1
|
Li W, Li J, Li J, Wei C, Laviv T, Dong M, Lin J, Calubag M, Colgan LA, Jin K, Zhou B, Shen Y, Li H, Cui Y, Gao Z, Li T, Hu H, Yasuda R, Ma H. Boosting neuronal activity-driven mitochondrial DNA transcription improves cognition in aged mice. Science 2024; 386:eadp6547. [PMID: 39700269 DOI: 10.1126/science.adp6547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/28/2024] [Accepted: 10/17/2024] [Indexed: 12/21/2024]
Abstract
Deciphering the complex interplay between neuronal activity and mitochondrial function is pivotal in understanding brain aging, a multifaceted process marked by declines in synaptic function and mitochondrial performance. Here, we identified an age-dependent coupling between neuronal and synaptic excitation and mitochondrial DNA transcription (E-TCmito), which operates differently compared to classic excitation-transcription coupling in the nucleus (E-TCnuc). We demonstrated that E-TCmito repurposes molecules traditionally associated with E-TCnuc to regulate mitochondrial DNA expression in areas closely linked to synaptic activation. The effectiveness of E-TCmito weakens with age, contributing to age-related neurological deficits in mice. Boosting brain E-TCmito in aged animals ameliorated these impairments, offering a potential target to counteract age-related cognitive decline.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jiarui Li
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jing Li
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Chen Wei
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meiyi Dong
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Jingran Lin
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Mariah Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Lesley A Colgan
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kai Jin
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Ying Shen
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Haohong Li
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yihui Cui
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhihua Gao
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Tao Li
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Hailan Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Ryohei Yasuda
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Huan Ma
- Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Agni MB, Hegde PS, Rai P, Sadananda M, K M DG. Astaxanthin and DHA Supplementation Modulates the Maternal Undernutrition-induced Impairment of Cognitive Behavior and Synaptic Plasticity in Adult Life of Offspring's -Exploring the Molecular Mechanism. Mol Neurobiol 2024; 61:8975-8995. [PMID: 38578356 DOI: 10.1007/s12035-024-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Maternal nutrition was recognized as a significant part of brain growth and maturation in most mammalian species. Timely intervention with suitable nutraceuticals would provide long-term health benefits. We aim to unravel the molecular mechanisms of perinatal undernutrition-induced impairments in cognition and synaptic plasticity, employing animal model based on dietary nutraceutical supplementation. We treated undernourished dams at their gestational, lactational, and at both the time point with Astaxanthin (AsX) and Docosahexaenoic acid (DHA), and their pups were used as experimental animals. We evaluated the cognitive function by subjecting the pups to behavioral tests in their adult life. In addition, we assessed the expression of genes in the hippocampus related to cognitive function and synaptic plasticity. Our results showed downregulation of Brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT-3), cAMP response-element-binding protein (CREB), and uncoupling protein-2 (UCP2) gene expression in pups born to undernourished dams in their adult life, which AsX and DHA modulated. Maternal AsX and DHA supplementation ameliorated the undernutrition-induced learning impairment in novel object recognition (NOR) tests and partially baited radial arm maze (RAM) tasks in offspring's. The expressions of Synapsin-1 and PSD-95 decreased in perinatally undernourished groups compared to control and AsX-DHA treated groups at CA1, CA2, CA3, and DG. AsX and DHA supplementation upregulated BDNF, NT-3, CREB, and UCP2 gene expressions in perinatally undernourished rats, which are involved in intracellular signaling cascades like Ras, PI3K, and PLC. The results of our study give new insights into neuronal differentiation, survival, and plasticity, indicating that the perinatal period is the critical time for reversing maternal undernutrition-induced cognitive impairment in offspring's.
Collapse
Affiliation(s)
- Megha Bhat Agni
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Pramukh Subrahmanya Hegde
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Praveen Rai
- Nitte (Deemed to be University), Department of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Mangalore, Karnataka, 575018, India
| | - Monika Sadananda
- Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Damodara Gowda K M
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
3
|
Dando O, McQueen J, Burr K, Kind PC, Chandran S, Hardingham GE, Qiu J. A comparison of basal and activity-dependent exon splicing in cortical-patterned neurons of human and mouse origin. Front Mol Neurosci 2024; 17:1392408. [PMID: 39268251 PMCID: PMC11390650 DOI: 10.3389/fnmol.2024.1392408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Rodent studies have shown that alternative splicing in neurons plays important roles in development and maturity, and is regulatable by signals such as electrical activity. However, rodent-human similarities are less well explored. We compared basal and activity-dependent exon splicing in cortical-patterned human ESC-derived neurons with that in cortical mouse ESC-derived neurons, primary mouse cortical neurons at two developmental stages, and mouse hippocampal neurons, focussing on conserved orthologous exons. Both basal exon inclusion levels and activity-dependent changes in splicing showed human-mouse correlation. Conserved activity regulated exons are enriched in RBFOX, SAM68, NOVA and PTBP targets, and centered on cytoskeletal organization, mRNA processing, and synaptic signaling genes. However, human-mouse correlations were weaker than inter-mouse comparisons of neurons from different brain regions, developmental stages and origin (ESC vs. primary), suggestive of some inter-species divergence. The set of genes where activity-dependent splicing was observed only in human neurons were dominated by those involved in lipid biosynthesis, signaling and trafficking. Study of human exon splicing in mouse Tc1 neurons carrying human chromosome-21 showed that neuronal basal exon inclusion was influenced by cis-acting sequences, although may not be sufficient to confer activity-responsiveness in an allospecific environment. Overall, these comparisons suggest that neuronal alternative splicing should be confirmed in a human-relevant system even when exon structure is evolutionarily conserved.
Collapse
Affiliation(s)
- Owen Dando
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie McQueen
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Burr
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C Kind
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Giles E Hardingham
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jing Qiu
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
6
|
Karpova A, Samer S, Turacak R, Yuanxiang P, Kreutz MR. Integration of nuclear Ca 2+ transients and subnuclear protein shuttling provides a novel mechanism for the regulation of CREB-dependent gene expression. Cell Mol Life Sci 2023; 80:228. [PMID: 37491479 PMCID: PMC10368568 DOI: 10.1007/s00018-023-04876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Nuclear Ca2+ waves elicited by NMDAR and L-type voltage-gated Ca2+-channels as well as protein transport from synapse-to-nucleus are both instrumental in control of plasticity-related gene expression. At present it is not known whether fast [Ca2+]n transients converge in the nucleus with signaling of synapto-nuclear protein messenger. Jacob is a protein that translocate a signalosome from N-methyl-D-aspartate receptors (NMDAR) to the nucleus and that docks this signalosome to the transcription factor CREB. Here we show that the residing time of Jacob in the nucleoplasm strictly correlates with nuclear [Ca2+]n transients elicited by neuronal activity. A steep increase in [Ca2+]n induces instantaneous uncoupling of Jacob from LaminB1 at the nuclear lamina and promotes the association with the transcription factor cAMP-responsive element-binding protein (CREB) in hippocampal neurons. The size of the Jacob pool at the nuclear lamina is controlled by previous activity-dependent nuclear import, and thereby captures the previous history of NMDAR-induced nucleocytoplasmic shuttling. Moreover, the localization of Jacob at the nuclear lamina strongly correlates with synaptic activity and [Ca2+]n waves reflecting ongoing neuronal activity. In consequence, the resulting extension of the nuclear residing time of Jacob amplifies the capacity of the Jacob signalosome to regulate CREB-dependent gene expression and will, thereby, compensate for the relatively small number of molecules reaching the nucleus from individual synapses.
Collapse
Affiliation(s)
- Anna Karpova
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106, Magdeburg, Germany.
| | - Sebastian Samer
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Rabia Turacak
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
7
|
Feng Y, Chang P, Kang Y, Liao P, Li CY, Liu J, Zhang WS. Etomidate-Induced Myoclonus in Sprague-Dawley Rats Involves Neocortical Glutamate Accumulation and N -Methyl- d -Aspartate Receptor Activity. Anesth Analg 2023; 137:221-233. [PMID: 36607803 DOI: 10.1213/ane.0000000000006292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Etomidate-induced myoclonus, a seizure-like movement, is of interest to anesthetists. However, its origin in the brain and its underlying mechanism remain unclear. METHODS Adult male Sprague-Dawley rats were anesthetized with etomidate, propofol, or lidocaine plus etomidate. We assessed the incidence of myoclonus, behavioral scores, and levels of glutamate and γ-aminobutyric acid (GABA) in the neocortex and hippocampus. To determine the origin and how N -methyl- d -aspartate receptors (NMDARs) modulate etomidate-induced neuroexcitability, the local field potential and muscular tension were monitored. Calcium imaging in vitro and immunoblotting in vivo were conducted to investigate the mechanisms underlying myoclonus. RESULTS The incidence of etomidate (1.5 mg/kg in vivo)-induced myoclonus was higher than that of propofol (90% vs 10%, P = .0010) and lidocaine plus etomidate (90% vs 20%, P = .0050). Etomidate at doses of 3.75 and 6 mg/kg decreased the mean behavioral score at 1 (mean difference [MD]: 1.80, 95% confidence interval [CI], 0.58-3.02; P = .0058 for both), 2 (MD: 1.60, 95% CI, 0.43-2.77; P = .0084 and MD: 1.70, 95% CI, 0.54-2.86; P = .0060), 3 (MD: 1.60, 95% CI, 0.35-2.85; P = .0127 and MD: 1.70, 95% CI, 0.46-2.94; P = .0091) minutes after administration compared to etomidate at a dose of 1.5 mg/kg. In addition, 0.5 and 1 µM etomidate in vitro increased neocortical intracellular calcium signaling; this signaling decreased when the concentration increased to 5 and 10 μM. Etomidate increased the glutamate level compared to propofol (mean rank difference: 18.20; P = .003), and lidocaine plus etomidate (mean rank difference: 21.70; P = .0002). Etomidate in vivo activated neocortical ripple waves and was positively correlated with muscular tension amplitude (Spearman's r = 0.785, P < .0001). Etomidate at 1.5 mg/kg decreased the K-Cl cotransporter isoform 2 (KCC2) level compared with propofol (MD: -1.15, 95% CI, -1.47 to -0.83; P < .0001) and lidocaine plus etomidate (MD: -0.64, 95% CI, -0.96 to -0.32; P = .0002), DL-2-amino-5-phosphopentanoic acid (AP5) suppressed these effects, while NMDA enhanced them. CONCLUSIONS Etomidate-induced myoclonus or neuroexcitability is concentration dependent. Etomidate-induced myoclonus originates in the neocortex. The underlying mechanism involves neocortical glutamate accumulation and NMDAR modulation and myoclonus correlates with NMDAR-induced downregulation of KCC2 protein expression.
Collapse
Affiliation(s)
- Yan Feng
- From the Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pan Chang
- From the Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Kang
- From the Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ping Liao
- From the Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chen-Yang Li
- From the Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jin Liu
- From the Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wen-Sheng Zhang
- From the Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
8
|
Gasalla P, Manahan-Vaughan D, Dwyer DM, Hall J, Méndez-Couz M. Characterisation of the neural basis underlying appetitive extinction & renewal in Cacna1c rats. Neuropharmacology 2023; 227:109444. [PMID: 36724867 DOI: 10.1016/j.neuropharm.2023.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Recent studies have revealed impairments in Cacna1c ± heterozygous animals (a gene that encodes the Cav 1.2 L-type voltage-gated calcium channels and is implicated in risk for multiple neuropsychiatric disorders) in aversive forms of learning, such as latent inhibition, reversal learning or context discrimination. However, the role of Cav 1.2 L-type voltage-gated calcium channels in extinction of appetitive associations remains under-investigated. Here, we used an appetitive Pavlovian conditioning task and evaluated extinction learning (EL) with a change of context from that of training and test (ABA) and without such a change (AAA) in Cacna1c ± male rats versus their wild-type (WT) littermates. In addition, we used fluorescence in situ hybridization of somatic immediate early genes (IEGs) Arc and Homer1a expression to scrutinize associated changes in the medial prefrontal cortex and the amygdala. Cacna1c ± animals successfully adapt their responses by engaging in appetitive EL and renewal. However, the regional IEG expression profile changed. For the EL occurring in the same context, Cacna1c ± animals presented higher IEG expression in the infralimbic cortex and the central amygdala than controls. The prelimbic region presented a larger neural ensemble in Cacna1c ± than WT animals, co-labelled for the time window of EL in the original context and prolonged exposure to the unrewarded context. With a context change, the Cacna1c ± infralimbic region displayed higher IEG expression during renewal than controls. Taken together, our findings provide novel evidence of distinct brain activation patterns occurring in Cacna1c ± rats after appetitive extinction and renewal despite preserved behavioral responses. This article is part of the Special Issue on "L-type calcium channel mechanisms in neuropsychiatric disorders".
Collapse
Affiliation(s)
- Patricia Gasalla
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Denise Manahan-Vaughan
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany
| | - Dominic Michael Dwyer
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Marta Méndez-Couz
- Dept. Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitätsstraße 150, Building MA 4/158, 44780, Bochum, Germany.
| |
Collapse
|
9
|
Pro-Apoptotic and Anti-Cancer Activity of the Vernonanthura Nudiflora Hydroethanolic Extract. Cancers (Basel) 2023; 15:cancers15051627. [PMID: 36900417 PMCID: PMC10000589 DOI: 10.3390/cancers15051627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The mitochondrial voltage-dependent anion channel 1 (VDAC1) protein is involved in several essential cancer hallmarks, including energy and metabolism reprogramming and apoptotic cell death evasion. In this study, we demonstrated the ability of hydroethanolic extracts from three different plants, Vernonanthura nudiflora (Vern), Baccharis trimera (Bac), and Plantago major (Pla), to induce cell death. We focused on the most active Vern extract. We demonstrated that it activates multiple pathways that lead to impaired cell energy and metabolism homeostasis, elevated ROS production, increased intracellular Ca2+, and mitochondria-mediated apoptosis. The massive cell death generated by this plant extract's active compounds involves the induction of VDAC1 overexpression and oligomerization and, thereby, apoptosis. Gas chromatography of the hydroethanolic plant extract identified dozens of compounds, including phytol and ethyl linoleate, with the former producing similar effects as the Vern hydroethanolic extract but at 10-fold higher concentrations than those found in the extract. In a xenograft glioblastoma mouse model, both the Vern extract and phytol strongly inhibited tumor growth and cell proliferation and induced massive tumor cell death, including of cancer stem cells, inhibiting angiogenesis and modulating the tumor microenvironment. Taken together, the multiple effects of Vern extract make it a promising potential cancer therapeutic.
Collapse
|
10
|
Martínez-Rivera A, Hao J, Rice R, Inturrisi CE, Rajadhyaksha AM. Ca v1.3 L-type Ca 2+ channel-activated CaMKII/ERK2 pathway in the ventral tegmental area is required for cocaine conditioned place preference. Neuropharmacology 2023; 224:109368. [PMID: 36481277 PMCID: PMC9796157 DOI: 10.1016/j.neuropharm.2022.109368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
We have previously demonstrated that pharmacological blockade of ventral tegmental area (VTA) Cav1.3 L-type calcium channels (LTCCs) using Cav1.2 dihydropyridine insensitive (Cav1.2DHP-/-) mutant mice attenuates cocaine conditioned place preference (CPP). However, the molecular mechanisms by which Cav1.3 channels mediate the effects of cocaine in the VTA remain largely unknown. In this study using Cav1.2DHP-/- male mice, we find that cocaine place preference increases CaM kinase IIα, ERK2, and CREB phosphorylation in the VTA, proteins strongly linked to cocaine behaviors. To further explore the causal role of these intracellular signaling proteins in cocaine preference, the CaM kinase II inhibitor, KN93 was directly injected into the VTA of male mice before each cocaine conditioning session. We found that KN93 attenuates conditioned preference for cocaine compared to vehicle treated mice and decreased VTA ERK2 and CREB phosphorylation. Additionally, blockade of the ERK pathway with the MEK inhibitor, U0126 or knockdown of ERK2 using siRNA, attenuated cocaine preference and VTA CREB phosphorylation but not CaMKIIα phosphorylation, suggesting that ERK is activated downstream of CaMKIIα. Examination of postsynaptic density (PSD) GluA1 subunit of AMPA receptors in the nucleus accumbens (NAc) that we have previously shown to be upregulated following long withdrawal periods, was blunted by KN93, U0126 and ERK2 siRNA when examined 30 days following cocaine CPP. Taken together, these findings demonstrate that Cav1.3 channels in the VTA are required for cocaine reward behavior and activation of the CaMKIIα/ERK/CREB signaling pathway in the VTA is necessary for long-lasting changes in the NAc. This article is part of the Special Issue on 'L-type calcium channel mechanisms in neuropsychiatric disorders'.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Jin Hao
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Richard Rice
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | | | - Anjali M Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Barsegyan A, McGaugh JL, Roozendaal B. Glucocorticoid effects on working memory impairment require l-type calcium channel activity within prefrontal cortex. Neurobiol Learn Mem 2023; 197:107700. [PMID: 36410654 DOI: 10.1016/j.nlm.2022.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 11/13/2022] [Indexed: 11/20/2022]
Abstract
Previous findings have indicated that glucocorticoid hormones impair working memory via an interaction with the β-adrenoceptor-cAMP signaling cascade to rapidly increase cAMP-dependent protein kinase (PKA) activity within the prefrontal cortex (PFC). However, it remains elusive how such activation of PKA can affect downstream cellular mechanisms in regulating PFC cognitive function. PKA is known to activate l-type voltage-gated Ca2+ channels (LTCCs) which regulate a broad range of cellular processes, including neuronal excitability and neurotransmitter release. The present experiments examined whether LTCC activity within the PFC is required in mediating glucocorticoid and PKA effects on spatial working memory. Male Sprague Dawley rats received bilateral administration of the LTCC inhibitor diltiazem together with either the glucocorticoid receptor agonist RU 28362 or PKA activator Sp-cAMPS into the PFC before testing on a delayed alternation task in a T-maze. Both RU 28362 and Sp-cAMPS impaired working memory, whereas the LTCC inhibitor diltiazem fully blocked the working memory impairment induced by either RU 28362 or Sp-cAMPS. Conversely, bilateral administration of the LTCC agonist Bay K8644 into the PFC was sufficient to impair working memory. Thus, these findings provide support for the view that glucocorticoids, via an interaction with the β-adrenergic signaling cascade and enhanced PKA activity levels, impair working memory by increasing LTCC activity in the PFC.
Collapse
Affiliation(s)
- Areg Barsegyan
- Dept. Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - James L McGaugh
- Center for the Neurobiology of Learning and Memory, Dept. Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-3800, USA
| | - Benno Roozendaal
- Dept. Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Modulation of L-type calcium channels in Alzheimer's disease: A potential therapeutic target. Comput Struct Biotechnol J 2022; 21:11-20. [PMID: 36514335 PMCID: PMC9719069 DOI: 10.1016/j.csbj.2022.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022] Open
Abstract
Calcium plays a fundamental role in various signaling pathways and cellular processes in the human organism. In the nervous system, voltage-gated calcium channels such as L-type calcium channels (LTCCs) are critical elements in mediating neurotransmitter release, synaptic integration and plasticity. Dysfunction of LTCCs has been implicated in both aging and Alzheimer's Disease (AD), constituting a key component of calcium hypothesis of AD. As such, LTCCs are a promising drug target in AD. However, due to their structural and functional complexity, the mechanisms by which LTCCs contribute to AD are still unclear. In this review, we briefly summarize the structure, function, and modulation of LTCCs that are the backbone for understanding pathological processes involving LTCCs. We suggest targeting molecular pathways up-regulating LTCCs in AD may be a more promising approach, given the diverse physiological functions of LTCCs and the ineffectiveness of LTCC blockers in clinical studies.
Collapse
Key Words
- AC, adenylyl cyclase
- AD, Alzheimer’s Disease
- AHP, afterhyperpolarization
- AR, adrenoceptor
- Aging
- Alzheimer’s disease
- Aβ, β-amyloid
- BIN1, bridging integrator 1
- BTZs, benzothiazepines
- CDF, calcium-dependent facilitation
- CDI, calcium-dependent inactivation
- CaMKII, calmodulin-dependent protein kinase II
- DHP, dihydropyridine
- L-type calcium channel
- LTCC, L-type calcium channels
- LTD, long-term depression
- LTP, long-term potentiation
- NFT, neurofibrillary tangles
- NMDAR, N-methyl-D-aspartate receptor
- PAA, phenylalkylamines
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- SFK, Src family kinase
- Tau
- VSD, voltage sensing domain
- β-Amyloid
Collapse
|
13
|
Delint-Ramirez I, Konada L, Heady L, Rueda R, Jacome ASV, Marlin E, Marchioni C, Segev A, Kritskiy O, Yamakawa S, Reiter AH, Tsai LH, Madabhushi R. Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks. Mol Cell 2022; 82:3794-3809.e8. [PMID: 36206766 PMCID: PMC9990814 DOI: 10.1016/j.molcel.2022.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022]
Abstract
Neuronal activity induces topoisomerase IIβ (Top2B) to generate DNA double-strand breaks (DSBs) within the promoters of neuronal early response genes (ERGs) and facilitate their transcription, and yet, the mechanisms that control Top2B-mediated DSB formation are unknown. Here, we report that stimulus-dependent calcium influx through NMDA receptors activates the phosphatase calcineurin to dephosphorylate Top2B at residues S1509 and S1511, which stimulates its DNA cleavage activity and induces it to form DSBs. Exposing mice to a fear conditioning paradigm also triggers Top2B dephosphorylation at S1509 and S1511 in the hippocampus, indicating that calcineurin also regulates Top2B-mediated DSB formation following physiological neuronal activity. Furthermore, calcineurin-Top2B interactions following neuronal activity and sites that incur activity-induced DSBs are preferentially localized at the nuclear periphery in neurons. Together, these results reveal how radial gene positioning and the compartmentalization of activity-dependent signaling govern the position and timing of activity-induced DSBs and regulate gene expression patterns in neurons.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lahiri Konada
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lance Heady
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Richard Rueda
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Eric Marlin
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Marchioni
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amir Segev
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Satoko Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Real-time imaging of Arc/Arg3.1 transcription ex vivo reveals input-specific immediate early gene dynamics. Proc Natl Acad Sci U S A 2022; 119:e2123373119. [PMID: 36095210 PMCID: PMC9499544 DOI: 10.1073/pnas.2123373119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of neurons to process and store salient environmental features underlies information processing in the brain. Long-term information storage requires synaptic plasticity and regulation of gene expression. While distinct patterns of activity have been linked to synaptic plasticity, their impact on immediate early gene (IEG) expression remains poorly understood. The activity regulated cytoskeleton associated (Arc) gene has received wide attention as an IEG critical for long-term synaptic plasticity and memory. Yet, to date, the transcriptional dynamics of Arc in response to compartment and input-specific activity is unclear. By developing a knock-in mouse to fluorescently tag Arc alleles, we studied real-time transcription dynamics after stimulation of dentate granule cells (GCs) in acute hippocampal slices. To our surprise, we found that Arc transcription displayed distinct temporal kinetics depending on the activation of excitatory inputs that convey functionally distinct information, i.e., medial and lateral perforant paths (MPP and LPP, respectively). Moreover, the transcriptional dynamics of Arc after synaptic stimulation was similar to direct activation of GCs, although the contribution of ionotropic glutamate receptors, L-type voltage-gated calcium channel, and the endoplasmic reticulum (ER) differed. Specifically, we observed an ER-mediated synapse-to-nucleus signal that supported elevations in nuclear calcium and, thereby, rapid induction of Arc transcription following MPP stimulation. By delving into the complex excitation-transcription coupling for Arc, our findings highlight how different synaptic inputs may encode information by modulating transcription dynamics of an IEG linked to learning and memory.
Collapse
|
15
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
16
|
Kratimenos P, Vij A, Vidva R, Koutroulis I, Delivoria-Papadopoulos M, Gallo V, Sathyanesan A. Computational analysis of cortical neuronal excitotoxicity in a large animal model of neonatal brain injury. J Neurodev Disord 2022; 14:26. [PMID: 35351004 PMCID: PMC8966144 DOI: 10.1186/s11689-022-09431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neonatal hypoxic brain injury is a major cause of intellectual and developmental disability. Hypoxia causes neuronal dysfunction and death in the developing cerebral cortex due to excitotoxic Ca2+-influx. In the translational piglet model of hypoxic encephalopathy, we have previously shown that hypoxia overactivates Ca2+/Calmodulin (CaM) signaling via Sarcoma (Src) kinase in cortical neurons, resulting in overexpression of proapoptotic genes. However, identifying the exact relationship between alterations in neuronal Ca2+-influx, molecular determinants of cell death, and the degree of hypoxia in a dynamic system represents a significant challenge. METHODS We used experimental and computational methods to identify molecular events critical to the onset of excitotoxicity-induced apoptosis in the cerebral cortex of newborn piglets. We used 2-3-day-old piglets (normoxic [Nx], hypoxic [Hx], and hypoxic + Src-inhibitor-treatment [Hx+PP2] groups) for biochemical analysis of ATP production, Ca2+-influx, and Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) expression. We then used SimBiology to build a computational model of the Ca2+/CaM-Src-kinase signaling cascade, simulating Nx, Hx, and Hx+PP2 conditions. To evaluate our model, we used Sobol variance decomposition, multiparametric global sensitivity analysis, and parameter scanning. RESULTS Our model captures important molecular trends caused by hypoxia in the piglet brain. Incorporating the action of Src kinase inhibitor PP2 further validated our model and enabled predictive analysis of the effect of hypoxia on CaMKK2. We determined the impact of a feedback loop related to Src phosphorylation of NMDA receptors and activation kinetics of CaMKII. We also identified distinct modes of signaling wherein Ca2+ level alterations following Src kinase inhibition may not be a linear predictor of changes in Bax expression. Importantly, our model indicates that while pharmacological pre-treatment significantly reduces the onset of abnormal Ca2+-influx, there exists a window of intervention after hypoxia during which targeted modulation of Src-NMDAR interaction kinetics in combination with PP2 administration can reduce Ca2+-influx and Bax expression to similar levels as pre-treatment. CONCLUSIONS Our model identifies new dynamics of critical components in the Ca2+/CaM-Src signaling pathway leading to neuronal injury and provides a feasible framework for drug efficacy studies in translational models of neonatal brain injury for the prevention of intellectual and developmental disabilities.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,Department of Pediatrics, Division of Neonatology, Children's National Hospital, Washington DC, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| | - Abhya Vij
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | - Ioannis Koutroulis
- George Washington University School of Medicine and Health Sciences, Washington DC, USA.,Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA.,Center for Genetic Medicine Research, Children's National Research Institute and Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA.,George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Aaron Sathyanesan
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, 111 Michigan Avenue, Washington, DC, 20010, USA. .,George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
17
|
Trevisan G, Oliveira SM. Animal Venom Peptides Cause Antinociceptive Effects by Voltage-gated Calcium Channels Activity Blockage. Curr Neuropharmacol 2022; 20:1579-1599. [PMID: 34259147 PMCID: PMC9881091 DOI: 10.2174/1570159x19666210713121217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
Pain is a complex phenomenon that is usually unpleasant and aversive. It can range widely in intensity, quality, and duration and has diverse pathophysiologic mechanisms and meanings. Voltage-gated sodium and calcium channels are essential to transmitting painful stimuli from the periphery until the dorsal horn of the spinal cord. Thus, blocking voltage-gated calcium channels (VGCCs) can effectively control pain refractory to treatments currently used in the clinic, such as cancer and neuropathic pain. VGCCs blockers isolated of cobra Naja naja kaouthia (α-cobratoxin), spider Agelenopsis aperta (ω-Agatoxin IVA), spider Phoneutria nigriventer (PhTx3.3, PhTx3.4, PhTx3.5, PhTx3.6), spider Hysterocrates gigas (SNX-482), cone snails Conus geographus (GVIA), Conus magus (MVIIA or ziconotide), Conus catus (CVID, CVIE and CVIF), Conus striatus (SO- 3), Conus fulmen (FVIA), Conus moncuri (MoVIA and MoVIB), Conus regularis (RsXXIVA), Conus eburneus (Eu1.6), Conus victoriae (Vc1.1.), Conus regius (RgIA), and spider Ornithoctonus huwena (huwentoxin-I and huwentoxin-XVI) venoms caused antinociceptive effects in different acute and chronic pain models. Currently, ziconotide is the only clinical used N-type VGCCs blocker peptide for chronic intractable pain. However, ziconotide causes different adverse effects, and the intrathecal route of administration also impairs its use in a more significant number of patients. In this sense, peptides isolated from animal venoms or their synthetic forms that act by modulating or blocking VGCCs channels seem to be a relevant prototype for developing new analgesics efficacious and well tolerated by patients.
Collapse
Affiliation(s)
- Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
18
|
Nakagawa-Tamagawa N, Kirino E, Sugao K, Nagata H, Tagawa Y. Involvement of Calcium-Dependent Pathway and β Subunit-Interaction in Neuronal Migration and Callosal Projection Deficits Caused by the Cav1.2 I1166T Mutation in Developing Mouse Neocortex. Front Neurosci 2021; 15:747951. [PMID: 34955712 PMCID: PMC8692569 DOI: 10.3389/fnins.2021.747951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Gain-of-function mutations in the L-type Ca2+ channel Cav1.2 cause Timothy syndrome (TS), a multisystem disorder associated with neurologic symptoms, including autism spectrum disorder (ASD), seizures, and intellectual disability. Cav1.2 plays key roles in neural development, and its mutation can affect brain development and connectivity through Ca2+-dependent and -independent mechanisms. Recently, a gain-of-function mutation, I1166T, in Cav1.2 was identified in patients with TS-like disorder. Its channel properties have been analyzed in vitro but in vivo effects of this mutation on brain development remain unexplored. Methods:In utero electroporation was performed on ICR mice at embryonic day 15 to express GFP, wild-type, and mutant Cav1.2 channels into cortical layer 2/3 excitatory neurons in the primary somatosensory area. The brain was fixed at postnatal days 14–16, sliced, and scanned using confocal microscopy. Neuronal migration of electroporated neurons was examined in the cortex of the electroporated hemisphere, and callosal projection was examined in the white matter and contralateral hemisphere. Results: Expression of the I1166T mutant in layer 2/3 neurons caused migration deficits in approximately 20% of electroporated neurons and almost completely diminished axonal arborization in the contralateral hemisphere. Axonal projection in the white matter was not affected. We introduced second mutations onto Cav1.2 I1166T; L745P mutation blocks Ca2+ influx through Cav1.2 channels and inhibits the Ca2+-dependent pathway, and the W440A mutation blocks the interaction of the Cav1.2 α1 subunit to the β subunit. Both second mutations recovered migration and projection. Conclusion: This study demonstrated that the Cav1.2 I1166T mutation could affect two critical steps during cerebrocortical development, migration and axonal projection, in the mouse brain. This is mediated through Ca2+-dependent pathway downstream of Cav1.2 and β subunit-interaction.
Collapse
Affiliation(s)
- Nao Nakagawa-Tamagawa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Emi Kirino
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kohtaroh Sugao
- Platform Technology Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Hidetaka Nagata
- Platform Technology Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yoshiaki Tagawa
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
19
|
ZnT1 is a neuronal Zn 2+/Ca 2+ exchanger. Cell Calcium 2021; 101:102505. [PMID: 34871934 DOI: 10.1016/j.ceca.2021.102505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Zinc transporter 1 (ZnT1; SLC30A1) is present in the neuronal plasma membrane, critically modulating NMDA receptor function and Zn2+ neurotoxicity. The mechanism mediating Zn2+ transport by ZnT1, however, has remained elusive. Here, we investigated ZnT1-dependent Zn2+ transport by measuring intracellular changes of this ion using the fluorescent indicator FluoZin-3. In primary mouse cortical neurons, which express ZnT1, transient addition of extracellular Zn2+ triggered a rise in cytosolic Zn2+, followed by its removal. Knockdown of ZnT1 by adeno associated viral (AAV)-short hairpin RNA (shZnT1) markedly increased rates of Zn2+ rise, and decreased rates of its removal, suggesting that ZnT1 is a primary route for Zn2+ efflux in neurons. Although Zn2+ transport by other members of the SLC30A family is dependent on pH gradients across cellular membranes, altered H+ gradients were not coupled to ZnT1-dependent transport. Removal of cytoplasmic Zn2+, against a large inward gradient during the initial loading phase, suggests that Zn2+ efflux requires a large driving force. We therefore asked if Ca2+ gradients across the membrane can facilitate Zn2+ efflux. Elimination of extracellular Ca2+ abolished Zn2+ efflux, while increased extracellular Ca2+ levels enhanced Zn2+ efflux. Intracellular Ca2+ rises, measured in GCaMP6 expressing neurons, closely paralleled cytoplasmic Zn2+ removal. Taken together, these results strongly suggest that ZnT1 functions as a Zn2+/Ca2+ exchanger, thereby regulating the transport of two ions of fundamental importance in neuronal signaling.
Collapse
|
20
|
Yang S, Zhang S, Tang W, Fang S, Zhang H, Zheng J, Liu X, Zhang Y, Zhao L, Huang L, Li B. Enriched Environment Prevents Surgery-Induced Persistent Neural Inhibition and Cognitive Dysfunction. Front Aging Neurosci 2021; 13:744719. [PMID: 34658844 PMCID: PMC8517535 DOI: 10.3389/fnagi.2021.744719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) encompass short-term delirium and long-term cognitive dysfunction. Aging increases the susceptibility to PND, yet the neural mechanism is not known. In this study, we monitored the dynamic changes of neuronal activity in the prelimbic cortex before and after surgery. We found that anesthesia combined with surgery, but not anesthesia alone, induced a prolonged decrease in neuronal activity during the post-operation period in the aged mice, but not in the adult mice. The prolonged decrease in neuronal activity was accompanied by surgery-induced microglial activation and proinflammatory cytokines expression. Importantly, we found that the enriched environment (EE) completely prevented both the prolonged neural inhibition and neuroinflammation, and improved cognitive function in the aged mice. These results indicate that the prolonged neural inhibition correlated to PND and that EE before the surgery could effectively alleviate the surgery- induced cognitive dysfunction.
Collapse
Affiliation(s)
- Shana Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenting Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunchang Fang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyang Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Zhao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Tuberous Sclerosis Complex (TSC) Inactivation Increases Neuronal Network Activity by Enhancing Ca 2+ Influx via L-Type Ca 2+ Channels. J Neurosci 2021; 41:8134-8149. [PMID: 34417327 DOI: 10.1523/jneurosci.1930-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem developmental disorder characterized by hamartomas in various organs, such as the brain, lungs, and kidneys. Epilepsy, along with autism and intellectual disability, is one of the neurologic impairments associated with TSC that has an intimate relationship with developmental outcomes and quality of life. Sustained activation of the mammalian target of rapamycin (mTOR) via TSC1 or TSC2 mutations is known to be involved in the onset of epilepsy in TSC. However, the mechanism by which mTOR causes seizures remains unknown. In this study, we showed that, human induced pluripotent stem cell-derived TSC2-deficient (TSC2 -/-) neurons exhibited elevated neuronal activity with highly synchronized Ca2+ spikes. Notably, TSC2 -/- neurons presented enhanced Ca2+ influx via L-type Ca2+ channels (LTCCs), which contributed to the abnormal neurite extension and sustained activation of cAMP response element binding protein (CREB), a critical mediator of synaptic plasticity. Expression of Cav1.3, a subtype of LTCCs, was increased in TSC2 -/- neurons, but long-term rapamycin treatment suppressed this increase and reversed the altered neuronal activity and neurite extensions. Thus, we identified Cav1.3 LTCC as a critical downstream component of TSC-mTOR signaling that would trigger enhanced neuronal network activity of TSC2 -/- neurons. We suggest that LTCCs could be potential novel targets for the treatment of epilepsy in TSC.SIGNIFICANCE STATEMENT There is a close relationship between elevated mammalian target of rapamycin (mTOR) activity and epilepsy in tuberous sclerosis complex (TSC). However, the underlying mechanism by which mTOR causes epilepsy remains unknown. In this study, using human TSC2 -/- neurons, we identified elevated Ca2+ influx via L-type Ca2+ channels as a critical downstream component of TSC-mTOR signaling and a potential cause of both elevated neuronal activity and neurite extension in TSC2 -/- neurons. Our findings demonstrate a previously unrecognized connection between sustained mTOR activation and elevated Ca2+ signaling via L-type Ca2+ channels in human TSC neurons, which could cause epilepsy in TSC.
Collapse
|
22
|
RyR-mediated Ca 2+ release elicited by neuronal activity induces nuclear Ca 2+ signals, CREB phosphorylation, and Npas4/RyR2 expression. Proc Natl Acad Sci U S A 2021; 118:2102265118. [PMID: 34389673 DOI: 10.1073/pnas.2102265118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation-a key event in synaptic plasticity and hippocampal memory-and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.
Collapse
|
23
|
Kim B, Luo Y, Zhan X, Zhang Z, Shi X, Yi J, Xuan Z, Wu J. Neuronal activity-induced BRG1 phosphorylation regulates enhancer activation. Cell Rep 2021; 36:109357. [PMID: 34260936 PMCID: PMC8315893 DOI: 10.1016/j.celrep.2021.109357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Neuronal activity-induced enhancers drive gene activation. We demonstrate that BRG1, the core subunit of SWI/SNF-like BAF ATP-dependent chromatin remodeling complexes, regulates neuronal activity-induced enhancers. Upon stimulation, BRG1 is recruited to enhancers in an H3K27Ac-dependent manner. BRG1 regulates enhancer basal activities and inducibility by affecting cohesin binding, enhancer-promoter looping, RNA polymerase II recruitment, and enhancer RNA expression. We identify a serine phosphorylation site in BRG1 that is induced by neuronal stimulations and is sensitive to CaMKII inhibition. BRG1 phosphorylation affects its interaction with several transcription co-factors, including the NuRD repressor complex and cohesin, possibly modulating BRG1-mediated transcription outcomes. Using mice with knockin mutations, we show that non-phosphorylatable BRG1 fails to efficiently induce activity-dependent genes, whereas phosphomimic BRG1 increases enhancer activity and inducibility. These mutant mice display anxiety-like phenotypes and altered responses to stress. Therefore, we reveal a mechanism connecting neuronal signaling to enhancer activities through BRG1 phosphorylation.
Collapse
Affiliation(s)
- BongWoo Kim
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Luo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zilai Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuanming Shi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiaqing Yi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiang Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Local miRNA-Dependent Translational Control of GABA AR Synthesis during Inhibitory Long-Term Potentiation. Cell Rep 2021; 31:107785. [PMID: 32579917 PMCID: PMC7486624 DOI: 10.1016/j.celrep.2020.107785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular mechanisms underlying plasticity at brain inhibitory synapses remain poorly characterized. Increased postsynaptic clustering of GABAA receptors (GABAARs) rapidly strengthens inhibition during inhibitory long-term potentiation (iLTP). However, it is unclear how synaptic GABAAR clustering is maintained to sustain iLTP. Here, we identify a role for miR376c in regulating the translation of mRNAs encoding the synaptic α1 and γ2 GABAAR subunits, GABRA1 and GABRG2, respectively. Following iLTP induction, transcriptional repression of miR376c is induced through a calcineurin-NFAT-HDAC signaling pathway and promotes increased translation and clustering of synaptic GABAARs. This pathway is essential for the long-term expression of iLTP and is blocked by miR376c overexpression, specifically impairing inhibitory synaptic strength. Finally, we show that local de novo synthesis of synaptic GABAARs occurs exclusively in dendrites and in a miR376c-dependent manner following iLTP. Together, this work describes a local post-transcriptional mechanism that regulates inhibitory synaptic plasticity via miRNA control of dendritic protein synthesis. Clustering of GABAARs at inhibitory synapses is crucial for synaptic inhibition. Rajgor et al. discover that synaptic GABAAR expression is controlled by their local translation, regulated by miR376c. During inhibitory synaptic potentiation, miR376c is downregulated, relieving its translational repression of GABAAR mRNAs and leading to de novo synthesis of dendritic GABAARs.
Collapse
|
25
|
Regulation of Synaptic Transmission and Plasticity by Protein Phosphatase 1. J Neurosci 2021; 41:3040-3050. [PMID: 33827970 DOI: 10.1523/jneurosci.2026-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, β, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.
Collapse
|
26
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
27
|
Mohammed RA, Mansour SM. Sodium hydrogen sulfide upregulates cystathionine β-synthase and protects striatum against 3-nitropropionic acid-induced neurotoxicity in rats. J Pharm Pharmacol 2021; 73:310-321. [PMID: 33793881 DOI: 10.1093/jpp/rgaa072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/29/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Hydrogen sulfide (H2S) is a neuromodulator that plays a protective role in multiple neurodegenerative diseases including Alzheimer's (AD) and Parkinson's (PD). However, the precise mechanisms underlying its effects against Huntington's disease (HD) are still questioned.This study aimed to examine the neuroprotective effects of sodium hydrogen sulfide (NaHS; H2S donor) against 3-nitropropionic acid (3NP)-induced HD like pathology in rats. Methods: Male Wistar rats were randomly allocated into four groups; (1) normal control receiving saline; (2) NaHS control receiving (0.5 mg/kg/day, i.p.) for 14 days; (3,4) receiving 3NP (10 mg/kg/day, i.p.) for 14 days, with NaHS 30 min later in group 4. KEY FINDINGS NaHS improved cognitive and locomotor deficits induced by 3NP as confirmed by the striatal histopathological findings. These former events were biochemically supported by the increment in cystathionine β-synthase (CBS) gene expression, reduction of glutamate (Glu), dopamine (DA), malondialdehyde (MDA), tumour necrosis factor-alpha (TNF-α), cytochrome-c, cleaved caspase-3 and pc-FOS indicating antioxidant, anti-inflammatory as well as anti-apoptotic effects. Furthermore, NaHS pretreatment improved cholinergic dysfunction and increased brain-derived neurotropic factor (BDNF) and nuclear factor erythroid-2-related factor 2 (Nrf2). CONCLUSIONS These findings suggest that appropriate protection with H2S donors might represent a novel approach to slow down HD-like symptoms.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
28
|
Li B, Suutari BS, Sun SD, Luo Z, Wei C, Chenouard N, Mandelberg NJ, Zhang G, Wamsley B, Tian G, Sanchez S, You S, Huang L, Neubert TA, Fishell G, Tsien RW. Neuronal Inactivity Co-opts LTP Machinery to Drive Potassium Channel Splicing and Homeostatic Spike Widening. Cell 2020; 181:1547-1565.e15. [PMID: 32492405 DOI: 10.1016/j.cell.2020.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.
Collapse
Affiliation(s)
- Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China; Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA.
| | - Benjamin S Suutari
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Simón(e) D. Sun
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Zhengyi Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Chuanchuan Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Nicolas Chenouard
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Nataniel J Mandelberg
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Guoan Zhang
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Brie Wamsley
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA 02142, USA
| | - Guoling Tian
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Sikun You
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Thomas A Neubert
- Department of Biochemistry and Molecular Pharmacology and Skirball Institute, NYU Grossman Medical Center, New York, NY 10016, USA
| | - Gordon Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA 02142, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
29
|
Hou H, Wang L, Fu T, Papasergi M, Yule DI, Xia H. Magnesium Acts as a Second Messenger in the Regulation of NMDA Receptor-Mediated CREB Signaling in Neurons. Mol Neurobiol 2020; 57:2539-2550. [PMID: 32215817 DOI: 10.1007/s12035-020-01871-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/06/2020] [Indexed: 02/03/2023]
Abstract
Extracellular magnesium ion ([Mg2+]) is a well-known voltage-dependent blocker of NMDA receptors, which plays a critical role in the regulation of neuronal plasticity, learning, and memory. It is generally believed that NMDA receptor activation involves in Mg2+ being removed into extracellular compartment from the channel pore. On the other hand, Mg2+ is one of the most abundant intracellular cations, and involved in numerous cellular functions. However, we do not know if extracellular magnesium ions can influx into neurons to affect intracellular signaling pathways. In our current study, we found that extracellular [Mg2+] elevation enhanced CREB activation by NMDA receptor signaling in both mixed sex rat cultured neurons and brain slices. Moreover, we found that extracellular [Mg2+] led to CREB activation by NMDA application, albeit in a delayed manner, even in the absence of extracellular calcium, suggesting a potential independent role of magnesium in CREB activation. Consistent with this, we found that NMDA application leads to an NMDAR-dependent increase in intracellular-free [Mg2+] in cultured neurons in the absence of extracellular calcium. Chelating this magnesium influx or inhibiting P38 mitogen-activated protein kinase (p38 MAPK) blocked the delayed pCREB by NMDA. Finally, we found that NMDAR signaling in the absence of extracellular calcium activates p38 MAPK. Our studies thus indicate that magnesium influx, dependent on NMDA receptor opening, can transduce a signaling pathway to activate CREB in neurons.
Collapse
Affiliation(s)
- Hailong Hou
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Tianyue Fu
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Makaia Papasergi
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Houhui Xia
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
30
|
Biswas D, Cary W, Nolta JA. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int J Mol Sci 2020; 21:ijms21041286. [PMID: 32074998 PMCID: PMC7072873 DOI: 10.3390/ijms21041286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Phosphatase 2 Regulatory Subunit B′ Delta (PPP2R5D)-related intellectual disability (ID) and neurodevelopmental delay results from germline de novo mutations in the PPP2R5D gene. This gene encodes the protein PPP2R5D (also known as the B56 delta subunit), which is an isoform of the subunit family B56 of the enzyme serine/threonine-protein phosphatase 2A (PP2A). Clinical signs include intellectual disability (ID); autism spectrum disorder (ASD); epilepsy; speech problems; behavioral challenges; and ophthalmologic, skeletal, endocrine, cardiac, and genital malformations. The association of defective PP2A activity in the brain with a wide range of severity of ID, along with its role in ASD, Alzheimer’s disease, and Parkinson’s-like symptoms, have recently generated the impetus for further research into mutations within this gene. PP2A, together with protein phosphatase 1 (PP1), accounts for more than 90% of all phospho-serine/threonine dephosphorylations in different tissues. The specificity for a wide variety of substrates is determined through nearly 100 different PP2A holoenzymes that are formed by at least 23 types of regulatory B subunits, and two isoforms each of the catalytic subunit C and the structural subunit A. In the mammalian brain, PP2A-mediated protein dephosphorylation plays an important role in learning and memory. The PPP2R5D subunit is highly expressed in the brain and the PPP2A–PPP2R5D holoenzyme plays an important role in maintaining neurons and regulating neuronal signaling. From 2015 to 2017, 25 individuals with PPP2R5D-related developmental disorder were diagnosed. Since then, Whole-Exome Sequencing (WES) has helped to identify more unrelated individuals clinically diagnosed with a neurodevelopmental disorder with pathological variants of PPP2R5D. In this review, we discuss the current understanding of the clinical and genetic aspects of the disorder in the context of the known functions of the PP2A–PPP2R5D holoenzyme in the brain, as well as the pathogenic mutations in PPP2R5D that lead to deficient PP2A–PPP2R5D dephosphorylation and their implications during development and in the etiology of autism, Parkinson’s disease, Alzheimer’s disease, and so forth. In the future, tools such as transgenic animals carrying pathogenic PPP2R5D mutations, and patient-derived induced pluripotent stem cell lines need to be developed in order to fully understand the effects of these mutations on different neural cell types.
Collapse
Affiliation(s)
- Dayita Biswas
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
| | - Whitney Cary
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| | - Jan A. Nolta
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| |
Collapse
|
31
|
Krajcovic B, Fajnerova I, Horacek J, Kelemen E, Kubik S, Svoboda J, Stuchlik A. Neural and neuronal discoordination in schizophrenia: From ensembles through networks to symptoms. Acta Physiol (Oxf) 2019; 226:e13282. [PMID: 31002202 DOI: 10.1111/apha.13282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Despite the substantial knowledge accumulated by past research, the exact mechanisms of the pathogenesis of schizophrenia and causal treatments still remain unclear. Deficits of cognition and information processing in schizophrenia are today often viewed as the primary and core symptoms of this devastating disorder. These deficits likely result from disruptions in the coordination of neuronal and neural activity. The aim of this review is to bring together convergent evidence of discoordinated brain circuits in schizophrenia at multiple levels of resolution, ranging from principal cells and interneurons, neuronal ensembles and local circuits, to large-scale brain networks. We show how these aberrations could underlie deficits in cognitive control and other higher order cognitive-behavioural functions. Converging evidence from both animal models and patients with schizophrenia is presented in an effort to gain insight into common features of deficits in the brain information processing in this disorder, marked by disruption of several neurotransmitter and signalling systems and severe behavioural outcomes.
Collapse
Affiliation(s)
- Branislav Krajcovic
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Iveta Fajnerova
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Jiri Horacek
- Third Faculty of Medicine Charles University Prague Czech Republic
- Research Programme 3 - Applied Neurosciences and Brain Imaging National Institute of Mental Health Klecany Czech Republic
| | - Eduard Kelemen
- Research Programme 1 - Experimental Neurobiology National Institute of Mental Health Klecany Czech Republic
| | - Stepan Kubik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Svoboda
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ales Stuchlik
- Department of Neurophysiology of Memory Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
32
|
Izumisawa Y, Tanaka-Yamamoto K, Ciriello J, Kitamura N, Shibuya I. Persistent cytosolic Ca 2+ increase induced by angiotensin II at nanomolar concentrations in acutely dissociated subfornical organ (SFO) neurons of rats. Brain Res 2019; 1718:137-147. [PMID: 31085158 DOI: 10.1016/j.brainres.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/23/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
It is known that angiotensin II (AII) is sensed by subfornical organ (SFO) to induce drinking behaviors and autonomic changes. AII at picomolar concentrations have been shown to induce Ca2+ oscillations and increase in the amplitude and frequency of spontaneous Ca2+ oscillations in SFO neurons. The present study was conducted to examine effects of nanomolar concentrations of AII using the Fura-2 Ca2+-imaging technique in acutely dissociated SFO neurons. AII at nanomolar concentrations induced an initial [Ca2+]i peak followed by a persistent [Ca2+]i increase lasting for longer than 1 hour. By contrast, [Ca2+]i responses to 50 mM K+, maximally effective concentrations of glutamate, carbachol, and vasopressin, and AII given at picomolar concentrations returned to the basal level within 20 min. The AII-induced [Ca2+]i increase was blocked by the AT1 antagonist losartan. However, losartan had no effect when added during the persistent phase. The persistent phase was suppressed by extracellular Ca2+ removal, significantly inhibited by blockers of L and P/Q type Ca2+ channels , but unaffected by inhibition of Ca2+ store Ca2+ ATPase. The persistent phase was reversibly suppressed by GABA and inhibited by CaMK and PKC inhibitors. These results suggest that the persistent [Ca2+]i increase evoked by nanomolar concentrations of AII is initiated by AT1 receptor activation and maintained by Ca2+ entry mechanisms in part through L and P/Q type Ca2+ channels, and that CaMK and PKC are involved in this process. The persistent [Ca2+]i increase induced by AII at high pathophysiological levels may have a significant role in altering SFO neuronal functions.
Collapse
Affiliation(s)
- Yu Izumisawa
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-0945, Japan
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Naoki Kitamura
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-0945, Japan
| | - Izumi Shibuya
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-0945, Japan.
| |
Collapse
|
33
|
Yu Q, Shao D, Zhang R, Ouyang W, Zhang Z. Effects of drinking water fluorosis on L-type calcium channel of hippocampal neurons in mice. CHEMOSPHERE 2019; 220:169-175. [PMID: 30583209 DOI: 10.1016/j.chemosphere.2018.12.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The study aimed to investigate the effects of drinking water fluorosis on L-type calcium channels (LTCCs) in mouse hippocampal neurons. A total of 60 newly weaned ICR male mice were randomly divided into control, low fluoride and high fluoride groups. After 3 and 6 months of exposure to fluoride, the patch clamp technique was used to detect the peak and relative values (I/Imax), steady-state activation curve ratio (G/Gmax), decay time constant, and tail current time constant of LTCCs currents in hippocampal CA1 region of mouse brain slices. Fluoride greatly reduced the serum and urinary calcium concentrations in mice, and the chronic fluorosis has a greater impact than subchronic fluorosis. The peak value of LTCCs current in pyramidal neurons of hippocampal CA1 area was significant and increased with the prolonged exposure time. The relative values of current and steady-state coefficients were changed greatly. The decay and tail current time increased significantly. High fluorine concentration indicates great peak value and open time of LTCCs opening. LTCCs are sensitive to fluoride exposure. The activation voltage of calcium channels induced by fluoride exposure is decreased, the opening time of calcium channels is prolonged, and the calcium influx per unit time increased, thereby overloading calcium concentration in neurons and this may be an explanation for intracellular calcium overload caused by fluoride. The imbalance of calcium metabolism caused by fluorosis may be a pathogenesis of brain injury induced by fluoride. Furthermore, the risk of brain damage from low-fluorine exposure cannot be ignored.
Collapse
Affiliation(s)
- Qiuli Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Dandan Shao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Rui Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Wei Ouyang
- College of Sports and Health Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Zigui Zhang
- College of Xing Zhi, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| |
Collapse
|
34
|
Izumisawa Y, Tanaka-Yamamoto K, Ciriello J, Kitamura N, Shibuya I. The cytosolic Ca2+ concentration in acutely dissociated subfornical organ (SFO) neurons of rats: Spontaneous Ca2+ oscillations and Ca2+ oscillations induced by picomolar concentrations of angiotensin II. Brain Res 2019; 1704:137-149. [DOI: 10.1016/j.brainres.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
|
35
|
Kubista H, Boehm S, Hotka M. The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. Int J Mol Sci 2019; 20:ijms20030577. [PMID: 30699993 PMCID: PMC6387313 DOI: 10.3390/ijms20030577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022] Open
Abstract
Paroxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy. Evidence for the roles of PDS has often been obtained from investigations of the multi-unit correlate of PDS, an electrographic spike termed “interictal” because of its occurrence during seizure-free periods of epilepsy patients. Meanwhile, interictal spikes have been found to be associated with neuronal diseases other than epilepsy, e.g., Alzheimer’s disease, which may indicate a broader implication of PDS in neuropathologies. In this article, we give an introduction to PDS and review evidence that links PDS to pro- as well as anti-epileptic mechanisms, and to other types of neuronal dysfunction. The perturbation of neuronal membrane voltage and of intracellular Ca2+ that comes with PDS offers many conceivable pathomechanisms of neuronal dysfunction. Out of these, the operation of L-type voltage-gated calcium channels, which play a major role in coupling excitation to long-lasting neuronal changes, is addressed in detail.
Collapse
Affiliation(s)
- Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
36
|
Feldmann KG, Chowdhury A, Becker JL, McAlpin N, Ahmed T, Haider S, Richard Xia JX, Diaz K, Mehta MG, Mano I. Non-canonical activation of CREB mediates neuroprotection in a Caenorhabditis elegans model of excitotoxic necrosis. J Neurochem 2018; 148:531-549. [PMID: 30447010 DOI: 10.1111/jnc.14629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Excitotoxicity, caused by exaggerated neuronal stimulation by Glutamate (Glu), is a major cause of neurodegeneration in brain ischemia. While we know that neurodegeneration is triggered by overstimulation of Glu-receptors (GluRs), the subsequent mechanisms that lead to cellular demise remain controversial. Surprisingly, signaling downstream of GluRs can also activate neuroprotective pathways. The strongest evidence involves activation of the transcription factor cAMP response element-binding protein (CREB), widely recognized for its importance in synaptic plasticity. Canonical views describe CREB as a phosphorylation-triggered transcription factor, where transcriptional activation involves CREB phosphorylation and association with CREB-binding protein. However, given CREB's ubiquitous cross-tissue expression, the multitude of cascades leading to CREB phosphorylation, and its ability to regulate thousands of genes, it remains unclear how CREB exerts closely tailored, differential neuroprotective responses in excitotoxicity. A non-canonical, alternative cascade for activation of CREB-mediated transcription involves the CREB co-factor cAMP-regulated transcriptional co-activator (CRTC), and may be independent of CREB phosphorylation. To identify cascades that activate CREB in excitotoxicity we used a Caenorhabditis elegans model of neurodegeneration by excitotoxic necrosis. We demonstrated that CREB's neuroprotective effect was conserved, and seemed most effective in neurons with moderate Glu exposure. We found that factors mediating canonical CREB activation were not involved. Instead, phosphorylation-independent CREB activation in nematode excitotoxic necrosis hinged on CRTC. CREB-mediated transcription that depends on CRTC, but not on CREB phosphorylation, might lead to expression of a specific subset of neuroprotective genes. Elucidating conserved mechanisms of excitotoxicity-specific CREB activation can help us focus on core neuroprotective programs in excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.14494.
Collapse
Affiliation(s)
- K Genevieve Feldmann
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Ayesha Chowdhury
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA
| | - Jessica L Becker
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - N'Gina McAlpin
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Taqwa Ahmed
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Syed Haider
- Undergraduate Program in Biology, CCNY, CUNY, New York City, New York, USA
| | - Jian X Richard Xia
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Karina Diaz
- The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| | - Monal G Mehta
- Robert Wood Johnson Medical School, Rutgers - The State University of New Jersey, Piscataway, New Jersey, USA
| | - Itzhak Mano
- Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.,The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA.,The Sophie Davis BS/MD program, CUNY School of Medicine, New York City, New York, USA
| |
Collapse
|
37
|
Zhou L, Duan J. The C-terminus of NMDAR GluN1-1a Subunit Translocates to Nucleus and Regulates Synaptic Function. Front Cell Neurosci 2018; 12:334. [PMID: 30333730 PMCID: PMC6176477 DOI: 10.3389/fncel.2018.00334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
NMDARs, the Ca2+ permeable channels, play central roles in synaptic plasticity, brain development, learning, and memory. NMDAR binding partners and associated signaling has been extensively studied in synapse-to-nucleus communications. However, whether NMDARs could directly regulate synapse-to-nucleus communications is largely unknown. Here, we analyze the four alternative splicing of the C-terminus isoforms of GluN1 (1a, 2a, 3a, and 4a), and find that C1 domain of GluN1 is necessary for nuclear localization. Besides, we find that the 10 basic amino acids in C1 domain determine the nuclear localization of GluN1 C-terminus. Further investigating the expression patterns of the full length of GluN1 four isoforms shows that only GluN-1a exhibits the cytoplasmic and nucleus distribution in primary hippocampal neurons. Electrophysiological analyses also show that over-expression of GluN1 C-terminus without C1 domain doesn't affect synaptic transmission, whereas GluN1 C-terminus containing C1 domain potentiates NMDAR-mediated synaptic transmission. Our data suggested that the 10 basic amino acids in C1 domain determine translocation of GluN1 C-terminus into nucleus and regulate synaptic transmission.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Vashisht A, Bach SV, Fetterhoff D, Morgan JW, McGee M, Hegde AN. Proteasome limits plasticity-related signaling to the nucleus in the hippocampus. Neurosci Lett 2018; 687:31-36. [PMID: 30219486 DOI: 10.1016/j.neulet.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023]
Abstract
Proteolysis by the ubiquitin-proteasome pathway has pleiotropic effects on both induction and maintenance of long-term synaptic plasticity. In this study, we examined the effect of proteasome inhibition on signaling to the nucleus during late-phase long-term potentiation. When a subthreshold L-LTP induction protocol was used, proteasome inhibition led to a significant increase in phosphorylated CREB (pCREB) in the nucleus. Inhibitors of cAMP-dependent protein kinase/protein kinase A, extracellular signal-regulated kinase and cGMP-dependent protein kinase/protein kinase G all blocked the proteasome-inhibition-mediated increase in nuclear pCREB after subthreshold stimulation. These results lay the groundwork for understanding a novel role for the proteasome in limiting signaling to the nucleus in the absence of adequate synaptic stimulation.
Collapse
Affiliation(s)
- Anirudh Vashisht
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, 31061, USA
| | - Svitlana V Bach
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Dustin Fetterhoff
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James W Morgan
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Maria McGee
- Plastic and Reconstructive Surgery Research, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Ashok N Hegde
- Department of Neurobiology and Anatomy & Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, 31061, USA.
| |
Collapse
|
39
|
Bräunig J, Mergler S, Jyrch S, Hoefig CS, Rosowski M, Mittag J, Biebermann H, Khajavi N. 3-Iodothyronamine Activates a Set of Membrane Proteins in Murine Hypothalamic Cell Lines. Front Endocrinol (Lausanne) 2018; 9:523. [PMID: 30298050 PMCID: PMC6161562 DOI: 10.3389/fendo.2018.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023] Open
Abstract
3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone metabolite. The profound pharmacological effects of 3-T1AM on energy metabolism and thermal homeostasis have raised interest to elucidate its signaling properties in tissues that pertain to metabolic regulation and thermogenesis. Previous studies identified G protein-coupled receptors (GPCRs) and transient receptor potential channels (TRPs) as targets of 3-T1AM in different cell types. These two superfamilies of membrane proteins are largely expressed in tissue which influences energy balance and metabolism. As the first indication that 3-T1AM virtually modulates the function of the neurons in hypothalamus, we observed that intraperitoneal administration of 50 mg/kg bodyweight of 3-T1AM significantly increased the c-FOS activation in the paraventricular nucleus (PVN) of C57BL/6 mice. To elucidate the underlying mechanism behind this 3-T1AM-induced signalosome, we used three different murine hypothalamic cell lines, which are all known to express PVN markers, GT1-7, mHypoE-N39 (N39) and mHypoE-N41 (N41). Various aminergic GPCRs, which are the known targets of 3-T1AM, as well as numerous members of TRP channel superfamily, are expressed in these cell lines. Effects of 3-T1AM on activation of GPCRs were tested for the two major signaling pathways, the action of Gαs/adenylyl cyclase and Gi/o. Here, we demonstrated that this thyroid hormone metabolite has no significant effect on Gi/o signaling and only a minor effect on the Gαs/adenylyl cyclase pathway, despite the expression of known GPCR targets of 3-T1AM. Next, to test for other potential mechanisms involved in 3-T1AM-induced c-FOS activation in PVN, we evaluated the effect of 3-T1AM on the intracellular Ca2+ concentration and whole-cell currents. The fluorescence-optic measurements showed a significant increase of intracellular Ca2+ concentration in the three cell lines in the presence of 10 μM 3-T1AM. Furthermore, this thyroid hormone metabolite led to an increase of whole-cell currents in N41 cells. Interestingly, the TRPM8 selective inhibitor (10 μM AMTB) reduced the 3-T1AM stimulatory effects on cytosolic Ca2+ and whole-cell currents. Our results suggest that the profound pharmacological effects of 3-T1AM on selected brain nuclei of murine hypothalamus, which are known to be involved in energy metabolism and thermoregulation, might be partially attributable to TRP channel activation in hypothalamic cells.
Collapse
Affiliation(s)
- Julia Bräunig
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sabine Jyrch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Carolin S. Hoefig
- Institute of Experimental Endocrinology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Cell & Molecular Biology, Karolinska Instituet, Stockholm, Sweden
| | - Mark Rosowski
- Department Medical Biotechnology, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Jens Mittag
- Department of Cell & Molecular Biology, Karolinska Instituet, Stockholm, Sweden
- University of Lübeck – Center of Brain Behavior and Metabolism, Lübeck, Germany
| | - Heike Biebermann
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Noushafarin Khajavi
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| |
Collapse
|
40
|
β-Subunit of the voltage-gated Ca 2+ channel Cav1.2 drives signaling to the nucleus via H-Ras. Proc Natl Acad Sci U S A 2018; 115:E8624-E8633. [PMID: 30150369 DOI: 10.1073/pnas.1805380115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Depolarization-induced signaling to the nucleus by the L-type voltage-gated calcium channel Cav1.2 is widely assumed to proceed by elevating intracellular calcium. The apparent lack of quantitative correlation between Ca2+ influx and gene activation suggests an alternative activation pathway. Here, we demonstrate that membrane depolarization of HEK293 cells transfected with α11.2/β2b/α2δ subunits (Cav1.2) triggers c-Fos and MeCP2 activation via the Ras/ERK/CREB pathway. Nuclear signaling is lost either by absence of the intracellular β2 subunit or by transfecting the cells with the channel mutant α11.2W440A/β2b/α2δ, a mutation that disrupts the interaction between α11.2 and β2 subunits. Pulldown assays in neuronal SH-SY5Y cells and in vitro binding of recombinant H-Ras and β2 confirmed the importance of the intracellular β2 subunit for depolarization-induced gene activation. Using a Ca2+-impermeable mutant channel α11.2L745P/β2b/α2δ or disrupting Ca2+/calmodulin binding to the channel using the channel mutant α11.2I1624A/β2b/α2δ, we demonstrate that depolarization-induced c-Fos and MeCP2 activation does not depend on Ca2+ transport by the channel. Thus, in contrast to the paradigm that elevated intracellular Ca2+ drives nuclear signaling, we show that Cav1.2-triggered c-Fos or MeCP2 is dependent on extracellular Ca2+ and Ca2+ occupancy of the open channel pore, but is Ca2+-influx independent. An indispensable β-subunit interaction with H-Ras, which is triggered by conformational changes at α11.2 independently of Ca2+ flux, brings to light a master regulatory role of β2 in transcriptional activation via the ERK/CREB pathway. This mode of H-Ras activation could have broad implications for understanding the coupling of membrane depolarization to the rapid induction of gene transcription.
Collapse
|
41
|
Abstract
The majority of 20th century investigations into anesthetic effects on the nervous system have used electrophysiology. Yet some fundamental limitations to electrophysiologic recordings, including the invasiveness of the technique, the need to place (potentially several) electrodes in every site of interest, and the difficulty of selectively recording from individual cell types, have driven the development of alternative methods for detecting neuronal activation. Two such alternative methods with cellular scale resolution have matured in the last few decades and will be reviewed here: the transcription of immediate early genes, foremost c-fos, and the influx of calcium into neurons as reported by genetically encoded calcium indicators, foremost GCaMP6. Reporters of c-fos allow detection of transcriptional activation even in deep or distant nuclei, without requiring the accurate targeting of multiple electrodes at long distances. The temporal resolution of c-fos is limited due to its dependence upon the detection of transcriptional activation through immunohistochemical assays, though the development of RT-PCR probes has shifted the temporal resolution of the assay when tissues of interest can be isolated. GCaMP6 has several isoforms that trade-off temporal resolution for signal to noise, but the fastest are capable of resolving individual action potential events, provided the microscope used scans quickly enough. GCaMP6 expression can be selectively targeted to neuronal populations of interest, and potentially thousands of neurons can be captured within a single frame, allowing the neuron-by-neuron reporting of circuit dynamics on a scale that is difficult to capture with electrophysiology, as long as the populations are optically accessible.
Collapse
|
42
|
AD-Related N-Terminal Truncated Tau Is Sufficient to Recapitulate In Vivo the Early Perturbations of Human Neuropathology: Implications for Immunotherapy. Mol Neurobiol 2018; 55:8124-8153. [PMID: 29508283 DOI: 10.1007/s12035-018-0974-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The NH2tau 26-44 aa (i.e., NH2htau) is the minimal biologically active moiety of longer 20-22-kDa NH2-truncated form of human tau-a neurotoxic fragment mapping between 26 and 230 amino acids of full-length protein (htau40)-which is detectable in presynaptic terminals and peripheral CSF from patients suffering from AD and other non-AD neurodegenerative diseases. Nevertheless, whether its exogenous administration in healthy nontransgenic mice is able to elicit a neuropathological phenotype resembling human tauopathies has not been yet investigated. We explored the in vivo effects evoked by subchronic intracerebroventricular (i.c.v.) infusion of NH2htau or its reverse counterpart into two lines of young (2-month-old) wild-type mice (C57BL/6 and B6SJL). Six days after its accumulation into hippocampal parenchyma, significant impairment in memory/learning performance was detected in NH2htau-treated group in association with reduced synaptic connectivity and neuroinflammatory response. Compromised short-term plasticity in paired-pulse facilitation paradigm (PPF) was detected in the CA3/CA1 synapses from NH2htau-impaired animals along with downregulation in calcineurin (CaN)-stimulated pCREB/c-Fos pathway(s). Importantly, these behavioral, synaptotoxic, and neuropathological effects were independent from the genetic background, occurred prior to frank neuronal loss, and were specific because no alterations were detected in the control group infused with its reverse counterpart. Finally, a 2.0-kDa peptide which biochemically and immunologically resembles the injected NH2htau was endogenously detected in vivo, being present in hippocampal synaptosomal preparations from AD subjects. Given that the identification of the neurotoxic tau species is mandatory to develop a more effective tau-based immunological approach, our evidence can have important translational implications for cure of human tauopathies.
Collapse
|
43
|
Madabhushi R, Kim TK. Emerging themes in neuronal activity-dependent gene expression. Mol Cell Neurosci 2017; 87:27-34. [PMID: 29254824 DOI: 10.1016/j.mcn.2017.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
In this review, we attempt to discuss emerging themes in the regulation of neuronal activity-regulated genes, focusing primarily on an important subset of immediate-early genes. We first discuss earlier studies that have illuminated the role of cis-acting elements within the promoters of immediate-early genes, the corresponding transcription factors that bind these elements, and the roles of major activity-regulated signaling pathways. However, our emphasis is on new studies that have revealed an important role for epigenetic and topological mechanisms, including enhancer-promoter interactions, enhancer RNAs (eRNAs), and activity-induced DNA breaks, that have emerged as important factors that govern the temporal dynamics of activity-induced gene transcription.
Collapse
Affiliation(s)
- Ram Madabhushi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Pituitary adenylate cyclase activating polypeptide induces long-term, transcription-dependent plasticity and remodeling at autonomic synapses. Mol Cell Neurosci 2017; 85:170-182. [DOI: 10.1016/j.mcn.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022] Open
|
45
|
Rima M, Daghsni M, Lopez A, Fajloun Z, Lefrancois L, Dunach M, Mori Y, Merle P, Brusés JL, De Waard M, Ronjat M. Down-regulation of the Wnt/β-catenin signaling pathway by Cacnb4. Mol Biol Cell 2017; 28:3699-3708. [PMID: 29021340 PMCID: PMC5706996 DOI: 10.1091/mbc.e17-01-0076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 11/29/2022] Open
Abstract
The β4 isoform of the β-subunits of voltage-gated calcium channel regulates cell proliferation and cell cycle progression. Herein we show that coexpression of the β4-subunit with actors of the canonical Wnt/β-catenin signaling pathway in a hepatoma cell line inhibits Wnt-responsive gene transcription and decreases cell division, in agreement with the role of the Wnt pathway in cell proliferation. β4-subunit-mediated inhibition of Wnt signaling is observed in the presence of LiCl, an inhibitor of glycogen synthase kinase (GSK3) that promotes β-catenin translocation to the nucleus. Expression of β4-subunit mutants that lost the ability to translocate to the nucleus has no effect on Wnt signaling, suggesting that β4-subunit inhibition of Wnt signaling occurs downstream from GSK3 and requires targeting of β4-subunit to the nucleus. β4-subunit coimmunoprecipitates with the TCF4 transcription factor and overexpression of TCF4 reverses the effect of β4-subunit on the Wnt pathway. We thus propose that the interaction of nuclear β4-subunit with TCF4 prevents β-catenin binding to TCF4 and leads to the inhibition of the Wnt-responsive gene transcription. Thereby, our results show that β4-subunit is a TCF4 repressor and therefore appears as an interesting candidate for the regulation of this pathway in neurons where β4-subunit is specifically expressed.
Collapse
Affiliation(s)
- Mohamad Rima
- L'institut du thorax, INSER, CNRS, Université de Nantes, 44000 Nantes, France
- LabEx Ion Channels Science and Therapeutics, Valbone 06560, France
- Azm Center for Research in Biotechnology and Its Application, Lebanese University, 1300 Tripoli, Lebanon
| | - Marwa Daghsni
- L'institut du thorax, INSER, CNRS, Université de Nantes, 44000 Nantes, France
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007 Tunis, Tunisie
| | - Anaïs Lopez
- INSERM U1052, Team on Hepatocarcinogenesis and Viral Infections, Centre of Research in Cancerology of Lyon, Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Hepatology Unit, Croix-Rousse Hospital, 69000 Lyon, France
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and Its Application, Lebanese University, 1300 Tripoli, Lebanon
| | - Lydie Lefrancois
- INSERM U1052, Team on Hepatocarcinogenesis and Viral Infections, Centre of Research in Cancerology of Lyon, Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Hepatology Unit, Croix-Rousse Hospital, 69000 Lyon, France
| | - Mireia Dunach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Laboratory of Molecular Biology, Graduate School of Engineering, Kyoto University, 615-8510 Kyoto, Japan
| | - Philippe Merle
- INSERM U1052, Team on Hepatocarcinogenesis and Viral Infections, Centre of Research in Cancerology of Lyon, Claude Bernard Lyon 1 University, 69100 Villeurbanne, France
- Hepatology Unit, Croix-Rousse Hospital, 69000 Lyon, France
| | - Juan L Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY 10522
| | - Michel De Waard
- L'institut du thorax, INSER, CNRS, Université de Nantes, 44000 Nantes, France
- LabEx Ion Channels Science and Therapeutics, Valbone 06560, France
- Smartox Biotechnology, 38400 Saint-Martin d'Hères, France
| | - Michel Ronjat
- L'institut du thorax, INSER, CNRS, Université de Nantes, 44000 Nantes, France
- LabEx Ion Channels Science and Therapeutics, Valbone 06560, France
| |
Collapse
|
46
|
The Structure of the ZMYND8/Drebrin Complex Suggests a Cytoplasmic Sequestering Mechanism of ZMYND8 by Drebrin. Structure 2017; 25:1657-1666.e3. [DOI: 10.1016/j.str.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
|
47
|
Saura CA, Cardinaux JR. Emerging Roles of CREB-Regulated Transcription Coactivators in Brain Physiology and Pathology. Trends Neurosci 2017; 40:720-733. [PMID: 29097017 DOI: 10.1016/j.tins.2017.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
Abstract
The brain has the ability to sense, coordinate, and respond to environmental changes through biological processes involving activity-dependent gene expression. cAMP-response element binding protein (CREB)-regulated transcription coactivators (CRTCs) have recently emerged as novel transcriptional regulators of essential biological functions, while their deregulation is linked to age-related human diseases. In the brain, CRTCs are unique signaling factors that act as sensors and integrators of hormonal, metabolic, and neural signals contributing to brain plasticity and brain-body communication. In this review, we focus on the regulatory mechanisms and functions of CRTCs in brain metabolism, lifespan, circadian rhythm, and synaptic mechanisms underlying memory and emotion. We also discuss how CRTCs deregulation in cognitive and emotional disorders may provide the basis for potential clinical and therapeutic applications in neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience and Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Switzerland.
| |
Collapse
|
48
|
Wang X, Marks CR, Perfitt TL, Nakagawa T, Lee A, Jacobson DA, Colbran RJ. A novel mechanism for Ca 2+/calmodulin-dependent protein kinase II targeting to L-type Ca 2+ channels that initiates long-range signaling to the nucleus. J Biol Chem 2017; 292:17324-17336. [PMID: 28916724 DOI: 10.1074/jbc.m117.788331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Neuronal excitation can induce new mRNA transcription, a phenomenon called excitation-transcription (E-T) coupling. Among several pathways implicated in E-T coupling, activation of voltage-gated L-type Ca2+ channels (LTCCs) in the plasma membrane can initiate a signaling pathway that ultimately increases nuclear CREB phosphorylation and, in most cases, expression of immediate early genes. Initiation of this long-range pathway has been shown to require recruitment of Ca2+-sensitive enzymes to a nanodomain in the immediate vicinity of the LTCC by an unknown mechanism. Here, we show that activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) strongly interacts with a novel binding motif in the N-terminal domain of CaV1 LTCC α1 subunits that is not conserved in CaV2 or CaV3 voltage-gated Ca2+ channel subunits. Mutations in the CaV1.3 α1 subunit N-terminal domain or in the CaMKII catalytic domain that largely prevent the in vitro interaction also disrupt CaMKII association with intact LTCC complexes isolated by immunoprecipitation. Furthermore, these same mutations interfere with E-T coupling in cultured hippocampal neurons. Taken together, our findings define a novel molecular interaction with the neuronal LTCC that is required for the initiation of a long-range signal to the nucleus that is critical for learning and memory.
Collapse
Affiliation(s)
| | | | | | - Terunaga Nakagawa
- From the Vanderbilt Brain Institute.,the Department of Molecular Physiology and Biophysics, and
| | - Amy Lee
- the Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242
| | | | - Roger J Colbran
- From the Vanderbilt Brain Institute, .,the Department of Molecular Physiology and Biophysics, and.,the Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615 and
| |
Collapse
|
49
|
Mauger O, Lemoine F, Scheiffele P. Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity. Neuron 2017; 92:1266-1278. [PMID: 28009274 DOI: 10.1016/j.neuron.2016.11.032] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023]
Abstract
Activity-dependent transcription has emerged as a major source of gene products that regulate neuronal excitability, connectivity, and synaptic properties. However, the elongation rate of RNA polymerases imposes a significant temporal constraint for transcript synthesis, in particular for long genes where new synthesis requires hours. Here we reveal a novel, transcription-independent mechanism that releases transcripts within minutes of neuronal stimulation. We found that, in the mouse neocortex, polyadenylated transcripts retain select introns and are stably accumulated in the cell nucleus. A subset of these intron retention transcripts undergoes activity-dependent splicing, cytoplasmic export, and ribosome loading, thus acutely releasing mRNAs in response to stimulation. This process requires NMDA receptor- and calmodulin-dependent kinase pathways, and it is particularly prevalent for long transcripts. We conclude that regulated intron retention in fully transcribed RNAs represents a mechanism to rapidly mobilize a pool of mRNAs in response to neuronal activity.
Collapse
Affiliation(s)
- Oriane Mauger
- Biozentrum of the University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Frédéric Lemoine
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Peter Scheiffele
- Biozentrum of the University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland.
| |
Collapse
|
50
|
Rima M, Daghsni M, De Waard S, Gaborit N, Fajloun Z, Ronjat M, Mori Y, Brusés JL, De Waard M. The β 4 subunit of the voltage-gated calcium channel (Cacnb4) regulates the rate of cell proliferation in Chinese Hamster Ovary cells. Int J Biochem Cell Biol 2017; 89:57-70. [PMID: 28587927 DOI: 10.1016/j.biocel.2017.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/20/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023]
Abstract
The β subunits of Voltage-Gated Calcium Channel (VGCC) are cytosolic proteins that interact with the VGCC pore -forming subunit and participate in the trafficking of the channel to the cell membrane and in ion influx regulation. β subunits also exert functions independently of their binding to VGCC by translocation to the cell nucleus including the control of gene expression. Mutations of the neuronal Cacnb4 (β4) subunit are linked to human neuropsychiatric disorders including epilepsy and intellectual disabilities. It is believed that the pathogenic phenotype induced by these mutations is associated with channel-independent functions of the β4 subunit. In this report, we investigated the role of β4 subunit in cell proliferation and cell cycle progression and examined whether these functions could be altered by a pathogenic mutation. To this end, stably transfected Chinese Hamster Ovary (CHO-K1) cells expressing either rat full-length β4 or the rat C-terminally truncated epileptic mutant variant β1-481 were generated. The subcellular localization of both proteins differed significantly. Full-length β4 localizes almost exclusively in the cell nucleus and concentrates into the nucleolar compartment, while the C-terminal-truncated β1-481 subunit was less concentrated within the nucleus and absent from the nucleoli. Cell proliferation was found to be reduced by the expression of β4, while it was unaffected by the epileptic mutant. Also, full-length β4 interfered with cell cycle progression by presumably preventing cells from entering the S-phase via a mechanism that partially involves endogenous B56δ, a regulatory subunit of the phosphatase 2A (PP2A) that binds β4 but not β1-481. Analysis of β4 subcellular distribution during the cell cycle revealed that the protein is highly expressed in the nucleus at the G1/S transition phase and that it is translocated out of the nucleus during chromatin condensation and cell division. These results suggest that nuclear accumulation of β4 at the G1/S transition phase affects the progression into S-phase resulting in a decrease in the rate of cell proliferation. Regulation of the cell cycle exit is a critical step in determining the number of neuronal precursors and neuronal differentiation suggesting that mutations of the β4 subunit could affect neural development and formation of the mature central nervous system.
Collapse
Affiliation(s)
- Mohamad Rima
- INSERM UMR1087, LabEx Ion Channels Science and Therapeutics, Institut du Thorax, Nantes, F-44000 France; CNRS, UMR6291, Nantes, F-44000 France; Azm Center for Research in Biotechnology and its Application, Lebanese University, 1300, Tripoli, Lebanon
| | - Marwa Daghsni
- INSERM UMR1087, LabEx Ion Channels Science and Therapeutics, Institut du Thorax, Nantes, F-44000 France; CNRS, UMR6291, Nantes, F-44000 France; Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES10 Laboratoire de Génétique Humaine, 1007, Tunis, Tunisia
| | - Stephan De Waard
- INSERM UMR1087, LabEx Ion Channels Science and Therapeutics, Institut du Thorax, Nantes, F-44000 France; CNRS, UMR6291, Nantes, F-44000 France; Université de Nantes, Nantes, F-44000 France
| | - Nathalie Gaborit
- INSERM UMR1087, LabEx Ion Channels Science and Therapeutics, Institut du Thorax, Nantes, F-44000 France; CNRS, UMR6291, Nantes, F-44000 France; Université de Nantes, Nantes, F-44000 France
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and its Application, Lebanese University, 1300, Tripoli, Lebanon; Faculty of Sciences III, Lebanese University, 1300, Tripoli, Lebanon
| | - Michel Ronjat
- INSERM UMR1087, LabEx Ion Channels Science and Therapeutics, Institut du Thorax, Nantes, F-44000 France; CNRS, UMR6291, Nantes, F-44000 France; Université de Nantes, Nantes, F-44000 France
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Juan L Brusés
- Department of Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA
| | - Michel De Waard
- INSERM UMR1087, LabEx Ion Channels Science and Therapeutics, Institut du Thorax, Nantes, F-44000 France; CNRS, UMR6291, Nantes, F-44000 France; Université de Nantes, Nantes, F-44000 France.
| |
Collapse
|