1
|
Boebinger S, Payne A, Martino G, Kerr K, Mirdamadi J, McKay JL, Borich M, Ting L. Precise cortical contributions to sensorimotor feedback control during reactive balance. PLoS Comput Biol 2024; 20:e1011562. [PMID: 38630803 PMCID: PMC11057980 DOI: 10.1371/journal.pcbi.1011562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/29/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The role of the cortex in shaping automatic whole-body motor behaviors such as walking and balance is poorly understood. Gait and balance are typically mediated through subcortical circuits, with the cortex becoming engaged as needed on an individual basis by task difficulty and complexity. However, we lack a mechanistic understanding of how increased cortical contribution to whole-body movements shapes motor output. Here we use reactive balance recovery as a paradigm to identify relationships between hierarchical control mechanisms and their engagement across balance tasks of increasing difficulty in young adults. We hypothesize that parallel sensorimotor feedback loops engaging subcortical and cortical circuits contribute to balance-correcting muscle activity, and that the involvement of cortical circuits increases with balance challenge. We decomposed balance-correcting muscle activity based on hypothesized subcortically- and cortically-mediated feedback components driven by similar sensory information, but with different loop delays. The initial balance-correcting muscle activity was engaged at all levels of balance difficulty. Its onset latency was consistent with subcortical sensorimotor loops observed in the lower limb. An even later, presumed, cortically-mediated burst of muscle activity became additionally engaged as balance task difficulty increased, at latencies consistent with longer transcortical sensorimotor loops. We further demonstrate that evoked cortical activity in central midline areas measured using electroencephalography (EEG) can be explained by a similar sensory transformation as muscle activity but at a delay consistent with its role in a transcortical loop driving later cortical contributions to balance-correcting muscle activity. These results demonstrate that a neuromechanical model of muscle activity can be used to infer cortical contributions to muscle activity without recording brain activity. Our model may provide a useful framework for evaluating changes in cortical contributions to balance that are associated with falls in older adults and in neurological disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Scott Boebinger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Aiden Payne
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Giovanni Martino
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Kennedy Kerr
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
| | - Jasmine Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States of America
| | - J. Lucas McKay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- Departments of Biomedical Informatics and Neurology, Emory University, Atlanta, Georgia, United States of America
| | - Michael Borich
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Lena Ting
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
2
|
Maurer S, Butenschoen VM, Kelm A, Schramm S, Schröder A, Meyer B, Krieg SM. Permanent deterioration of fine motor skills after the resection of tumors in the supplementary motor area. Neurosurg Rev 2024; 47:114. [PMID: 38480549 PMCID: PMC10937754 DOI: 10.1007/s10143-024-02330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
Supplementary motor area syndrome (SMAS) represents a common neurosurgical sequela. The incidence and time frame of its occurrence have yet to be characterized after surgery for brain tumors. We examined patients suffering from a brain tumor preoperatively, postoperatively, and during follow-up examinations after three months, including fine motor skills testing and transcranial magnetic stimulation (TMS). 13 patients suffering from a tumor in the dorsal part of the superior frontal gyrus underwent preoperative, early postoperative, and 3-month follow-up testing of fine motor skills using the Jebsen-Taylor Hand Function Test (JHFT) and the Nine-Hole Peg Test (NHPT) consisting of 8 subtests for both upper extremities. They completed TMS for cortical motor function mapping. Test completion times (TCTs) were recorded and compared. No patient suffered from neurological deficits before surgery. On postoperative day one, we detected motor deficits in two patients, which remained clinically stable at a 3-month follow-up. Except for page-turning, every subtest indicated a significant worsening of function, reflected by longer TCTs (p < 0.05) in the postoperative examinations for the contralateral upper extremity (contralateral to the tumor manifestation). At 3-month follow-up examinations for the contralateral upper extremity, each subtest indicated significant worsening compared to the preoperative status despite improvement to the immediate postoperative level. We also detected significantly longer TCTs (p < 0.05) postoperatively in the ipsilateral upper extremity. This study suggests a long-term worsening of fine motor skills even three months after SMA tumor resection, indicating the necessity of targeted physical therapy for these patients.
Collapse
Affiliation(s)
- Stefanie Maurer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Vicki M Butenschoen
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Anna Kelm
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Axel Schröder
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
3
|
Takada K, Yamaguchi T, Hyuga Y, Mitsuno Y, Horiguchi S, Kinoshita M, Satow T. Impairment of bimanual in-phase movement during recovery from frontal lobe tumor surgery: a case report. Front Neurosci 2023; 17:1217430. [PMID: 37841682 PMCID: PMC10568456 DOI: 10.3389/fnins.2023.1217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The mechanisms underlying bimanual coordination have not yet been fully elucidated. Here, we evaluated the clinical features of bimanual movement impairment in a patient following surgery for a frontal lobe tumor. The patient was an 80-year-old man who had undergone subtotal tumor resection for a tumor in the right superior frontal gyrus. Histological examination of the resected specimen led to the diagnosis of malignant lymphoma of the diffuse large B-cell type, and the patient subsequently received high-dose methotrexate-based chemotherapy. Postoperatively, the patient had difficulty with bimanual movement, and on the 5th postoperative day we found that the impairment could not be attributed to weakness. Temporal changes in the characteristics of manual movements were analyzed. Bimanual diadochokinesis (opening/closing of the hands, pronation/supination of the forearms, and sequential finger movements) was more disturbed than unilateral movements; in-phase movements were more severely impaired than anti-phase movements. Bimanual movement performance was better when cued using an auditory metronome. On the 15th postoperative day, movements improved. The present observations show that in addition to the disturbance of anti-phase bimanual movements, resection of the frontal lobe involving the supplementary motor area (SMA) and premotor cortex (PMC) can cause transient impairment of in-phase bimanual diadochokinesis, which can be more severe than the impairment of anti-phase movements. The effect of auditory cueing on bimanual skills may be useful in the diagnosis of anatomical localization of the superior frontal gyrus and functional localization of the SMA and PMC and in rehabilitation of patients with brain tumors, as in the case of degenerative movement disorders.
Collapse
Affiliation(s)
- Kozue Takada
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | - Takuya Yamaguchi
- Department of Rehabilitation, Nagahama City Hospital, Nagahama, Shiga, Japan
| | - Yuko Hyuga
- Department of Rehabilitation, Nagahama City Hospital, Nagahama, Shiga, Japan
| | - Yuto Mitsuno
- Department of Neurosurgery, Nagahama City Hospital, Nagahama, Shiga, Japan
| | - Satoshi Horiguchi
- Department of Neurosurgery, Nagahama City Hospital, Nagahama, Shiga, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | - Takeshi Satow
- Department of Neurosurgery, Nagahama City Hospital, Nagahama, Shiga, Japan
- Department of Neurosurgery, National Hospital Organization Utano National Hospital, Kyoto, Japan
| |
Collapse
|
4
|
Chen YH, Chang CY, Huang SK. Strike or ball? Batters know it better: an fMRI study of action anticipation in baseball players. Cereb Cortex 2023; 33:3221-3238. [PMID: 35788641 DOI: 10.1093/cercor/bhac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022] Open
Abstract
To assess whether the brain processes of action anticipation are modulated differently by perceptual and motor experiences, baseball batters, pitchers, and non-players were asked to predict the fate of pitching actions (strike or ball) while undergoing functional magnetic resonance imaging. Results showed both batters (perceptual experts of pitching action) and pitchers (motor experts) were more accurate than non-players. Furthermore, batters demonstrated higher perceptual sensitivity in discriminating strikes than non-players. All groups engaged the action observation network, putamen, and cerebellum during anticipation, while pitchers showed higher activity than non-players in the left premotor cortex, which has been implicated in the internal simulation of observed action. Only batters exhibited differences in strike versus ball pitches in their left ventral extrastriate cortex, which might be associated with the processing of relevant visual information conveyed by the observed pitcher's movement kinematics and pitch trajectory. Moreover, all groups showed higher activity selectively in the striatum, thalamus, sensorimotor cortices, and cerebellum during correct predictions than during incorrect ones, with most widespread activation in batters, reinforcing the greater involvement of the sensorimotor system in perceptual experience. Our findings demonstrate that perceptual experience might enhance action anticipation ability to a greater extent than motor experience, with overlapping but specific neural underpinnings.
Collapse
Affiliation(s)
- Yin-Hua Chen
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, No. 250, Wenhua 1st Road, Guishan, Taoyuan 33301, Taiwan
| | - Chih-Yen Chang
- Department of Physical Education, National Taiwan Normal University, No. 162, Sec. 1, Heping E. Road, Taipei 10610, Taiwan
| | - Shih-Kuei Huang
- Department of Physical Education, Chinese Culture University, No. 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei 11114, Taiwan
| |
Collapse
|
5
|
Chen YH, Chang CY, Yen NS, Tsai SY. Brain plasticity of structural connectivity networks and topological properties in baseball players with different levels of expertise. Brain Cogn 2023; 166:105943. [PMID: 36621186 DOI: 10.1016/j.bandc.2022.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
Brain plasticity in structural connectivity networks along the development of expertise has remained largely unknown. To address this, we recruited individuals with three different levels of baseball-playing experience: skilled batters (SB), intermediate batters (IB), and healthy controls (HC). We constructed their structural connectivity networks using diffusion tractography and compared their region-to-region structural connections and the topological characteristics of the constructed networks using graph-theoretical analysis. The group differences were detected in 35 connections predominantly involving sensorimotor and visual systems; the intergroup changes could be depicted either in a stepwise (HC < / = IB < / = SB) or a U-/inverted U-shaped manner as experience increased (IB < SB and/or HC, or opposite). All groups showed small-world topology in their constructed networks, but SB had increased global and local network efficiency than IB and/or HC. Furthermore, although the number and cortical regions identified as hubs of the networks in the three groups were highly similar, SB exhibited higher nodal global efficiency in both the dorsolateral and medial parts of the bilateral superior frontal gyri than IB. Our findings add new evidence of topological reorganization in brain networks associated with sensorimotor experience in sports. Interestingly, these changes do not necessarily increase as a function of experience as previously suggested in literature.
Collapse
Affiliation(s)
- Yin-Hua Chen
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd, Guishan, Taoyuan 33301, Taiwan
| | - Chih-Yen Chang
- Department of Physical Education, National Taiwan Normal University, 162, Sec. 1, Heping E. Rd, Taipei 10610, Taiwan
| | - Nai-Shing Yen
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhi-Nan Rd, Wen-Shan District, Taipei 11605, Taiwan; Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhi-Nan Rd, Wen-Shan District, Taipei 11605, Taiwan.
| | - Shang-Yueh Tsai
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhi-Nan Rd, Wen-Shan District, Taipei 11605, Taiwan; Graduate Institute of Applied Physics, National Chengchi University, No. 64, Sec. 2, Zhi-Nan Rd, Wen-Shan District, Taipei 11605, Taiwan.
| |
Collapse
|
6
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
7
|
Perszyk EE, Davis XS, Djordjevic J, Jones-Gotman M, Trinh J, Hutelin Z, Veldhuizen MG, Koban L, Wager TD, Kober H, Small DM. Odor imagery but not perception drives risk for food cue reactivity and increased adiposity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527292. [PMID: 36798231 PMCID: PMC9934556 DOI: 10.1101/2023.02.06.527292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mental imagery has been proposed to play a critical role in the amplification of cravings. Here we tested whether olfactory imagery drives food cue reactivity strength to promote adiposity in 45 healthy individuals. We measured odor perception, odor imagery ability, and food cue reactivity using self-report, perceptual testing, and neuroimaging. Adiposity was assessed at baseline and one year later. Brain responses to real and imagined odors were analyzed with univariate and multivariate decoding methods to identify pattern-based olfactory codes. We found that the accuracy of decoding imagined, but not real, odor quality correlated with a perceptual measure of odor imagery ability and with greater adiposity changes. This latter relationship was mediated by cue-potentiated craving and intake. Collectively, these findings establish odor imagery ability as a risk factor for weight gain and more specifically as a mechanism by which exposure to food cues promotes craving and overeating.
Collapse
Affiliation(s)
- Emily E. Perszyk
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Xue S. Davis
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jelena Djordjevic
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Marilyn Jones-Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Jessica Trinh
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Maria G. Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Ciftlikkoy Campus, Mersin 33343, Turkey
| | - Leonie Koban
- Lyon Neuroscience Research Center (CRNL), CNRS, INSERM, University Claude Bernard Lyon 1, France
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Dana M. Small
- Modern Diet and Physiology Research Center, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
8
|
Duan YJ, Hua XY, Zheng MX, Wu JJ, Xing XX, Li YL, Xu JG. Corticocortical paired associative stimulation for treating motor dysfunction after stroke: study protocol for a randomised sham-controlled double-blind clinical trial. BMJ Open 2022; 12:e053991. [PMID: 35027421 PMCID: PMC8762140 DOI: 10.1136/bmjopen-2021-053991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Stroke survivors can have a high disability rate with low quality of daily life, resulting in a heavy burden on family and society. Transcranial magnetic stimulation has been widely applied to brain injury repair, neurological disease treatment, cognition and emotion regulation and so on. However, there is still much to be desired in the theories of using these neuromodulation techniques to treat stroke-caused hemiplegia. It is generally recognised that synaptic plasticity is an important basis for functional repair after brain injury. This study protocol aims to examine the corticocortical paired associative stimulation (ccPAS) for inducing synaptic plasticity to rescue the paralysed after stroke. METHODS AND ANALYSIS The current study is designed as a 14-week double-blind randomised sham-controlled clinical trial, composed of 2-week intervention and 12-week follow-up. For the study, 42 patients who had a stroke aged 40-70 will be recruited, who are randomly assigned either to the ccPAS intervention group, or to the control group at a 1:1 ratio, hence an equal number each. In the intervention group, ccPAS is practised in conjunction with the conventional rehabilitation treatment, and in the control group, the conventional rehabilitation treatment is administered with sham stimulation. A total of 10 interventions will be made, 5 times a week for 2 weeks. The same assessors are supposed to evaluate the participants' motor function at four time points of the baseline (before 10 interventions), treatment ending (after 10 interventions), and two intervals of follow-up (1 and 3 months later, respectively). The Fugl-Meyer Assessment Upper Extremity is used for the primary outcomes. The secondary outcomes include changes in the assessment of Action Research Arm Test (ARAT), Modified Barthel Index (MBI), electroencephalogram (EEG) and functional MRI data. The adverse events are to be recorded throughout the study. ETHICS AND DISSEMINATION This study was approved by the Medical Ethics Committee of Yueyang Hospital. All ethical work was performed in accordance with the Helsinki declaration. Written informed consent was obtained from all individual participants included in the study. Study findings will be disseminated in the printed media. TRIAL REGISTRATION NUMBER Chinese Clinical Trial Registry: ChiCTR2000036685.
Collapse
Affiliation(s)
- Yu-Jie Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Rahimpour S, Rajkumar S, Hallett M. The Supplementary Motor Complex in Parkinson's Disease. J Mov Disord 2021; 15:21-32. [PMID: 34814237 PMCID: PMC8820882 DOI: 10.14802/jmd.21075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and nonmotor symptoms. Although the basal ganglia is traditionally the primary brain region implicated in this disease process, this limited view ignores the roles of the cortex and cerebellum that are networked with the basal ganglia to support motor and cognitive functions. In particular, recent research has highlighted dysfunction in the supplementary motor complex (SMC) in patients with PD. Using the PubMed and Google Scholar search engines, we identified research articles using keywords pertaining to the involvement of the SMC in action sequencing impairments, temporal processing disturbances, and gait impairment in patients with PD. A review of abstracts and full-text articles was used to identify relevant articles. In this review of 63 articles, we focus on the role of the SMC in PD, highlighting anatomical and functional data to create new perspectives in understanding clinical symptoms and, potentially, new therapeutic targets. The SMC has a nuanced role in the pathophysiology of PD, with both hypo- and hyperactivation associated with various symptoms. Further studies using more standardized patient populations and functional tasks are needed to more clearly elucidate the role of this region in the pathophysiology and treatment of PD.
Collapse
Affiliation(s)
- Shervin Rahimpour
- Department of Neurosurgery, Clinical Neuroscience Center, University of Utah, Salt Lake City, UT, USA
| | - Shashank Rajkumar
- Department of Neurosurgery, Duke University Hospital, Durham, NC, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Tremblay SA, Jäger AT, Huck J, Giacosa C, Beram S, Schneider U, Grahl S, Villringer A, Tardif CL, Bazin PL, Steele CJ, Gauthier CJ. White matter microstructural changes in short-term learning of a continuous visuomotor sequence. Brain Struct Funct 2021; 226:1677-1698. [PMID: 33885965 DOI: 10.1007/s00429-021-02267-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Efficient neural transmission is crucial for optimal brain function, yet the plastic potential of white matter (WM) has long been overlooked. Growing evidence now shows that modifications to axons and myelin occur not only as a result of long-term learning, but also after short training periods. Motor sequence learning (MSL), a common paradigm used to study neuroplasticity, occurs in overlapping learning stages and different neural circuits are involved in each stage. However, most studies investigating short-term WM plasticity have used a pre-post design, in which the temporal dynamics of changes across learning stages cannot be assessed. In this study, we used multiple magnetic resonance imaging (MRI) scans at 7 T to investigate changes in WM in a group learning a complex visuomotor sequence (LRN) and in a control group (SMP) performing a simple sequence, for five consecutive days. Consistent with behavioral results, where most improvements occurred between the two first days, structural changes in WM were observed only in the early phase of learning (d1-d2), and in overall learning (d1-d5). In LRNs, WM microstructure was altered in the tracts underlying the primary motor and sensorimotor cortices. Moreover, our structural findings in WM were related to changes in functional connectivity, assessed with resting-state functional MRI data in the same cohort, through analyses in regions of interest (ROIs). Significant changes in WM microstructure were found in a ROI underlying the right supplementary motor area. Together, our findings provide evidence for highly dynamic WM plasticity in the sensorimotor network during short-term MSL.
Collapse
Affiliation(s)
- Stéfanie A Tremblay
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Anna-Thekla Jäger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Charite Universitätsmedizin, Charite, Berlin, Germany
| | - Julia Huck
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Chiara Giacosa
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Stephanie Beram
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Uta Schneider
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sophia Grahl
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, Leipzig, Germany.,Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.,Collaborative Research Centre 1052-A5, University of Leipzig, Leipzig, Germany
| | - Christine L Tardif
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Pierre-Louis Bazin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Claudine J Gauthier
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada. .,Montreal Heart Institute, Montreal, QC, Canada.
| |
Collapse
|
11
|
Zhang X, Li L, Huang G, Zhang L, Liang Z, Shi L, Zhang Z. A Multisensory fMRI Investigation of Nociceptive-Preferential Cortical Regions and Responses. Front Neurosci 2021; 15:635733. [PMID: 33935632 PMCID: PMC8079658 DOI: 10.3389/fnins.2021.635733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
The existence of nociceptive-specific brain regions has been a controversial issue for decades. Multisensory fMRI studies, which examine fMRI activities in response to various types of sensory stimulation, could help identify nociceptive-specific brain regions, but previous studies are limited by sample size and they did not differentiate nociceptive-specific regions and nociceptive-preferential regions, which have significantly larger responses to nociceptive input. In this study, we conducted a multisensory fMRI experiment on 80 healthy participants, with the aim to determine whether there are certain brain regions that specifically or preferentially respond to nociceptive stimulation. By comparing the evoked fMRI responses across four sensory modalities, we found a series of brain regions specifically or preferentially involved in nociceptive sensory input. Particularly, we found different parts of some cortical regions, such as insula and cingulate gyrus, play different functional roles in the processing of nociceptive stimulation. Hence, this multisensory study improves our understanding of the functional integrations and segregations of the nociceptive-related regions.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Linling Li
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Gan Huang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Li Zhang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Zhen Liang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Li Shi
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
12
|
Sanz-Esteban I, Cano-de-la-Cuerda R, San-Martín-Gómez A, Jiménez-Antona C, Monge-Pereira E, Estrada-Barranco C, Serrano JI. Cortical activity during sensorial tactile stimulation in healthy adults through Vojta therapy. A randomized pilot controlled trial. J Neuroeng Rehabil 2021; 18:13. [PMID: 33478517 PMCID: PMC7818565 DOI: 10.1186/s12984-021-00824-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background Brain’s is stimulated by Vojta Therapy through selected body areas activating stored innate motor programs which are exported as coordinate movement and muscle contractions to trunk and limbs. The aim of this pilot study is to know the responses at cortical level to a specific tactile input, assessed by electroencephalography (EEG), compared to a sham stimulation, in healthy subjects. Methods A randomized-controlled trial was conducted. Participants were randomly distributed into two groups: a non-specific tactile input-group (non-STI-group) (n = 20) and a Vojta specific tactile input-group (V-STI-group) (n = 20). The non-STI-group was stimulated in a non specific area (quadriceps distal area) and V-STI-group was stimulated in a specific area (intercostal space, at the mammillary line between the 7th and 8th ribs) according to the Vojta therapy. Recording was performed with EEG for 10 min considering a first minute of rest, 8 min during the stimulus and 1 min after the stimulus. EEG activity was recorded from 32 positions with active Ag/AgCl scalp electrodes following the 10–20 system. The continuous EEG signal was split into consecutive segments of one minute. Results The V-STI-group showed statistically significant differences in the theta, low alpha and high alpha bands, bilaterally in the supplementary motor (SMA) and premotor (PMA) areas (BA6 and BA8), superior parietal cortex (BA5, BA7) and the posterior cingulate cortex (BA23, BA31). For the V-STI-group, all frequency bands presented an initial bilateral activation of the superior and medial SMA (BA6) during the first minute. This activation was maintained until the fourth minute. During the fourth minute, the activation decreased in the three frequency bands. From the fifth minute, the activation in the superior and medial SMA rose again in the three frequency bands Conclusions Our findings highlight that the specific stimulation area at intercostal space, on the mammillary line between 7 and 8th ribs according to Vojta therapy differentially increased bilateral activation in SMA (BA6) and Pre-SMA (BA8), BA5, BA7, BA23 and BA31 in the theta, low and high alpha bands in healthy subjects. These results could indicate the activation of innate locomotor circuits during stimulation of the pectoral area according to the Vojta therapy. Trial registration Retrospectively registered. This randomized controlled trial has been registered at ClinicalTrials.gov Identifier: NCT04317950 (March 23, 2020).
Collapse
Affiliation(s)
- Ismael Sanz-Esteban
- Department of Physiotherapy. Physical Therapy and Health Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Roberto Cano-de-la-Cuerda
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Faculty of Health Sciences, Rey Juan Carlos University, Avenida de Atenas s/n, 28922, Alcorcón, Madrid, Spain
| | - Ana San-Martín-Gómez
- Department of Physiotherapy. Physical Therapy and Health Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Carmen Jiménez-Antona
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Faculty of Health Sciences, Rey Juan Carlos University, Avenida de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Esther Monge-Pereira
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Faculty of Health Sciences, Rey Juan Carlos University, Avenida de Atenas s/n, 28922, Alcorcón, Madrid, Spain
| | - Cecilia Estrada-Barranco
- Department of Physiotherapy. Physical Therapy and Health Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - José Ignacio Serrano
- Neural and Cognitive Engineering Group (gNeC), Automation and Robotics Center, Spanish National Research Council (CSIC-UPM), Madrid, Spain
| |
Collapse
|
13
|
Xing XX, Hua XY, Zheng MX, Ma ZZ, Huo BB, Wu JJ, Ma SJ, Ma J, Xu JG. Intra and inter: Alterations in functional brain resting-state networks after peripheral nerve injury. Brain Behav 2020; 10:e01747. [PMID: 32657022 PMCID: PMC7507705 DOI: 10.1002/brb3.1747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Numerous treatments suggest that brain plasticity changes after peripheral nerve injury (PNI), and most studies examining functional magnetic resonance imaging focused on abnormal changes in specific brain regions. However, it is the large-scale interaction of neuronal networks instead of isolated brain regions contributed to the functional recovery after PNI. In the present study, we examined the intra- and internetworks alterations between the related functional resting-state networks (RSNs) in a sciatic nerve injury rat model. METHODS Ninety-six female rats were divided into a control and model group. Unilateral sciatic nerve transection and direct anastomosis were performed in the latter group. We used an independent component analysis (ICA) algorithm to observe the changes in RSNs and assessed functional connectivity between different networks using the functional networks connectivity (FNC) toolbox. RESULTS Six RSNs related to PNI were identified, including the basal ganglia network (BGN), sensorimotor network (SMN), salience network (SN), interoceptive network (IN), cerebellar network (CN), and default mode network (DMN). The model group showed significant changes in whole-brain FC changes within these resting-state networks (RSNs), but four of these RSNs exhibited a conspicuous decrease. The interalterations performed that significantly decreased FNC existed between the BGN and SMN, BGN and IN, and BGN and DMN (p < .05, corrected). A significant increase in FNC existed between DMN and CN and between CN and SN (p < .05, corrected). CONCLUSION The results showed the large-scale functional reorganization at the network level after PNI. This evidence reveals new implications to the pathophysiological mechanisms in brain plasticity of PNI.
Collapse
Affiliation(s)
- Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Yangzhi Rehabilitation Hospital, Tongji University, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Nakajima R, Kinoshita M, Yahata T, Nakada M. Recovery time from supplementary motor area syndrome: relationship to postoperative day 7 paralysis and damage of the cingulum. J Neurosurg 2020; 132:865-874. [PMID: 30738403 DOI: 10.3171/2018.10.jns182391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Supplementary motor area (SMA) syndrome is defined as temporary paralysis after the resection of brain tumor localized in the SMA. Although in most cases paralysis induced by SMA resection resolves within a short period, the time until complete recovery varies and has not been precisely analyzed to date. In this study, the authors investigated factors for predicting the time required for recovery from paralysis after SMA resection. METHODS Data from 20 cases were analyzed. All 20 patients (mean age 54.9 ± 12.6 years) had undergone resection of frontal lobe glioma involving the SMA. The severity of postoperative paralysis was recorded until complete recovery using the Brunnstrom recovery stage index. To investigate factors associated with recovery time, the authors performed multivariate analysis with the following potentially explanatory variables: age, severity of paralysis after the surgery, resected volume of the SMA, and probability of disconnection of fibers running through or near the SMA. Moreover, voxel-based lesion symptom analysis was performed to clarify the resected regions related to prolonged recovery. RESULTS In most cases of severe to moderate paralysis, there was substantial improvement within the 1st postoperative week, but 2-9 weeks were required for complete recovery. Significantly delayed recovery from paralysis was associated with resection of the cingulate cortex and its deep regions. The factors found to influence recovery time from paralysis were stage of paralysis at postoperative day 7 and disconnection probability of the cingulum (adjusted R2 = 0.63, p < 0.0001). CONCLUSIONS Recovery time from paralysis due to SMA syndrome can be predicted by the severity of paralysis at postoperative day 7 and degree of damage to the cingulum.
Collapse
Affiliation(s)
- Riho Nakajima
- 1Department of Occupational therapy, Faculty of Health Sciences
| | - Masashi Kinoshita
- 2Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University; and
| | - Tetsutaro Yahata
- 3Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsutoshi Nakada
- 2Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University; and
| |
Collapse
|
15
|
Hendriks-Balk MC, Megdiche F, Pezzi L, Reynaud O, Da Costa S, Bueti D, Van De Ville D, Wuerzner G. Brainstem Correlates of a Cold Pressor Test Measured by Ultra-High Field fMRI. Front Neurosci 2020; 14:39. [PMID: 32082112 PMCID: PMC7005099 DOI: 10.3389/fnins.2020.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/13/2020] [Indexed: 11/28/2022] Open
Abstract
Introduction Modern imaging techniques such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) allow the non-invasive and indirect measurement of brain activity. Whether changes in signal intensity can be detected in small brainstem regions during a cold pressor test (CPT) has not been explored thoroughly. The aim of this study was to measure whole brain and brainstem BOLD signal intensity changes in response to a modified CPT. Methods BOLD fMRI was measured in healthy normotensive participants during a randomized crossover study (modified CPT vs. control test) using ultra-high field 7 Tesla MRI scanner. Data were analyzed using Statistical Parametric Mapping (SPM) in a whole-brain approach, and with a brainstem-specific analysis using the spatially unbiased infra-tentorial template (SUIT) toolbox. Blood pressure (BP) and hormonal responses (norepinephrine and epinephrine levels) were also measured. Paired t-test statistics were used to compare conditions. Results Eleven participants (six women, mean age 28 ± 8.9 years) were analyzed. Mean arterial BP increased from 83 ± 12 mm Hg to 87 ± 12 mm Hg (p = 0.0009) during the CPT. Whole-brain analysis revealed significant activations linked to the CPT in the right supplementary motor cortex, midcingulate (bilateral) and the right anterior insular cortex. The brainstem-specific analysis showed significant activations in the dorsal medulla. Conclusion Changes in BOLD fMRI signal intensity in brainstem regions during a CPT can be detected, and show an increased response during a cold stress in healthy volunteers. Consequently, BOLD fMRI at 7T is a promising tool to explore and acquire new insights in the comprehension of neurogenic hypertension.
Collapse
Affiliation(s)
- Mariëlle C Hendriks-Balk
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fatma Megdiche
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laura Pezzi
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olivier Reynaud
- Centre d'Imagerie BioMédicale (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandra Da Costa
- Centre d'Imagerie BioMédicale (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Domenica Bueti
- Centre d'Imagerie BioMédicale (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dimitri Van De Ville
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Medical Image Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Wuerzner
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Shimizu T, Hanajima R, Shirota Y, Tsutsumi R, Tanaka N, Terao Y, Hamada M, Ugawa Y. Plasticity induction in the pre-supplementary motor area (pre-SMA) and SMA-proper differentially affects visuomotor sequence learning. Brain Stimul 2020; 13:229-238. [DOI: 10.1016/j.brs.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/04/2023] Open
|
17
|
Kita K, Rokicki J, Furuya S, Sakamoto T, Hanakawa T. Resting-state basal ganglia network codes a motor musical skill and its disruption From dystonia. Mov Disord 2018; 33:1472-1480. [PMID: 30277603 PMCID: PMC6220822 DOI: 10.1002/mds.27448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/06/2022] Open
Abstract
Background: Musician's dystonia critically impacts professional musicians' careers as they may lose musical skills, which have been acquired through long and intensive training. Yet the pathophysiology of musician's dystonia and its link to the neural mechanisms supporting musical skills is poorly understood. We tested if resting‐state functional connectivity might reflect an aspect of musical skill linked to the pathophysiology of musician's dystonia. We also tested a second hypothesis that the region with altered resting‐state functional connectivity might be correlated with a quantitative measure of musical skills. Methods: We studied 21 patients with musician's dystonia affecting their hands and 34 healthy musicians, using resting‐state functional magnetic resonance imaging and behavioral assessment. We tested between‐group differences of resting‐state functional connectivity throughout the whole brain using independent component analysis. Results: We found abnormal basal ganglia resting‐state functional connectivity in the putamina of patients with musician's dystonia compared with those of healthy musicians (P = 0.035 corrected for multiple comparisons). We also found that the temporal precision of keystrokes was correlated with basal ganglia functional connectivity in the putamina of healthy pianists (r = 0.72, P = 0.0005), but not in pianists with musician's dystonia (r = −0.11, P = 0.64). Conclusions: We show that abnormalities of the putamen exist even at rest in musician's dystonia, whereas putaminal abnormality has previously been reported during a task. Moreover, basal ganglia resting‐state functional connectivity in the putamen represented training levels in healthy musicians, and its disruption was associated with musician's dystonia. This novel finding hints at the pathophysiological mechanisms by which musician's dystonia follows extensive musical training. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kahori Kita
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan.,Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jaroslav Rokicki
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Clinical Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinichi Furuya
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Musical Skill and Injury Center, Sophia University, Tokyo, Japan.,Sony Computer Science Laboratories, Tokyo, Japan
| | - Takashi Sakamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
18
|
Gavrilov N, Hage SR, Nieder A. Functional Specialization of the Primate Frontal Lobe during Cognitive Control of Vocalizations. Cell Rep 2018; 21:2393-2406. [PMID: 29186679 DOI: 10.1016/j.celrep.2017.10.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/01/2017] [Accepted: 10/25/2017] [Indexed: 11/26/2022] Open
Abstract
Cognitive vocal control is indispensable for human language. Frontal lobe areas are involved in initiating purposeful vocalizations, but their functions remain elusive. We explored the respective roles of frontal lobe areas in initiating volitional vocalizations. Macaques were trained to vocalize in response to visual cues. Recordings from the ventrolateral prefrontal cortex (vlPFC), the anterior cingulate cortex (ACC), and the pre-supplementary motor area (preSMA) revealed single-neuron and population activity differences. Pre-vocal activity appeared first after the go cue in vlPFC, showing onset activity that was tightly linked to vocal reaction times. However, pre-vocal ACC onset activity was not indicative of call timing; instead, ramping activity reaching threshold values betrayed call onset. Neurons in preSMA showed weakest correlation with volitional call initiation and timing. These results suggest that vlPFC encodes the decision to produce volitional calls, whereas downstream ACC represents a motivational preparatory signal, followed by a general motor priming signal in preSMA.
Collapse
Affiliation(s)
- Natalja Gavrilov
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Steffen R Hage
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
19
|
Nevrlý M, Hluštík P, Hok P, Otruba P, Tüdös Z, Kaňovský P. Changes in sensorimotor network activation after botulinum toxin type A injections in patients with cervical dystonia: a functional MRI study. Exp Brain Res 2018; 236:2627-2637. [PMID: 29971454 PMCID: PMC6153868 DOI: 10.1007/s00221-018-5322-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
Abstract
Botulinum toxin type A (BoNT) is considered an effective therapeutic option in cervical dystonia (CD). The pathophysiology of CD and other focal dystonias has not yet been fully explained. Results from neurophysiological and imaging studies suggest a significant involvement of the basal ganglia and thalamus, and functional abnormalities in premotor and primary sensorimotor cortical areas are considered a crucial factor in the development of focal dystonias. Twelve BoNT-naïve patients with CD were examined with functional MRI during a skilled hand motor task; the examination was repeated 4 weeks after the first BoNT injection to the dystonic neck muscles. Twelve age- and gender-matched healthy controls were examined using the same functional MRI paradigm without BoNT injection. In BoNT-naïve patients with CD, BoNT treatment was associated with a significant increase of activation in finger movement-induced fMRI activation of several brain areas, especially in the bilateral primary and secondary somatosensory cortex, bilateral superior and inferior parietal lobule, bilateral SMA and premotor cortex, predominantly contralateral primary motor cortex, bilateral anterior cingulate cortex, ipsilateral thalamus, insula, putamen, and in the central part of cerebellum, close to the vermis. The results of the study support observations that the BoNT effect may have a correlate in the central nervous system level, and this effect may not be limited to cortical and subcortical representations of the treated muscles. The results show that abnormalities in sensorimotor activation extend beyond circuits controlling the affected body parts in CD even the first BoNT injection is associated with changes in sensorimotor activation. The differences in activation between patients with CD after treatment and healthy controls at baseline were no longer present.
Collapse
Affiliation(s)
- Martin Nevrlý
- Department of Neurology, University Hospital and Faculty of Medicine and Dentistry of Palacký University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.
| | - Petr Hluštík
- Department of Neurology, University Hospital and Faculty of Medicine and Dentistry of Palacký University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
- Department of Radiology, University Hospital and Faculty of Medicine and Dentistry of Palacký University, Olomouc, Czech Republic
| | - Pavel Hok
- Department of Neurology, University Hospital and Faculty of Medicine and Dentistry of Palacký University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology, University Hospital and Faculty of Medicine and Dentistry of Palacký University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Zbyněk Tüdös
- Department of Radiology, University Hospital and Faculty of Medicine and Dentistry of Palacký University, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital and Faculty of Medicine and Dentistry of Palacký University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| |
Collapse
|
20
|
Chang CY, Chen YH, Yen NS. Nonlinear neuroplasticity corresponding to sports experience: A voxel-based morphometry and resting-state functional connectivity study. Hum Brain Mapp 2018; 39:4393-4403. [PMID: 29956410 DOI: 10.1002/hbm.24280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/15/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
We aimed to investigate the structural neuroplasticity associated with different levels of sports experience and its effect on the corresponding resting-state functional circuitry. We recruited 18 skilled baseball batters (SB), 19 intermediate baseball batters (IB), and 17 healthy controls (HC), and used magnetic resonance imaging methods to compare their regional gray-matter volume (GMV) and seed-based resting-state functional connectivity (rsFC). Our results revealed that a quadratic function could better depict intergroup differences in regional GMV than a linear function. In particular, the IB showed lower or higher regional GMV than the other two groups. The difference in GMV in the supplementary motor area and areas belonging to the ventral stream, including the middle temporal gyrus and middle temporal pole, might be possibly related to baseball-specific motor and perceptual experience, such as inhibitory action control and pitch identification. On the other hand, the stronger rsFC seeded from the right middle temporal pole to the default mode network, particularly in the precuneus, in the SB and IB relative to that in the HC might be possibly associated with the theory of mind, such as deciding whether to swing or not against the pitcher by detecting the spatial information of pitches. In conclusion, our three-group design enabled the capture of the unique and transient changes that occur during the intermediate phase of expertise development. Our findings indicated that structural and functional brain changes do not necessarily linearly increase as a function of experience as previously suggested by the literature.
Collapse
Affiliation(s)
- Chih-Yen Chang
- Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Yin-Hua Chen
- Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| | - Nai-Shing Yen
- Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan.,Department of Psychology, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
21
|
Dietrich S, Hertrich I, Müller-Dahlhaus F, Ackermann H, Belardinelli P, Desideri D, Seibold VC, Ziemann U. Reduced Performance During a Sentence Repetition Task by Continuous Theta-Burst Magnetic Stimulation of the Pre-supplementary Motor Area. Front Neurosci 2018; 12:361. [PMID: 29896086 PMCID: PMC5987029 DOI: 10.3389/fnins.2018.00361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
The pre-supplementary motor area (pre-SMA) is engaged in speech comprehension under difficult circumstances such as poor acoustic signal quality or time-critical conditions. Previous studies found that left pre-SMA is activated when subjects listen to accelerated speech. Here, the functional role of pre-SMA was tested for accelerated speech comprehension by inducing a transient “virtual lesion” using continuous theta-burst stimulation (cTBS). Participants were tested (1) prior to (pre-baseline), (2) 10 min after (test condition for the cTBS effect), and (3) 60 min after stimulation (post-baseline) using a sentence repetition task (formant-synthesized at rates of 8, 10, 12, 14, and 16 syllables/s). Speech comprehension was quantified by the percentage of correctly reproduced speech material. For high speech rates, subjects showed decreased performance after cTBS of pre-SMA. Regarding the error pattern, the number of incorrect words without any semantic or phonological similarity to the target context increased, while related words decreased. Thus, the transient impairment of pre-SMA seems to affect its inhibitory function that normally eliminates erroneous speech material prior to speaking or, in case of perception, prior to encoding into a semantically/pragmatically meaningful message.
Collapse
Affiliation(s)
- Susanne Dietrich
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychology, Evolutionary Cognition, University of Tübingen, Tübingen, Germany
| | - Ingo Hertrich
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University, University of Mainz, Mainz, Germany
| | - Hermann Ackermann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Debora Desideri
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Verena C Seibold
- Department of Psychology, Evolutionary Cognition, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Chung JW, Burciu RG, Ofori E, Coombes SA, Christou EA, Okun MS, Hess CW, Vaillancourt DE. Beta-band oscillations in the supplementary motor cortex are modulated by levodopa and associated with functional activity in the basal ganglia. NEUROIMAGE-CLINICAL 2018; 19:559-571. [PMID: 29984164 PMCID: PMC6029579 DOI: 10.1016/j.nicl.2018.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
We investigated the effect of acute levodopa administration on movement-related cortical oscillations and movement velocity in Parkinson's disease (PD). Patients with PD on and off medication and age- and sex-matched healthy controls performed a ballistic upper limb flexion movement as fast and accurately as possible while cortical oscillations were recorded with high-density electroencephalography. Patients off medication were also studied using task-based functional magnetic resonance imaging (fMRI) using a force control paradigm. Percent signal change of functional activity during the force control task was calculated for the putamen and subthalamic nucleus (STN) contralateral to the hand tested. We found that patients with PD off medication had an exaggerated movement-related beta-band (13–30 Hz) desynchronization in the supplementary motor area (SMA) compared to controls. In PD, spectral power in the beta-band was correlated with movement velocity. Following an acute dose of levodopa, we observed that the beta-band desynchronization in the SMA was reduced in PD, and was associated with increased movement velocity and increased voltage of agonist muscle activity. Further, using fMRI we found that the functional activity in the putamen and STN in the off medication state, was related to how responsive that cortical oscillations in the SMA of PD were to levodopa. Collectively, these findings provide the first direct evaluation of how movement-related cortical oscillations relate to movement velocity during the ballistic phase of movement in PD and demonstrate that functional brain activity in the basal ganglia pathways relate to the effects of dopaminergic medication on cortical neuronal oscillations during movement. Acute levodopa decreased beta-band desynchronization in the SMA, while improving movement velocity and muscle activity. Beta-band cortical activity during movement is positively correlated with upper limb movement velocity. fMRI in basal ganglia predicted the response of beta-band cortical activity to levodopa.
Collapse
Key Words
- BOLD, blood oxygen level dependent
- Ballistic movements
- DBS, deep brain stimulation
- ECoG, electrocorticography
- EEG
- EEG, electroencephalography
- EMG, electromyography
- ERSP, event-related power spectral perturbation
- FDR, false discovery rate
- HC, healthy control
- ICA, independent component analysis
- LFP, local field potential
- Levodopa
- M1, primary motor cortex
- MDS-UPDRS, Movement Disorder Society Unified Parkinson's Disease Rating Scale
- MEG, magnetoencephalography
- MPA, measure projection analysis
- MVC, maximum voluntary contraction
- MoCA, Montreal Cognitive Assessment
- PD, Parkinson's disease
- PD-OFF, off medication (levodopa) day
- PD-ON, on medication (levodopa) day
- PET, positron emission tomography
- Parkinson's disease
- ROI, regions of interest
- S1, primary somatosensory cortex
- SMA, supplementary motor area
- SNc, substantia nigra pars compacta
- STN, subthalamic nucleus
- Supplementary motor area
- fMRI
- fMRI, functional magnetic resonance imaging
- iEMG, integrated electromyography
- rCBF, regional cerebral blood flow
Collapse
Affiliation(s)
- Jae Woo Chung
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Edward Ofori
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology and Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Christopher W Hess
- Department of Neurology and Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology and Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Cantou P, Platel H, Desgranges B, Groussard M. How motor, cognitive and musical expertise shapes the brain: Focus on fMRI and EEG resting-state functional connectivity. J Chem Neuroanat 2018; 89:60-68. [DOI: 10.1016/j.jchemneu.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 12/30/2022]
|
24
|
De Havas J, Gomi H, Haggard P. Experimental investigations of control principles of involuntary movement: a comprehensive review of the Kohnstamm phenomenon. Exp Brain Res 2017; 235:1953-1997. [PMID: 28374088 PMCID: PMC5486926 DOI: 10.1007/s00221-017-4950-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/25/2017] [Indexed: 12/26/2022]
Abstract
The Kohnstamm phenomenon refers to the observation that if one pushes the arm hard outwards against a fixed surface for about 30 s, and then moves away from the surface and relaxes, an involuntary movement of the arm occurs, accompanied by a feeling of lightness. Central, peripheral and hybrid theories of the Kohnstamm phenomenon have been advanced. Afferent signals may be irrelevant if purely central theories hold. Alternatively, according to peripheral accounts, altered afferent signalling actually drives the involuntary movement. Hybrid theories suggest afferent signals control a centrally-programmed aftercontraction via negative position feedback control or positive force feedback control. The Kohnstamm phenomenon has provided an important scientific method for comparing voluntary with involuntary movement, both with respect to subjective experience, and for investigating whether involuntary movements can be brought under voluntary control. A full review of the literature reveals that a hybrid model best explains the Kohnstamm phenomenon. On this model, a central adaptation interacts with afferent signals at multiple levels of the motor hierarchy. The model assumes that a Kohnstamm generator sends output via the same pathways as voluntary movement, yet the resulting movement feels involuntary due to a lack of an efference copy to cancel against sensory inflow. This organisation suggests the Kohnstamm phenomenon could represent an amplification of neuromotor processes normally involved in automatic postural maintenance. Future work should determine which afferent signals contribute to the Kohnstamm phenomenon, the location of the Kohnstamm generator, and the principle of feedback control operating during the aftercontraction.
Collapse
Affiliation(s)
- Jack De Havas
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK.
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Wakamiya 3-1, Morinosato, Atsugi, Kanagawa-Pref., 243-0198, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
25
|
Park H, Park YH, Cha J, Seo SW, Na DL, Lee JM. Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex. PLoS One 2017; 12:e0171803. [PMID: 28328993 PMCID: PMC5362042 DOI: 10.1371/journal.pone.0171803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 01/26/2017] [Indexed: 11/23/2022] Open
Abstract
Parcellation of the human cortex has important implications in neuroscience. Parcellation is often a crucial requirement before meaningful regional analysis can occur. The human cortex can be parcellated into distinct regions based on structural features, such as gyri and sulci. Brain network patterns in a given region with respect to its neighbors, known as connectional fingerprints, can be used to parcellate the cortex. Distinct imaging modalities might provide complementary information for brain parcellation. Here, we established functional connectivity with time series data from functional MRI (fMRI) combined with a correlation map of cortical thickness obtained from T1-weighted MRI. We aimed to extend the previous study, which parcellated the medial frontal cortex (MFC) using functional connectivity, and to test the value of additional information regarding cortical thickness. Two types of network information were used to parcellate the MFC into two sub-regions with spectral and Ward's clustering approaches. The MFC region was defined using manual delineation based on in-house data (n = 12). Parcellation was applied to independent large-scale data obtained from the Human Connectome Project (HCP, n = 248). Agreement between parcellation using fMRI- and thickness-driven connectivity yielded dice coefficient overlaps of 0.74 (Ward's clustering) and 0.54 (spectral clustering). We also explored whole brain connectivity using the MFC sub-regions as seed regions based on these two types of information. The results of whole brain connectivity analyses were also consistent for both types of information. We observed that an inter-regional correlation map derived from cortical thickness strongly reflected the underlying functional connectivity of MFC region.
Collapse
Affiliation(s)
- Hyunjin Park
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Yeong-Hun Park
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jungho Cha
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
26
|
An fMRI-compatible force measurement system for the evaluation of the neural correlates of step initiation. Sci Rep 2017; 7:43088. [PMID: 28230070 PMCID: PMC5322382 DOI: 10.1038/srep43088] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022] Open
Abstract
Knowledge of brain correlates of postural control is limited by the technical difficulties in performing controlled experiments with currently available neuroimaging methods. Here we present a system that allows the measurement of anticipatory postural adjustment of human legs to be synchronized with the acquisition of functional magnetic resonance imaging data. The device is composed of Magnetic Resonance Imaging (MRI) compatible force sensors able to measure the level of force applied by both feet. We tested the device in a group of healthy young subjects and a group of elderly subjects with Parkinson’s disease using an event-related functional MRI (fMRI) experiment design. In both groups the postural behavior inside the magnetic resonance was correlated to the behavior during gait initiation outside the scanner. The system did not produce noticeable imaging artifacts in the data. Healthy young people showed brain activation patterns coherent with movement planning. Parkinson’s disease patients demonstrated an altered pattern of activation within the motor circuitry. We concluded that this force measurement system is able to index both normal and abnormal preparation for gait initiation within an fMRI experiment.
Collapse
|
27
|
Cona G, Semenza C. Supplementary motor area as key structure for domain-general sequence processing: A unified account. Neurosci Biobehav Rev 2017; 72:28-42. [PMID: 27856331 DOI: 10.1016/j.neubiorev.2016.10.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/15/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
|
28
|
Brenneis C, Löscher WN, Egger KE, Benke T, Schocke M, Gabl MF, Wechselberger G, Felber S, Pechlaner S, Margreiter R, Piza-Katzer H, Poewe W. Cortical Motor Activation Patterns Following Hand Transplantation and Replantation. ACTA ACUST UNITED AC 2016; 30:530-3. [PMID: 16055246 DOI: 10.1016/j.jhsb.2005.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
We studied cortical activation patterns by functional MRI in a patient who received bilateral hand transplantation after amputation 6 years ago and in a patient who had received unilateral hand replantation within 2 hours after amputation. In the early postoperative period, the patient who had had the hand transplantation revealed strong activation of a higher motor area, only weak activation of the primary sensorimotor motor cortex and no activation of the primary somatosensory cortex. At 1-year follow-up, a small increase in primary sensorimotor motor cortex activation was observed. Activation of the primary somatosensory cortex was only seen at the 2 year follow-up. By contrast, after hand replantation, the activation pattern was similar to that of the uninjured hand within 6 weeks. This included activation of the primary sensorimotor motor cortex, higher motor areas and primary somatosensory cortex. Transplantation after long-standing amputation results in cortical reorganization occurring over a 2-year period. In contrast, hand replantation within a few hours preserves a normal activation pattern.
Collapse
Affiliation(s)
- C Brenneis
- Clinical Department of Neurology, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev 2016; 68:602-610. [PMID: 27343998 DOI: 10.1016/j.neubiorev.2016.06.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Susanne Dietrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
30
|
Leek EC, Yuen KSL, Johnston SJ. Domain General Sequence Operations Contribute to Pre-SMA Involvement in Visuo-spatial Processing. Front Hum Neurosci 2016; 10:9. [PMID: 26858623 PMCID: PMC4727040 DOI: 10.3389/fnhum.2016.00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
This study used 3T MRI to elucidate the functional role of supplementary motor area (SMA) in relation to visuo-spatial processing. A localizer task contrasting sequential number subtraction and repetitive button pressing was used to functionally delineate non-motor sequence processing in pre-SMA, and activity in SMA-proper associated with motor sequencing. Patterns of BOLD responses in these regions were then contrasted to those from two tasks of visuo-spatial processing. In one task participants performed Mental Rotation (MR) in which recognition memory judgments were made to previously memorized 2D novel patterns across image-plane rotations. The other task involved abstract grid navigation (GN) in which observers computed a series of imagined location shifts in response to directional (arrow) cues around a mental grid. The results showed overlapping activation in pre-SMA for sequential subtraction and both visuo-spatial tasks. These results suggest that visuo-spatial processing is supported by non-motor sequence operations that involve pre-SMA. More broadly, these data further highlight the functional heterogeneity of pre-SMA, and show that its role extends to processes beyond the planning and online control of movement.
Collapse
Affiliation(s)
- E Charles Leek
- Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor University Gwynedd, UK
| | | | | |
Collapse
|
31
|
Yokoyama O, Nakayama Y, Hoshi E. Area- and band-specific representations of hand movements by local field potentials in caudal cingulate motor area and supplementary motor area of monkeys. J Neurophysiol 2016; 115:1556-76. [PMID: 26792884 DOI: 10.1152/jn.00882.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study examined the neural mechanisms underlying these roles by investigating local field potentials (LFPs) from these areas while monkeys pressed buttons with either their left or right hand. During hand movement, power increases in the high-gamma (80-120 Hz) and theta (3-8 Hz) bands and a power decrease in the beta (12-30 Hz) band were observed in both the CMAc and SMA. High-gamma and beta activity in the SMA predominantly represented contralateral hand movements, whereas activity in the CMAc preferentially represented movement of either hand. Theta activity in both brain regions most frequently reflected movement of either hand, but a contralateral hand bias was more evident in the SMA than in the CMAc. An analysis of the relationships of the laterality representations between the high-gamma and theta bands at each recording site revealed that, irrespective of the hand preference for the theta band, the high-gamma band in the SMA preferentially represented contralateral hand movement, whereas the high-gamma band in the CMAc represented movement of either hand. These findings suggest that the input-output relationships for ipsilateral and contralateral hand movements in the CMAc and SMA differ in terms of their functionality. The CMAc may transform the input signals representing general aspects of movement into commands to perform movements with either hand, whereas the SMA may transform the input signals into commands to perform movement with the contralateral hand.
Collapse
Affiliation(s)
- Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
32
|
Sagari A, Iso N, Moriuchi T, Ogahara K, Kitajima E, Tanaka K, Tabira T, Higashi T. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals. PLoS One 2015; 10:e0140552. [PMID: 26485534 PMCID: PMC4618511 DOI: 10.1371/journal.pone.0140552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman’s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
Collapse
Affiliation(s)
- Akira Sagari
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Japanese Red Cross Society Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Naoki Iso
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Takefumi Moriuchi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Kakuya Ogahara
- Faculty of Health and Social Work, School of Rehabilitation, Kanagawa University of Human Services, Kanagawa, Japan
| | - Eiji Kitajima
- Center for Industry, University and Government Cooperation, Nagasaki University, Nagasaki, Japan
| | - Koji Tanaka
- Unit of Physical and Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Tabira
- Faculty of Rehabilitation Sciences, Nishikyushu University, Saga, Japan
| | - Toshio Higashi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
33
|
Wang J, Lu M, Fan Y, Wen X, Zhang R, Wang B, Ma Q, Song Z, He Y, Wang J, Huang R. Exploring brain functional plasticity in world class gymnasts: a network analysis. Brain Struct Funct 2015; 221:3503-19. [DOI: 10.1007/s00429-015-1116-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022]
|
34
|
Tordesillas-Gutierrez D, Koutsouleris N, Roiz-Santiañez R, Meisenzahl E, Ayesa-Arriola R, Marco de Lucas E, Soriano-Mas C, Suarez-Pinilla P, Crespo-Facorro B. Grey matter volume differences in non-affective psychosis and the effects of age of onset on grey matter volumes: A voxelwise study. Schizophr Res 2015; 164:74-82. [PMID: 25687531 DOI: 10.1016/j.schres.2015.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/18/2023]
Abstract
Previous evidence indicates that structural brain alterations are already present in the early phases of psychosis. In this study we aim to investigate the relationships among the different diagnoses in the spectrum of non-affective psychosis. A hundred-and-one first-episode psychosis patients (FEP) and 69 healthy volunteers, matched for age, gender, handedness and educational level were analyzed by structural MRI and high-dimensional voxel-based morphometry as implemented in SPM8 software. We obtained three main results: (1) FEP patients showed reduction of grey matter volume (GMV) in the frontal, temporal and occipital lobes, left insula and cerebellum. (2) Age of disease onset was an important factor revealing a gradual decrease of GMV (healthy controls>late onset>intermediate onset>early onset) in the frontal, temporal and occipital lobes, insula and cerebellum. (3) A gradual reduction of GMV related to diagnosis spectrum in the frontal, temporal, parietal and occipital lobes of schizophrenia patients being the most affected. These results suggest that an earlier onset of psychosis is linked to an earlier disease-related disruption of structural brain development, which may be most pronounced in schizophrenia compared to other psychoses.
Collapse
Affiliation(s)
- Diana Tordesillas-Gutierrez
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain; CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain.
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Bavaria, Germany
| | - Roberto Roiz-Santiañez
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Bavaria, Germany
| | - Rosa Ayesa-Arriola
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Enrique Marco de Lucas
- Department of Radiology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Paula Suarez-Pinilla
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Benedicto Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Spain; Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| |
Collapse
|
35
|
Ulrich M, Kiefer M. The Neural Signature of Subliminal Visuomotor Priming: Brain Activity and Functional Connectivity Profiles. Cereb Cortex 2015; 26:2471-82. [PMID: 25858968 DOI: 10.1093/cercor/bhv070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unconscious visuomotor priming defined as the advantage in reaction time (RT) or accuracy for target shapes mapped to the same (congruent condition) when compared with a different (incongruent condition) motor response as a preceding subliminally presented prime shape has been shown to modulate activity within a visuomotor network comprised of parietal and frontal motor areas in previous functional magnetic resonance imaging (fMRI) studies. The present fMRI study investigated whether, in addition to changes in brain activity, unconscious visuomotor priming results in a modulation of functional connectivity profiles. Activity associated with congruent compared with incongruent trials was lower in the bilateral inferior and medial superior frontal gyri, in the inferior parietal lobules, and in the right caudate nucleus and adjacent portions of the thalamus. Functional connectivity increased under congruent relative to incongruent conditions between ventral visual stream areas (e.g., calcarine, fusiform, and lingual gyri), the precentral gyrus, the supplementary motor area, posterior parietal areas, the inferior frontal gyrus, and the caudate nucleus. Our findings suggest that an increase in coupling between visuomotor regions, reflecting higher efficiency of processing, is an important neural mechanism underlying unconscious visuomotor priming, in addition to changes in the magnitude of activation.
Collapse
Affiliation(s)
- Martin Ulrich
- Department of Psychiatry, University of Ulm, 89075 Ulm, Germany
| | - Markus Kiefer
- Department of Psychiatry, University of Ulm, 89075 Ulm, Germany
| |
Collapse
|
36
|
The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 2015; 93:72-81. [DOI: 10.1016/j.neures.2014.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
|
37
|
Nakayama Y, Yokoyama O, Hoshi E. Distinct neuronal organizations of the caudal cingulate motor area and supplementary motor area in monkeys for ipsilateral and contralateral hand movements. J Neurophysiol 2015; 113:2845-58. [PMID: 25717163 DOI: 10.1152/jn.00854.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study aimed to characterize the functional organization of these regions during movement by investigating laterality representations in the CMAc and SMA of monkeys via an examination of neuronal activity during a button press movement with either the right or left hand. Three types of movement-related neuronal activity were observed: 1) with only the contralateral hand, 2) with only the ipsilateral hand, and 3) with either hand. Neurons in the CMAc represented contralateral and ipsilateral hand movements to the same degree, whereas neuronal representations in the SMA were biased toward contralateral hand movement. Furthermore, recording neuronal activities using a linear-array multicontact electrode with 24 contacts spaced 150 μm apart allowed us to analyze the spatial distribution of neurons exhibiting particular hand preferences at the submillimeter scale. The CMAc and SMA displayed distinct microarchitectural organizations. The contralateral, ipsilateral, and bilateral CMAc neurons were distributed homogeneously, whereas SMA neurons exhibiting identical hand preferences tended to cluster. These findings indicate that the CMAc, which is functionally organized in a less structured manner than the SMA is, controls contralateral and ipsilateral hand movements in a counterbalanced fashion, whereas the SMA, which is more structured, preferentially controls contralateral hand movements.
Collapse
Affiliation(s)
- Yoshihisa Nakayama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and
| | - Osamu Yokoyama
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| |
Collapse
|
38
|
Stuphorn V. The role of supplementary eye field in goal-directed behavior. ACTA ACUST UNITED AC 2015; 109:118-28. [PMID: 25720602 DOI: 10.1016/j.jphysparis.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
The medial frontal cortex has been suggested to play a role in the control, monitoring, and selection of behavior. The supplementary eye field (SEF) is a cortical area within medial frontal cortex that is involved in the regulation of eye movements. Neurophysiological studies in the SEF of macaque monkeys have systematically investigated the role of SEF in various behavioral control and monitoring functions. Inhibitory control studies indicate that SEF neurons do not directly participate in the initiation of eye movements. Instead, recent value-based decision making studies suggest that the SEF participates in the control of eye movements by representing the context-dependent action values of all currently possible oculomotor behaviors. These action value signals in SEF would be useful in directing the activity distribution in more primary oculomotor areas, to guide decisions towards behaviorally optimal choices. SEF also does not participate in the fast, inhibitory control of eye movements in response to sudden changes in the task requirements. Instead, it participates in the long-term regulation of oculomotor excitability to adjust the speed-accuracy tradeoff. The context-dependent control signals found in SEF (including the action value signals) have to be learned and continuously adjusted in response to changes in the environment. This is likely the function of the large number of different response monitoring and evaluation signals in SEF. In conclusion, the overall function of SEF in goal-directed behavior seems to be the learning of context-dependent rules that allow predicting the likely consequences of different eye movements. This map of action value signals could be used so that eye movements are selected that best fulfill the current long-term goal of the agent.
Collapse
Affiliation(s)
- Veit Stuphorn
- Department of Neuroscience, Johns Hopkins University School of Medicine and Zanvyl Krieger Mind/Brain Institute, Baltimore, MD, USA.
| |
Collapse
|
39
|
Mendoza G, Merchant H. Motor system evolution and the emergence of high cognitive functions. Prog Neurobiol 2014; 122:73-93. [PMID: 25224031 DOI: 10.1016/j.pneurobio.2014.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/15/2014] [Accepted: 09/05/2014] [Indexed: 11/26/2022]
Abstract
In human and nonhuman primates, the cortical motor system comprises a collection of brain areas primarily related to motor control. Existing evidence suggests that no other mammalian group has the number, extension, and complexity of motor-related areas observed in the frontal lobe of primates. Such diversity is probably related to the wide behavioral flexibility that primates display. Indeed, recent comparative anatomical, psychophysical, and neurophysiological studies suggest that the evolution of the motor cortical areas closely correlates with the emergence of high cognitive abilities. Advances in understanding the cortical motor system have shown that these areas are also related to functions previously linked to higher-order associative areas. In addition, experimental observations have shown that the classical distinction between perceptual and motor functions is not strictly followed across cortical areas. In this paper, we review evidence suggesting that evolution of the motor system had a role in the shaping of different cognitive functions in primates. We argue that the increase in the complexity of the motor system has contributed to the emergence of new abilities observed in human and nonhuman primates, including the recognition and imitation of the actions of others, speech perception and production, and the execution and appreciation of the rhythmic structure of music.
Collapse
Affiliation(s)
- Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Mexico.
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Mexico.
| |
Collapse
|
40
|
HIROSHIMA S, ANEI R, MURAKAMI N, KAMADA K. Functional Localization of the Supplementary Motor Area. Neurol Med Chir (Tokyo) 2014; 54:511-20. [DOI: 10.2176/nmc.oa2012-0321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Satoru HIROSHIMA
- Department of Neurosurgery, School of Medicine, Asahikawa Medical University
| | - Ryogo ANEI
- Department of Neurosurgery, School of Medicine, Asahikawa Medical University
| | - Noboru MURAKAMI
- Department of Radiology, School of Medicine, Asahikawa Medical University
| | - Kyousuke KAMADA
- Department of Neurosurgery, School of Medicine, Asahikawa Medical University
| |
Collapse
|
41
|
Long-term intensive training induced brain structural changes in world class gymnasts. Brain Struct Funct 2013; 220:625-44. [DOI: 10.1007/s00429-013-0677-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/11/2013] [Indexed: 11/26/2022]
|
42
|
Two-dimensional representation of action and arm-use sequences in the presupplementary and supplementary motor areas. J Neurosci 2013; 33:15533-44. [PMID: 24068820 DOI: 10.1523/jneurosci.0855-13.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medial frontal cortex has been thought to be crucially involved in temporal structuring of behavior in monkeys and humans. We examined neuronal activity in the supplementary and presupplementary motor areas of monkeys to investigate how the nervous system deals with the coding of 16 motor sequences resulting from multiple actions involving bilateral use of the arms. We first found in both areas that this behavioral demand resulted in attribute-based representation of individual motor acts, reflecting functional (action) or anatomical (right/left arm) attributes. Actions were frequently represented according to a body-axis-centered reference frame (supination or pronation) regardless of the arm to be used. Moreover, behavioral sequences were primarily represented with respect to the action- or arm-use sequence rather than the sequence of individual movements. We propose that the two-dimensional attribute-based sequence representation provides a robust and efficient means of processing multiple behavioral sequences.
Collapse
|
43
|
Christakou A, Gershman SJ, Niv Y, Simmons A, Brammer M, Rubia K. Neural and Psychological Maturation of Decision-making in Adolescence and Young Adulthood. J Cogn Neurosci 2013; 25:1807-23. [DOI: 10.1162/jocn_a_00447] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
We examined the maturation of decision-making from early adolescence to mid-adulthood using fMRI of a variant of the Iowa gambling task. We have previously shown that performance in this task relies on sensitivity to accumulating negative outcomes in ventromedial PFC and dorsolateral PFC. Here, we further formalize outcome evaluation (as driven by prediction errors [PE], using a reinforcement learning model) and examine its development. Task performance improved significantly during adolescence, stabilizing in adulthood. Performance relied on greater impact of negative compared with positive PEs, the relative impact of which matured from adolescence into adulthood. Adolescents also showed increased exploratory behavior, expressed as a propensity to shift responding between options independently of outcome quality, whereas adults showed no systematic shifting patterns. The correlation between PE representation and improved performance strengthened with age for activation in ventral and dorsal PFC, ventral striatum, and temporal and parietal cortices. There was a medial-lateral distinction in the prefrontal substrates of effective PE utilization between adults and adolescents: Increased utilization of negative PEs, a hallmark of successful performance in the task, was associated with increased activation in ventromedial PFC in adults, but decreased activation in ventrolateral PFC and striatum in adolescents. These results suggest that adults and adolescents engage qualitatively distinct neural and psychological processes during decision-making, the development of which is not exclusively dependent on reward-processing maturation.
Collapse
|
44
|
Abstract
In stable environments, decision makers can exploit their previously learned strategies for optimal outcomes, while exploration might lead to better options in unstable environments. Here, to investigate the cortical contributions to exploratory behavior, we analyzed single-neuron activity recorded from four different cortical areas of monkeys performing a matching-pennies task and a visual search task, which encouraged and discouraged exploration, respectively. We found that neurons in multiple regions in the frontal and parietal cortex tended to encode signals related to previously rewarded actions more reliably than unrewarded actions. In addition, signals for rewarded choices in the supplementary eye field were attenuated during the visual search task and were correlated with the tendency to switch choices during the matching-pennies task. These results suggest that the supplementary eye field might play a unique role in encouraging animals to explore alternative decision-making strategies.
Collapse
|
45
|
Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning. Neurosci Lett 2013; 552:76-80. [DOI: 10.1016/j.neulet.2013.07.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
|
46
|
Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech. J Neurosci 2013; 33:4339-48. [PMID: 23467350 DOI: 10.1523/jneurosci.6319-11.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared with during passive listening. One network of regions appears to encode an "error signal" regardless of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a frontotemporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems.
Collapse
|
47
|
Obayashi S, Hara Y. Hypofrontal activity during word retrieval in older adults: A near-infrared spectroscopy study. Neuropsychologia 2013. [DOI: 10.1016/j.neuropsychologia.2012.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Quantitative changes in regional cerebral blood flow induced by cold, heat and ischemic pain: a continuous arterial spin labeling study. Anesthesiology 2012; 117:857-67. [PMID: 22913924 DOI: 10.1097/aln.0b013e31826a8a13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The development of arterial spin labeling methods has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. METHODS The authors studied the differential effects of three pain conditions in 10 healthy subjects on a 3 Tesla scanner during resting baseline, heat, cold, and ischemic pain using continuous arterial spin labeling. RESULTS Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, whereas the ischemic condition showed a reduction in mean absolute gray matter flow compared with rest. An association of subjects' pain tolerance and cerebral blood flow was noted. CONCLUSIONS The observation that quantitative rCBF changes are characteristic of the pain task used and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy.
Collapse
|
49
|
Stuphorn V, Emeric EE. Proactive and reactive control by the medial frontal cortex. FRONTIERS IN NEUROENGINEERING 2012; 5:9. [PMID: 22723779 PMCID: PMC3378012 DOI: 10.3389/fneng.2012.00009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/29/2012] [Indexed: 11/13/2022]
Abstract
Adaptive behavior requires the ability to flexibly control actions. This can occur either proactively to anticipate task requirements, or reactively in response to sudden changes. Recent work in humans has identified a network of cortical and subcortical brain region that might have an important role in proactive and reactive control. However, due to technical limitations, such as the spatial and temporal resolution of the BOLD signal, human imaging experiments are not able to disambiguate the specific function(s) of these brain regions. These limitations can be overcome through single-unit recordings in non-human primates. In this article, we describe the behavioral and physiological evidence for dual mechanisms of control in response inhibition in the medial frontal cortex of monkeys performing the stop signal or countermanding task.
Collapse
Affiliation(s)
- Veit Stuphorn
- Psychological and Brain Sciences, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore MD, USA
| | | |
Collapse
|
50
|
Effective connectivity between human supplementary motor area and primary motor cortex: a paired-coil TMS study. Exp Brain Res 2012; 220:79-87. [DOI: 10.1007/s00221-012-3117-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
|