for 1h, the procerebrum staining, similar to the one detected in the incubated juvenile CNS, was observed.
Collapse
|
40
|
Abstract
Chronic pain is a major clinical problem that is poorly treated with available therapeutics. Adenosine monophosphate-activated protein kinase (AMPK) has recently emerged as a novel target for the treatment of pain with the exciting potential for disease modification. AMPK activators inhibit signaling pathways that are known to promote changes in the function and phenotype of peripheral nociceptive neurons and promote chronic pain. AMPK activators also reduce the excitability of these cells suggesting that AMPK activators may be efficacious for the treatment of chronic pain disorders, like neuropathic pain, where changes in the excitability of nociceptors is thought to be an underlying cause. In agreement with this, AMPK activators have now been shown to alleviate pain in a broad variety of preclinical pain models indicating that this mechanism might be engaged for the treatment of many types of pain in the clinic. A key feature of the effect of AMPK activators in these models is that they can lead to a long-lasting reversal of pain hypersensitivity even long after treatment cessation, indicative of disease modification. Here, we review the evidence supporting AMPK as a novel pain target pointing out opportunities for further discovery that are likely to have an impact on drug discovery efforts centered around potent and specific allosteric activators of AMPK for chronic pain treatment.
Collapse
|
41
|
Affiliation(s)
- Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri 64110;
| |
Collapse
|
42
|
Patton JG, Franklin JL, Weaver AM, Vickers K, Zhang B, Coffey RJ, Ansel KM, Blelloch R, Goga A, Huang B, L'Etoille N, Raffai RL, Lai CP, Krichevsky AM, Mateescu B, Greiner VJ, Hunter C, Voinnet O, McManus MT. Biogenesis, delivery, and function of extracellular RNA. J Extracell Vesicles 2015; 4:27494. [PMID: 26320939 PMCID: PMC4553266 DOI: 10.3402/jev.v4.27494] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/08/2015] [Accepted: 05/03/2015] [Indexed: 01/08/2023] Open
Abstract
The Extracellular RNA (exRNA) Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s) by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.
Collapse
Affiliation(s)
- James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA;
| | - Jeffrey L Franklin
- VA Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Alissa M Weaver
- VA Medical Center, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Kasey Vickers
- Department of Cardiology, Vanderbilt University, Nashville, TN, USA
| | - Bing Zhang
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Robert J Coffey
- VA Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA.,Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Robert Blelloch
- Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Noelle L'Etoille
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Robert L Raffai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,VA Medical Center, San Francisco, CA, USA
| | - Charles P Lai
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Bogdan Mateescu
- Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| | - Vanille J Greiner
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Olivier Voinnet
- Swiss Federal Institute of Technology Zürich (ETH Zürich), Zürich, Switzerland
| | - Michael T McManus
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA.,Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
43
|
Fioriti L, Myers C, Huang YY, Li X, Stephan JS, Trifilieff P, Colnaghi L, Kosmidis S, Drisaldi B, Pavlopoulos E, Kandel ER. The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3. Neuron 2015; 86:1433-48. [PMID: 26074003 DOI: 10.1016/j.neuron.2015.05.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/02/2014] [Accepted: 05/05/2015] [Indexed: 11/28/2022]
Abstract
Consolidation of long-term memories depends on de novo protein synthesis. Several translational regulators have been identified, and their contribution to the formation of memory has been assessed in the mouse hippocampus. None of them, however, has been implicated in the persistence of memory. Although persistence is a key feature of long-term memory, how this occurs, despite the rapid turnover of its molecular substrates, is poorly understood. Here we find that both memory storage and its underlying synaptic plasticity are mediated by the increase in level and in the aggregation of the prion-like translational regulator CPEB3 (cytoplasmic polyadenylation element-binding protein). Genetic ablation of CPEB3 impairs the maintenance of both hippocampal long-term potentiation and hippocampus-dependent spatial memory. We propose a model whereby persistence of long-term memory results from the assembly of CPEB3 into aggregates. These aggregates serve as functional prions and regulate local protein synthesis necessary for the maintenance of long-term memory.
Collapse
Affiliation(s)
- Luana Fioriti
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Cory Myers
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Yan-You Huang
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Xiang Li
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Joseph S Stephan
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Pierre Trifilieff
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Luca Colnaghi
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Stylianos Kosmidis
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Bettina Drisaldi
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Elias Pavlopoulos
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, New York, NY 10032, USA.
| |
Collapse
|
44
|
Buxbaum AR, Yoon YJ, Singer RH, Park HY. Single-molecule insights into mRNA dynamics in neurons. Trends Cell Biol 2015; 25:468-75. [PMID: 26052005 DOI: 10.1016/j.tcb.2015.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Targeting of mRNAs to neuronal dendrites and axons plays an integral role in intracellular signaling, development, and synaptic plasticity. Single-molecule imaging of mRNAs in neurons and brain tissue has led to enhanced understanding of mRNA dynamics. Here we discuss aspects of mRNA regulation as revealed by single-molecule detection, which has led to quantitative analyses of mRNA diversity, localization, transport, and translation. These exciting new discoveries propel our understanding of the life of an mRNA in a neuron and how its activity is regulated at the single-molecule level.
Collapse
Affiliation(s)
- Adina R Buxbaum
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Hye Yoon Park
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
45
|
Turk BR, Gschwandtner ME, Mauerhofer M, Löffler-Stastka H. Can we clinically recognize a vascular depression? The role of personality in an expanded threshold model. Medicine (Baltimore) 2015; 94:e743. [PMID: 25950684 PMCID: PMC4602520 DOI: 10.1097/md.0000000000000743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vascular depression (VD) hypothesis postulates that cerebrovascular disease may "predispose, precipitate, or perpetuate" a depressive syndrome in elderly patients. Clinical presentation of VD has been shown to differ to major depression in quantitative disability; however, as little research has been made toward qualitative phenomenological differences in the personality aspects of the symptom profile, clinical diagnosis remains a challenge.We attempted to identify differences in clinical presentation between depression patients (n = 50) with (n = 25) and without (n = 25) vascular disease using questionnaires to assess depression, affect regulation, object relations, aggressiveness, alexithymia, personality functioning, personality traits, and counter transference.We were able to show that patients with vascular dysfunction and depression exhibit significantly higher aggressive and auto-aggressive tendencies due to a lower tolerance threshold. These data indicate that VD is a separate clinical entity and secondly that the role of personality itself may be a component of the disease process. We propose an expanded threshold disease model incorporating personality functioning and mood changes. Such findings might also aid the development of a screening program, by serving as differential criteria, ameliorating the diagnostic procedure.
Collapse
Affiliation(s)
- Bela R Turk
- From the Department for Psychoanalysis and Psychotherapy (BRT, MM, HLS); Department for Angiology (MEG) Medical University Vienna, Austria
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA, Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA, Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
47
|
In the right place at the right time: visualizing and understanding mRNA localization. Nat Rev Mol Cell Biol 2014; 16:95-109. [PMID: 25549890 DOI: 10.1038/nrm3918] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spatial regulation of protein translation is an efficient way to create functional and structural asymmetries in cells. Recent research has furthered our understanding of how individual cells spatially organize protein synthesis, by applying innovative technology to characterize the relationship between mRNAs and their regulatory proteins, single-mRNA trafficking dynamics, physiological effects of abrogating mRNA localization in vivo and for endogenous mRNA labelling. The implementation of new imaging technologies has yielded valuable information on mRNA localization, for example, by observing single molecules in tissues. The emerging movements and localization patterns of mRNAs in morphologically distinct unicellular organisms and in neurons have illuminated shared and specialized mechanisms of mRNA localization, and this information is complemented by transgenic and biochemical techniques that reveal the biological consequences of mRNA mislocalization.
Collapse
|
48
|
Guerra A, Petrichella S, Vollero L, Ponzo D, Pasqualetti P, Määttä S, Mervaala E, Könönen M, Bressi F, Iannello G, Rossini PM, Ferreri F. Neurophysiological features of motor cortex excitability and plasticity in Subcortical Ischemic Vascular Dementia: a TMS mapping study. Clin Neurophysiol 2014; 126:906-13. [PMID: 25262646 DOI: 10.1016/j.clinph.2014.07.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate neurophysiological features of M1 excitability and plasticity in Subcortical Ischemic Vascular Dementia (SIVD), by means of a TMS mapping study. METHODS Seven SIVD and nine AD patients, along with nine control subjects were tested. The M1 excitability was studied by resting thresholds, area and volume of active cortical sites for forearm and hand's examined muscles. For M1 plasticity, coordinates of the hot-spot and the center of gravity (CoG) were evaluated. The correlation between the degree of hyperexcitability and the amount of M1 plastic rearrangement was also calculated. RESULTS Multivariate analysis of excitability measures demonstrated similarly enhanced cortical excitability in AD and SIVD patients with respect to controls. SIVD patients showed a medial and frontal shift of CoG from the hot-spot, not statistically different from that observed in AD. A significant direct correlation was seen between parameters related to cortical excitability and those related to cortical plasticity. CONCLUSIONS The results suggest the existence of common compensatory mechanisms in different kind of dementing diseases supporting the idea that cortical hyperexcitability can promote cortical plasticity. SIGNIFICANCE This study characterizes neurophysiological features of motor cortex excitability and plasticity in SIVD, providing new insights on the correlation between cortical excitability and plasticity.
Collapse
Affiliation(s)
- Andrea Guerra
- Department of Neurology, University Campus Bio-Medico, Rome, Italy
| | - Sara Petrichella
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Luca Vollero
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - David Ponzo
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Patrizio Pasqualetti
- Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Federica Bressi
- Department of Physical Medicine and Rehabilitation, University Campus Biomedico, Rome, Italy
| | - Giulio Iannello
- Department of Computer Science and Computer Engineering, University Campus Bio-Medico, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Dept. Geriatrics, Neurosciences, Orthopaedics, Policlinic A. Gemelli, Catholic University, Rome, Italy; IRCCS S. Raffaele-Pisana, Rome, Italy
| | - Florinda Ferreri
- Department of Neurology, University Campus Bio-Medico, Rome, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
49
|
Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer's disease pathophysiology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1042-1056. [PMID: 24338740 DOI: 10.1002/jsfa.6473] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/24/2013] [Accepted: 11/08/2013] [Indexed: 06/03/2023]
Abstract
Recent evidence has indicated that a group of plant-derived compounds known as flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. In addition, growing evidence is also suggestive that flavonoids may delay the development of Alzheimer's disease-like pathology, suggestive of potential dietary strategies in dementia. Although these low-molecular-weight phytochemicals are absorbed to only a limited degree, they have been found to counteract age-related cognitive declines possibly via their ability to interact with the cellular and molecular architecture of the brain responsible for memory. However, the majority of the research has been carried out at rather supraphysiological concentrations and only a few studies have investigated the neuromodulatory effects of physiologically attainable flavonoid concentrations. This review will summarize the evidence for the effects of flavonoids and their metabolites in age-related cognitive decline and Alzheimer's disease. Mechanisms of actions will be discussed and include those activating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation and inducing vascular effects potentially capable of causing new nerve cell growth in the hippocampus. Altogether, these processes are known to be important in maintaining optimal neuronal function, to limit neurodegeneration and to prevent or reverse age-dependent deteriorations in cognitive performance.
Collapse
Affiliation(s)
- David Vauzour
- Department of Nutrition, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
50
|
Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry 2013; 18:963-74. [PMID: 23439482 PMCID: PMC3674224 DOI: 10.1038/mp.2013.20] [Citation(s) in RCA: 579] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/09/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
The 'Vascular Depression' hypothesis posits that cerebrovascular disease may predispose, precipitate or perpetuate some geriatric depressive syndromes. This hypothesis stimulated much research that has improved our understanding of the complex relationships between late-life depression (LLD), vascular risk factors, and cognition. Succinctly, there are well-established relationships between LLD, vascular risk factors and cerebral hyperintensities, the radiological hallmark of vascular depression. Cognitive dysfunction is common in LLD, particularly executive dysfunction, a finding predictive of poor antidepressant response. Over time, progression of hyperintensities and cognitive deficits predicts a poor course of depression and may reflect underlying worsening of vascular disease. This work laid the foundation for examining the mechanisms by which vascular disease influences brain circuits and influences the development and course of depression. We review data testing the vascular depression hypothesis with a focus on identifying potential underlying vascular mechanisms. We propose a disconnection hypothesis, wherein focal vascular damage and white matter lesion location is a crucial factor, influencing neural connectivity that contributes to clinical symptomatology. We also propose inflammatory and hypoperfusion hypotheses, concepts that link underlying vascular processes with adverse effects on brain function that influence the development of depression. Testing such hypotheses will not only inform the relationship between vascular disease and depression, but also provide guidance on the potential repurposing of pharmacological agents that may improve LLD outcomes.
Collapse
Affiliation(s)
- W D Taylor
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University, Nashville, TN 37212, USA.
| | | | | |
Collapse
|