1
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
2
|
Salehi S, Schallmayer E, Bandomir N, Kärcher A, Güth JF, Heitel P. Screening of Chelidonium majus isoquinoline alkaloids reveals berberine and chelidonine as selective ligands for the nuclear receptors RORβ and HNF4α, respectively. Arch Pharm (Weinheim) 2024; 357:e2300756. [PMID: 38501877 DOI: 10.1002/ardp.202300756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-β (RORβ) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORβ inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.
Collapse
Affiliation(s)
- Sohrab Salehi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nils Bandomir
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annette Kärcher
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Frederik Güth
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Heintz MM, Klaren WD, East AW, Haws LC, McGreal SR, Campbell RR, Thompson CM. Comparison of transcriptomic profiles between HFPO-DA and prototypical PPARα, PPARγ, and cytotoxic agents in wild-type and PPARα knockout mouse hepatocytes. Toxicol Sci 2024; 200:183-198. [PMID: 38574385 PMCID: PMC11199908 DOI: 10.1093/toxsci/kfae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Recent in vitro transcriptomic analyses for the short-chain polyfluoroalkyl substance, HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), support conclusions from in vivo data that HFPO-DA-mediated liver effects in mice are part of the early key events of the peroxisome proliferator-activated receptor alpha (PPARα) activator-induced rodent hepatocarcinogenesis mode of action (MOA). Transcriptomic responses in HFPO-DA-treated rodent hepatocytes have high concordance with those treated with a PPARα agonist and lack concordance with those treated with PPARγ agonists or cytotoxic agents. To elucidate whether HFPO-DA-mediated transcriptomic responses in mouse liver are PPARα-dependent, additional transcriptomic analyses were conducted on samples from primary PPARα knockout (KO) and wild-type (WT) mouse hepatocytes exposed for 12, 24, or 72 h with various concentrations of HFPO-DA, or well-established agonists of PPARα (GW7647) and PPARγ (rosiglitazone), or cytotoxic agents (acetaminophen or d-galactosamine). Pathway and predicted upstream regulator-level responses were highly concordant between HFPO-DA and GW7647 in WT hepatocytes. A similar pattern was observed in PPARα KO hepatocytes, albeit with a distinct temporal and concentration-dependent delay potentially mediated by compensatory responses. This delay was not observed in PPARα KO hepatocytes exposed to rosiglitazone, acetaminophen, d-galactosamine. The similarity in transcriptomic signaling between HFPO-DA and GW7647 in both the presence and absence of PPARα in vitro indicates these compounds share a common MOA.
Collapse
|
4
|
Heintz MM, Klaren WD, East AW, Haws LC, McGreal SR, Campbell RR, Thompson CM. Comparison of transcriptomic profiles between HFPO-DA and prototypical PPARα, PPARγ, and cytotoxic agents in mouse, rat, and pooled human hepatocytes. Toxicol Sci 2024; 200:165-182. [PMID: 38574381 PMCID: PMC11199992 DOI: 10.1093/toxsci/kfae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Like many per- or polyfluorinated alkyl substances (PFAS), toxicity studies with HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), a short-chain PFAS used in the manufacture of some types of fluorinated polymers, indicate that the liver is the primary target of toxicity in rodents following oral exposure. Although the current weight of evidence supports the PPARα mode of action (MOA) for liver effects in HFPO-DA-exposed mice, alternate MOAs have also been hypothesized including PPARγ or cytotoxicity. To further evaluate the MOA for HFPO-DA in rodent liver, transcriptomic analyses were conducted on samples from primary mouse, rat, and pooled human hepatocytes treated for 12, 24, or 72 h with various concentrations of HFPO-DA, or agonists of PPARα (GW7647), PPARγ (rosiglitazone), or cytotoxic agents (ie, acetaminophen or d-galactosamine). Concordance analyses of enriched pathways across chemicals within each species demonstrated the greatest concordance between HFPO-DA and PPARα agonist GW7647-treated hepatocytes compared with the other chemicals evaluated. These findings were supported by benchmark concentration modeling and predicted upstream regulator results. In addition, transcriptomic analyses across species demonstrated a greater transcriptomic response in rodent hepatocytes treated with HFPO-DA or agonists of PPARα or PPARγ, indicating rodent hepatocytes are more sensitive to HFPO-DA or PPARα/γ agonist treatment. These results are consistent with previously published transcriptomic analyses and further support that liver effects in HFPO-DA-exposed rodents are mediated through rodent-specific PPARα signaling mechanisms as part of the MOA for PPARα activator-induced rodent hepatocarcinogenesis. Thus, effects observed in mouse liver are not appropriate endpoints for toxicity value development for HFPO-DA in human health risk assessment.
Collapse
|
5
|
Atz K, Cotos L, Isert C, Håkansson M, Focht D, Hilleke M, Nippa DF, Iff M, Ledergerber J, Schiebroek CCG, Romeo V, Hiss JA, Merk D, Schneider P, Kuhn B, Grether U, Schneider G. Prospective de novo drug design with deep interactome learning. Nat Commun 2024; 15:3408. [PMID: 38649351 PMCID: PMC11035696 DOI: 10.1038/s41467-024-47613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
De novo drug design aims to generate molecules from scratch that possess specific chemical and pharmacological properties. We present a computational approach utilizing interactome-based deep learning for ligand- and structure-based generation of drug-like molecules. This method capitalizes on the unique strengths of both graph neural networks and chemical language models, offering an alternative to the need for application-specific reinforcement, transfer, or few-shot learning. It enables the "zero-shot" construction of compound libraries tailored to possess specific bioactivity, synthesizability, and structural novelty. In order to proactively evaluate the deep interactome learning framework for protein structure-based drug design, potential new ligands targeting the binding site of the human peroxisome proliferator-activated receptor (PPAR) subtype gamma are generated. The top-ranking designs are chemically synthesized and computationally, biophysically, and biochemically characterized. Potent PPAR partial agonists are identified, demonstrating favorable activity and the desired selectivity profiles for both nuclear receptors and off-target interactions. Crystal structure determination of the ligand-receptor complex confirms the anticipated binding mode. This successful outcome positively advocates interactome-based de novo design for application in bioorganic and medicinal chemistry, enabling the creation of innovative bioactive molecules.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Leandro Cotos
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Clemens Isert
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Dorota Focht
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Mattis Hilleke
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - David F Nippa
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377, Munich, Germany
| | - Michael Iff
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Jann Ledergerber
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Carl C G Schiebroek
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Valentina Romeo
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Jan A Hiss
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377, Munich, Germany
| | - Petra Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Lee J, Hu Z, Wang YA, Nath D, Liang W, Cui Y, Ma JX, Duerfeldt AS. Design, Synthesis, and Structure-Activity Relationships of Biaryl Anilines as Subtype-Selective PPAR-alpha Agonists. ACS Med Chem Lett 2023; 14:766-776. [PMID: 37312852 PMCID: PMC10258832 DOI: 10.1021/acsmedchemlett.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
The role of peroxisome proliferator-activated receptor alpha (PPARα) in retinal biology is clarifying, and evidence demonstrates that novel PPARα agonists hold promising therapeutic utility for diseases like diabetic retinopathy and age-related macular degeneration. Herein, we disclose the design and initial structure-activity relationships for a new biaryl aniline PPARα agonistic chemotype. Notably, this series exhibits subtype selectivity for PPARα over other isoforms, a phenomenon postulated to be due to the unique benzoic acid headgroup. This biphenyl aniline series is sensitive to B-ring functionalization but allows isosteric replacement, and provides an opportunity for C-ring extension. From this series, 3g, 6j, and 6d were identified as leads with <90 nM potency in a cell-based luciferase assay cell and exhibited efficacy in various disease-relevant cell contexts, thereby setting the stage for further characterization in more advanced in vitro and in vivo models.
Collapse
Affiliation(s)
- Julia
J. Lee
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ziwei Hu
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuhong Anna Wang
- Department
of Physiology, University of Oklahoma Health
Sciences Center, Oklahoma
City, Oklahoma 73104, United States
| | - Dinesh Nath
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United
States
| | - Wentao Liang
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Yi Cui
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
- Department
of Ophthalmology, Fujian Medical University
Union Hospital, Fujian 350001, China
| | - Jian-Xing Ma
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Adam S. Duerfeldt
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Feng Z, Xiang J, Sun G, Liu H, Wang Y, Liu X, Feng J, Xu Q, Wen X, Yuan H, Sun H, Dai L. Discovery of the First Subnanomolar PPARα/δ Dual Agonist for the Treatment of Cholestatic Liver Diseases. J Med Chem 2023. [PMID: 37243609 DOI: 10.1021/acs.jmedchem.2c02123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are considered as potential drug targets for cholestatic liver diseases (CLD) via ameliorating hepatic cholestasis, inflammation, and fibrosis. In this work, we developed a series of hydantoin derivatives as potent PPARα/δ dual agonists. Representative compound V1 exhibited PPARα/δ dual agonistic activity at the subnanomolar level (PPARα EC50 = 0.7 nM; PPARδ EC50 = 0.4 nM) and showed excellent selectivity over other related nuclear receptors. The crystal structure revealed the binding mode of V1 and PPARδ at 2.1 Å resolution. Importantly, V1 demonstrated excellent pharmacokinetic (PK) properties and a good safety profile. Notably, V1 showed potent anti-CLD and antifibrotic effects in preclinical models at very low doses (0.03 and 0.1 mg/kg). Collectively, this work provides a promising drug candidate for treating CLD and other hepatic fibrosis diseases.
Collapse
Affiliation(s)
- Zhiqi Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiehao Xiang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanyan Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Feng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qinglong Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Liang Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
9
|
Liu J, Sahin C, Ahmad S, Magomedova L, Zhang M, Jia Z, Metherel AH, Orellana A, Poda G, Bazinet RP, Attisano L, Cummins CL, Peng H, Krause HM. The omega-3 hydroxy fatty acid 7( S)-HDHA is a high-affinity PPARα ligand that regulates brain neuronal morphology. Sci Signal 2022; 15:eabo1857. [PMID: 35857636 DOI: 10.1126/scisignal.abo1857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) is emerging as an important target in the brain for the treatment or prevention of cognitive disorders. The identification of high-affinity ligands for brain PPARα may reveal the mechanisms underlying the synaptic effects of this receptor and facilitate drug development. Here, using an affinity purification-untargeted mass spectrometry (AP-UMS) approach, we identified an endogenous, selective PPARα ligand, 7(S)-hydroxy-docosahexaenoic acid [7(S)-HDHA]. Results from mass spectrometric detection of 7(S)-HDHA in mouse and rat brain tissues, time-resolved FRET analyses, and thermal shift assays collectively revealed that 7(S)-HDHA potently activated PPARα with an affinity greater than that of other ligands identified to date. We also found that 7(S)-HDHA activation of PPARα in cultured mouse cortical neurons stimulated neuronal growth and arborization, as well as the expression of genes associated with synaptic plasticity. The findings suggest that this DHA derivative supports and enhances neuronal synaptic capacity in the brain.
Collapse
Affiliation(s)
- Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Samar Ahmad
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E2
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Minhao Zhang
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Zhengping Jia
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Arturo Orellana
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Gennady Poda
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
- Drug Discovery, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E2
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
PPARα contributes to the therapeutic effect of hydrogen gas against sepsis-associated encephalopathy with the regulation to the CREB-BDNF signaling pathway and hippocampal neuron plasticity-related gene expression. Brain Res Bull 2022; 184:56-67. [DOI: 10.1016/j.brainresbull.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 01/24/2023]
|
11
|
Katkar GD, Sayed IM, Anandachar MS, Castillo V, Vidales E, Toobian D, Usmani F, Sawires JR, Leriche G, Yang J, Sandborn WJ, Das S, Sahoo D, Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun Biol 2022; 5:231. [PMID: 35288651 PMCID: PMC8921270 DOI: 10.1038/s42003-022-03168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Collapse
Affiliation(s)
- Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Fatima Usmani
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Joseph R Sawires
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - William J Sandborn
- Department of Medicine, University of California San Diego, San Diego, USA.
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, USA. .,Department of Pediatrics, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA. .,Department of Medicine, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA. .,Veterans Affairs Medical Center, La Jolla, San Diego, USA.
| |
Collapse
|
12
|
Comprehensive assessment of NR ligand polypharmacology by a multiplex reporter NR assay. Sci Rep 2022; 12:3115. [PMID: 35210493 PMCID: PMC8873415 DOI: 10.1038/s41598-022-07031-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Nuclear receptors (NR) are ligand-modulated transcription factors that regulate multiple cell functions and thus represent excellent drug targets. However, due to a considerable NR structural homology, NR ligands often interact with multiple receptors. Here, we describe a multiplex reporter assay (the FACTORIAL NR) that enables parallel assessment of NR ligand activity across all 48 human NRs. The assay comprises one-hybrid GAL4-NR reporter modules transiently transfected into test cells. To evaluate the reporter activity, we assessed their RNA transcripts. We used a homogeneous RNA detection approach that afforded equal detection efficacy and permitted the multiplex detection in a single-well format. For validation, we examined a panel of selective NR ligands and polypharmacological agonists and antagonists of the progestin, estrogen, PPAR, ERR, and ROR receptors. The assay produced highly reproducible NR activity profiles (r > 0.96) permitting quantitative assessment of individual NR responses. The inferred EC50 values agreed with the published data. The assay showed excellent quality (<Z'> = 0.73) and low variability (<CV> = 7.2%). Furthermore, the assay permitted distinguishing direct and non-direct NR responses to ligands. Therefore, the FACTORIAL NR enables comprehensive evaluation of NR ligand polypharmacology.
Collapse
|
13
|
Basal Autophagy Is Necessary for A Pharmacologic PPARα Transactivation. Cells 2022; 11:cells11040754. [PMID: 35203398 PMCID: PMC8870620 DOI: 10.3390/cells11040754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a conserved cellular process of catabolism leading to nutrient recycling upon starvation and maintaining tissue and energy homeostasis. Tissue-specific loss of core-autophagy-related genes often triggers diverse diseases, including cancer, neurodegeneration, inflammatory disease, metabolic disorder, and muscle disease. The nutrient-sensing nuclear receptors peroxisome proliferator-activated receptor α (PPARα) plays a key role in fasting-associated metabolisms such as autophagy, fatty acid oxidation, and ketogenesis. Here we show that autophagy defects impede the transactivation of PPARα. Liver-specific ablation of the Atg7 gene in mice showed reduced expression levels of PPARα target genes in response to its synthetic agonist ligands. Since NRF2, an antioxidant transcription factor, is activated in autophagy-deficient mice due to p62/SQSTM1 accumulation and its subsequent interaction with KEAP1, an E3 ubiquitin ligase. We hypothesize that the nuclear accumulation of NRF2 by autophagy defects blunts the transactivation of PPARα. Consistent with this idea, we find that NRF2 activation is sufficient to inhibit the pharmacologic transactivation of PPARα, which is dependent on the Nrf2 gene. These results reveal an unrecognized requirement of basal autophagy for the transactivation of PPARα by preventing NRF2 from a nuclear translocation and suggest a clinical significance of basal autophagy to expect a pharmacologic efficacy of synthetic PPARα ligands.
Collapse
|
14
|
Qu XX, He JH, Cui ZQ, Yang T, Sun XH. PPAR-α Agonist GW7647 Protects Against Oxidative Stress and Iron Deposit via GPx4 in a Transgenic Mouse Model of Alzheimer's Diseases. ACS Chem Neurosci 2022; 13:207-216. [PMID: 34965724 DOI: 10.1021/acschemneuro.1c00516] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease caused by lipid peroxidation and iron hemostasis of the brain. PPAR-α is regarded as the most encouraging therapeutic approach of several neurodegenerative and metabolic disorders, due to its potent regulatory effects. In this study, we examined the ameliorative effect and the mechanisms of a PPAR-α agonist, GW7647, on the established AD models using APP/PS1 mice and APPsw/SH-SY5Y cells. Through Aβ quantification and behavioral test, we found that GW7647 reduced Aβ burden and improved cognitive defect in APP/PS1 mice. Liquid chromatography-mass spectrometry analysis indicated that GW7647 could enter the brain after oral administration. Neuronal cell death and iron deposit were inhibited, accompanied by decreased lipid peroxidation and inflammation. In an in vitro study of APPsw cells, we found that PPAR-α directly bound with GPx4 intron3 to promote GPx4 transcription and reduced the iron transport capability. Our data suggested that activation of PPAR-α by GW7647 improved the disruption of iron homeostasis in the brain of APP/PS1 mice and alleviated neuronal inflammation and lipid peroxidation, which was possibly related to the upregulated transcription of GPx4 mediated by the interaction of GPx4 noncoding region and the PPAR-α.
Collapse
Affiliation(s)
- Xiao-Xia Qu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalia, Liaoning 116000, P.R. China
| | - Jia-Huan He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| | - Zhi-Qiang Cui
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 117000, P.R. China
| |
Collapse
|
15
|
Honda A, Kamata S, Satta C, Machida Y, Uchii K, Terasawa K, Nemoto A, Oyama T, Ishii I. Structural Basis for Anti-non-alcoholic Fatty Liver Disease and Diabetic Dyslipidemia Drug Saroglitazar as a PPAR α/γ Dual Agonist. Biol Pharm Bull 2021; 44:1210-1219. [PMID: 34471049 DOI: 10.1248/bpb.b21-00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor-type transcription factors that consist of three subtypes (α, γ, and β/δ) with distinct functions and PPAR dual/pan agonists are expected to be the next generation of drugs for metabolic diseases. Saroglitazar is the first clinically approved PPARα/γ dual agonist for treatment of diabetic dyslipidemia and is currently in clinical trials to treat non-alcoholic fatty liver disease (NAFLD); however, the structural information of its interaction with PPARα/γ remains unknown. We recently revealed the high-resolution co-crystal structure of saroglitazar and the PPARα-ligand binding domain (LBD) through X-ray crystallography, and in this study, we report the structure of saroglitazar and the PPARγ-LBD. Saroglitazar was located at the center of "Y"-shaped PPARγ-ligand-binding pocket (LBP), just as it was in the respective region of PPARα-LBP. Its carboxylic acid was attached to four amino acids (Ser289/His323/His449/Thr473), which contributes to the stabilization of Activating Function-2 helix 12, and its phenylpyrrole moiety was rotated 121.8 degrees in PPARγ-LBD from that in PPARα-LBD to interact with Phe264. PPARδ-LBD has the consensus four amino acids (Thr253/His287/His413/Tyr437) towards the carboxylic acids of its ligands, but it seems to lack sufficient space to accept saroglitazar because of the steric hindrance between the Trp228 or Arg248 residue of PPARδ-LBD and its methylthiophenyl moiety. Accordingly, in a coactivator recruitment assay, saroglitazar activated PPARα-LBD and PPARγ-LBD but not PPARδ-LBD, whereas glycine substitution of either Trp228, Arg248, or both of PPARδ-LBD conferred saroglitazar concentration-dependent activation. Our findings may be valuable in the molecular design of PPARα/γ dual or PPARα/γ/δ pan agonists.
Collapse
Affiliation(s)
- Akihiro Honda
- Department of Health Chemistry, Showa Pharmaceutical University
| | - Shotaro Kamata
- Department of Health Chemistry, Showa Pharmaceutical University
| | - Chihiro Satta
- Department of Health Chemistry, Showa Pharmaceutical University
| | - Yui Machida
- Department of Health Chemistry, Showa Pharmaceutical University
| | - Kie Uchii
- Department of Health Chemistry, Showa Pharmaceutical University
| | - Kazuki Terasawa
- Department of Health Chemistry, Showa Pharmaceutical University
| | - Ayane Nemoto
- Department of Health Chemistry, Showa Pharmaceutical University
| | - Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University
| |
Collapse
|
16
|
Yang Z, Roth K, Agarwal M, Liu W, Petriello MC. The transcription factors CREBH, PPARa, and FOXO1 as critical hepatic mediators of diet-induced metabolic dysregulation. J Nutr Biochem 2021; 95:108633. [PMID: 33789150 PMCID: PMC8355060 DOI: 10.1016/j.jnutbio.2021.108633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/31/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
The liver is a critical mediator of lipid and/or glucose homeostasis and is a primary organ involved in dynamic changes during feeding and fasting. Additionally, hepatic-centric pathways are prone to dysregulation during pathophysiological states including metabolic syndrome (MetS) and non-alcoholic fatty liver disease. Omics platforms and GWAS have elucidated genes related to increased risk of developing MetS and related disorders, but mutations in these metabolism-related genes are rare and cannot fully explain the increasing prevalence of MetS-related pathologies worldwide. Complex interactions between diet, lifestyle, environmental factors, and genetic predisposition jointly determine inter-individual variability of disease risk. Given the complexity of these interactions, researchers have focused on master regulators of metabolic responses incorporating and mediating the impact of multiple environmental cues. Transcription factors are DNA binding, terminal executors of signaling pathways that modulate the cellular responses to complex metabolic stimuli and are related to the control of hepatic lipid and glucose homeostasis. Among numerous hepatic transcription factors involved in regulating metabolism, three emerge as key players in transducing nutrient sensing, which are dysregulated in MetS-related perturbations in both clinical and preclinical studies: cAMP Responsive Element Binding Protein 3 Like 3 (CREB3L3), Peroxisome Proliferator Activated Receptor Alpha (PPAR), and Forkhead Box O1 (FOXO1). Additionally, these three transcription factors appear to be amenable to dietary and/or nutrient-based therapies, being potential targets of nutritional therapy. In this review we aim to describe the activation, regulation, and impact of these transcription factors in the context of metabolic homeostasis. We also summarize their perspectives in MetS and nutritional therapies.
Collapse
Affiliation(s)
- Zhao Yang
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA
| | - Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences (IEHS), Wayne State University, Detroit, MI, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
17
|
Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176:113888. [PMID: 34314787 PMCID: PMC8440458 DOI: 10.1016/j.addr.2021.113888] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 07/18/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) associated non-alcoholic fatty liver disease (NAFLD) is the fourth-leading cause of death. Hyperglycemia induces various complications, including nephropathy, cirrhosis and eventually hepatocellular carcinoma (HCC). There are several etiological factors leading to liver disease development, which involve insulin resistance and oxidative stress. Free fatty acid (FFA) accumulation in the liver exerts oxidative and endoplasmic reticulum (ER) stresses. Hepatocyte injury induces release of inflammatory cytokines from Kupffer cells (KCs), which are responsible for activating hepatic stellate cells (HSCs). In this review, we will discuss various molecular targets for treating chronic liver diseases, including homeostasis of FFA, lipid metabolism, and decrease in hepatocyte apoptosis, role of growth factors, and regulation of epithelial-to-mesenchymal transition (EMT) and HSC activation. This review will also critically assess different strategies to enhance drug delivery to different cell types. Targeting nanocarriers to specific liver cell types have the potential to increase efficacy and suppress off-target effects.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingyi Ma
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Natalia Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
18
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
19
|
Discovery of novel modulators for the PPARα (peroxisome proliferator activated receptor α): Potential therapies for nonalcoholic fatty liver disease. Bioorg Med Chem 2021; 41:116193. [PMID: 34022528 DOI: 10.1016/j.bmc.2021.116193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a severe liver disease causing serious liver complications, including nonalcoholic steatohepatitis (NASH). Nuclear receptor PPARα (peroxisome proliferator-activated receptor α) has drawn special attention recently as a potential developmental drug target to treat type-2 diabetes and related diseases due to its unique functions in regulating lipid metabolism, promoting triglyceride oxidation, and suppressing hepatic inflammation, raising interest in PPARα agonists as potential therapies for NAFLD. However, how PPARα coordinates potential treatment of NAFLD and NASH between various metabolic pathways is still obscure. Here, we show that the DY series of novel selective PPARα modulators activate PPARα by up-regulating PPARα target genes directly involved in NAFLD and NASH. The design, synthesis, docking studies, and in vitro and in vivo evaluation of the novel DY series of PPARα agonists are described.
Collapse
|
20
|
Foreman JE, Koga T, Kosyk O, Kang BH, Zhu X, Cohen SM, Billy LJ, Sharma AK, Amin S, Gonzalez FJ, Rusyn I, Peters JM. Species differences between mouse and human PPARα in modulating the hepatocarcinogenic effects of perinatal exposure to a high-affinity human PPARα agonist in mice. Toxicol Sci 2021; 183:81-92. [PMID: 34081146 DOI: 10.1093/toxsci/kfab068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evidence suggests that species differences exist between rodents and humans in their biological responses to ligand activation of PPARα. Moreover, neonatal/postnatal rodents may be more sensitive to the effects of activating PPARα. Thus, the present studies examined the effects of chronic ligand activation of PPARα initiated during early neonatal development and continued into adulthood on hepatocarcinogenesis in mice. Wild-type, Ppara-null, or PPARA-humanized mice were administered a potent, high affinity human PPARα agonist GW7647, and cohorts of mice were examined over time. Activation of PPARα with GW7647 increased expression of known PPARα target genes in liver and was associated with hepatomegaly, increased hepatic cytotoxicity and necrosis, increased expression of hepatic MYC, and a high incidence of hepatocarcinogenesis in wild-type mice. These effects did not occur or were largely diminished in Ppara-null and PPARA-humanized mice, although background levels of hepatocarcinogenesis were also noted in both Ppara-null and PPARA-humanized mice. More fatty change (steatosis) was also observed in both Ppara-null and PPARA-humanized mice independent of GW7647 administration. Results from these studies indicate that the mouse PPARα is required to mediate hepatocarcinogenesis induced by GW7647 in mice and that activation of the human PPARα with GW7647 in PPARA-humanized mice are diminished compared to wild-type mice. Ppara-null and PPARA-humanized mice are valuable tools for examining species differences in the mechanisms of PPARα-induced hepatocarcinogenesis, but background levels of liver cancer observed in aged Ppara-null and PPARA-humanized mice must be considered when interpreting results from studies that use these models. These results also demonstrate that early life exposure to a potent human PPARα agonist does not enhance sensitivity to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jennifer E Foreman
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Takayuki Koga
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Oksana Kosyk
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Boo-Hyon Kang
- Non-clinical Research Institute, Yangji, Yongin, 17162, Gu Chemon, Myeon, Cheoin-, Si, Gyeonggi-Do Korea
| | - Xiaoyang Zhu
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-3135
| | - Laura J Billy
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University, Hershey, Pennsylvania
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
21
|
Foreman JE, Koga T, Kosyk O, Kang BH, Zhu X, Cohen SM, Billy LJ, Sharma AK, Amin S, Gonzalez FJ, Rusyn I, Peters JM. Diminished hepatocarcinogenesis by a potent, high affinity human PPARα agonist in PPARA-humanized mice. Toxicol Sci 2021; 183:70-80. [PMID: 34081128 DOI: 10.1093/toxsci/kfab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ppara-null and PPARA-humanized mice are refractory to hepatocarcinogenesis caused by the peroxisome proliferator-activated receptor-α (PPARα) agonist Wy-14,643. However, the duration of these earlier studies was limited to approximately one year of treatment, and the ligand used has higher affinity for the mouse PPARα compared to the human PPARα. Thus, the present study examined the effect of long-term administration of a potent, high affinity human PPARα agonist (GW7647) on hepatocarcinogenesis in wild-type, Ppara-null, or PPARA-humanized mice. In wild-type mice, GW7647 caused hepatic expression of known PPARα target genes, hepatomegaly, hepatic MYC expression, hepatic cytotoxicity, and a high incidence of hepatocarcinogenesis. By contrast, these effects were essentially absent in Ppara-null mice or diminished in PPARA-humanized mice, although hepatocarcinogenesis was observed in both genotypes. Enhanced fatty change (steatosis) was also observed in both Ppara-null and PPARA-humanized mice independent of GW7647. PPARA-humanized mice administered GW7647 also exhibited increased necrosis after five weeks of treatment. Results from these studies demonstrate that the mouse PPARα is required for hepatocarcinogenesis induced by GW7647 administered throughout adulthood. Results also indicate that a species difference exists between rodent and human PPARα in the response to ligand activation of PPARα. The hepatocarcinogenesis observed in control and treated Ppara-null mice is likely mediated in part by increased hepatic fatty change, whereas the hepatocarcinogenesis observed in PPARA-humanized mice may also be due to enhanced fatty change and cytotoxicity that could be influenced by minimal activity of the human PPARα in this mouse line on downstream mouse PPARα target genes. The Ppara-null and PPARA-humanized mouse models are valuable tools for examining the mechanisms of PPARα-induced hepatocarcinogenesis but the background level of liver cancer must be controlled for in the design and interpretation of studies that use these mice.
Collapse
Affiliation(s)
- Jennifer E Foreman
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Takayuki Koga
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Oksana Kosyk
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Boo-Hyon Kang
- Non-clinical Research Institute, Chemon, Yangji-Myeon, Yongin, 17162, Gu Cheoin-, Si, Gyeonggi-Do Korea
| | - Xiaoyang Zhu
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-3135
| | - Laura J Billy
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University, Hershey, Pennsylvania
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
22
|
McMullen PD, Bhattacharya S, Woods CG, Pendse SN, McBride MT, Soldatow VY, Deisenroth C, LeCluyse EL, Clewell RA, Andersen ME. Identifying qualitative differences in PPARα signaling networks in human and rat hepatocytes and their significance for next generation chemical risk assessment methods. Toxicol In Vitro 2020; 64:104463. [DOI: 10.1016/j.tiv.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
23
|
Rock EM, Limebeer CL, Aliasi-Sinai L, Parker LA. The ventral pallidum as a critical region for fatty acid amide hydrolase inhibition of nausea-induced conditioned gaping in male Sprague-Dawley rats. Neuropharmacology 2019; 155:142-149. [PMID: 31145905 DOI: 10.1016/j.neuropharm.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Here we investigate the involvement of the ventral pallidum (VP) in the anti-nausea effect of fatty acid amide hydrolase (FAAH) inhibition with PF-3845, and examine the pharmacological mechanism of such an effect. We explored the potential of intra-VP PF-3845 to reduce the establishment of lithium chloride (LiCl)-induced conditioned gaping (a model of acute nausea) in male Sprague-Dawley rats. As well, the role of the cannabinoid 1 (CB1) receptors and the peroxisome proliferator-activated receptors-α (PPARα) in the anti-nausea effect of PF-3845 was examined. Finally, the potential of intra-VP GW7647, a PPARα agonist, to reduce acute nausea was also evaluated. Intra-VP PF-3845 dose-dependently reduced acute nausea by a PPARα mechanism (and not a CB1 receptor mechanism). Intra-VP administration of GW7647, similarly attenuated acute nausea. These findings suggest that the anti-nausea action of FAAH inhibition may occur in the VP, and may involve activation of PPARα to suppress acute nausea.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Lital Aliasi-Sinai
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Linda A Parker
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
24
|
Pollinger J, Gellrich L, Schierle S, Kilu W, Schmidt J, Kalinowsky L, Ohrndorf J, Kaiser A, Heering J, Proschak E, Merk D. Tuning Nuclear Receptor Selectivity of Wy14,643 towards Selective Retinoid X Receptor Modulation. J Med Chem 2019; 62:2112-2126. [PMID: 30702885 DOI: 10.1021/acs.jmedchem.8b01848] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fatty acid sensing nuclear receptor families retinoid X receptors (RXRs) and peroxisome proliferator-activated receptors (PPARs) hold therapeutic potential in neurodegeneration. Valuable pleiotropic activities of Wy14,643 in models of such conditions exceed its known PPAR agonistic profile. Here, we characterize the compound as an RXR agonist explaining the pleiotropic effects and report its systematic structure-activity relationship analysis with the discovery of specific molecular determinants driving activity on PPARs and RXRs. We have designed close analogues of the drug comprising selective and dual agonism on RXRs and PPARs that may serve as superior pharmacological tools to study the role and interplay of the nuclear receptors in various pathologies. A systematically optimized high potency RXR agonist revealed activity in vivo and active concentrations in brain. With its lack of RXR/liver X receptor-mediated side effects and superior profile compared to classical rexinoids, it establishes a new class of innovative RXR modulators to overcome key challenges in RXR targeting drug discovery.
Collapse
Affiliation(s)
- Julius Pollinger
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Leonie Gellrich
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Jurema Schmidt
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Lena Kalinowsky
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Julia Ohrndorf
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Jan Heering
- Project Group Translational Medicine and Pharmacology TMP , Fraunhofer IME , Theodor-Stern-Kai 7 , D-60596 Frankfurt , Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt , Germany
| |
Collapse
|
25
|
Gim HJ, Choi YS, Li H, Kim YJ, Ryu JH, Jeon R. Identification of a Novel PPAR-γ Agonist through a Scaffold Tuning Approach. Int J Mol Sci 2018; 19:ijms19103032. [PMID: 30287791 PMCID: PMC6213020 DOI: 10.3390/ijms19103032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are important targets in metabolic diseases including obesity, metabolic syndrome, diabetes, and non-alcoholic fatty liver disease. Recently, they have been highlighted as attractive targets for the treatment of cardiovascular diseases and chronic myeloid leukemia. The PPAR agonist structure is consists of a polar head, a hydrophobic tail, and a linker. Each part interacts with PPARs through hydrogen bonds or hydrophobic interactions to stabilize target protein conformation, thus increasing its activity. Acidic head is essential for PPAR agonist activity. The aromatic linker plays an important role in making hydrophobic interactions with PPAR as well as adjusting the head-to-tail distance and conformation of the whole molecule. By tuning the scaffold of compound, the whole molecule could fit into the ligand-binding domain to achieve proper binding mode. We modified indol-3-ylacetic acid scaffold to (indol-1-ylmethyl)benzoic acid, whereas 2,4-dichloroanilide was fixed as the hydrophobic tail. We designed, synthesized, and assayed the in vitro activity of novel indole compounds with (indol-1-ylmethyl)benzoic acid scaffold. Compound 12 was a more potent PPAR-γ agonist than pioglitazone and our previous hit compound. Molecular docking studies may suggest the binding between compound 12 and PPAR-γ, rationalizing its high activity.
Collapse
Affiliation(s)
- Hyo Jin Gim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Yong-Sung Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Hua Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Yoon-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| | - Raok Jeon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea.
| |
Collapse
|
26
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
27
|
Örd T, Örd D, Örd T. TRIB3 limits FGF21 induction during in vitro and in vivo nutrient deficiencies by inhibiting C/EBP-ATF response elements in the Fgf21 promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:271-281. [PMID: 29378327 DOI: 10.1016/j.bbagrm.2018.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Mammals must be able to endure periods of limited food availability, and the liver plays a central role in the adaptation to nutritional stresses. TRIB3 (Tribbles homolog 3) is a cellular stress-inducible gene with a liver-centric expression pattern and it has been implicated in stress response regulation and metabolic control. In the current article, we study the involvement of TRIB3 in responses to nutrient deficiencies, including fasting for up to 48 h in mice. We show that hepatic expression of Trib3 is increased after 48 h of fasting and mice with a targeted deletion of the Trib3 gene present elevated hepatic triglyceride content and liver weight at 48 h, along with an upregulation of lipid utilization genes in the liver. Further, hepatic and serum levels of the metabolic stress hormone FGF21 are considerably increased in 48-h-fasted Trib3 knockout mice compared to wild type. Trib3 deficiency also leads to elevated FGF21 levels in the mouse liver during essential amino acid deficiency and in cultured mouse embryonic fibroblasts during glucose starvation. Reporter assays reveal that TRIB3 regulates FGF21 by inhibiting ATF4-mediated, C/EBP-ATF site-dependent activation of Fgf21 transcription. Based on chromatin immunoprecipitation from mouse liver, the binding of TRIB3 and ATF4, a transcription factor known to physically interact with TRIB3, is significantly increased at the Fgf21 promoter following 48 h of fasting. Thus, under nutrient-limiting conditions that stimulate ATF4 activity, TRIB3 is implicated in the regulation of metabolic adaptation by restraining the transcription of Fgf21.
Collapse
Affiliation(s)
- Tiit Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Daima Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Tõnis Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia.
| |
Collapse
|
28
|
Merk D, Friedrich L, Grisoni F, Schneider G. De Novo Design of Bioactive Small Molecules by Artificial Intelligence. Mol Inform 2018; 37:1700153. [PMID: 29319225 PMCID: PMC5838524 DOI: 10.1002/minf.201700153] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 11/12/2022]
Abstract
Generative artificial intelligence offers a fresh view on molecular design. We present the first-time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine-tuned on recognizing retinoid X and peroxisome proliferator-activated receptor agonists. We synthesized five top-ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low-micromolar receptor modulatory activity in cell-based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry.
Collapse
Affiliation(s)
- Daniel Merk
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH)Vladimir-Prelog-Weg 4, CH-8093ZurichSwitzerland
| | - Lukas Friedrich
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH)Vladimir-Prelog-Weg 4, CH-8093ZurichSwitzerland
| | - Francesca Grisoni
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH)Vladimir-Prelog-Weg 4, CH-8093ZurichSwitzerland
- Department of Earth and Environmental SciencesUniversity of Milano-BicoccaP.za della Scienza, 1, IT-20126MilanItaly
| | - Gisbert Schneider
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH)Vladimir-Prelog-Weg 4, CH-8093ZurichSwitzerland
| |
Collapse
|
29
|
Patch RJ, Huang H, Patel S, Cheung W, Xu G, Zhao BP, Beauchamp DA, Rentzeperis D, Geisler JG, Askari HB, Liu J, Kasturi J, Towers M, Gaul MD, Player MR. Indazole-based ligands for estrogen-related receptor α as potential anti-diabetic agents. Eur J Med Chem 2017; 138:830-853. [PMID: 28735214 DOI: 10.1016/j.ejmech.2017.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 06/23/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that has been functionally implicated in the regulation of energy homeostasis. Herein is described the development of indazole-based N-alkylthiazolidenediones, which function in biochemical assays as selective inverse agonists against this receptor. Series optimization provided several potent analogues that inhibited the recruitment of a co-activator peptide fragment in vitro (IC50s < 50 nM) and reduced fasted circulating insulin and triglyceride levels in a sub-chronic pre-diabetic rat model when administered orally (10 mg/kg). A multi-parametric optimization strategy led to the identification of 50 as an advanced lead, which was more extensively evaluated in additional diabetic models. Chronic oral administration of 50 in two murine models of obesity and insulin resistance improved glucose control and reduced circulating triglycerides with efficacies similar to that of rosiglitazone. Importantly, these effects were attained without the concomitant weight gain that is typically observed with the latter agent. Thus, these studies provide additional support for the development of such molecules for the potential treatment of metabolic diseases.
Collapse
Affiliation(s)
- Raymond J Patch
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Hui Huang
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Sharmila Patel
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Wing Cheung
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Guozhang Xu
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Bao-Ping Zhao
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Derek A Beauchamp
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Dionisios Rentzeperis
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - John G Geisler
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Hossein B Askari
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Jianying Liu
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Jyotsna Kasturi
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Meghan Towers
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Micheal D Gaul
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | - Mark R Player
- Janssen Research & Development, LLC, Welsh and McKean Roads, Spring House, PA 19477-0776, USA.
| |
Collapse
|
30
|
Yu J, Ahn S, Kim HJ, Lee M, Ahn S, Kim J, Jin SH, Lee E, Kim G, Cheong JH, Jacobson KA, Jeong LS, Noh M. Polypharmacology of N 6-(3-Iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and Related A 3 Adenosine Receptor Ligands: Peroxisome Proliferator Activated Receptor (PPAR) γ Partial Agonist and PPARδ Antagonist Activity Suggests Their Antidiabetic Potential. J Med Chem 2017; 60:7459-7475. [PMID: 28799755 PMCID: PMC5956890 DOI: 10.1021/acs.jmedchem.7b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A3 adenosine receptor (AR) ligands including A3 AR agonist, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) were examined for adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs). In this model, 1a significantly increased adiponectin production, which is associated with improved insulin sensitivity. However, A3 AR antagonists also promoted adiponectin production in hBM-MSCs, indicating that the A3 AR pathway may not be directly involved in the adiponectin promoting activity. In a target deconvolution study, their adiponectin-promoting activity was significantly correlated to their binding activity to both peroxisome proliferator activated receptor (PPAR) γ and PPARδ. They functioned as both PPARγ partial agonists and PPARδ antagonists. In the diabetic mouse model, 1a and its structural analogues A3 AR antagonists significantly decreased the serum levels of glucose and triglyceride, supporting their antidiabetic potential. These findings indicate that the polypharmacophore of these compounds may provide therapeutic insight into their multipotent efficacy against various human diseases.
Collapse
Affiliation(s)
- Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seyeon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Moonyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sungjin Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jungmin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sun Hee Jin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Eunyoung Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul 139-742, Republic of Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
31
|
van der Krieken SE, Popeijus HE, Mensink RP, Plat J. Link Between ER-Stress, PPAR-Alpha Activation, and BET Inhibition in Relation to Apolipoprotein A-I Transcription in HepG2 Cells. J Cell Biochem 2017; 118:2161-2167. [PMID: 28012209 DOI: 10.1002/jcb.25858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023]
Abstract
Activating transcription factor peroxisome proliferator-activated receptor alpha (PPARα) may increase apoA-I transcription. Furthermore, Bromodomain and Extra-Terminal domain (BET) protein inhibitors increase, whereas Endoplasmic Reticulum (ER) stress decreases apoA-I transcription. We examined possible links between these processes as related to apoA-I transcription in HepG2 cells. JQ1(+), thapsigargin, and GW7647 were used to induce, respectively BET inhibition, ER-stress, and PPARα activation. Expression of ER-stress markers (CHOP, XBP1s) was analyzed by western blotting. PPARα, KEAP1 (marker for BET inhibition), and apoA-I mRNAs were measured using qPCR. ER-stress and BET inhibition both decreased PPARα mRNA expression and activity, but did not interfere with each other, as ER-stress did not change KEAP1 and JQ1(+) did not influence ER-stress marker production. Interestingly, PPARα activation and BET-inhibition diminished ER-stress marker production and rescued apoA-I transcription during existing ER-stress. We conclude that the ER-stress mediated reduction in apoA-I transcription could be partly mediated via the inhibition of PPARα mRNA expression and activity. In addition, BET inhibition increased apoA-I transcription, even if PPARα production and activity were decreased. Finally, both BET inhibition and PPARα activation ameliorate the apoA-I lowering effect of ER-stress and are therefore interesting targets to elevate apoA-I transcription. J. Cell. Biochem. 118:2161-2167, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sophie E van der Krieken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, MD Maastricht, 616-6200, the Netherlands
| | - Herman E Popeijus
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, MD Maastricht, 616-6200, the Netherlands
| | - Ronald P Mensink
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, MD Maastricht, 616-6200, the Netherlands
| | - Jogchum Plat
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, MD Maastricht, 616-6200, the Netherlands
| |
Collapse
|
32
|
Zhao S, Kanno Y, Li W, Sasaki T, Zhang X, Wang J, Cheng M, Koike K, Nemoto K, Li H. Identification of Picrasidine C as a Subtype-Selective PPARα Agonist. JOURNAL OF NATURAL PRODUCTS 2016; 79:3127-3133. [PMID: 27958735 DOI: 10.1021/acs.jnatprod.6b00883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Picrasidine C (1), a dimeric β-carboline-type alkaloid isolated from the root of Picrasma quassioides, was identified to have PPARα agonistic activity by a mammalian one-hybrid assay from a compound library. Among the PPAR subtypes, 1 selectively activated PPARα in a concentration-dependent manner. Remarkably, 1 also promoted PPARα transcriptional activity by a peroxisome proliferator response element-driven luciferase reporter assay. Furthermore, 1 induced the expression of PPARα-regulated genes involved in lipid, glucose, and cholesterol metabolism, such as CPT-1, PPARα, PDK4, and ABCA1, which was abrogated by the PPARα antagonist MK-886, indicating that the effect of 1 was dependent on PPARα activation. This is the first report to demonstrate 1 to be a subtype-selective PPARα agonist with potential application in treating metabolic diseases, such as hyperlipidemia, atherosclerosis, and hypercholesterolemia.
Collapse
Affiliation(s)
- Shuai Zhao
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yuichiro Kanno
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Tatsunori Sasaki
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Huicheng Li
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| |
Collapse
|
33
|
A role of CB1R in inducing θ-rhythm coordination between the gustatory and gastrointestinal insula. Sci Rep 2016; 6:32529. [PMID: 27581068 PMCID: PMC5007515 DOI: 10.1038/srep32529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 02/05/2023] Open
Abstract
Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA. However, this possibility has never been investigated. In rat slice preparations, we demonstrate with voltage-sensitive dye imaging that activation of CB1Rs by AEA induces θ-rhythm oscillatory synchronization in the Gu-I which propagates into the GI-Au-I but stops at its caudal end, displaying an oscillatory coordination. The AEA-induced oscillation was abolished by a CB1R antagonist or OEA through activation of GPR119. Our results demonstrate that the neural coordination between the Gu-I and GI-Au-I is generated or suppressed by the opposing activities between CB1R and GPR119. This mechanism may be involved in the feeding behavior based on taste recognition.
Collapse
|
34
|
Gigrich J, Sarkani S, Holzer T. A New Approach in Applying Systems Engineering Tools and Analysis to Determine Hepatocyte Toxicogenomics Risk Levels to Human Health. J Comput Biol 2016; 24:238-254. [PMID: 27386833 DOI: 10.1089/cmb.2016.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is an increasing backlog of potentially toxic compounds that cannot be evaluated with current animal-based approaches in a cost-effective and expeditious manner, thus putting human health at risk. Extrapolation of animal-based test results for human risk assessment often leads to different physiological outcomes. This article introduces the use of quantitative tools and methods from systems engineering to evaluate the risk of toxic compounds by the analysis of the amount of stress that human hepatocytes undergo in vitro when metabolizing GW7647 1 over extended times and concentrations. Hepatocytes are exceedingly connected systems that make it challenging to understand the highly varied dimensional genomics data to determine risk of exposure. Gene expression data of peroxisome proliferator-activated receptor-α (PPARα) 2 binding was measured over multiple concentrations and varied times of GW7647 exposure and leveraging mahalanombis distance to establish toxicity threshold risk levels. The application of these novel systems engineering tools provides new insight into the intricate workings of human hepatocytes to determine risk threshold levels from exposure. This approach is beneficial to decision makers and scientists, and it can help reduce the backlog of untested chemical compounds due to the high cost and inefficiency of animal-based models.
Collapse
Affiliation(s)
- James Gigrich
- Department of Engineering Management and Systems Engineering, George Washington University , Washington, DC
| | - Shahryar Sarkani
- Department of Engineering Management and Systems Engineering, George Washington University , Washington, DC
| | - Thomas Holzer
- Department of Engineering Management and Systems Engineering, George Washington University , Washington, DC
| |
Collapse
|
35
|
Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, Roussel B, Tavernier G, Marques MA, Moro C, Guillou H, Amri EZ, Langin D. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab 2016; 5:352-365. [PMID: 27110487 PMCID: PMC4837301 DOI: 10.1016/j.molmet.2016.03.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 12/29/2022] Open
Abstract
Objective Fat depots with thermogenic activity have been identified in humans. In mice, the appearance of thermogenic adipocytes within white adipose depots (so-called brown-in-white i.e., brite or beige adipocytes) protects from obesity and insulin resistance. Brite adipocytes may originate from direct conversion of white adipocytes. The purpose of this work was to characterize the metabolism of human brite adipocytes. Methods Human multipotent adipose-derived stem cells were differentiated into white adipocytes and then treated with peroxisome proliferator-activated receptor (PPAR)γ or PPARα agonists between day 14 and day 18. Gene expression profiling was determined using DNA microarrays and RT-qPCR. Variations of mRNA levels were confirmed in differentiated human preadipocytes from primary cultures. Fatty acid and glucose metabolism was investigated using radiolabelled tracers, Western blot analyses and assessment of oxygen consumption. Pyruvate dehydrogenase kinase 4 (PDK4) knockdown was achieved using siRNA. In vivo, wild type and PPARα-null mice were treated with a β3-adrenergic receptor agonist (CL316,243) to induce appearance of brite adipocytes in white fat depot. Determination of mRNA and protein levels was performed on inguinal white adipose tissue. Results PPAR agonists promote a conversion of white adipocytes into cells displaying a brite molecular pattern. This conversion is associated with transcriptional changes leading to major metabolic adaptations. Fatty acid anabolism i.e., fatty acid esterification into triglycerides, and catabolism i.e., lipolysis and fatty acid oxidation, are increased. Glucose utilization is redirected from oxidation towards glycerol-3-phophate production for triglyceride synthesis. This metabolic shift is dependent on the activation of PDK4 through inactivation of the pyruvate dehydrogenase complex. In vivo, PDK4 expression is markedly induced in wild-type mice in response to CL316,243, while this increase is blunted in PPARα-null mice displaying an impaired britening response. Conclusions Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria. PPARγ and α agonists induce conversion of human white into brite adipocytes. Fatty acid anabolism and catabolism are activated in human brite adipocytes. Glucose use in brite adipocytes is redirected from oxidation to glyceroneogenesis. PDK4 induction is responsible for the shift from glucose to fatty acid oxidation.
Collapse
Affiliation(s)
- V Barquissau
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - D Beuzelin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - D F Pisani
- University of Nice Sophia Antipolis, Nice, France; CNRS, iBV, UMR 7277, Nice, France; INSERM, iBV, U 1091, Nice, France
| | - G E Beranger
- University of Nice Sophia Antipolis, Nice, France; CNRS, iBV, UMR 7277, Nice, France; INSERM, iBV, U 1091, Nice, France
| | - A Mairal
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - A Montagner
- University of Toulouse, Paul Sabatier University, France; INRA, UMR 1331, TOXALIM, Toulouse, France
| | - B Roussel
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - G Tavernier
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - M-A Marques
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - C Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - H Guillou
- University of Toulouse, Paul Sabatier University, France; INRA, UMR 1331, TOXALIM, Toulouse, France
| | - E-Z Amri
- University of Nice Sophia Antipolis, Nice, France; CNRS, iBV, UMR 7277, Nice, France; INSERM, iBV, U 1091, Nice, France
| | - D Langin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
36
|
Kong XY, Feng YZ, Eftestøl E, Kase ET, Haugum H, Eskild W, Rustan AC, Thoresen GH. Increased glucose utilization and decreased fatty acid metabolism in myotubes from Glmp(gt/gt) mice. Arch Physiol Biochem 2016; 122:36-45. [PMID: 26707125 DOI: 10.3109/13813455.2015.1120752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glycosylated lysosomal membrane protein (GLMP) has been reported to enhance the expression from a peroxisome proliferator-activated receptor alpha (PPARα) responsive promoter, but also to be an integral lysosomal membrane protein. Using myotubes established from wild-type and Glmp(gt/gt) mice, the importance of GLMP in skeletal muscle was examined. Glmp(gt/gt) myotubes expressed a more glycolytic phenotype than wild-type myotubes. Myotubes from Glmp(gt/gt) mice metabolized glucose faster and had a larger pool of intracellular glycogen, while oleic acid uptake, storage and oxidation were significantly reduced. Gene expression analyses indicated lower expression of three PPAR-isoforms, a co-regulator of PPAR (PGC1α) and several genes important for lipid metabolism in Glmp(gt/gt) myotubes. However, ablation of GLMP did not seem to substantially impair the response to PPAR agonists. In conclusion, myotubes established from Glmp(gt/gt) mice were more glycolytic than myotubes from wild-type animals, in spite of no differences in muscle fiber types in vivo.
Collapse
Affiliation(s)
| | - Yuan Zeng Feng
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | | | - Eili T Kase
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | - Hanne Haugum
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | | | - Arild C Rustan
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
| | - G Hege Thoresen
- b Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway , and
- c Department of Pharmacology , Institute of Clinical Medicine, University of Oslo and Oslo University Hospital , Oslo , Norway
| |
Collapse
|
37
|
Blöcher R, Lamers C, Wittmann SK, Diehl O, Hanke T, Merk D, Steinhilber D, Schubert-Zsilavecz M, Kahnt AS, Proschak E. Design and synthesis of fused soluble epoxide hydrolase/peroxisome proliferator-activated receptor modulators. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00042h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolic syndrome (MetS) is a widespread, complex disease cluster which consists of hypertension, atherosclerosis, dyslipidaemia and type II diabetes.
Collapse
Affiliation(s)
- R. Blöcher
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - C. Lamers
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - S. K. Wittmann
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - O. Diehl
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - T. Hanke
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - D. Merk
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - D. Steinhilber
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - M. Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - A. S. Kahnt
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| | - E. Proschak
- Institute of Pharmaceutical Chemistry
- Goethe-University of Frankfurt
- D-60438 Frankfurt am Main
- Germany
| |
Collapse
|
38
|
Blöcher R, Lamers C, Wittmann SK, Merk D, Hartmann M, Weizel L, Diehl O, Brüggerhoff A, Boß M, Kaiser A, Schader T, Göbel T, Grundmann M, Angioni C, Heering J, Geisslinger G, Wurglics M, Kostenis E, Brüne B, Steinhilber D, Schubert-Zsilavecz M, Kahnt AS, Proschak E. N-Benzylbenzamides: A Novel Merged Scaffold for Orally Available Dual Soluble Epoxide Hydrolase/Peroxisome Proliferator-Activated Receptor γ Modulators. J Med Chem 2015; 59:61-81. [PMID: 26595749 DOI: 10.1021/acs.jmedchem.5b01239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MetS) is a multifactorial disease cluster that consists of dyslipidemia, cardiovascular disease, type 2 diabetes mellitus, and obesity. MetS patients are strongly exposed to polypharmacy; however, the number of pharmacological compounds required for MetS treatment can be reduced by the application of multitarget compounds. This study describes the design of dual-target ligands that target soluble epoxide hydrolase (sEH) and the peroxisome proliferator-activated receptor type γ (PPARγ). Simultaneous modulation of sEH and PPARγ can improve diabetic conditions and hypertension at once. N-Benzylbenzamide derivatives were determined to fit a merged sEH/PPARγ pharmacophore, and structure-activity relationship studies were performed on both targets, resulting in a submicromolar (sEH IC50 = 0.3 μM/PPARγ EC50 = 0.3 μM) modulator 14c. In vitro and in vivo evaluations revealed good ADME properties qualifying 14c as a pharmacological tool compound for long-term animal models of MetS.
Collapse
Affiliation(s)
- René Blöcher
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Christina Lamers
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Sandra K Wittmann
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Markus Hartmann
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Olaf Diehl
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Astrid Brüggerhoff
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Marcel Boß
- Institute of Biochemistry I, Goethe-University Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Tim Schader
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Manuel Grundmann
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-Universität Bonn , Nussallee 6, D-53115 Bonn, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Goethe-University Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Jan Heering
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, Rheinische Friedrich-Wilhelms-Universität Bonn , Nussallee 6, D-53115 Bonn, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Goethe-University Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
39
|
Xia M, Erickson A, Yi X, Moreau R. Mapping the response of human fibroblast growth factor 21 (FGF21) promoter to serum availability and lipoic acid in HepG2 hepatoma cells. Biochim Biophys Acta Gen Subj 2015; 1860:498-507. [PMID: 26691139 DOI: 10.1016/j.bbagen.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 12/15/2022]
Abstract
The hormone-like polypeptide, fibroblast growth factor 21 (FGF21), is a major modulator of lipid and glucose metabolism and an exploratory treatment strategy for obesity related metabolic disorders. The costs of recombinant FGF21 and mode of delivery by injection are important constraints to its wide therapeutic use. The stimulation of endogenous FGF21 production through diet is being explored as an alternative approach. To that end, we examined the mechanism(s) by which serum manipulation and lipoic acid (a dietary activator of FGF21) induce FGF21 in human hepatocellular carcinoma HepG2 cells. Serum withdrawal markedly induced FGF21 mRNA levels (88 fold) and FGF21 secreted in the media (19 fold). Lipoic acid induced FGF21 mRNA 7 fold above DMSO-treated control cells and FGF21 secretion 3 fold. These effects were several-fold greater than those of PPARα agonist, Wy14643, which failed to induce FGF21 above and beyond the induction seen with serum withdrawal. The use of transcription inhibitor, actinomycin D, revealed that de novo mRNA synthesis drives FGF21 secretion in response to serum starvation. Four previously unrecognized loci in FGF21 promoter were nucleosome depleted and enriched in acetylated histone H3 revealing their role as transcriptional enhancers and putative transcription factor binding sites. FGF21 did not accumulate to a significant degree in induced HepG2 cells, which secreted FGF21 time dependently in media. We conclude that lipoic acid cell signaling connects with the transcriptional upregulation of FGF21 and it may prove to be a safe and affordable means to stimulate FGF21 production.
Collapse
Affiliation(s)
- Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Anjeza Erickson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Xiaohua Yi
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
40
|
Mattsson A, Kärrman A, Pinto R, Brunström B. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA) and Agonists to Peroxisome Proliferator-Activated Receptors. PLoS One 2015; 10:e0143780. [PMID: 26624992 PMCID: PMC4666608 DOI: 10.1371/journal.pone.0143780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023] Open
Abstract
Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA), and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα) and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic profile resulting from chemical exposure during embryonic development.
Collapse
Affiliation(s)
- Anna Mattsson
- Department of Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Anna Kärrman
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Rui Pinto
- Computational Life Science Cluster (CLiC), Chemistry department (KBC) - Umeå University, Umeå, Sweden
- Bioinformatics Infrastructure for Life Sciences, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M. Proliferation and fission of peroxisomes - An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:971-83. [PMID: 26409486 DOI: 10.1016/j.bbamcr.2015.09.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
In mammals, peroxisomes perform crucial functions in cellular metabolism, signalling and viral defense which are essential to the health and viability of the organism. In order to achieve this functional versatility peroxisomes dynamically respond to molecular cues triggered by changes in the cellular environment. Such changes elicit a corresponding response in peroxisomes, which manifests itself as a change in peroxisome number, altered enzyme levels and adaptations to the peroxisomal structure. In mammals the generation of new peroxisomes is a complex process which has clear analogies to mitochondria, with both sharing the same division machinery and undergoing a similar division process. How the regulation of this division process is integrated into the cell's response to different stimuli, the signalling pathways and factors involved, remains somewhat unclear. Here, we discuss the mechanism of peroxisomal fission, the contributions of the various division factors and examine the potential impact of post-translational modifications, such as phosphorylation, on the proliferation process. We also summarize the signalling process and highlight the most recent data linking signalling pathways with peroxisome proliferation.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK; Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Luis F Godinho
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Afsoon S Azadi
- College of Life and Environmental Sciences, Biosciences, University of Exeter, EX4 4QJ, Exeter Devon, UK
| | - Markus Islinger
- Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
42
|
Lam VH, Zhang L, Huqi A, Fukushima A, Tanner BA, Onay-Besikci A, Keung W, Kantor PF, Jaswal JS, Rebeyka IM, Lopaschuk GD. Activating PPARα prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts. Circ Res 2015; 117:41-51. [PMID: 25977309 DOI: 10.1161/circresaha.117.306585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Post-ischemic contractile dysfunction is a contributor to morbidity and mortality after the surgical correction of congenital heart defects in neonatal patients. Pre-existing hypertrophy in the newborn heart can exacerbate these ischemic injuries, which may partly be due to a decreased energy supply to the heart resulting from low fatty acid β-oxidation rates. OBJECTIVE We determined whether stimulating fatty acid β-oxidation with GW7647, a peroxisome proliferator-activated receptor-α (PPARα) activator, would improve cardiac energy production and post-ischemic functional recovery in neonatal rabbit hearts subjected to volume overload-induced cardiac hypertrophy. METHODS AND RESULTS Volume-overload cardiac hypertrophy was produced in 7-day-old rabbits via an aorto-caval shunt, after which, the rabbits were treated with or without GW7647 (3 mg/kg per day) for 14 days. Biventricular working hearts were subjected to 35 minutes of aerobic perfusion, 25 minutes of global no-flow ischemia, and 30 minutes of aerobic reperfusion. GW7647 treatment did not prevent the development of cardiac hypertrophy, but did prevent the decline in left ventricular ejection fraction in vivo. GW7647 treatment increased cardiac fatty acid β-oxidation rates before and after ischemia, which resulted in a significant increase in overall ATP production and an improved in vitro post-ischemic functional recovery. A decrease in post-ischemic proton production and endoplasmic reticulum stress, as well as an activation of sarcoplasmic reticulum calcium ATPase isoform 2 and citrate synthase, was evident in GW7647-treated hearts. CONCLUSIONS Stimulating fatty acid β-oxidation in neonatal hearts may present a novel cardioprotective intervention to limit post-ischemic contractile dysfunction.
Collapse
Affiliation(s)
- Victoria H Lam
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Liyan Zhang
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Alda Huqi
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Arata Fukushima
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Brandon A Tanner
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Arzu Onay-Besikci
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Wendy Keung
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Paul F Kantor
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Jagdip S Jaswal
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Ivan M Rebeyka
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Gary D Lopaschuk
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.).
| |
Collapse
|
43
|
Lebeck J, Cheema MU, Skowronski MT, Nielsen S, Praetorius J. Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment. Am J Physiol Gastrointest Liver Physiol 2015; 308:G198-205. [PMID: 25477377 DOI: 10.1152/ajpgi.00407.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The peroxisome proliferator receptor α (PPARα) is a key regulator of the hepatic response to fasting with effects on both lipid and carbohydrate metabolism. A role in hepatic glycerol metabolism has also been found; however, the results are somewhat contradictive. Aquaporin 9 (AQP9) is a pore-forming transmembrane protein that facilitates hepatic uptake of glycerol. Its expression is inversely regulated by insulin in male rodents, with increased expression during fasting. Previous results indicate that PPARα plays a crucial role in the induction of AQP9 mRNA during fasting. In the present study, we use PPARα agonists to explore the effect of PPARα activation on hepatic AQP9 expression and on the abundance of enzymes involved in glycerol metabolism using both in vivo and in vitro systems. In male rats with free access to food, treatment with the PPARα agonist WY 14643 (3 mg·kg(-1)·day(-1)) caused a 50% reduction in hepatic AQP9 abundance with the effect being restricted to AQP9 expressed in periportal hepatocytes. The pharmacological activation of PPARα had no effect on the abundance of GlyK, whereas it caused an increased expression of hepatic GPD1, GPAT1, and L-FABP protein. In WIF-B9 and HepG2 hepatocytes, both WY 14643 and another PPARα agonist GW 7647 reduced the abundance of AQP9 protein. In conclusion, pharmacological PPARα activation results in a marked reduction in the abundance of AQP9 in periportal hepatocytes. Together with the effect on the enzymatic apparatus for glycerol metabolism, our results suggest that PPARα activation in the fed state directs glycerol into glycerolipid synthesis rather than into de novo synthesis of glucose.
Collapse
Affiliation(s)
- Janne Lebeck
- The Danish Diabetes Academy, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | | | - Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Søren Nielsen
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
44
|
Gangwal RP, Damre MV, Das NR, Sharma SS, Sangamwar AT. Biological evaluation and structural insights for design of subtype-selective peroxisome proliferator activated receptor-α (PPAR-α) agonists. Bioorg Med Chem Lett 2015; 25:270-5. [DOI: 10.1016/j.bmcl.2014.11.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
|
45
|
Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore DD. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014; 516:112-5. [PMID: 25383539 PMCID: PMC4267857 DOI: 10.1038/nature13961] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/13/2014] [Indexed: 12/18/2022]
Abstract
Autophagy is an evolutionarily conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis. Its acute regulation by nutrient-sensing signalling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors peroxisome proliferator-activated receptor-α (PPARα) and farnesoid X receptor (FXR) are activated in the fasted and fed liver, respectively. Here we show that both PPARα and FXR regulate hepatic autophagy in mice. Pharmacological activation of PPARα reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARα knockout (Ppara(-/-), also known as Nr1c1(-/-)) mice, which are partially defective in the induction of autophagy by fasting. Pharmacological activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (Fxr(-/-), also known as Nr1h4(-/-)) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARα and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.
Collapse
Affiliation(s)
- Jae Man Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin Wagner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Xiao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19014, USA
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19014, USA
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
46
|
Jennings P, Schwarz M, Landesmann B, Maggioni S, Goumenou M, Bower D, Leonard MO, Wiseman JS. SEURAT-1 liver gold reference compounds: a mechanism-based review. Arch Toxicol 2014; 88:2099-133. [DOI: 10.1007/s00204-014-1410-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
|
47
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dexheimer TS, Rosenthal AS, Luci DK, Liang Q, Villamil MA, Chen J, Sun H, Kerns EH, Simeonov A, Jadhav A, Zhuang Z, Maloney DJ. Synthesis and structure-activity relationship studies of N-benzyl-2-phenylpyrimidin-4-amine derivatives as potent USP1/UAF1 deubiquitinase inhibitors with anticancer activity against nonsmall cell lung cancer. J Med Chem 2014; 57:8099-110. [PMID: 25229643 PMCID: PMC4191588 DOI: 10.1021/jm5010495] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Deregulation
of ubiquitin conjugation or deconjugation has been
implicated in the pathogenesis of many human diseases including cancer.
The deubiquitinating enzyme USP1 (ubiquitin-specific protease 1),
in association with UAF1 (USP1-associated factor 1), is a known regulator
of DNA damage response and has been shown as a promising anticancer
target. To further evaluate USP1/UAF1 as a therapeutic target, we
conducted a quantitative high throughput screen of >400000 compounds
and subsequent medicinal chemistry optimization of small molecules
that inhibit the deubiquitinating activity of USP1/UAF1. Ultimately,
these efforts led to the identification of ML323 (70)
and related N-benzyl-2-phenylpyrimidin-4-amine derivatives,
which possess nanomolar USP1/UAF1 inhibitory potency. Moreover, we
demonstrate a strong correlation between compound IC50 values
for USP1/UAF1 inhibition and activity in nonsmall cell lung cancer
cells, specifically increased monoubiquitinated PCNA (Ub-PCNA) levels
and decreased cell survival. Our results establish the druggability
of the USP1/UAF1 deubiquitinase complex and its potential as a molecular
target for anticancer therapies.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- National Center for Advancing Translational Sciences, National Institutes of Health , 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu Y, Wu Q, Beland FA, Ge P, Manjanatha MG, Fang JL. Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha. Toxicol Lett 2014; 231:17-28. [PMID: 25193434 DOI: 10.1016/j.toxlet.2014.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022]
Abstract
Triclosan is an anti-bacterial agent used in many personal care products, household items, medical devices, and clinical settings. Liver tumors occur in mice exposed to triclosan, a response attributed to peroxisome proliferator-activated receptor alpha (PPARα) activation; however, the effects of triclosan on mouse and human PPARα have not been fully evaluated. We compared the effects of triclosan on mouse and human PPARα using PPARα reporter assays and on downstream events of PPARα activation using mouse hepatoma Hepa1c1c7 cells and human hepatoma HepG2 cells. PPARα transcriptional activity was increased by triclosan in a mouse PPARα reporter assay and decreased in a human PPARα reporter assay. Concentrations of triclosan inhibiting 50% cell growth were similar in both human and mouse hepatoma cells. Western blotting analysis showed that triclosan increased acyl-coenzyme A oxidase (ACOX1), a PPARα target, in Hepa1c1c7 cells but decreased the level in HepG2 cells. Treatment of Hepa1c1c7 cells with triclosan enhanced DNA synthesis and suppressed transforming growth factor beta-mediated apoptosis. This did not occur in HepG2 cells. These data demonstrate that triclosan had similar cytotoxicity in Hepa1c1c7 and HepG2 cells, but differential effects on the activation of PPARα, the expression of ACOX1, and downstream events including DNA synthesis and apoptosis.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Peter Ge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA.
| |
Collapse
|
50
|
Ambrosino P, Soldovieri MV, De Maria M, Russo C, Taglialatela M. Functional and biochemical interaction between PPARα receptors and TRPV1 channels: Potential role in PPARα agonists-mediated analgesia. Pharmacol Res 2014; 87:113-22. [PMID: 25014183 DOI: 10.1016/j.phrs.2014.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
Abstract
Transient receptor potential vanilloid type-1 (TRPV1) channels expressed in primary afferent neurons play a critical role in nociception triggered by endogenous and exogenous compounds. In the present study, the functional and biochemical interaction between TRPV1 channels and type-α peroxisome proliferator-activated receptors (PPARα) has been investigated. In TRPV1-expressing CHO cells, patch-clamp studies revealed that acute application of the PPARα agonists clofibrate (CLO; 0.1-100 μM), WY14643 (1-300 μM), or GW7647 (0.1-100 nM) activated TRPV1 currents in a concentration-dependent manner, with EC50s of 5.3 ± 0.8 μM, 13.0 ± 1.2 μM, and 12.7 ± 0.3 nM, respectively. The role of PPARα in these pharmacological responses was confirmed by the ability of the PPARα antagonist GW6471 (10 μM) to block CLO-, WY14643- and GW7647-induced TRPV1 activation, and by the observation that modulation of PPARα levels via siRNA-mediated suppression or PPARα over-expression affected TRPV1 channel activation by PPARα agonists accordingly. In cells cotransfected with PPARα and TRPV1, PPARα receptors were detected in TRPV1-immunoprecipitated fractions. When compared to capsaicin (CAP), TRPV1 currents activated by PPARα agonists showed a higher degree of acute desensitization and tachyphylaxis; moreover, GW7647, when pre-incubated at a concentration (1nM) unable to activate TRPV1 currents per se, desensitized CAP-induced TRPV1 currents. Finally, a sub-effective concentration of each PPARα agonist inhibited TRPV1-dependent bradykinin-induced [Ca(2+)]i transients in sensory neurons. Collectively, these results provide evidence for a PPARα-mediated pathway triggering TRPV1 channel activation and desensitization, and highlight a novel mechanism which might contribute to the analgesic effects shown by PPARα agonists in vivo.
Collapse
Affiliation(s)
- Paolo Ambrosino
- Dept. of Medicine and Health Sciences, University of Molise, Campobasso, Italy.
| | | | - Michela De Maria
- Dept. of Medicine and Health Sciences, University of Molise, Campobasso, Italy.
| | - Claudio Russo
- Dept. of Medicine and Health Sciences, University of Molise, Campobasso, Italy.
| | - Maurizio Taglialatela
- Dept. of Medicine and Health Sciences, University of Molise, Campobasso, Italy; Dept. of Neuroscience, Section of Pharmacology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|