1
|
Li D, Zhao X, Lu P, Min Y. The Effects of swnH1 Gene Function of Endophytic Fungus Alternaria oxytropis OW 7.8 on Its Swainsonine Biosynthesis. Microorganisms 2024; 12:2081. [PMID: 39458390 PMCID: PMC11510667 DOI: 10.3390/microorganisms12102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The swnH1 gene in the endophytic fungus Alternaria oxytropis OW 7.8 isolated from Oxytropis glabra was identified, and the gene knockout mutant ΔswnH1 was first constructed in this study. Compared with A. oxytropis OW 7.8, the ΔswnH1 mutant exhibited altered colony and mycelium morphology, slower growth rate, and no swainsonine (SW) in mycelia, indicating that the function of the swnH1 gene promoted SW biosynthesis. Five differential expressed genes (DEGs) closely associated with SW synthesis were identified by transcriptomic analysis of A. oxytropis OW 7.8 and ΔswnH1, with sac, swnR, swnK, swnN, and swnH2 down-regulating. Six differential metabolites (DEMs) closely associated with SW synthesis were identified by metabolomic analysis, with P450, PKS-NRPS, saccharopine, lipopolysaccharide kinase, L-PA, α-aminoadipic, and L-stachydrine down-regulated, while L-proline was up-regulated. The SW biosynthetic pathways in A. oxytropis OW 7.8 were predicted and refined. The results lay the foundation for in-depth exploration of the molecular mechanisms and metabolic pathways of SW synthesis in fungi and provide reference for future control of SW in locoweeds, which would benefit the development of animal husbandry and the sustainable use of grassland ecosystems.
Collapse
Affiliation(s)
- Dan Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (D.L.); (X.Z.); (Y.M.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Xinlei Zhao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (D.L.); (X.Z.); (Y.M.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Ping Lu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (D.L.); (X.Z.); (Y.M.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Yu Min
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; (D.L.); (X.Z.); (Y.M.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
- College of Life Science, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
2
|
Cao Y, Wong HPH, Warwicker J, Hay S, de Visser SP. What is the Origin of the Regioselective C 3-Hydroxylation of L-Arg by the Nonheme Iron Enzyme Capreomycin C? Chemistry 2024:e202402604. [PMID: 39190221 DOI: 10.1002/chem.202402604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
The nonheme iron dioxygenase capreomycin C (CmnC) hydroxylates a free L-arginine amino acid regio- and stereospecifically at the C3-position as part of the capreomycin antibiotics biosynthesis. Little is known on its structure, catalytic cycle and substrate specificity and, therefore, a comprehensive computational study was performed. A large QM cluster model of CmnC was created of 297 atoms and the mechanisms for C3-H, C4-H and C5-H hydroxylation and C3-C4 desaturation were investigated. All low-energy pathways correspond to radical reaction mechanisms with an initial hydrogen atom abstraction followed by OH rebound to form alcohol product complexes. The work is compared to alternative L-Arg hydroxylating nonheme iron dioxygenases and the differences in active site polarity are compared. We show that a tight hydrogen bonding network in the substrate binding pocket positions the substrate in an ideal orientation for C3-H activation, whereby the polar groups in the substrate binding pocket induce an electric field effect that guides the selectivity.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
3
|
Hardy FJ, Quesne MG, Gérard EF, Zhao J, Ortmayer M, Taylor CJ, Ali HS, Slater JW, Levy CW, Heyes DJ, Bollinger JM, de Visser SP, Green AP. Probing Ferryl Reactivity in a Nonheme Iron Oxygenase Using an Expanded Genetic Code. ACS Catal 2024; 14:11584-11590. [PMID: 39114090 PMCID: PMC11301626 DOI: 10.1021/acscatal.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
The ability to introduce noncanonical amino acids as axial ligands in heme enzymes has provided a powerful experimental tool for studying the structure and reactivity of their FeIV=O ("ferryl") intermediates. Here, we show that a similar approach can be used to perturb the conserved Fe coordination environment of 2-oxoglutarate (2OG) dependent oxygenases, a versatile class of enzymes that employ highly-reactive ferryl intermediates to mediate challenging C-H functionalizations. Replacement of one of the cis-disposed histidine ligands in the oxygenase VioC with a less electron donating N δ-methyl-histidine (MeHis) preserves both catalytic function and reaction selectivity. Significantly, the key ferryl intermediate responsible for C-H activation can be accumulated in both the wildtype and the modified protein. In contrast to heme enzymes, where metal-oxo reactivity is extremely sensitive to the nature of the proximal ligand, the rates of C-H activation and the observed large kinetic isotope effects are only minimally affected by axial ligand replacement in VioC. This study showcases a powerful tool for modulating the coordination sphere of nonheme iron enzymes that will enhance our understanding of the factors governing their divergent activities.
Collapse
Affiliation(s)
- Florence J. Hardy
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Matthew G. Quesne
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, Oxon OX11
0FA, U.K.
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Emilie F. Gérard
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jingming Zhao
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Mary Ortmayer
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Christopher J. Taylor
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Hafiz S. Ali
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jeffrey W. Slater
- Department
of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Colin W. Levy
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Derren J. Heyes
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - J. Martin Bollinger
- Department
of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sam P. de Visser
- Department
of Chemical Engineering & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Anthony P. Green
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
4
|
Su Y, Lai W. Unraveling the Mechanism of the Oxidative C-C Bond Coupling Reaction Catalyzed by Deoxypodophyllotoxin Synthase. Inorg Chem 2024; 63:13948-13958. [PMID: 39008659 DOI: 10.1021/acs.inorgchem.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Deoxypodophyllotoxin synthase (DPS), a nonheme Fe(II)/2-oxoglutarate (2OG)-dependent oxygenase, is a key enzyme that is involved in the construction of the fused-ring system in (-)-podophyllotoxin biosynthesis by catalyzing the C-C coupling reaction. However, the mechanistic details of DPS-catalyzed ring formation remain unclear. Herein, our quantum mechanics/molecular mechanics (QM/MM) calculations reveal a novel mechanism that involves the recycling of CO2 (a product of decarboxylation of 2OG) to prevent the formation of hydroxylated byproducts. Our results show that CO2 can react with the FeIII-OH species to generate an unusual FeIII-bicarbonate species. In this way, hydroxylation is avoided by consuming the OH group. Then, the C-C coupling followed by desaturation yields the final product, deoxypodophyllotoxin. This work highlights the crucial role of the CO2 molecule, generated in the crevice between the iron active site and the substrate, in controlling the reaction selectivity.
Collapse
Affiliation(s)
- Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
5
|
Tao H, Abe I. Functional analysis of an α-ketoglutarate-dependent non-heme iron oxygenase in fungal meroterpenoid biosynthesis. Methods Enzymol 2024; 704:173-198. [PMID: 39300647 DOI: 10.1016/bs.mie.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
α-Ketoglutarate-dependent non-heme iron (α-KG NHI) oxygenases compose one of the largest superfamilies of tailoring enzymes that play key roles in structural and functional diversifications. During the biosynthesis of meroterpenoids, α-KG NHI oxygenases catalyze diverse types of chemical reactions, including hydroxylation, desaturation, epoxidation, endoperoxidation, ring-cleavage, and skeletal rearrangements. Due to their catalytic versatility, keen attention has been focused on functional analyses of α-KG NHI oxygenases. This chapter provides detailed methodologies for the functional analysis of the fungal α-KG NHI oxygenase SptF, which plays an important role in the structural diversification of andiconin-derived meroterpenoids. The procedures included describe how to prepare the meroterpenoid substrate using a heterologous fungal host, measure the in vitro enzymatic activity of SptF, and how to perform structural and mutagenesis studies on SptF. These protocols are also applicable to functional analyses of other α-KG NHI oxygenases.
Collapse
Affiliation(s)
- Hui Tao
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei, P.R. China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, P.R. China.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Cao Y, Hay S, de Visser SP. An Active Site Tyr Residue Guides the Regioselectivity of Lysine Hydroxylation by Nonheme Iron Lysine-4-hydroxylase Enzymes through Proton-Coupled Electron Transfer. J Am Chem Soc 2024; 146:11726-11739. [PMID: 38636166 PMCID: PMC11066847 DOI: 10.1021/jacs.3c14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
8
|
Hardy FG, Wong HPH, de Visser SP. Computational Study Into the Oxidative Ring-Closure Mechanism During the Biosynthesis of Deoxypodophyllotoxin. Chemistry 2024; 30:e202400019. [PMID: 38323740 DOI: 10.1002/chem.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.
Collapse
Affiliation(s)
- Fintan G Hardy
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
9
|
Soliman SHA, Iwanaszko M, Zheng B, Gold S, Howard BC, Das M, Chakrabarty RP, Chandel NS, Shilatifard A. Transcriptional elongation control of hypoxic response. Proc Natl Acad Sci U S A 2024; 121:e2321502121. [PMID: 38564636 PMCID: PMC11009653 DOI: 10.1073/pnas.2321502121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.
Collapse
Affiliation(s)
- Shimaa Hassan AbdelAziz Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Bin Zheng
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Madhurima Das
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Ram Prosad Chakrabarty
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL60611
| | - Navdeep S. Chandel
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL60611
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
10
|
Zhu D, Wei W, Zhang J, Zhao B, Li Q, Jin P. Mechanism of damage of HIF-1 signaling in chronic diabetic foot ulcers and its related therapeutic perspectives. Heliyon 2024; 10:e24656. [PMID: 38318060 PMCID: PMC10839564 DOI: 10.1016/j.heliyon.2024.e24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a chronic complication of diabetes. Wound healing in patients with DFU is generally very slow, with a high recurrence rate even after the ulcer healed. The DFU remains a major clinical challenge due to a lack of understanding of its pathogenesis. Given the significant impact of DFU on patient health and medical costs, enhancing our understanding of pathophysiological alterations and wound healing in DFU is critical. A growing body of research has shown that impaired activation of the HIF-1 pathway in diabetics, which weakens HIF-1 mediated responses to hypoxia and leads to down-regulation of its downstream target genes, leading to incurable diabetic foot ulcers. By analyzing and summarizing the literature in recent years, this review summarizes the mechanism of HIF-1 signaling pathway damage in the development of DFU, analyzes and compares the application of PHD inhibitors, VHL inhibitors, biomaterials and stem cell therapy in chronic wounds of diabetes, and proposes a new treatment scheme mediated by participation in the HIF-1 signaling pathway, which provides new ideas for the treatment of DFU.
Collapse
Affiliation(s)
- Dong Zhu
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuhan Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
12
|
Yu R, Zhang W, Li Y, Tang J, Kim K, Li B. Functional characterisation of Fe (II) and 2OG-dependent dioxygenase TcALKBH4 in the red flour beetle, Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2023; 32:676-688. [PMID: 37462221 DOI: 10.1111/imb.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 11/08/2023]
Abstract
Alpha-ketoglutarate-dependent dioxygenase ALKB homologue 4 (ALKBH4) is a member of the Fe (II) and 2-oxoglutarate-dependent ALKB homologue family that plays important roles in epigenetic regulation by alkyl lesions removal in mammals. However, the roles of ALKBH4 in insects are not clear. Here, TcALKBH4 was cloned and functionally characterised in Tribolium castaneum. Temporal expression revealed that TcALKBH4 was highly expressed in early embryos and early pupae. Spatial expression showed that TcALKBH4 was highly expressed in the adult testis, and followed by the ovary. RNA interference targeting TcALKBH4 at different developmental stages in T. castaneum led to apparent phenotypes including the failure of development in larvae, the reduction of food intake and the deficiency of fertility in adult. However, further dot blot analyses showed that TcALKBH4 RNAi does not seem to influence 6 mA levels in vivo. qRT-PCR was used to further explore the underlying molecular mechanisms; the result showed that TcALKBH4 mediates the development of larvae possibly through 20E signalling pathway, and the fertility of female and male adult might be regulated by the expression of vitellogenesis and JH signalling pathway, respectively. Altogether, these findings will provide new insights into the potential function of ALKBH4 in insects.
Collapse
Affiliation(s)
- Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Xu Z, Mo Y, Li Z, Ban S, Song H. New small-molecule alcohol synthesis by breaking the space limitation of the "aromatic cage" in Pseudomonas sp. AK1 BBOX. Org Biomol Chem 2023; 21:6397-6404. [PMID: 37497645 DOI: 10.1039/d3ob00830d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Fe(II)/2OG-dependent oxygenase γ-butyrobetaine hydroxylase (BBOX) stereoselectively hydroxylates inactive C-H bonds and produces L-carnitine. It has potential applications in the biosynthesis of L-carnitine and the synthesis of other small molecule alcohols. In this paper, we systematically explore the substrate range of Pseudomonas sp. AK1 BBOX (psBBOX), with emphasis on the quaternary ammonium portion of γ-butyrobetaine (γ-BB). The space limitation of the "aromatic cage" in psBBOX in the hydroxylation of large quaternary ammonium analogues was studied, and the role of four aromatic amino acid residues in the substrate binding mode was analyzed. Consequently, the F188A mutant was developed with the ability to hydroxylate cyclic quaternary ammonium analogues and generate new alcohol compounds by breaking the limitation of the "aromatic cage".
Collapse
Affiliation(s)
- Zhiqin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| | - Yaling Mo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| | - Zhengwen Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| | - Heng Song
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong Province 518000, China
| |
Collapse
|
14
|
Kietzmann T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol 2023; 63:102753. [PMID: 37263060 PMCID: PMC10245123 DOI: 10.1016/j.redox.2023.102753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Vitamin C is unbeatable - at least when it comes to sales. Of all the vitamin preparations, those containing vitamin C sell best. This is surprising because vitamin C deficiency is extremely rare. Nevertheless, there is still controversy about whether the additional intake of vitamin C supplements is essential for our health. In this context, the possible additional benefit is in most cases merely reduced to the known effect as an antioxidant. However, new findings in recent years on the mechanisms of oxygen-sensing and epigenetic control underpin the multifaceted role of vitamin C in a biological context and have therefore renewed interest in it. In the present article, therefore, known facts are linked to these new key data. In addition, available clinical data on vitamin C use of cancer therapy are summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| |
Collapse
|
15
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
16
|
Hueza IM, Dipe VV, Gotardo AT, Gardner DR, de Almeida ERM, Górniak SL. Potential immunomodulatory response associated with L-mimosine in male Wistar rats. Toxicon 2023; 226:107084. [PMID: 36905965 DOI: 10.1016/j.toxicon.2023.107084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Leucaena leucocephala is a plant that is used as animal and human food worldwide. This plant contains the toxic compound namely L-mimosine. The main mechanism of action of this compound involves its ability to chelate metal ions, which may interfere with the proliferative activity of cells and being studied for the treatment of cancer. However, little is known about the effect of L-mimosine on immune responses. Thus, the aim of this study was to evaluate the effects of L-mimosine on immune responses in Wistar rats. Different doses of L-mimosine (25, 40 and 60 mg/kg body weight/day) were administered orally by gavage to adult rats for 28 days. No clinical signs of toxicity were observed in animals, but a decrease in the T-dependent response to sheep red blood cells (SRBC) in animals treated with 60 mg/kg L-mimosine and an increase in the intensity of S. aureus phagocytosis by macrophages in animals treated with 40 or 60 mg/kg L-mimosine were observed. Therefore, these findings suggest that L-mimosine did not compromise macrophage activity and inhibited T-dependent clonal expansion during the immune response.
Collapse
Affiliation(s)
- Isis Machado Hueza
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, 05508-270, SP, Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Diadema, 09913-030, SP, Brazil
| | - Vanius Vinicius Dipe
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, 05508-270, SP, Brazil
| | - André Tadeu Gotardo
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, 05508-270, SP, Brazil
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agriculture Research Service, United States Department of Agriculture, 1150 E. 1400 N., Logan, UT, 84341, USA
| | - Elaine Renata Motta de Almeida
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, 05508-270, SP, Brazil
| | - Silvana Lima Górniak
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga, 05508-270, SP, Brazil.
| |
Collapse
|
17
|
Hoekstra M, Ridgeway NH, Biggar KK. Characterization of KDM5 lysine demethylase family substrate preference and identification of novel substrates. J Biochem 2022; 173:31-42. [PMID: 36205465 DOI: 10.1093/jb/mvac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
The KDM5/JARID1 sub-family are 2-oxoglutarate and Fe(II)-dependent lysine-specific histone demethylases that are characterized by their Jumonji catalytic domains. The KDM5 family is known to remove tri-/di-methyl modifications from lysine-4 of histone H3 (i.e. H3-K4me2/3), a mark associated with active gene expression. As a result, studies to date have revolved around the influence of KDM5 on disease through their ability to regulate H3-K4me2/3. Recent evidence demonstrates that KDM5 may influence disease beyond H3-K4 demethylation, making it critical to further investigate KDM5-mediated demethylation of non-histone proteins. To help identify potential non-histone substrates for the KDM5 family, we developed a library of 180 permutated peptide substrates, with sequences that are systematically altered from the wild-type H3-K4me3 substrate. From this library, we characterized recombinant KDM5A/B/C/D substrate preference and developed recognition motifs for each KDM5 demethylase. The recognition motifs developed were used to predict potential substrates for KDM5A/B/C/D and profiled to generate a list of high-ranking and medium/low-ranking substrates for further in vitro validation. Through this approach, we identified 66 high-ranking substrates in which KDM5 demethylases displayed significant in vitro activity towards.
Collapse
Affiliation(s)
- Matthew Hoekstra
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Nashira H Ridgeway
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
18
|
Park D, Lim G, Yoon SJ, Yi HS, Choi DW. The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages. BMB Rep 2022; 55:519-527. [PMID: 36195564 PMCID: PMC9712705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophage activation has long been implicated in a myriad of human pathophysiology, particularly in the context of the dysregulated capacities of an unleashing intracellular or/and extracellular inflammatory response. A growing number of studies have functionally coupled the macrophages' inflammatory capacities with dynamic metabolic reprogramming which occurs during activation, albeit the results have been mostly interpreted through classic metabolism point of view; macrophages take advantage of the rewired metabolism as a source of energy and for biosynthetic precursors. However, a specific subset of metabolic products, namely immune-modulatory metabolites, has recently emerged as significant regulatory signals which control inflammatory responses in macrophages and the relevant extracellular milieu. In this review, we introduce recently highlighted immuno-modulatory metabolites, with the aim of understanding their physiological and pathological relevance in the macrophage inflammatory response. [BMB Reports 2022; 55(11): 519-527].
Collapse
Affiliation(s)
- Doyoung Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 35015, Korea
| | - Gyumin Lim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 35015, Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine and Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Dong Wook Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 35015, Korea,Corresponding author. Tel: +82-42-821-7524; Fax: +82-42-822-7548; E-mail:
| |
Collapse
|
19
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
20
|
Tzounakas VL, Anastasiadi AT, Arvaniti VZ, Lelli V, Fanelli G, Paronis EC, Apostolidou AC, Balafas EG, Kostomitsopoulos NG, Papageorgiou EG, Papassideri IS, Stamoulis K, Kriebardis AG, Rinalducci S, Antonelou MH. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol 2022; 57:102477. [PMID: 36155342 PMCID: PMC9513173 DOI: 10.1016/j.redox.2022.102477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Efthymios C Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Anastasia C Apostolidou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Evangelos G Balafas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
21
|
Park D, Lim G, Yoon SJ, Yi HS, Choi DW. The role of immunomodulatory metabolites in shaping the inflammatory response of macrophages. BMB Rep 2022; 55:519-527. [PMID: 36195564 PMCID: PMC9712705 DOI: 10.5483/bmbrep.2022.55.11.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 07/20/2023] Open
Abstract
Macrophage activation has long been implicated in a myriad of human pathophysiology, particularly in the context of the dysregulated capacities of an unleashing intracellular or/and extracellular inflammatory response. A growing number of studies have functionally coupled the macrophages' inflammatory capacities with dynamic metabolic reprogramming which occurs during activation, albeit the results have been mostly interpreted through classic metabolism point of view; macrophages take advantage of the rewired metabolism as a source of energy and for biosynthetic precursors. However, a specific subset of metabolic products, namely immune-modulatory metabolites, has recently emerged as significant regulatory signals which control inflammatory responses in macrophages and the relevant extracellular milieu. In this review, we introduce recently highlighted immuno-modulatory metabolites, with the aim of understanding their physiological and pathological relevance in the macrophage inflammatory response. [BMB Reports 2022; 55(11): 519-527].
Collapse
Affiliation(s)
- Doyoung Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 35015, Korea
| | - Gyumin Lim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 35015, Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine and Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Dong Wook Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
22
|
Parkinson EI, Lakkis HG, Alwali AA, Metcalf MEM, Modi R, Metcalf WW. An Unusual Oxidative Rearrangement Catalyzed by a Divergent Member of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily during Biosynthesis of Dehydrofosmidomycin. Angew Chem Int Ed Engl 2022; 61:e202206173. [PMID: 35588368 PMCID: PMC9296572 DOI: 10.1002/anie.202206173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/20/2022]
Abstract
The biosynthesis of the natural product dehydrofosmidomycin involves an unusual transformation in which 2-(trimethylamino)ethylphosphonate is rearranged, desaturated and demethylated by the enzyme DfmD, a divergent member of the 2-oxoglutarate-dependent dioxygenase superfamily. Although other members of this enzyme family catalyze superficially similar transformations, the combination of all three reactions in a single enzyme has not previously been observed. By characterizing the products of in vitro reactions with labeled and unlabeled substrates, we show that DfmD performs this transformation in two steps, with the first involving desaturation of the substrate to form 2-(trimethylamino)vinylphosphonate, and the second involving rearrangement and demethylation to form methyldehydrofosmidomycin. These data reveal significant differences from the desaturation and rearrangement reactions catalyzed by other family members.
Collapse
Affiliation(s)
- Elizabeth I. Parkinson
- Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 W. Gregory Dr.UrbanaIL 61801USA
- Department of ChemistryPurdue UniversityHerbert C. Brown Laboratory of Chemistry, Room 4103E560 Oval Drive, Box 59West LafayetteIN 47907USA
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityHerbert C. Brown Laboratory of Chemistry, Room 4103E560 Oval Drive, Box 59West LafayetteIN 47907USA
| | - Hani G. Lakkis
- Department of ChemistryPurdue UniversityHerbert C. Brown Laboratory of Chemistry, Room 4103E560 Oval Drive, Box 59West LafayetteIN 47907USA
| | - Amir A. Alwali
- Department of ChemistryPurdue UniversityHerbert C. Brown Laboratory of Chemistry, Room 4103E560 Oval Drive, Box 59West LafayetteIN 47907USA
| | - Mary Elizabeth M. Metcalf
- Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 W. Gregory Dr.UrbanaIL 61801USA
- Department of MicrobiologyUniversity of Illinois at Urbana-Champaign, B103C&LSL601 S. GoodwinUrbanaIL 61801USA
| | - Ramya Modi
- Department of ChemistryPurdue UniversityHerbert C. Brown Laboratory of Chemistry, Room 4103E560 Oval Drive, Box 59West LafayetteIN 47907USA
| | - William W. Metcalf
- Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 W. Gregory Dr.UrbanaIL 61801USA
- Department of MicrobiologyUniversity of Illinois at Urbana-Champaign, B103C&LSL601 S. GoodwinUrbanaIL 61801USA
| |
Collapse
|
23
|
Della Rocca Y, Fonticoli L, Rajan TS, Trubiani O, Caputi S, Diomede F, Pizzicannella J, Marconi GD. Hypoxia: molecular pathophysiological mechanisms in human diseases. J Physiol Biochem 2022; 78:739-752. [PMID: 35870078 PMCID: PMC9684243 DOI: 10.1007/s13105-022-00912-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
Abstract
Abstract
Hypoxia, a low O2 tension, is a fundamental feature that occurs in physiological events as well as pathophysiological conditions, especially mentioned for its role in the mechanism of angiogenesis, glucose metabolism, and cell proliferation/survival. The hypoxic state through the activation of specific mechanisms is an aggravating circumstance commonly noticed in multiple sclerosis, cancer, heart disease, kidney disease, liver disease, lung disease, and in inflammatory bowel disease. On the other hand, hypoxia could play a key role in tissue regeneration and repair of damaged tissues, especially by acting on specific tissue stem cells, but their features may result as a disadvantage when it is concerned for neoplastic stem cells. Furthermore, hypoxia could also have a potential role in tissue engineering and regenerative medicine due to its capacity to improve the performance of biomaterials. The current review aims to highlight the hypoxic molecular mechanisms reported in different pathological conditions to provide an overview of hypoxia as a therapeutic agent in regenerative and molecular therapy.
Graphical abstract
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Sergio Caputi
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Jacopo Pizzicannella
- Cardiology Intensive Care Unit, "Ss. Annunziata" Hospital, ASL02 Lanciano-Vasto-Chieti, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
24
|
Tao H, Abe I. Harnessing Fe(II)/α-ketoglutarate-dependent oxygenases for structural diversification of fungal meroterpenoids. Curr Opin Biotechnol 2022; 77:102763. [PMID: 35878474 DOI: 10.1016/j.copbio.2022.102763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Fungal meroterpenoids are structurally diverse natural products with important biological activities. During their biosynthesis, α-ketoglutarate-dependent oxygenases (αKG-DOs) catalyze a wide range of chemically challenging transformation reactions, including desaturation, epoxidation, oxidative rearrangement, and endoperoxide formation, by selective C-H bond activation, to produce molecules with more complex and divergent structures. Investigations on the structure-function relationships of αKG-DO enzymes have revealed the intimate molecular bases of their catalytic versatility and reaction mechanisms. Notably, the catalytic repertoire of αKG-DOs is further expanded by only subtle changes in their active site and lid-like loop-region architectures. Owing to their remarkable biocatalytic potential, αKG-DOs are ideal candidates for future chemoenzymatic synthesis and enzyme engineering for the generation of terpenoids with diverse structures and biological activities.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
25
|
Mori T, Abe I. Structural basis for endoperoxide-forming oxygenases. Beilstein J Org Chem 2022; 18:707-721. [PMID: 35821691 PMCID: PMC9235837 DOI: 10.3762/bjoc.18.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Endoperoxide natural products are widely distributed in nature and exhibit various biological activities. Due to their chemical features, endoperoxide and endoperoxide-derived secondary metabolites have attracted keen attention in the field of natural products and organic synthesis. In this review, we summarize the structural analyses, mechanistic investigations, and proposed reaction mechanisms of endoperoxide-forming oxygenases, including cyclooxygenase, fumitremorgin B endoperoxidase (FtmOx1), and the asnovolin A endoperoxygenase NvfI.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
26
|
Petersen MH, Willert CW, Andersen JV, Madsen M, Waagepetersen HS, Skotte NH, Nørremølle A. Progressive Mitochondrial Dysfunction of Striatal Synapses in R6/2 Mouse Model of Huntington's Disease. J Huntingtons Dis 2022; 11:121-140. [PMID: 35311711 DOI: 10.3233/jhd-210518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder characterized by synaptic dysfunction and loss of white matter volume especially in the striatum of the basal ganglia and to a lesser extent in the cerebral cortex. Studies investigating heterogeneity between synaptic and non-synaptic mitochondria have revealed a pronounced vulnerability of synaptic mitochondria, which may lead to synaptic dysfunction and loss. OBJECTIVE As mitochondrial dysfunction is a hallmark of HD pathogenesis, we investigated synaptic mitochondrial function from striatum and cortex of the transgenic R6/2 mouse model of HD. METHODS We assessed mitochondrial volume, ROS production, and antioxidant levels as well as mitochondrial respiration at different pathological stages. RESULTS Our results reveal that striatal synaptic mitochondria are more severely affected by HD pathology than those of the cortex. Striatal synaptosomes of R6/2 mice displayed a reduction in mitochondrial mass coinciding with increased ROS production and antioxidants levels indicating prolonged oxidative stress. Furthermore, synaptosomal oxygen consumption rates were significantly increased during depolarizing conditions, which was accompanied by a marked increase in mitochondrial proton leak of the striatal synaptosomes, indicating synaptic mitochondrial stress. CONCLUSION Overall, our study provides new insight into the gradual changes of synaptic mitochondrial function in HD and suggests compensatory mitochondrial actions to maintain energy production in the HD brain, thereby supporting that mitochondrial dysfunction do indeed play a central role in early disease progression of HD.
Collapse
Affiliation(s)
- Maria Hvidberg Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Madsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Henning Skotte
- Proteomics Program, The Novo Nordisk Foundation Centre for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Parkinson EI, Lakkis HG, Alwali AA, Metcalf MEM, Modi R, Metcalf WW. An Unusual Oxidative Rearrangement Catalyzed by a Divergent Member of the 2‐Oxoglutarate‐Dependent Dioxygenase Superfamily during Biosynthesis of Dehydrofosmidomycin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Ramya Modi
- Purdue University Chemistry UNITED STATES
| | - William W. Metcalf
- University of Illinois Urbana-Champaign Microbiology 601 S. GoodwinB103 CLSL 61801 Urbana UNITED STATES
| |
Collapse
|
28
|
Yeh CCG, Mokkawes T, Bradley J, Le Brun NE, de Visser S. Second coordination sphere effects on the mechanistic pathways for dioxygen activation by a ferritin: involvement of a Tyr radical and the identification of a cation binding site. Chembiochem 2022; 23:e202200257. [PMID: 35510795 PMCID: PMC9401865 DOI: 10.1002/cbic.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/05/2022] [Indexed: 11/09/2022]
Abstract
Ferritins are ubiquitous diiron enzymes involved in iron(II) detoxification and oxidative stress responses and can act as metabolic iron stores. The overall reaction mechanisms of ferritin enzymes are still unclear, particularly concerning the role of the conserved, near catalytic center Tyr residue. Thus, we carried out a computational study of a ferritin using a large cluster model of well over 300 atoms including its first- and second-coordination sphere. The calculations reveal important insight into the structure and reactivity of ferritins. Specifically, the active site Tyr residue delivers a proton and electron in the catalytic cycle prior to iron(II) oxidation. In addition, the calculations highlight a likely cation binding site at Asp65, which through long-range electrostatic interactions, influences the electronic configuration and charge distributions of the metal center. The results are consistent with experimental observations but reveal novel detail of early mechanistic steps that lead to an unusual mixed-valent iron(III)-iron(II) center.
Collapse
Affiliation(s)
- Chieh-Chih George Yeh
- The University of Manchester, Department of Chemical Engineering, Oxford Road, Manchester, UNITED KINGDOM
| | - Thirakorn Mokkawes
- The University of Manchester, Department of Chemical Engineering, Manchester, UNITED KINGDOM
| | - Justin Bradley
- University of East Anglia, School of Chemistry, UNITED KINGDOM
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry, UNITED KINGDOM
| | - Samuel de Visser
- The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM
| |
Collapse
|
29
|
Waheed SO, Varghese A, Chaturvedi SS, Karabencheva-Christova TG, Christov CZ. How Human TET2 Enzyme Catalyzes the Oxidation of Unnatural Cytosine Modifications in Double-Stranded DNA. ACS Catal 2022; 12:5327-5344. [PMID: 36339349 PMCID: PMC9629818 DOI: 10.1021/acscatal.2c00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine bases is strongly linked to gene expression, imprinting, aging, and carcinogenesis. The Ten-eleven translocation (TET) family of enzymes, which are Fe(II)/2-oxoglutarate (2OG)-dependent enzymes, employ Fe(IV)=O species to dealkylate the lesioned bases to an unmodified cytosine. Recently, it has been shown that the TET2 enzyme can catalyze promiscuously DNA substrates containing unnatural alkylated cytosine. Such unnatural substrates of TET can be used as direct probes for measuring the TET activity or capturing TET from cellular samples. Herein, we studied the catalytic mechanisms during the oxidation of the unnatural C5-position modifications (5-ethylcytosine (5eC), 5-vinylcytosine (5vC) and 5-ethynylcytosine (5eyC)) and the demethylation of N4-methylated lesions (4-methylcytosine (4mC) and 4,4-dimethylcytosine(4dmC)) of the cytosine base by the TET2 enzyme using molecular dynamics (MD) and combined quantum mechanics and molecular mechanics (QM/MM) computational approaches. The results reveal that the chemical nature of the alkylation of the double-stranded (ds) DNA substrates induces distinct changes in the interactions in the binding site, the second coordination sphere, and long-range correlated motions of the ES complexes. The rate-determining hydrogen atom transfer (HAT) is faster in N4-methyl substituent substrates than in the C5-alkylations. Importantly, the calculations show the preference of hydroxylation over desaturation in both 5eC and 5vC substrates. The studies elucidate the post-hydroxylation rearrangements of the hydroxylated intermediates of 5eyC and 5vC to ketene and 5-formylmethylcytosine (5fmC), respectively, and hydrolysis of hemiaminal intermediate of 4mC to formaldehyde and unmodified cytosine proceed exclusively in aqueous solution outside of the enzyme environment. Overall, the studies show that the chemical nature of the unnatural alkylated cytosine substrates exercises distinct effects on the binding interactions, reaction mechanism, and dynamics of TET2.
Collapse
Affiliation(s)
- Sodiq O. Waheed
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shobhit S. Chaturvedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
30
|
Yeh CCG, Ghafoor S, Satpathy JK, Mokkawes T, Sastri CV, de Visser SP. Cluster Model Study into the Catalytic Mechanism of α-Ketoglutarate Biodegradation by the Ethylene-Forming Enzyme Reveals Structural Differences with Nonheme Iron Hydroxylases. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- C.-C. George Yeh
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sidra Ghafoor
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
31
|
Tao H, Mori T, Chen H, Lyu S, Nonoyama A, Lee S, Abe I. Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF. Nat Commun 2022; 13:95. [PMID: 35013177 PMCID: PMC8748661 DOI: 10.1038/s41467-021-27636-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Non-heme iron and α-ketoglutarate-dependent (Fe/αKG) oxygenases catalyze various oxidative biotransformations. Due to their catalytic flexibility and high efficiency, Fe/αKG oxygenases have attracted keen attention for their application as biocatalysts. Here, we report the biochemical and structural characterizations of the unusually promiscuous and catalytically versatile Fe/αKG oxygenase SptF, involved in the biosynthesis of fungal meroterpenoid emervaridones. The in vitro analysis revealed that SptF catalyzes several continuous oxidation reactions, including hydroxylation, desaturation, epoxidation, and skeletal rearrangement. SptF exhibits extremely broad substrate specificity toward various meroterpenoids, and efficiently produced unique cyclopropane-ring-fused 5/3/5/5/6/6 and 5/3/6/6/6 scaffolds from terretonins. Moreover, SptF also hydroxylates steroids, including androsterone, testosterone, and progesterone, with different regiospecificities. Crystallographic and structure-based mutagenesis studies of SptF revealed the molecular basis of the enzyme reactions, and suggested that the malleability of the loop region contributes to the remarkable substrate promiscuity. SptF exhibits great potential as a promising biocatalyst for oxidation reactions.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuang Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Shoukou Lee
- Sumitomo Dainippon Pharma Co., Ltd, Osaka, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Solomon EI, DeWeese DE, Babicz JT. Mechanisms of O 2 Activation by Mononuclear Non-Heme Iron Enzymes. Biochemistry 2021; 60:3497-3506. [PMID: 34266238 PMCID: PMC8768060 DOI: 10.1021/acs.biochem.1c00370] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two major subclasses of mononuclear non-heme ferrous enzymes use two electron-donating organic cofactors (α-ketoglutarate or pterin) to activate O2 to form FeIV═O intermediates that further react with their substrates through hydrogen atom abstraction or electrophilic aromatic substitution. New spectroscopic methodologies have been developed, enabling the study of the active sites in these enzymes and their oxygen intermediates. Coupled to electronic structure calculations, the results of these spectroscopies provide fundamental insight into mechanism. This Perspective summarizes the results of these studies in elucidating the mechanism of dioxygen activation to form the FeIV═O intermediate and the geometric and electronic structure of this intermediate that enables its high reactivity and selectivity in product formation.
Collapse
Affiliation(s)
- Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Dr. Stanford, CA, 94305, United States,SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, United States
| | - Dory E. DeWeese
- Department of Chemistry, Stanford University, 333 Campus Dr. Stanford, CA, 94305, United States
| | - Jeffrey T. Babicz
- Department of Chemistry, Stanford University, 333 Campus Dr. Stanford, CA, 94305, United States
| |
Collapse
|
33
|
Perry GS, Das M, Woon ECY. Inhibition of AlkB Nucleic Acid Demethylases: Promising New Epigenetic Targets. J Med Chem 2021; 64:16974-17003. [PMID: 34792334 DOI: 10.1021/acs.jmedchem.1c01694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The AlkB family of nucleic acid demethylases is currently of intense chemical, biological, and medical interest because of its critical roles in several key cellular processes, including epigenetic gene regulation, RNA metabolism, and DNA repair. Emerging evidence suggests that dysregulation of AlkB demethylases may underlie the pathogenesis of several human diseases, particularly obesity, diabetes, and cancer. Hence there is strong interest in developing selective inhibitors for these enzymes to facilitate their mechanistic and functional studies and to validate their therapeutic potential. Herein we review the remarkable advances made over the past 20 years in AlkB demethylase inhibition research. We discuss the rational design of reported inhibitors, their mode-of-binding, selectivity, cellular activity, and therapeutic opportunities. We further discuss unexplored structural elements of the AlkB subfamilies and propose potential strategies to enable subfamily selectivity. It is hoped that this perspective will inspire novel inhibitor design and advance drug discovery research in this field.
Collapse
Affiliation(s)
- Gemma S Perry
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mohua Das
- Lab of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Esther C Y Woon
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
34
|
Lee HW, Jose CC, Cuddapah S. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Semin Cancer Biol 2021; 76:99-109. [PMID: 34058338 PMCID: PMC8627926 DOI: 10.1016/j.semcancer.2021.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Nickel compounds are environmental toxicants, prevalent in the atmosphere due to their widespread use in several industrial processes, extensive consumption of nickel containing products, as well as burning of fossil fuels. Exposure to nickel is associated with a multitude of chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. In addition, nickel exposure is implicated in the development of nasal and lung cancers. Interestingly, a common pathogenic mechanism underlying the development of diseases associated with nickel exposure is epithelial-mesenchymal transition (EMT). EMT is a process by which the epithelial cells lose their junctions and polarity and acquire mesenchymal traits, including increased ability to migrate and invade. EMT is a normal and essential physiological process involved in differentiation, development and wound healing. However, EMT also contributes to a number of pathological conditions, including fibrosis, cancer and metastasis. Growing evidence suggest that EMT induction could be an important outcome of nickel exposure. In this review, we discuss the role of EMT in nickel-induced lung diseases and the mechanisms associated with EMT induction by nickel exposure.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10010, USA.
| |
Collapse
|
35
|
DNA Demethylation in the Processes of Repair and Epigenetic Regulation Performed by 2-Ketoglutarate-Dependent DNA Dioxygenases. Int J Mol Sci 2021; 22:ijms221910540. [PMID: 34638881 PMCID: PMC8508711 DOI: 10.3390/ijms221910540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Site-specific DNA methylation plays an important role in epigenetic regulation of gene expression. Chemical methylation of DNA, including the formation of various methylated nitrogenous bases, leads to the formation of genotoxic modifications that impair DNA functions. Despite the fact that different pathways give rise to methyl groups in DNA, the main pathway for their removal is oxidative demethylation, which is catalyzed by nonheme Fe(II)/α-ketoglutarate–dependent DNA dioxygenases. DNA dioxygenases share a common catalytic mechanism of the oxidation of the alkyl groups on nitrogenous bases in nucleic acids. This review presents generalized data on the catalytic mechanism of action of DNA dioxygenases and on the participation of typical representatives of this superfamily, such as prokaryotic enzyme AlkB and eukaryotic enzymes ALKBH1–8 and TET1–3, in both processes of direct repair of alkylated DNA adducts and in the removal of an epigenetic mark (5-methylcytosine).
Collapse
|
36
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
37
|
Lin YT, de Visser SP. Product Distributions of Cytochrome P450 OleT JE with Phenyl-Substituted Fatty Acids: A Computational Study. Int J Mol Sci 2021; 22:7172. [PMID: 34281222 PMCID: PMC8269385 DOI: 10.3390/ijms22137172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
There are two types of cytochrome P450 enzymes in nature, namely, the monooxygenases and the peroxygenases. Both enzyme classes participate in substrate biodegradation or biosynthesis reactions in nature, but the P450 monooxygenases use dioxygen, while the peroxygenases take H2O2 in their catalytic cycle instead. By contrast to the P450 monooxygenases, the P450 peroxygenases do not require an external redox partner to deliver electrons during the catalytic cycle, and also no external proton source is needed. Therefore, they are fully self-sufficient, which affords them opportunities in biotechnological applications. One specific P450 peroxygenase, namely, P450 OleTJE, reacts with long-chain linear fatty acids through oxidative decarboxylation to form hydrocarbons and, as such, has been implicated as a suitable source for the biosynthesis of biofuels. Unfortunately, the reactions were shown to produce a considerable amount of side products originating from Cα and Cβ hydroxylation and desaturation. These product distributions were found to be strongly dependent on whether the substrate had substituents on the Cα and/or Cβ atoms. To understand the bifurcation pathways of substrate activation by P450 OleTJE leading to decarboxylation, Cα hydroxylation, Cβ hydroxylation and Cα-Cβ desaturation, we performed a computational study using 3-phenylpropionate and 2-phenylbutyrate as substrates. We set up large cluster models containing the heme, the substrate and the key features of the substrate binding pocket and calculated (using density functional theory) the pathways leading to the four possible products. This work predicts that the two substrates will react with different reaction rates due to accessibility differences of the substrates to the active oxidant, and, as a consequence, these two substrates will also generate different products. This work explains how the substrate binding pocket of P450 OleTJE guides a reaction to a chemoselectivity.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK;
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK;
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
38
|
Density Functional Theory Study into the Reaction Mechanism of Isonitrile Biosynthesis by the Nonheme Iron Enzyme ScoE. Top Catal 2021. [DOI: 10.1007/s11244-021-01460-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe nonheme iron enzyme ScoE catalyzes the biosynthesis of an isonitrile substituent in a peptide chain. To understand details of the reaction mechanism we created a large active site cluster model of 212 atoms that contains substrate, the active oxidant and the first- and second-coordination sphere of the protein and solvent. Several possible reaction mechanisms were tested and it is shown that isonitrile can only be formed through two consecutive catalytic cycles that both use one molecule of dioxygen and α-ketoglutarate. In both cycles the active species is an iron(IV)-oxo species that in the first reaction cycle reacts through two consecutive hydrogen atom abstraction steps: first from the N–H group and thereafter from the C–H group to desaturate the NH-CH2 bond. The alternative ordering of hydrogen atom abstraction steps was also tested but found to be higher in energy. Moreover, the electronic configurations along that pathway implicate an initial hydride transfer followed by proton transfer. We highlight an active site Lys residue that is shown to donate charge in the transition states and influences the relative barrier heights and bifurcation pathways. A second catalytic cycle of the reaction of iron(IV)-oxo with desaturated substrate starts with hydrogen atom abstraction followed by decarboxylation to give isonitrile directly. The catalytic cycle is completed with a proton transfer to iron(II)-hydroxo to generate the iron(II)-water resting state. The work is compared with experimental observation and previous computational studies on this system and put in a larger perspective of nonheme iron chemistry.
Collapse
|
39
|
Wang J, Wang X, Ouyang Q, Liu W, Shan J, Tan H, Li X, Chen G. N-Nitrosation Mechanism Catalyzed by Non-heme Iron-Containing Enzyme SznF Involving Intramolecular Oxidative Rearrangement. Inorg Chem 2021; 60:7719-7731. [PMID: 34004115 DOI: 10.1021/acs.inorgchem.1c00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The non-heme iron-dependent enzyme SznF catalyzes a critical N-nitrosation step during the N-nitrosourea pharmacophore biosynthesis in streptozotocin. The intramolecular oxidative rearrangement process is known to proceed at the FeII-containing active site in the cupin domain of SznF, but its mechanism has not been elucidated to date. In this study, based on the density functional theory calculations, a unique mechanism was proposed for the N-nitrosation reaction catalyzed by SznF in which a four-electron oxidation process is accomplished through a series of complicated electron transferring between the iron center and substrate to bypass the high-valent FeIV═O species. In the catalytic reaction pathway, the O2 binds to the iron center and attacks on the substrate to form the peroxo bridge intermediate by obtaining two electrons from the substrate exclusively. Then, instead of cleaving the peroxo bridge, the Cε-Nω bond of the substrate is homolytically cleaved first to form a carbocation intermediate, which polarizes the peroxo bridge and promotes its heterolysis. After O-O bond cleavage, the following reaction steps proceed effortlessly so that the N-nitrosation is accomplished without NO exchange among reaction species.
Collapse
Affiliation(s)
- Junkai Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xixi Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qingwen Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiankai Shan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
Lin YT, Ali HS, de Visser SP. Electrostatic Perturbations from the Protein Affect C-H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme. Chemistry 2021; 27:8851-8864. [PMID: 33978257 DOI: 10.1002/chem.202100791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/08/2022]
Abstract
The nonheme iron dioxygenase 2-(trimethylammonio)-ethylphosphonate dioxygenase (TmpA) is an enzyme involved in the regio- and chemoselective hydroxylation at the C1 -position of the substrate as part of the biosynthesis of glycine betaine in bacteria and carnitine in humans. To understand how the enzyme avoids breaking the weak C2 -H bond in favor of C1 -hydroxylation, we set up a cluster model of 242 atoms representing the first and second coordination sphere of the metal center and substrate binding pocket, and investigated possible reaction mechanisms of substrate activation by an iron(IV)-oxo species by density functional theory methods. In agreement with experimental product distributions, the calculations predict a favorable C1 -hydroxylation pathway. The calculations show that the selectivity is guided through electrostatic perturbations inside the protein from charged residues, external electric fields and electric dipole moments. In particular, charged residues influence and perturb the homolytic bond strength of the C1 -H and C2 -H bonds of the substrate, and strongly strengthens the C2 -H bond in the substrate-bound orientation.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hafiz Saqib Ali
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
41
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
42
|
Chapman NC, Rutledge PJ. Isopenicillin N Synthase: Crystallographic Studies. Chembiochem 2021; 22:1687-1705. [PMID: 33415840 DOI: 10.1002/cbic.202000743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/01/2021] [Indexed: 02/02/2023]
Abstract
Isopenicillin N synthase (IPNS) is a non-heme iron oxidase (NHIO) that catalyses the cyclisation of tripeptide δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to bicyclic isopenicillin N (IPN). Over the last 25 years, crystallography has shed considerable light on the mechanism of IPNS catalysis. The first crystal structure, for apo-IPNS with Mn bound in place of Fe at the active site, reported in 1995, was also the first structure for a member of the wider NHIO family. This was followed by the anaerobic enzyme-substrate complex IPNS-Fe-ACV (1997), this complex plus nitric oxide as a surrogate for co-substrate dioxygen (1997), and an enzyme product complex (1999). Since then, crystallography has been used to probe many aspects of the IPNS reaction mechanism, by crystallising the protein with a diversity of substrate analogues and triggering the oxidative reaction by using elevated oxygen pressures to force the gaseous co-substrate throughout protein crystals and maximise synchronicity of turnover in crystallo. In this way, X-ray structures have been elucidated for a range of complexes closely related to and/or directly derived from key intermediates in the catalytic cycle, thereby answering numerous mechanistic questions that had arisen from solution-phase experiments, and posing many new ones. The results of these crystallographic studies have, in turn, informed computational experiments that have brought further insight. These combined crystallographic and computational investigations augment and extend the results of earlier spectroscopic analyses and solution phase studies of IPNS turnover, to enrich our understanding of this important protein and the wider NHIO enzyme family.
Collapse
Affiliation(s)
- Nicole C Chapman
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
43
|
Bocanegra-Jiménez FY, Montero-Morán GM, Lara-González S. Purification and characterization of an Fe II- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus oryzae. Protein Expr Purif 2021; 183:105862. [PMID: 33716123 DOI: 10.1016/j.pep.2021.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/13/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
XanA is an FeII- and α-ketoglutarate-dependent enzyme responsible for the conversion of xanthine to uric acid. It is unique to fungi and it was first described in Aspergillus nidulans. In this work, we present the preliminary characterization of the XanA enzyme from Aspergillus oryzae, a relevant fungus in food production in Japan. The XanA protein (GenBank BAE56701.1) was expressed as a recombinant protein in Escherichia coli BL21 (DE3) Arctic cells. Initial purification assays showed low protein solubility; therefore, the buffer composition was optimized using a fluorescence-based thermal shift assay. The protein was stabilized in solution in the presence of either 600 μM xanthine, 1 M NaCl, 600 μM α-ketoglutarate or 20% glycerol, which increases the melting temperature (Tm) by 2, 4, 5 and 6 °C respectively. The XanA protein was purified by following a three-step purification protocol. The nickel affinity purified protein was subjected to ion-exchange chromatography once the N-terminal 6XHis-tag had been successfully removed, followed by size-exclusion purification. Dynamic light scattering experiments showed that the purified protein was monodisperse and behaved as a monomer in solution. Preliminary activity assays in the presence of xanthine, α-ketoglutarate, and iron suggest that the enzyme is an iron- and α-ketoglutarate-dependent xanthine dioxygenase. Furthermore, the enzyme's optimum activity conditions were determined to be 25 °C, pH of 7.2, HEPES buffer, and 1% of glycerol. In conclusion, we established the conditions to purify the XanA enzyme from A. oryzae in its active form from E. coli bacteria and determined the optimal activity conditions.
Collapse
Affiliation(s)
- Fitzya Y Bocanegra-Jiménez
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - Gabriela M Montero-Morán
- Facultad de Ciencias Químicas, Laboratorio IBCM, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Samuel Lara-González
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico.
| |
Collapse
|
44
|
Ali HS, Henchman RH, Warwicker J, de Visser SP. How Do Electrostatic Perturbations of the Protein Affect the Bifurcation Pathways of Substrate Hydroxylation versus Desaturation in the Nonheme Iron-Dependent Viomycin Biosynthesis Enzyme? J Phys Chem A 2021; 125:1720-1737. [DOI: 10.1021/acs.jpca.1c00141] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Richard H. Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
45
|
Ali HS, Henchman RH, de Visser SP. What Determines the Selectivity of Arginine Dihydroxylation by the Nonheme Iron Enzyme OrfP? Chemistry 2020; 27:1795-1809. [PMID: 32965733 DOI: 10.1002/chem.202004019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The nonheme iron enzyme OrfP reacts with l-Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3 -H hydrogen atom abstraction. This happens despite the fact that the C3 -H and C4 -H bond strengths of l-Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3 -H activation to a low-energy 5 σ-pathway, while substrate positioning destabilizes the C4 -H abstraction and sends it over the higher-lying 5 π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
46
|
Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. J Biol Chem 2020; 295:16545-16561. [PMID: 32934009 PMCID: PMC7864055 DOI: 10.1074/jbc.ra120.013998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.
Collapse
Affiliation(s)
- Tongri Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - James Wickens
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Christopher M West
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
47
|
Waheed S, Ramanan R, Chaturvedi SS, Lehnert N, Schofield CJ, Christov CZ, Karabencheva-Christova TG. Role of Structural Dynamics in Selectivity and Mechanism of Non-heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. ACS CENTRAL SCIENCE 2020; 6:795-814. [PMID: 32490196 PMCID: PMC7256942 DOI: 10.1021/acscentsci.0c00312] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 05/08/2023]
Abstract
AlkB and its human homologue AlkBH2 are Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases that repair alkylated DNA bases occurring as a consequence of reactions with mutagenic agents. We used molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate how structural dynamics influences the selectivity and mechanisms of the AlkB- and AlkBH2-catalyzed demethylation of 3-methylcytosine (m3C) in single (ssDNA) and double (dsDNA) stranded DNA. Dynamics studies reveal the importance of the flexibility in both the protein and DNA components in determining the preferences of AlkB for ssDNA and of AlkBH2 for dsDNA. Correlated motions, including of a hydrophobic β-hairpin, are involved in substrate binding in AlkBH2-dsDNA. The calculations reveal that 2OG rearrangement prior to binding of dioxygen to the active site Fe is preferred over a ferryl rearrangement to form a catalytically productive Fe(IV)=O intermediate. Hydrogen atom transfer proceeds via a σ-channel in AlkBH2-dsDNA and AlkB-dsDNA; in AlkB-ssDNA, there is a competition between σ- and π-channels, implying that the nature of the complexed DNA has potential to alter molecular orbital interactions during the substrate oxidation. Our results reveal the importance of the overall protein-DNA complex in determining selectivity and how the nature of the substrate impacts the mechanism.
Collapse
Affiliation(s)
- Sodiq
O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rajeev Ramanan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shobhit S. Chaturvedi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Nicolai Lehnert
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher J. Schofield
- The
Chemistry Research Laboratory, The Department of Chemistry, Mansfield
Road, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christo Z. Christov
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | |
Collapse
|
48
|
Choi H, Hardy AP, Leissing TM, Chowdhury R, Nakashima Y, Ge W, Markoulides M, Scotti JS, Gerken PA, Thorbjornsrud H, Kang D, Hong S, Lee J, McDonough MA, Park H, Schofield CJ. A human protein hydroxylase that accepts D-residues. Commun Chem 2020; 3:52. [PMID: 36703414 PMCID: PMC9814778 DOI: 10.1038/s42004-020-0290-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a 2-oxoglutarate-dependent protein hydroxylase that catalyses C3 hydroxylations of protein residues. We report FIH can accept (D)- and (L)-residues for hydroxylation. The substrate selectivity of FIH differs for (D) and (L) epimers, e.g., (D)- but not (L)-allylglycine, and conversely (L)- but not (D)-aspartate, undergo monohydroxylation, in the tested sequence context. The (L)-Leu-containing substrate undergoes FIH-catalysed monohydroxylation, whereas (D)-Leu unexpectedly undergoes dihydroxylation. Crystallographic, mass spectrometric, and DFT studies provide insights into the selectivity of FIH towards (L)- and (D)-residues. The results of this work expand the potential range of known substrates hydroxylated by isolated FIH and imply that it will be possible to generate FIH variants with altered selectivities.
Collapse
Affiliation(s)
- Hwanho Choi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.,Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Marios Markoulides
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Philip A Gerken
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Helen Thorbjornsrud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dahye Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
49
|
Time Series RNA-seq in Pigeonpea Revealed the Core Genes in Metabolic Pathways under Aluminum Stress. Genes (Basel) 2020; 11:genes11040380. [PMID: 32244575 PMCID: PMC7230159 DOI: 10.3390/genes11040380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Pigeonpea is an important economic crop in the world and is mainly distributed in tropical and subtropical regions. In order to further expand the scope of planting, one of the problems that must be solved is the impact of soil acidity on plants in these areas. Based on our previous work, we constructed a time series RNA sequencing (RNA-seq) analysis under aluminum (Al) stress in pigeonpea. Through a comparison analysis, 11,425 genes were found to be differentially expressed among all the time points. After clustering these genes by their expression patterns, 12 clusters were generated. Many important functional pathways were identified by gene ontology (GO) analysis, such as biological regulation, localization, response to stimulus, metabolic process, detoxification, and so on. Further analysis showed that metabolic pathways played an important role in the response of Al stress. Thirteen out of the 23 selected genes related to flavonoids and phenols were downregulated in response to Al stress. In addition, we verified these key genes of flavonoid- and phenol-related metabolism pathways by qRT-PCR. Collectively, our findings not only revealed the regulation mechanism of pigeonpea under Al stress but also provided methodological support for further exploration of plant stress regulation mechanisms.
Collapse
|
50
|
Sun C, Xiao L, Zhao Y, Shi J, Yuan Y, Gu Y, Zhang F, Gao X, Yang Y, Yang R, Qin J, Zhang J, Wang C, Wang Y, Wang Z, Hu P, Chang T, Wang L, Wang G, Chen H, Li Z, Ye J. Wild-Type IDH1 and Mutant IDH1 Opposingly Regulate Podoplanin Expression in Glioma. Transl Oncol 2020; 13:100758. [PMID: 32208352 PMCID: PMC7097522 DOI: 10.1016/j.tranon.2020.100758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) mutations occur frequently in lower-grade gliomas, which result in genome-wide epigenetic alterations. The wild-type IDH1 is reported to participate in lipid biosynthesis and amino acid metabolism, but its role in tumorigenesis is still unclear. In this study, the expressions of IDH1 and podoplanin (Pdpn) were determined in IDH-mutated and IDH-wild-type gliomas, and their relationships in glioma were further analyzed. In addition, the regulation of wild-type IDH1 and mutant IDH1 on Pdpn expression was investigated by luciferase assays and promoter methylation analysis. Our study showed that Pdpn was almost undetectable in IDH-mutated glioma but strongly expressed in higher-grade IDH-wild-type glioma. Pdpn overexpression promoted the migration of glioma cells but had little effect on cell growth. Moreover, Pdpn expression was positively correlated with the increased wild-type IDH1 levels in IDH-wild-type glioma. Consistently, the wild-type IDH1 greatly promoted the transcription and expression of Pdpn, but the mutant IDH1 and D-2-hydroxyglutarate significantly suppressed Pdpn expression in glioma cells. Besides, our results revealed that the methylation of CpG islands in the Pdpn promoter was opposingly regulated by wild-type and mutant IDH1 in glioma. Collectively, our results indicated that wild-type and mutant IDH1 opposingly controlled the Pdpn expression in glioma by regulating its promoter methylation, which provides a basis for understanding the relationship between wild-type and mutant IDH1 in epigenetic regulation and tumorigenesis.
Collapse
Affiliation(s)
- Chao Sun
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032; Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Liming Xiao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Yuanlin Zhao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Jiankuan Shi
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032; Department of Neurology, International Medical Center Hospital, Xi'an, China, 710100
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Yu Gu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Feng Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Xing Gao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Ying Yang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Risheng Yang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Junhui Qin
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Jin Zhang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Chao Wang
- Department of Pathology, Chengdu Military General Hospital, Chengdu, China, 610083
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Zhe Wang
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Peizhen Hu
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032
| | - Gang Wang
- Department of General Surgery, the 74th Group Army Hospital, Guangzhou, China, 510318
| | - Huangtao Chen
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
| | - Jing Ye
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032; Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.
| |
Collapse
|