1
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
2
|
Surányi ÉV, Perey-Simon V, Hirmondó R, Trombitás T, Kazzazy L, Varga M, Vértessy BG, Tóth J. Using Selective Enzymes to Measure Noncanonical DNA Building Blocks: dUTP, 5-Methyl-dCTP, and 5-Hydroxymethyl-dCTP. Biomolecules 2023; 13:1801. [PMID: 38136671 PMCID: PMC10742078 DOI: 10.3390/biom13121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cells maintain a fine-tuned balance of deoxyribonucleoside 5'-triphosphates (dNTPs), a crucial factor in preserving genomic integrity. Any alterations in the nucleotide pool's composition or chemical modifications to nucleotides before their incorporation into DNA can lead to increased mutation frequency and DNA damage. In addition to the chemical modification of canonical dNTPs, the cellular de novo dNTP metabolism pathways also produce noncanonical dNTPs. To keep their levels low and prevent them from incorporating into the DNA, these noncanonical dNTPs are removed from the dNTP pool by sanitizing enzymes. In this study, we introduce innovative protocols for the high-throughput fluorescence-based quantification of dUTP, 5-methyl-dCTP, and 5-hydroxymethyl-dCTP. To distinguish between noncanonical dNTPs and their canonical counterparts, specific enzymes capable of hydrolyzing either the canonical or noncanonical dNTP analogs are employed. This approach provides a more precise understanding of the composition and noncanonical constituents of dNTP pools, facilitating a deeper comprehension of DNA metabolism and repair. It is also crucial for accurately interpreting mutational patterns generated through the next-generation sequencing of biological samples.
Collapse
Affiliation(s)
- Éva Viola Surányi
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Viktória Perey-Simon
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
| | - Tamás Trombitás
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Latifa Kazzazy
- Department of Genetics, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary (M.V.)
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary (M.V.)
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| |
Collapse
|
3
|
Fu TY, Ji SS, Tian YL, Lin YG, Chen YM, Zhong QE, Zheng SC, Xu GF. Methyl-CpG binding domain (MBD)2/3 specifically recognizes and binds to the genomic mCpG site with a β-sheet in the MBD to affect embryonic development in Bombyx mori. INSECT SCIENCE 2023; 30:1607-1621. [PMID: 36915030 DOI: 10.1111/1744-7917.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Methyl-CpG (mCpG) binding domain (MBD) proteins especially bind with methylated DNA, and are involved in many important biological processes; however, the binding mechanism between insect MBD2/3 and mCpG remains unclear. In this study, we identified 2 isoforms of the MBD2/3 gene in Bombyx mori, MBD2/3-S and MBD2/3-L. Binding analysis of MBD2/3-L, MBD2/3-S, and 7 mutant MBD2/3-L proteins deficient in β1-β6 or α1 in the MBD showed that β2-β3-turns in the β-sheet of the MBD are necessary for the formation of the MBD2/3-mCpG complex; furthermore, other secondary structures, namely, β4-β6 and an α-helix, play a role in stabilizing the β-sheet structure to ensure that the MBD is able to bind mCpG. In addition, sequence alignment and binding analyses of different insect MBD2/3s indicated that insect MBD2/3s have an intact and conserved MBD that binds to the mCpG of target genes. Furthermore, MBD2/3 RNA interference results showed that MBD2/3-L plays a role in regulating B. mori embryonic development, similar to that of DNA methylation; however, MBD2/3-S without β4-β6 and α-helix does not alter embryonic development. These results suggest that MBD2/3-L recognizes and binds to mCpG through the intact β-sheet structure in its MBD, thus ensuring silkworm embryonic development.
Collapse
Affiliation(s)
- Tong-Yu Fu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shuang-Shun Ji
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu-Lin Tian
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi-Guang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu-Mei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-En Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Miura T, Onodera R, Terashima J, Ozawa S, Habano W. β-naphthoflavone-induced upregulation of CYP1B1 expression is mediated by the preferential binding of aryl hydrocarbon receptor to unmethylated xenobiotic responsive elements. Exp Ther Med 2021; 22:1410. [PMID: 34676003 PMCID: PMC8524661 DOI: 10.3892/etm.2021.10846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Human cytochrome P450 1 (CYP1) enzymes are transcriptionally induced by specific xenobiotics through a mechanism that involves the binding of aryl hydrocarbon receptors (AhR) to target xenobiotic responsive element (XRE) sequences. To examine the effect of DNA methylation on the AhR-mediated pathway, reverse transcription-quantitative PCR analysis was performed. β-naphthoflavone (βNF)-induced CYP1B1 expression was found to be potentiated by pre-treatment of human HepG2 liver cancer cells with 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, but not HuH7 cells. It was hypothesized that this increase is mediated by the demethylation of CpG sites within XRE2/XRE3 sequences, suggesting that methylation of these sequences inhibits gene expression by interfering with the binding of AhR to the target sequences. To test this hypothesis, a novel method combining the modified chromatin immunoprecipitation of AhR-XRE complexes with subsequent DNA methylation analysis of the XRE regions targeted by activated AhR was applied to both liver cancer cell lines treated with βNF. XRE2/XRE3 methylation was found to be exclusively observed in the input DNA from HepG2 cells but not in the precipitated AhR-bound DNA. Furthermore, sub-cloning and sequencing analysis revealed that the two XRE sites were unmethylated in the samples from the AhR-bound DNA even though the neighboring CpG sites were frequently methylated. To the best of our knowledge, the present study provides the first direct evidence that ligand-activated AhR preferentially binds to unmethylated XRE sequences in the context of natural chromatin. In addition, this approach can also be applied to assess the effects of DNA methylation on target sequence binding by transcription factors other than AhR.
Collapse
Affiliation(s)
- Toshitaka Miura
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Ryo Onodera
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Jun Terashima
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Shogo Ozawa
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| | - Wataru Habano
- Division of Pharmacodynamics and Molecular Genetics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, Shiwa, Iwate 028-3694, Japan
| |
Collapse
|
5
|
DNA Demethylation in the Processes of Repair and Epigenetic Regulation Performed by 2-Ketoglutarate-Dependent DNA Dioxygenases. Int J Mol Sci 2021; 22:ijms221910540. [PMID: 34638881 PMCID: PMC8508711 DOI: 10.3390/ijms221910540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Site-specific DNA methylation plays an important role in epigenetic regulation of gene expression. Chemical methylation of DNA, including the formation of various methylated nitrogenous bases, leads to the formation of genotoxic modifications that impair DNA functions. Despite the fact that different pathways give rise to methyl groups in DNA, the main pathway for their removal is oxidative demethylation, which is catalyzed by nonheme Fe(II)/α-ketoglutarate–dependent DNA dioxygenases. DNA dioxygenases share a common catalytic mechanism of the oxidation of the alkyl groups on nitrogenous bases in nucleic acids. This review presents generalized data on the catalytic mechanism of action of DNA dioxygenases and on the participation of typical representatives of this superfamily, such as prokaryotic enzyme AlkB and eukaryotic enzymes ALKBH1–8 and TET1–3, in both processes of direct repair of alkylated DNA adducts and in the removal of an epigenetic mark (5-methylcytosine).
Collapse
|
6
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications. DNA Repair (Amst) 2020; 95:102945. [PMID: 32853828 DOI: 10.1016/j.dnarep.2020.102945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
DNA methylation on cytosine in CpG islands generates 5-methylcytosine (5mC), and further modification of 5mC can result in the oxidized variants 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxy (5caC). Base excision repair (BER) is crucial for both genome maintenance and active DNA demethylation of modified cytosine products and involves substrate-product channeling from nucleotide insertion by DNA polymerase (pol) β to the subsequent ligation step. Here, we report that, in contrast to the pol β mismatch insertion products (dCTP, dATP, and dTTP), the nicked products after pol β dGTP insertion can be ligated by DNA ligase I or DNA ligase III/XRCC1 complex when a 5mC oxidation modification is present opposite in the template position in vitro. A Pol β K280A mutation, which perturbates the stabilization of these base modifications within the active site, hinders the BER ligases. Moreover, the nicked repair intermediates that mimic pol β mismatch insertion products, i.e., with 3'-preinserted dGMP or dTMP opposite templating 5hmC, 5fC or 5caC, can be efficiently ligated, whereas preinserted 3'-dAMP or dCMP mismatches result in failed ligation reactions. These findings herein contribute to our understanding of the insertion tendencies of pol β opposite different cytosine base forms, the ligation properties of DNA ligase I and DNA ligase III/XRCC1 complex in the context of gapped and nicked damage-containing repair intermediates, and the efficiency and fidelity of substrate channeling during the final steps of BER in situations involving oxidative 5mC base modifications in the template strand.
Collapse
|
8
|
Mosleh E, Ou K, Haemmerle MW, Tembo T, Yuhas A, Carboneau BA, Townsend SE, Bosma KJ, Gannon M, O’Brien RM, Stoffers DA, Golson ML. Ins1-Cre and Ins1-CreER Gene Replacement Alleles Are Susceptible To Silencing By DNA Hypermethylation. Endocrinology 2020; 161:5817889. [PMID: 32267917 PMCID: PMC7354059 DOI: 10.1210/endocr/bqaa054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Targeted gene ablation studies of the endocrine pancreas have long suffered from suboptimal Cre deleter strains. In many cases, Cre lines purportedly specific for beta cells also displayed expression in other islet endocrine cells or in a subset of neurons in the brain. Several pancreas and endocrine Cre lines have experienced silencing or mosaicism over time. In addition, many Cre transgenic constructs were designed to include the hGH mini-gene, which by itself increases beta-cell replication and decreases beta-cell function. More recently, driver lines with Cre or CreER inserted into the Ins1 locus were generated, with the intent of producing β cell-specific Cre lines with faithful recapitulation of insulin expression. These lines were bred in multiple labs to several different mouse lines harboring various lox alleles. In our hands, the ability of the Ins1-Cre and Ins1-CreER lines to delete target genes varied from that originally reported, with both alleles displaying low levels of expression, increased levels of methylation compared to the wild-type allele, and ultimately inefficient or absent target deletion. Thus, caution is warranted in the interpretation of results obtained with these genetic tools, and Cre expression and activity should be monitored regularly when using these lines.
Collapse
Affiliation(s)
- Elham Mosleh
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristy Ou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew W Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Teguru Tembo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Yuhas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bethany A Carboneau
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- United States Department of Veteran Affairs, Nashville, Tennessee
| | - Richard M O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Doris A Stoffers
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria L Golson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Correspondence: Maria L. Golson, PhD, 5501 Hopkins Bayview Circle, Baltimore, MD 21224. E-mail:
| |
Collapse
|
9
|
Green HLH, Brewer AC. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin Epigenetics 2020; 12:59. [PMID: 32345373 PMCID: PMC7189706 DOI: 10.1186/s13148-020-00848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical, social and economic burden of cardiovascular disease (CVD) associated with diabetes underscores an urgency for understanding the disease aetiology. Evidence suggests that the hyperglycaemia associated with diabetes is, of itself, causal in the development of endothelial dysfunction (ED) which is recognised to be the critical determinant in the development of CVD. It is further recognised that epigenetic modifications associated with changes in gene expression are causal in both the initiation of ED and the progression to CVD. Understanding whether and how hyperglycaemia induces epigenetic modifications therefore seems crucial in the development of preventative treatments. A mechanistic link between energy metabolism and epigenetic regulation is increasingly becoming explored as key energy metabolites typically serve as substrates or co-factors for epigenetic modifying enzymes. Intriguing examples are the ten-eleven translocation and Jumonji C proteins which facilitate the demethylation of DNA and histones respectively. These are members of the 2-oxoglutarate-dependent dioxygenase superfamily which require the tricarboxylic acid metabolite, α-ketoglutarate and molecular oxygen (O2) as substrates and Fe (II) as a co-factor. An understanding of precisely how the biochemical effects of high glucose exposure impact upon cellular metabolism, O2 availability and cellular redox in endothelial cells (ECs) may therefore elucidate (in part) the mechanistic link between hyperglycaemia and epigenetic modifications causal in ED and CVD. It would also provide significant proof of concept that dysregulation of the epigenetic landscape may be causal rather than consequential in the development of pathology.
Collapse
Affiliation(s)
- Hannah L H Green
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
10
|
Kumari D, Sciascia N, Usdin K. Small Molecules Targeting H3K9 Methylation Prevent Silencing of Reactivated FMR1 Alleles in Fragile X Syndrome Patient Derived Cells. Genes (Basel) 2020; 11:genes11040356. [PMID: 32230785 PMCID: PMC7230530 DOI: 10.3390/genes11040356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
In fragile X syndrome (FXS), expansion of a CGG repeat tract in the 5′-untranslated region of the FMR1 gene to >200 repeats causes transcriptional silencing by inducing heterochromatin formation. Understanding the mechanism of FMR1 silencing is important as gene reactivation is a potential treatment approach for FXS. To date, only the DNA demethylating drug 5-azadeoxycytidine (AZA) has proved effective at gene reactivation; however, this drug is toxic. The repressive H3K9 methylation mark is enriched on the FMR1 gene in FXS patient cells and is thus a potential druggable target. However, its contribution to the silencing process is unclear. Here, we studied the effect of small molecule inhibitors of H3K9 methylation on FMR1 expression in FXS patient cells. Chaetocin showed a small effect on FMR1 gene reactivation and a synergistic effect on FMR1 mRNA levels when used in combination with AZA. Additionally, chaetocin, BIX01294 and 3-Deazaneplanocin A (DZNep) were able to significantly delay the re-silencing of AZA-reactivated FMR1 alleles. These data are consistent with the idea that H3K9 methylation precedes DNA methylation and that removal of DNA methylation is necessary to see the optimal effect of histone methyl-transferase (HMT) inhibitors on FMR1 gene expression. Nonetheless, our data also show that drugs targeting repressive H3K9 methylation marks are able to produce sustained reactivation of the FMR1 gene after a single dose of AZA.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
- Correspondence: ; Tel.: +01 301-594-5260
| | - Nicholas Sciascia
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA; (N.S.); (K.U.)
| |
Collapse
|
11
|
Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends Cancer 2020; 6:392-406. [PMID: 32348735 DOI: 10.1016/j.trecan.2020.02.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
DNA methylation is a stable epigenetic modification that contributes to the spatiotemporal regulation of gene expression. The manner in which DNA methylation contributes to transcriptional control is dependent on the biological context, including physiological state and the properties of the DNA itself. Classically, dense promoter DNA methylation is associated with transcriptional repression. However, growing evidence suggests that this association may not always hold true, and promoter hypermethylation now also appears to be associated with high transcriptional activity. Furthermore, in a selection of contexts, increasing levels of promoter methylation correlate directly with increased gene expression. These findings postulate a context-dependent model whereby epigenetic contributions to transcriptional regulation occur in a more complex and dynamic manner. We present current evidence documenting promoter hypermethylation and high levels of gene expression, offer insights into the possible mechanisms by which this occurs, and discuss the potential implications for both research and clinical applications.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Swapnoleena Sen
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 9016, Dunedin, New Zealand.
| |
Collapse
|
12
|
Onuzulu CD, Rotimi OA, Rotimi SO. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:309-325. [PMID: 31271561 DOI: 10.1515/reveh-2018-0059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwakemi Anuoluwapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| | - Solomon Oladapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
13
|
Banerjee M, Kulhari K, Saha TK. Assessment of DNA Methylation in p15, p16 and E-Cadherin Genes as a Screening Tool for Early Carcinoma Cervix. Indian J Clin Biochem 2019; 35:423-429. [PMID: 33013011 DOI: 10.1007/s12291-019-00837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/04/2019] [Indexed: 11/24/2022]
Abstract
Cancer cervix is diagnosed late in women due to anatomical inaccessibility of the area. Hence, a robust screening strategy will help detect carcinoma cervix early which will significantly decrease the mortality and morbidity due to this disease. We evaluated DNA methylation of three tumour suppressor genes p15, p16 and E-Cadherin on cervical smears to assess DNA methylation as a screening tool for detection of early cervical cancer in comparison to PAP smears. DNA was extracted from cervical smears of 20 cases and 30 controls. The DNA was bisulphite modified. Methylation specific PCR (MSP) was performed to assess the methylation status of the promoter region of each of the genes. MSP results were compared with PAP smears to assess the utility of DNA methylation of these genes in screening for cervical cancer. DNA methylation was detected in 55% subjects in p15 gene, 45% in p16 gene and 40% in E-Cadherin gene. This was statistically significant when compared to the controls. DNA methylation of E-Cadherin, and p15 genes as a panel has a sensitivity and specificity of 80% and 90% respectively, which is better than the sensitivity of PAP smear for detection of early cancer cervix. Increased DNA methylation is seen in p15, p16 and E-Cadherin genes in early cancer cervix. p15 and E-Cadherin in combination can be used as a screening tool for detection of early cancer cervix.
Collapse
Affiliation(s)
- M Banerjee
- All India Institute of Medical Sciences, Jodhpur, India
| | - K Kulhari
- Command Hospital Chandigarh, Chandimandir, India
| | - T K Saha
- Department of Biochemistry, Al Falah School of Medical Science and Research Centre, Faridabad, India
| |
Collapse
|
14
|
Deng X, Liu Z, Li X, Zhou Y, Hu Z. Generation of new hair cells by DNA methyltransferase (Dnmt) inhibitor 5-azacytidine in a chemically-deafened mouse model. Sci Rep 2019; 9:7997. [PMID: 31142766 PMCID: PMC6541592 DOI: 10.1038/s41598-019-44313-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/02/2019] [Indexed: 02/08/2023] Open
Abstract
Regeneration of mature mammalian inner ear hair cells remains to be a challenge. This study aims to evaluate the ability of DNA methyltransferase (Dnmt) inhibitor 5-azacytidine (5-aza) to generate outer hair cells (OHCs) in a chemically-deafened adult mouse model. 5-aza was administrated into the mouse inner ear via the round window. Immunofluorescence was used to examine the expression of hair cell specific proteins following 5-aza treatment. The results showed that in the chemically-deafened mouse cochlea, new OHCs were found post 5-aza treatment, whereas OHCs were completely lost in saline-treated mice. New hair cells expressed multiple hair cell markers included Myosin VIIa, Pou4f3 and Myosin VI. Newly-generated hair cells presented in three cochlear turns and were able to survive for at least six weeks. The effects of new hair cells generation by 5-aza were concentration dependent. Quantitative PCR study indicates that 5-aza may function through Dnmt1 inhibition. The results of this report suggest that the Dnmt inhibitor 5-aza may promote hair cell regeneration in a chemically-deafened mouse model.
Collapse
Affiliation(s)
- Xin Deng
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Zhenjie Liu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Xiaoyang Li
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Yang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, USA.
- John D. Dingell VA Medical Center, Detroit, Michigan, USA.
| |
Collapse
|
15
|
Ren W, Gao L, Song J. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes (Basel) 2018; 9:genes9120620. [PMID: 30544982 PMCID: PMC6316889 DOI: 10.3390/genes9120620] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation, one of the major epigenetic mechanisms, plays critical roles in regulating gene expression, genomic stability and cell lineage commitment. The establishment and maintenance of DNA methylation in mammals is achieved by two groups of DNA methyltransferases (DNMTs): DNMT3A and DNMT3B, which are responsible for installing DNA methylation patterns during gametogenesis and early embryogenesis, and DNMT1, which is essential for propagating DNA methylation patterns during replication. Both groups of DNMTs are multi-domain proteins, containing a large N-terminal regulatory region in addition to the C-terminal methyltransferase domain. Recent structure-function investigations of the individual domains or large fragments of DNMT1 and DNMT3A have revealed the molecular basis for their substrate recognition and specificity, intramolecular domain-domain interactions, as well as their crosstalk with other epigenetic mechanisms. These studies highlight a multifaceted regulation for both DNMT1 and DNMT3A/3B, which is essential for the precise establishment and maintenance of lineage-specific DNA methylation patterns in cells. This review summarizes current understanding of the structure and mechanism of DNMT1 and DNMT3A-mediated DNA methylation, with emphasis on the functional cooperation between the methyltransferase and regulatory domains.
Collapse
Affiliation(s)
- Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | - Linfeng Gao
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
16
|
Nag M, De Paris K, E Fogle J. Epigenetic Modulation of CD8⁺ T Cell Function in Lentivirus Infections: A Review. Viruses 2018; 10:v10050227. [PMID: 29710792 PMCID: PMC5977220 DOI: 10.3390/v10050227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
CD8+ T cells are critical for controlling viremia during human immunodeficiency virus (HIV) infection. These cells produce cytolytic factors and antiviral cytokines that eliminate virally- infected cells. During the chronic phase of HIV infection, CD8+ T cells progressively lose their proliferative capacity and antiviral functions. These dysfunctional cells are unable to clear the productively infected and reactivated cells, representing a roadblock in HIV cure. Therefore, mechanisms to understand CD8+ T cell dysfunction and strategies to boost CD8+ T cell function need to be investigated. Using the feline immunodeficiency virus (FIV) model for lentiviral persistence, we have demonstrated that CD8+ T cells exhibit epigenetic changes such as DNA demethylation during the course of infection as compared to uninfected cats. We have also demonstrated that lentivirus-activated CD4+CD25+ T regulatory cells induce forkhead box P3 (Foxp3) expression in virus-specific CD8+ T cell targets, which binds the interleukin (IL)-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ promoters in these CD8+ T cells. Finally, we have reported that epigenetic modulation reduces Foxp3 binding to these promoter regions. This review compares and contrasts our current understanding of CD8+ T cell epigenetics and mechanisms of lymphocyte suppression during the course of lentiviral infection for two animal models, FIV and simian immunodeficiency virus (SIV).
Collapse
Affiliation(s)
- Mukta Nag
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan E Fogle
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
17
|
Cheung NKM, Nakamura R, Uno A, Kumagai M, Fukushima HS, Morishita S, Takeda H. Unlinking the methylome pattern from nucleotide sequence, revealed by large-scale in vivo genome engineering and methylome editing in medaka fish. PLoS Genet 2017; 13:e1007123. [PMID: 29267279 PMCID: PMC5755920 DOI: 10.1371/journal.pgen.1007123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/05/2018] [Accepted: 11/23/2017] [Indexed: 11/17/2022] Open
Abstract
The heavily methylated vertebrate genomes are punctuated by stretches of poorly methylated DNA sequences that usually mark gene regulatory regions. It is known that the methylation state of these regions confers transcriptional control over their associated genes. Given its governance on the transcriptome, cellular functions and identity, genome-wide DNA methylation pattern is tightly regulated and evidently predefined. However, how is the methylation pattern determined in vivo remains enigmatic. Based on in silico and in vitro evidence, recent studies proposed that the regional hypomethylated state is primarily determined by local DNA sequence, e.g., high CpG density and presence of specific transcription factor binding sites. Nonetheless, the dependency of DNA methylation on nucleotide sequence has not been carefully validated in vertebrates in vivo. Herein, with the use of medaka (Oryzias latipes) as a model, the sequence dependency of DNA methylation was intensively tested in vivo. Our statistical modeling confirmed the strong statistical association between nucleotide sequence pattern and methylation state in the medaka genome. However, by manipulating the methylation state of a number of genomic sequences and reintegrating them into medaka embryos, we demonstrated that artificially conferred DNA methylation states were predominantly and robustly maintained in vivo, regardless of their sequences and endogenous states. This feature was also observed in the medaka transgene that had passed across generations. Thus, despite the observed statistical association, nucleotide sequence was unable to autonomously determine its own methylation state in medaka in vivo. Our results apparently argue against the notion of the governance on the DNA methylation by nucleotide sequence, but instead suggest the involvement of other epigenetic factors in defining and maintaining the DNA methylation landscape. Further investigation in other vertebrate models in vivo will be needed for the generalization of our observations made in medaka. The genomes of vertebrate animals are naturally and extensively modified by methylation. The DNA methylation is essential to normal functions of cells, hence the whole animal, since it governs gene expression. Defects in the establishment and maintenance of proper methylation pattern are commonly associated with various developmental abnormalities and diseases. How exactly is the normal pattern defined in vertebrate animals is not fully understood, but recent researches with computational analyses and cultured cells suggested that DNA sequence is a primary determinant of the methylation pattern. This study encompasses the first experiments that rigorously test this notion in whole animal (medaka fish). In statistical sense, we observed the very strong correlation between DNA sequence and methylation state. However, by introducing unmethylated and artificially methylated native genomic DNA sequences into the genome, we demonstrated that the artificially conferred methylation states were robustly maintained in the animal, independent of the sequence and native state. Our results thus demonstrate that genome-wide DNA methylation pattern is not autonomously determined by the DNA sequence, which underpins the vital role of DNA methylation pattern as a core epigenetic element.
Collapse
Affiliation(s)
- Napo K M Cheung
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ayako Uno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahiko Kumagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroto S Fukushima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
18
|
Mimura I, Tanaka T, Nangaku M. New insights into molecular mechanisms of epigenetic regulation in kidney disease. Clin Exp Pharmacol Physiol 2017; 43:1159-1167. [PMID: 27560313 DOI: 10.1111/1440-1681.12663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 08/12/2016] [Accepted: 08/21/2016] [Indexed: 12/11/2022]
Abstract
The number of patients with kidney failure has increased in recent years. Different factors contribute to the progression of chronic kidney disease, including glomerular sclerosis, atherosclerosis of the renal arteries and tubulointerstitial fibrosis. Tubulointerstitial injury is induced by hypoxia and other inflammatory signals, leading to fibroblast activation. Technological advances using high-throughput sequencing has enabled the determination of the expression profile of almost all genes, revealing that gene expression is intricately regulated by DNA methylation, histone modification, changes in chromosome conformation, long non-coding RNAs and microRNAs. These epigenetic modifications are stored as cellular epigenetic memory. Epigenetic memory leads to adult-onset disease or ageing in the long term and may possibly play an important role in the kidney disease process. Herein we emphasize the importance of clarifying the molecular mechanisms underlying epigenetic modifications because this may lead to the development of new therapeutic targets in kidney disease.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Zhao H, Wang L, Li W, Zhai S, Jiang W. Ultrasensitive and Accurate Assay of Human Methyltransferase Activity at the Single-Cell Level Based on a Single Integrated Magnetic Microprobe. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29554-29561. [PMID: 28812361 DOI: 10.1021/acsami.7b09631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human DNA methyltransferase (MTase) activity expression patterns and inhibition response are linked to related cancer initiation, progression, and therapeutic responses. Sensitive and accurate human MTase activity assay in cancer cells, especially at the single-cell level, is essential for biological study, clinical diagnosis, and therapy. Here, we developed an ultrasensitive and accurate DNA (cytosine-5)-methyltransferase 1 (Dnmt1) activity assay at the single-cell level based on a single integrated magnetic microprobe of functionalized double-stranded DNA (dsDNA) anchored to a single magnetic microbead surface. Functionalized dsDNA is designed with a hemimethylated DNA site for Dnmt1 recognition and a single-stranded tail to trigger in situ rolling circle amplification (RCA). Under the action of Dnmt1, hemimethylated dsDNA could be recognized and catalyzed to fully methylated dsDNA, which would protect them from the cleavage of BssHII. However, the dsDNA without full methylation would be cut by BssHII, making single-stranded tail separated from the single integrated microprobe. Subsequently, full methylation-protected in situ RCA could be performed, and multiple signal probes were hybridized to the single integrated microprobe for amplified signal accumulation. Finally, Dnmt1 activity could be evaluated by reading the fluorescence of the single integrated microprobe. Meanwhile, to minimize matrix interferences, magnetic separation was performed in the process. In this strategy, the single integrated magnetic microprobe was provided with integrated capacities of target recognition, signal amplification, signal accumulation, and matrix isolation. Therefore, an ultralow detection limit of 0.007 U/mL Dnmt1 was obtained, and accurate Dnmt1 activity assays in multiple cell lysates at the single-cell level were achieved. Furthermore, the inhibition effect of RG108 was evaluated conveniently. These results indicate that the single integrated magnetic microprobe-based strategy is an excellent candidate for sensitive monitoring of Dnmt1 activity and screening of anticancer drugs.
Collapse
Affiliation(s)
- Haiyan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong University , Jinan 250012, China
| | - Weiqi Li
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Shumei Zhai
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| |
Collapse
|
20
|
p53 is essential for DNA methylation homeostasis in naïve embryonic stem cells, and its loss promotes clonal heterogeneity. Genes Dev 2017; 31:959-972. [PMID: 28607180 PMCID: PMC5495125 DOI: 10.1101/gad.299198.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/22/2017] [Indexed: 01/24/2023]
Abstract
In this study, Tovy et al. investigated p53's contributions to epigenetic regulation and stem cell biology and showed that, in naïve mouse ESCs (mESCs), p53 restricts the expression of the de novo DNA methyltransferases Dnmt3a and Dnmt3b while up-regulating Tet1 and Tet2, which promote DNA demethylation. Their findings provide insight into a new role for p53 in maintaining DNA methylation homeostasis and clonal homogeneity in ESCs. DNA methylation is a key regulator of embryonic stem cell (ESC) biology, dynamically changing between naïve, primed, and differentiated states. The p53 tumor suppressor is a pivotal guardian of genomic stability, but its contributions to epigenetic regulation and stem cell biology are less explored. We report that, in naïve mouse ESCs (mESCs), p53 restricts the expression of the de novo DNA methyltransferases Dnmt3a and Dnmt3b while up-regulating Tet1 and Tet2, which promote DNA demethylation. The DNA methylation imbalance in p53-deficient (p53−/−) mESCs is the result of augmented overall DNA methylation as well as increased methylation landscape heterogeneity. In differentiating p53−/− mESCs, elevated methylation persists, albeit more mildly. Importantly, concomitant with DNA methylation heterogeneity, p53−/− mESCs display increased cellular heterogeneity both in the “naïve” state and upon induced differentiation. This impact of p53 loss on 5-methylcytosine (5mC) heterogeneity was also evident in human ESCs and mouse embryos in vivo. Hence, p53 helps maintain DNA methylation homeostasis and clonal homogeneity, a function that may contribute to its tumor suppressor activity.
Collapse
|
21
|
Kalanoor B, Ronen M, Oren Z, Gerber D, Tischler YR. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer. ACS OMEGA 2017; 2:1232-1240. [PMID: 28393138 PMCID: PMC5377281 DOI: 10.1021/acsomega.6b00547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/14/2017] [Indexed: 05/04/2023]
Abstract
The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.
Collapse
Affiliation(s)
- Basanth
S. Kalanoor
- Department
of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology
and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maria Ronen
- Mina and Everard Goodman Faculty
of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology
and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ziv Oren
- Mina and Everard Goodman Faculty
of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Department
of Biotechnology, Israel Institute of Biological
Research, Nes-Ziona 7410001, Israel
| | - Doron Gerber
- Mina and Everard Goodman Faculty
of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology
and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- E-mail: (D.G.)
| | - Yaakov R. Tischler
- Department
of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology
and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- E-mail: (Y.R.T.)
| |
Collapse
|
22
|
Lin S, Kang TS, Lu L, Wang W, Ma DL, Leung CH. A G-quadruplex-selective luminescent probe with an anchor tail for the switch-on detection of thymine DNA glycosylase activity. Biosens Bioelectron 2016; 86:849-857. [DOI: 10.1016/j.bios.2016.07.082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/23/2016] [Accepted: 07/23/2016] [Indexed: 11/25/2022]
|
23
|
Zhang H, Dong H, Yang G, Chen H, Cai C. Sensitive Electrochemical Detection of Human Methyltransferase Based on a Dual Signal Amplification Strategy Coupling Gold Nanoparticle–DNA Complexes with Ru(III) Redox Recycling. Anal Chem 2016; 88:11108-11114. [DOI: 10.1021/acs.analchem.6b03163] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Zhang
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Huilei Dong
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Guoqing Yang
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Hongfei Chen
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| | - Chenxin Cai
- Jiangsu
Key Laboratory of
New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical
Functional Materials, Jiangsu Key Laboratory of Biomedical Materials,
National and Local Joint Engineering Research Center of Biomedical
Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China
| |
Collapse
|
24
|
Moon SY, Eun HJ, Baek SK, Jin SJ, Kim TS, Kim SW, Seong HH, Choi IC, Lee JH. Activation-Induced Cytidine Deaminase Induces DNA Demethylation of Pluripotency Genes in Bovine Differentiated Cells. Cell Reprogram 2016; 18:298-308. [DOI: 10.1089/cell.2015.0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Song-Yi Moon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye-Ju Eun
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Jin Jin
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Republic of Korea
| | - Sung-Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - Hwan-Hoo Seong
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - In-Chul Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Republic of Korea
| |
Collapse
|
25
|
AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair. DNA Repair (Amst) 2016; 43:89-97. [PMID: 27183823 DOI: 10.1016/j.dnarep.2016.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/21/2016] [Indexed: 01/14/2023]
Abstract
Dynamics of DNA methylation and demethylation at CpG clusters are involved in gene regulation. CpG clusters have been identified as hot spots of mutagenesis because of their susceptibility to oxidative DNA damage. Damaged Cs and Gs at CpGs can disrupt a normal DNA methylation pattern through modulation of DNA methylation and demethylation, leading to mutations and deregulation of gene expression. DNA base excision repair (BER) plays a dual role of repairing oxidative DNA damage and mediating an active DNA demethylation pathway on CpG clusters through removal of a T/G mismatch resulting from deamination of a 5mC adjacent to a guanine that can be simultaneously damaged by oxidative stress. However, it remains unknown how BER processes clustered lesions in CpGs and what are the consequences from the repair of these lesions. In this study, we examined BER of an abasic lesion next to a DNA demethylation intermediate, the T/G mismatch in a CpG dinucleotide, and its effect on the integrity of CpGs. Surprisingly, we found that the abasic lesion completely abolished the activity of thymine DNA glycosylase (TDG) for removing the mismatched T. However, we found that APE1 could still efficiently incise the abasic lesion leaving a 3-terminus mismatched T, which was subsequently extended by pol β. This in turn resulted in a C to T transition mutation. Interestingly, we also found that APE1 3'-5' exonuclease activity efficiently removed the mismatched T, thereby preventing pol β extension of the mismatched nucleotide and the resulting mutation. Our results demonstrate a crucial role of APE1 3'-5' exonuclease activity in combating mutations in CpG clusters caused by an intermediate of DNA demethylation during BER.
Collapse
|
26
|
Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus. Comp Biochem Physiol B Biochem Mol Biol 2016; 192:21-9. [DOI: 10.1016/j.cbpb.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
|
27
|
Bellacosa A, Drohat AC. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair (Amst) 2015; 32:33-42. [PMID: 26021671 DOI: 10.1016/j.dnarep.2015.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G · T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, United States.
| |
Collapse
|
28
|
Yin H, Yang Z, Li B, Zhou Y, Ai S. Electrochemical biosensor for DNA demethylase detection based on demethylation triggered endonuclease BstUI and Exonuclease III digestion. Biosens Bioelectron 2014; 66:266-70. [PMID: 25437362 DOI: 10.1016/j.bios.2014.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022]
Abstract
Herein, an electrochemical biosensor was fabricated for DNA demethylase detection based on DNA demethylation triggered endonuclease BstUI and Exonuclease III digestion. After the double-strand DNA was demethylated, it can be further digested by BstUI and formed a blunt end at the electrode surface. Then, the remained fragment of DNA-DNA duplex was further cleaved by exonuclease III and led to increased electrochemical signal. Based on this detection strategy, the biosensor showed high sensitivity with low detection limit of 0.15ng/mL. Moreover, the developed method also presented high selectivity and acceptable reproducibility. This work provides a novel detection platform for DNA demethylase detection.
Collapse
Affiliation(s)
- Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, PR China
| | - Zhiqing Yang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, PR China
| | - Bingchen Li
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, PR China.
| |
Collapse
|
29
|
Ronen M, Avrahami D, Gerber D. A sensitive microfluidic platform for a high throughput DNA methylation assay. LAB ON A CHIP 2014; 14:2354-2362. [PMID: 24841578 DOI: 10.1039/c4lc00150h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
DNA methylation is an epigenetic modification essential for normal development and maintenance of somatic biological functions. DNA methylation provides heritable, long-term chromatin regulation and the aberrant methylation pattern is associated with complex diseases including cancer. Discovering novel therapeutic targets demands development of high-throughput, sensitive and inexpensive screening platforms for libraries of chemical or biological matter involved in DNA methylation establishment and maintenance. Here, we present a universal, high-throughput, microfluidic-based fluorometric assay for studying DNA methylation in vitro. The enzymatic activity of bacterial HPAII DNA methyltransferase and its kinetic properties are measured using the assay (K(m)(DNA) = 5.8 nM, K(m)(SAM) = 9.8 nM and Kcat = 0.04 s(-1)). Using the same platform, we then demonstrate a two-step approach for high-throughput in vitro identification and characterization of small molecule inhibitors of methylation. The approach is examined using known non-nucleoside inhibitors, SGI-1027 and RG108, for which we measured IC50 of 4.5 μM and 87.5 nM, respectively. The dual role of the microfluidic-based methylation assay both for the quantitative characterization of enzymatic activity and high-throughput screening of non-nucleoside inhibitors coupled with quantitative characterization of the inhibition potential highlights the advantages of our system for epigenetic studies.
Collapse
Affiliation(s)
- Maria Ronen
- The Mina & Everard Goodman Faculty of Life Sciences, The Nanotechnology Institute, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | | | |
Collapse
|
30
|
Pereyra-Bonnet F, Gimeno ML, Argumedo NR, Ielpi M, Cardozo JA, Giménez CA, Hyon SH, Balzaretti M, Loresi M, Fainstein-Day P, Litwak LE, Argibay PF. Skin fibroblasts from patients with type 1 diabetes (T1D) can be chemically transdifferentiated into insulin-expressing clusters: a transgene-free approach. PLoS One 2014; 9:e100369. [PMID: 24963634 PMCID: PMC4070975 DOI: 10.1371/journal.pone.0100369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/27/2014] [Indexed: 01/18/2023] Open
Abstract
The conversion of differentiated cells into insulin-producing cells is a promising approach for the autologous replacement of pancreatic cells in patients with type 1 diabetes (T1D). At present, cellular reprogramming strategies encompass ethical problems, epigenetic failure or teratoma formation, which has prompted the development of new approaches. Here, we report a novel technique for the conversion of skin fibroblasts from T1D patients into insulin-expressing clusters using only drug-based induction. Our results demonstrate that skin fibroblasts from diabetic patients have pancreatic differentiation capacities and avoid the necessity of using transgenic strategies, stem cell sources or global demethylation steps. These findings open new possibilities for studying diabetes mechanisms, drug screenings and ultimately autologous transgenic-free regenerative medicine therapies in patients with T1D.
Collapse
Affiliation(s)
- Federico Pereyra-Bonnet
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
- * E-mail:
| | - María L. Gimeno
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Nelson R. Argumedo
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Marcelo Ielpi
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Johana A. Cardozo
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Carla A. Giménez
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Sung-Ho Hyon
- General Surgery Service, HIBA, Buenos Aires, Argentina
| | - Marta Balzaretti
- Endocrinology and Nuclear Medicine Service, HIBA, Buenos Aires, Argentina
| | - Mónica Loresi
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | | | - León E. Litwak
- Endocrinology and Nuclear Medicine Service, HIBA, Buenos Aires, Argentina
| | - Pablo F. Argibay
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| |
Collapse
|
31
|
Sassa A, Çağlayan M, Dyrkheeva NS, Beard WA, Wilson SH. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J Biol Chem 2014; 289:13996-4008. [PMID: 24695738 DOI: 10.1074/jbc.m114.557769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3'-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5'-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase β activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide.
Collapse
Affiliation(s)
- Akira Sassa
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Melike Çağlayan
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Nadezhda S Dyrkheeva
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - William A Beard
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Samuel H Wilson
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| |
Collapse
|
32
|
Wen AY, You F, Sun P, Li J, Xu DD, Wu ZH, Ma DY, Zhang PJ. CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. JOURNAL OF FISH BIOLOGY 2014; 84:193-205. [PMID: 24372528 DOI: 10.1111/jfb.12277] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 10/11/2013] [Indexed: 06/03/2023]
Abstract
To better understand the effects of DNA methylation on the expression patterns of dmrt1 (Doublesex and Mab-3-related transcription factor 1) and cyp19a (Cytochrome P450 19a) in the Japanese flounder Paralichthys olivaceus, quantitative expressions, cellular distributions and cytosine-p-guanine (CpG) methylation patterns of these two genes in the gonads were analysed. The results showed that P. olivaceus dmrt1 expression was 70 times higher in the testis than in the ovary (P < 0·05). Its mRNA was detected clearly in spermatocytes and Sertoli cells of the testis, but weakly in the ovary. Paralichthys olivaceus cyp19a expression was 40 times higher in the ovary than in the testis (P < 0·01). Its mRNA was detected clearly in follicular cells of the ovary, but weakly in spermatocytes of the testis. The dmrt1 promoter CpGs were not methylated in the testis, whereas 57·69% were methylated in the ovary. For the cyp19a promoter CpGs, 97·5% were methylated in the testis and 73·33% were methylated in the ovary. These findings demonstrate that P. olivaceus dmrt1 and cyp19a are sex-related genes with sexual dimorphic expression, CpG methylation levels of the two genes are consistent with their expression quantities, and this epigenetic modification can influence the differential expression of genes in the gonads of P. olivaceus.
Collapse
Affiliation(s)
- A Y Wen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, People's Republic of China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li J, Braganza A, Sobol RW. Base excision repair facilitates a functional relationship between Guanine oxidation and histone demethylation. Antioxid Redox Signal 2013; 18:2429-43. [PMID: 23311711 PMCID: PMC3671628 DOI: 10.1089/ars.2012.5107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. RECENT ADVANCES The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. CRITICAL ISSUES One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. FUTURE DIRECTIONS To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
34
|
Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol 2013; 20:274-81. [PMID: 23463312 DOI: 10.1038/nsmb.2518] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation is an epigenetic mark that is erased in the early embryo and then re-established at the time of implantation. In this Review, dynamics of DNA methylation during normal development in vivo are discussed, starting from fertilization through embryogenesis and postnatal growth, as well as abnormal methylation changes that occur in cancer.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| | | |
Collapse
|
35
|
Abstract
DNA methylation has long been considered a very stable DNA modification in mammals that could only be removed by replication in the absence of remethylation - that is, by mere dilution of this epigenetic mark (so-called passive DNA demethylation). However, in recent years, a significant number of studies have revealed the existence of active processes of DNA demethylation in mammals, with important roles in development and transcriptional regulation, allowing the molecular mechanisms of active DNA demethylation to be unraveled. In this article, we review the recent literature highlighting the prominent role played in active DNA demethylation by base excision repair and especially by TDG.
Collapse
Affiliation(s)
- Shannon R Dalton
- Cancer Biology Program, Epigenetics & Progenitor Cells Program, Fox Chase Cancer Center, PA 19111, USA
| | | |
Collapse
|
36
|
Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17266-72. [PMID: 23045659 DOI: 10.1073/pnas.1121260109] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Early life experience is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. However, it is unlikely that such effects completely capture the evolutionarily conserved epigenetic mechanisms of early adaptation to environment. Here we present DNA methylation profiles spanning 6.5 million base pairs centered at the NR3C1 gene in the hippocampus of humans who experienced abuse as children and nonabused controls. We compare these profiles to corresponding DNA methylation profiles in rats that received differential levels of maternal care. The profiles of both species reveal hundreds of DNA methylation differences associated with early life experience distributed across the entire region in nonrandom patterns. For instance, methylation differences tend to cluster by genomic location, forming clusters covering as many as 1 million bases. Even more surprisingly, these differences seem to specifically target regulatory regions such as gene promoters, particularly those of the protocadherin α, β, and γ gene families. Beyond these high-level similarities, more detailed analyses reveal methylation differences likely stemming from the significant biological and environmental differences between species. These results provide support for an analogous cross-species epigenetic regulatory response at the level of the genomic region to early life experience.
Collapse
|
37
|
Diederich M, Hansmann T, Heinzmann J, Barg-Kues B, Herrmann D, Aldag P, Baulain U, Reinhard R, Kues W, Weißgerber C, Haaf T, Niemann H. DNA methylation and mRNA expression profiles in bovine oocytes derived from prepubertal and adult donors. Reproduction 2012; 144:319-30. [DOI: 10.1530/rep-12-0134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The developmental capacity of oocytes from prepubertal cattle is reduced compared with their adult counterparts, and epigenetic mechanisms are thought to be involved herein. Here, we analyzed DNA methylation in three developmentally important, nonimprinted genes (SLC2A1, PRDX1, ZAR1) and two satellite sequences, i.e. ‘bovine testis satellite I’ (BTS) and ‘Bos taurus alpha satellite I’ (BTαS). In parallel, mRNA expression of the genes was determined by quantitative real-time PCR. Oocytes were retrieved from prepubertal calves and adult cows twice per week over a 3-week period by ultrasound-guided follicular aspiration after treatment with FSH and/or IGF1. Both immature and in vitro matured prepubertal and adult oocytes showed a distinct hypomethylation profile of the three genes without differences between the two types of donors. The methylation status of the BTS sequence changed according to the age and treatment while the methylation status of BTαS sequence remained largely unchanged across the different age and treatment groups. Relative transcript abundance of the selected genes was significantly different in immature and in vitro matured oocytes; only minor changes related to origin and treatment were observed. In conclusion, methylation levels of the investigated satellite sequences were high (>50%) in all groups and showed significant variation depending on the age, treatment, or in vitro maturation. To what extent this is involved in the acquisition of developmental competence of bovine oocytes needs further study.
Collapse
|
38
|
Abstract
Recently, 5-hydroxymethylcytosine (5-hmC), the 6th base of DNA, was discovered as the product of the hydroxylation of 5-methylcytosine (5-mC) by the ten-eleven translocation (TET) oncogene family members. One of them, TET oncogene family member 2 (TET2), is mutated in a variety of myeloid malignancies, including in 15% of myeloproliferative neoplasms (MPNs). Recent studies tried to go further into the biological and epigenetic function of TET2 protein and 5-hmC marks in the pathogenesis of myeloid malignancies. Although its precise function remains partially unknown, TET2 appears to be an important regulator of hematopoietic stem cell biology. In both mouse and human cells, its inactivation leads to a dramatic deregulation of hematopoiesis that ultimately triggers blood malignancies. Understanding this leukemogenic process will provide tools to develop new epigenetic therapies against blood cancers.
Collapse
Affiliation(s)
- Elodie Pronier
- Institut National de la Santé et de la Recherche Médicale, UMR 1009, Institut Gustave Roussy, Université Paris Sud (Paris 11), Villejuif, France
| | | |
Collapse
|
39
|
Raynal NJM, Si J, Taby RF, Gharibyan V, Ahmed S, Jelinek J, Estécio MRH, Issa JPJ. DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory. Cancer Res 2012; 72:1170-81. [PMID: 22219169 DOI: 10.1158/0008-5472.can-11-3248] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation is commonly thought of as a "molecular lock" that leads to permanent gene silencing. To investigate this notion, we tested 24 different histone deacetylase inhibitors (HDACi) on colon cancer cells that harbor a GFP locus stably integrated and silenced by a hypermethylated cytomegalovirus (CMV) promoter. We found that HDACi efficiently reactivated expression of GFP and many other endogenous genes silenced by DNA hypermethylation. After treatment, all promoters were marked with active chromatin, yet DNA hypermethylation did not change. Thus, DNA methylation could not prevent gene reactivation by drug-induced resetting of the chromatin state. In evaluating the relative contribution of DNA methylation and histone modifications to stable gene silencing, we followed expression levels of GFP and other genes silenced by DNA hypermethylation over time after treatment with HDACi or DNA-demethylating drugs. Reactivation of methylated loci by HDACi was detectable for only 2 weeks, whereas DNA-demethylating drugs induced permanent epigenetic reprogramming. Therefore, DNA methylation cannot be considered as a lock for gene expression but rather as a memory signal for long-term maintenance of gene silencing. These findings define chromatin as an important druggable target for cancer epigenetic therapy and suggest that removal of DNA methylation signals is required to achieve long-term gene reactivation.
Collapse
Affiliation(s)
- Noël J-M Raynal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
CpG methylation at the USF-binding site mediates cell-specific transcription of human ascorbate transporter SVCT2 exon 1a. Biochem J 2011; 440:73-84. [PMID: 21770893 DOI: 10.1042/bj20110392] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SVCT2 (sodium-vitamin C co-transporter 2) is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In the present study, we mapped discrete elements within the proximal CpG-poor promoter responsible for exon 1a transcription. We identified two E boxes for USF (upstream stimulating factor) binding and one Y box for NF-Y (nuclear factor Y) binding. We show further that NF-Y and USF bind to the exon 1a promoter in a co-operative manner, amplifying the binding of each to the promoter, and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF-binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that exon 1a transcription was induced in cell culture treated with the demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y-USF complex as well as promoter activity, suggesting its importance for cell-specific transcription. Thus CpG methylation at the upstream USF-binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter.
Collapse
|
41
|
Lim SF, Karpusenko A, Sakon JJ, Hook JA, Lamar TA, Riehn R. DNA methylation profiling in nanochannels. BIOMICROFLUIDICS 2011; 5:34106-341068. [PMID: 21869910 PMCID: PMC3161501 DOI: 10.1063/1.3613671] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/24/2011] [Indexed: 05/17/2023]
Abstract
We report the profiling of the 5-methyl cytosine distribution within single genomic-sized DNA molecules at a gene-relevant resolution. This method linearizes and stretches DNA molecules by confinement to channels with a dimension of about 250×200 nm(2). The methylation state is detected using fluorescently labeled methyl-CpG binding domain proteins (MBD), with high signal contrast and low background. DNA barcodes consisting of methylated and non-methylated segments are generated, with both short and long concatemers demonstrating spatially resolved MBD binding. The resolution of the technique is better than 10 kbp, and single-molecule read-lengths exceeding 140 kbp have been achieved.
Collapse
Affiliation(s)
- Shuang Fang Lim
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | |
Collapse
|
42
|
Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, Abramowitz LK, Bartolomei MS, Rambow F, Bassi MR, Bruno T, Fanciulli M, Renner C, Klein-Szanto AJ, Matsumoto Y, Kobi D, Davidson I, Alberti C, Larue L, Bellacosa A. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011; 146:67-79. [PMID: 21722948 DOI: 10.1016/j.cell.2011.06.020] [Citation(s) in RCA: 595] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/17/2011] [Accepted: 06/12/2011] [Indexed: 01/19/2023]
Abstract
DNA methylation is a major epigenetic mechanism for gene silencing. Whereas methyltransferases mediate cytosine methylation, it is less clear how unmethylated regions in mammalian genomes are protected from de novo methylation and whether an active demethylating activity is involved. Here, we show that either knockout or catalytic inactivation of the DNA repair enzyme thymine DNA glycosylase (TDG) leads to embryonic lethality in mice. TDG is necessary for recruiting p300 to retinoic acid (RA)-regulated promoters, protection of CpG islands from hypermethylation, and active demethylation of tissue-specific developmentally and hormonally regulated promoters and enhancers. TDG interacts with the deaminase AID and the damage response protein GADD45a. These findings highlight a dual role for TDG in promoting proper epigenetic states during development and suggest a two-step mechanism for DNA demethylation in mammals, whereby 5-methylcytosine and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-hydroxymethyluracil, respectively, followed by TDG-mediated thymine and 5-hydroxymethyluracil excision repair.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Cancer Biology Program and Epigenetics and Progenitor Cells Keystone Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ballestar E. An Introduction to Epigenetics. EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:1-11. [DOI: 10.1007/978-1-4419-8216-2_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Koslowski M, Luxemburger U, Türeci Ö, Sahin U. Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1α. Oncogene 2010; 30:876-82. [DOI: 10.1038/onc.2010.481] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Xu T, Yao F, Zhou X, Deng Z, You D. A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res 2010; 38:7133-41. [PMID: 20627870 PMCID: PMC2978375 DOI: 10.1093/nar/gkq610] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel, site-specific, DNA backbone S-modification (phosphorothioation) has been discovered, but its in vivo function(s) have remained obscure. Here, we report that the enteropathogenic Salmonella enterica serovar Cerro 87, which possesses S-modified DNA, restricts DNA isolated from Escherichia coli, while protecting its own DNA by site-specific phosphorothioation. A cloned 15-kb gene cluster from S. enterica conferred both host-specific restriction and DNA S-modification on E. coli. Mutational analysis of the gene cluster proved unambiguously that the S-modification prevented host-specific restriction specified by the same gene cluster. Restriction activity required three genes in addition to at least four contiguous genes necessary for DNA S-modification. This functional overlap ensures that restriction of heterologous DNA occurs only when the host DNA is protected by phosphorothioation. Meanwhile, this novel type of host-specific restriction and modification system was identified in many diverse bacteria. As in the case of methylation-specific restriction systems, targeted inactivation of this gene cluster should facilitate genetic manipulation of these bacteria, as we demonstrate in Salmonella.
Collapse
Affiliation(s)
- Tiegang Xu
- Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | |
Collapse
|
46
|
Thu KL, Pikor LA, Kennett JY, Alvarez CE, Lam WL. Methylation analysis by DNA immunoprecipitation. J Cell Physiol 2010; 222:522-31. [PMID: 20020444 DOI: 10.1002/jcp.22009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methylation regulates gene expression primarily through modification of chromatin structure. Global methylation studies have revealed biologically relevant patterns of DNA methylation in the human genome affecting sequences such as gene promoters, gene bodies, and repetitive elements. Disruption of normal methylation patterns and subsequent gene expression changes have been observed in several diseases especially in human cancers. Immunoprecipitation (IP)-based methods to evaluate methylation status of DNA have been instrumental in such genome-wide methylation studies. This review describes techniques commonly used to identify and quantify methylated DNA with emphasis on IP based platforms. In an effort to consolidate the wealth of information and highlight critical aspects of methylated DNA analysis, sample considerations, experimental and bioinformatic approaches for analyzing genome-wide methylation profiles, and the benefit of integrating DNA methylation data with complementary dimensions of genomic data are discussed.
Collapse
Affiliation(s)
- Kelsie L Thu
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | |
Collapse
|
47
|
Warncke S, Gégout A, Carell T. Phosphorothioation of oligonucleotides strongly influences the inhibition of bacterial (M.HhaI) and human (Dnmt1) DNA methyltransferases. Chembiochem 2009; 10:728-34. [PMID: 19222038 DOI: 10.1002/cbic.200800798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Methyltransferase inhibitors: Short double-stranded oligonucleotides that have a hemimethylated target sequence and 5-fluoro-2'-deoxycytidine as a suicide inhibitor as well as their phosphorothioated analogues were tested for their ability to inhibit the bacterial methyltransferase M.HhaI and the human Dnmt1 in vitro.The cytidine analogue 5-fluoro-2'-deoxycytidine (dC(F)) is a mechanism-based inhibitor of DNA methyltransferases. We report the synthesis of short 18-mer dsDNA oligomers containing a triple-hemimethylated CpG motive as a recognition sequence for the human methyltransferase Dnmt1. The DNA strands carry within these CpG islands dC(F) building blocks that function as mechanism-based inhibitors of the analyzed methyltransferases. In addition, we replaced the phosphodiester backbones at defined positions by phosphorothioates. These hypermodified DNA strands were investigated as inhibitors of the DNA methyltransferases M.HhaI and Dnmt1 in vitro. We could show that both methylases behave substantially differently in respect to the amount of DNA backbone modification.
Collapse
Affiliation(s)
- Simon Warncke
- Center for Integrative Protein Science, Department for Chemistry and Biochemistry, Ludwig-Maximilians University Munich, Butenandtstrasse 5-13, Munich, Germany
| | | | | |
Collapse
|
48
|
A Changing Epigenome in Health and Disease. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Tian K, Wang Y, Huang Y, Sun B, Li Y, Xu H. Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression. BMC Cancer 2008; 8:327. [PMID: 18992151 PMCID: PMC2588621 DOI: 10.1186/1471-2407-8-327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 11/07/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells. METHODS To further confirm WTH3's drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the WTH3 promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the p53 transcription factor relative to WTH3 expression. To do so, the in vitro methylation method was utilized to examine the p53 transgene's influence on either the methylated or non-methylated WTH3 promoter. RESULTS The results generated from the gene knockdown strategy showed that reduction of WTH3 expression increased MDR1 expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of p53 on WTH3 promoter activity. CONCLUSION Taken together, our studies provided further evidence that WTH3 played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized p53's positive impact on WTH3 expression.
Collapse
Affiliation(s)
- Kegui Tian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 2008; 44:35, 37, 39 passim. [PMID: 18254377 DOI: 10.2144/000112708] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
One of the most challenging projects in the field of epigenetics is the generation of detailed functional maps of DNA methylation in different cell and tissue types in normal and disease-associated conditions. This information will help us not only understand the role of DNA methylation but also identify targets for therapeutic treatment. The completion of the various epigenome projects depends on the design of novel strategies to survey and generate detailed cartograms of the DNA methylome. Methyl-DNA immunoprecipitation (MeDIP) assays, in combination with hybridization on high-resolution microarrays or high-throughput sequencing (HTS) techniques, are excellent methods for identifying methylated CpG-rich sequences. We provide a critical overview of different genome-wide techniques for DNA methylation analysis and propose that MeDIP assays may constitute a key method for elucidating the hypermethylome of cancer cells.
Collapse
|