1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Toshima JY, Toshima J. Transport mechanisms between the endocytic, recycling, and biosynthetic pathways via endosomes and the trans-Golgi network. Front Cell Dev Biol 2024; 12:1464337. [PMID: 39291266 PMCID: PMC11405242 DOI: 10.3389/fcell.2024.1464337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
After the endocytic and biosynthetic pathway converge, they partially share the route to the lysosome/vacuole. Similarly, the endocytic recycling and secretory pathways also partially share the route to the plasma membrane. The interaction of these transport pathways is mediated by endosomes and the trans-Golgi network (TGN), which act as sorting stations in endocytic and biosynthesis pathway, and endosomes has a bidirectional transport to and from the TGN. In mammalian cells endosomes can be largely classified as early/sorting, late, and recycling endosomes, based on their morphological features and localization of Rab family proteins, which are key factors in vesicular trafficking. However, these endosomes do not necessarily represent specific compartments that are comparable among different species. For instance, Rab5 localizes to early endosomes in mammalian cells but is widely localized to early-to-late endosomes in yeast, and to pre-vacuolar endosomes and the TGN in plant cells. The SNARE complexes are also key factors widely conserved among species and localized specifically to the endosomal membrane, but the localization of respective homologs is not necessarily consistent among species. These facts suggest that endosomes should be classified more inclusively across species. Here we reconsider the mammalian endosome system based on findings in budding yeast and other species and discuss the differences and similarities between them.
Collapse
Affiliation(s)
- Junko Y Toshima
- School of Health Science, Tokyo University of Technology, Tokyo, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
4
|
Kumar K, Basak R, Rai A, Mukhopadhyay A. GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Mol Microbiol 2024; 121:1063-1078. [PMID: 38558112 DOI: 10.1111/mmi.15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Kamal Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aakansha Rai
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
5
|
Słońska A, Miedzińska A, Chodkowski M, Bąska P, Mielnikow A, Bartak M, Bańbura MW, Cymerys J. Human Adenovirus Entry and Early Events during Infection of Primary Murine Neurons: Immunofluorescence Studies In Vitro. Pathogens 2024; 13:158. [PMID: 38392896 PMCID: PMC10892902 DOI: 10.3390/pathogens13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Human adenovirus (HAdV) is a common pathogen, which can lead to various clinical symptoms and-in some cases-central nervous system (CNS) dysfunctions, such as encephalitis and meningitis. Although the initial events of virus entry have already been identified in various cell types, the mechanism of neuronal uptake of adenoviruses is relatively little understood. The aim of this study was to investigate early events during adenoviral infection, in particular to determine the connection between cellular coxsackievirus and adenovirus receptor (CAR), clathrin, caveolin, and early endosomal proteins (EEA1 and Rab5) with the entry of HAdVs into primary murine neurons in vitro. An immunofluorescence assay and confocal microscopy analysis were carried out to determine HAdV4, 5, and 7 correlation with CAR, clathrin, caveolin, and early endosomal proteins in neurons. The quantification of Pearson's coefficient between CAR and HAdVs indicated that the HAdV4 and HAdV5 types correlated with CAR and that the correlation was more substantial for HAdV5. Inhibition of clathrin-mediated endocytosis using chlorpromazine limited the infection with HAdV, whereas inhibition of caveolin-mediated endocytosis did not affect virus entry. Thus, the entry of tested HAdV types into neurons was most likely associated with clathrin but not caveolin. It was also demonstrated that HAdVs correlate with the Rab proteins (EEA1, Rab5) present in early vesicles, and the observed differences in the manner of correlation depended on the serotype of the virus. With our research, we strove to expand knowledge regarding the mechanism of HAdV entry into neurons, which may be beneficial for developing potential therapeutics in the future.
Collapse
Affiliation(s)
- Anna Słońska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Aleksandra Miedzińska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Marcin Chodkowski
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland;
| | - Aleksandra Mielnikow
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Marcin W. Bańbura
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| |
Collapse
|
6
|
Martínez-Morales JC, Solís KH, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Cell Trafficking and Function of G Protein-coupled Receptors. Arch Med Res 2022; 53:451-460. [PMID: 35835604 DOI: 10.1016/j.arcmed.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
The G protein-coupled receptors (GPCRs) are plasma membrane proteins that function as sensors of changes in the internal and external milieux and play essential roles in health and disease. They are targets of hormones, neurotransmitters, local hormones (autacoids), and a large proportion of the drugs currently used as therapeutics and for "recreational" purposes. Understanding how these receptors signal and are regulated is fundamental for progress in areas such as physiology and pharmacology. This review will focus on what is currently known about their structure, the molecular events that trigger their signaling, and their trafficking to endosomal compartments. GPCR phosphorylation and its role in desensitization (signaling switching) are also discussed. It should be mentioned that the volume of information available is enormous given the large number and variety of GPCRs. However, knowledge is fragmentary even for the most studied receptors, such as the adrenergic receptors. Therefore, we attempt to present a panoramic view of the field, conscious of the risks and limitations (such as oversimplifications and incorrect generalizations). We hope this will provoke further research in the area. It is currently accepted that GPCR internalization plays a role signaling events. Therefore, the processes that allow them to internalize and recycle back to the plasma membrane are briefly reviewed. The functions of cytoskeletal elements (mainly actin filaments and microtubules), the molecular motors implicated in receptor trafficking (myosin, kinesin, and dynein), and the GTPases involved in GPCR internalization (dynamin) and endosomal sorting (Rab proteins), are discussed. The critical role phosphoinositide metabolism plays in regulating these events is also depicted.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - K Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, México
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
7
|
Identification of Cellular Genes Involved in Baculovirus GP64 Trafficking to the Plasma Membrane. J Virol 2022; 96:e0021522. [PMID: 35608346 DOI: 10.1128/jvi.00215-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baculovirus envelope protein GP64 is an essential component of the budded virus and is necessary for efficient virion assembly. Little is known regarding intracellular trafficking of GP64 to the plasma membrane, where it is incorporated into budding virions during egress. To identify host proteins and potential cellular trafficking pathways that are involved in delivery of GP64 to the plasma membrane, we developed and characterized a stable Drosophila cell line that inducibly expresses the AcMNPV GP64 protein and used that cell line in combination with a targeted RNA interference (RNAi) screen of vesicular protein trafficking pathway genes. Of the 37 initial hits from the screen, we validated and examined six host genes that were important for trafficking of GP64 to the cell surface. Validated hits included Rab GTPases Rab1 and Rab4, Clathrin heavy chain, clathrin adaptor protein genes AP-1-2β and AP-2μ, and Snap29. Two gene knockdowns (Rab5 and Exo84) caused substantial increases (up to 2.5-fold) of GP64 on the plasma membrane. We found that a small amount of GP64 is released from cells in exosomes and that some portion of cell surface GP64 is endocytosed, suggesting that recycling helps to maintain GP64 at the cell surface. IMPORTANCE While much is known regarding trafficking of viral envelope proteins in mammalian cells, little is known about this process in insect cells. To begin to understand which factors and pathways are needed for trafficking of insect virus envelope proteins, we engineered a Drosophila melanogaster cell line and implemented an RNAi screen to identify cellular proteins that aid transport of the model baculovirus envelope protein (GP64) to the cell surface. For this we developed an experimental system that leverages the large array of tools available for Drosophila and performed a targeted RNAi screen to identify cellular proteins involved in GP64 trafficking to the cell surface. Since viral envelope proteins are often critical for production of infectious progeny virions, these studies lay the foundation for understanding how either pathogenic insect viruses (baculoviruses) or insect-vectored viruses (e.g., flaviviruses, alphaviruses) egress from cells in tissues such as the midgut to enable systemic virus infection.
Collapse
|
8
|
Tang Y, Gao J, Wang T, Zhang Q, Wang A, Huang M, Yu R, Chen H, Gao X. The effect of drug loading and multiple administration on the protein corona formation and brain delivery property of PEG-PLA nanoparticles. Acta Pharm Sin B 2022; 12:2043-2056. [PMID: 35847504 PMCID: PMC9279712 DOI: 10.1016/j.apsb.2021.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The presence of protein corona on the surface of nanoparticles modulates their physiological interactions such as cellular association and targeting property. It has been shown that α-mangostin (αM)-loaded poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles (NP-αM) specifically increased low density lipoprotein receptor (LDLR) expression in microglia and improved clearance of amyloid beta (Aβ) after multiple administration. However, how do the nanoparticles cross the blood‒brain barrier and access microglia remain unknown. Here, we studied the brain delivery property of PEG-PLA nanoparticles under different conditions, finding that the nanoparticles exhibited higher brain transport efficiency and microglia uptake efficiency after αM loading and multiple administration. To reveal the mechanism, we performed proteomic analysis to characterize the composition of protein corona formed under various conditions, finding that both drug loading and multiple dosing affect the composition of protein corona and subsequently influence the cellular uptake of nanoparticles in b.End3 and BV-2 cells. Complement proteins, immunoglobulins, RAB5A and CD36 were found to be enriched in the corona and associated with the process of nanoparticles uptake. Collectively, we bring a mechanistic understanding about the modulator role of protein corona on targeted drug delivery, and provide theoretical basis for engineering brain or microglia-specific targeted delivery system.
Collapse
|
9
|
van der Beek J, de Heus C, Liv N, Klumperman J. Quantitative correlative microscopy reveals the ultrastructural distribution of endogenous endosomal proteins. J Cell Biol 2022; 221:212877. [PMID: 34817533 PMCID: PMC8624803 DOI: 10.1083/jcb.202106044] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
The key endosomal regulators Rab5, EEA1, and APPL1 are frequently applied in fluorescence microscopy to mark early endosomes, whereas Rab7 is used as a marker for late endosomes and lysosomes. However, endogenous levels of these proteins localize poorly in immuno-EM, and systematic studies on their native ultrastructural distributions are lacking. To address this gap, we here present a quantitative, on-section correlative light and electron microscopy (CLEM) approach. Using the sensitivity of fluorescence microscopy, we label hundreds of organelles that are subsequently visualized by EM and classified by ultrastructure. We show that Rab5 predominantly marks small, endocytic vesicles and early endosomes. EEA1 colocalizes with Rab5 on early endosomes, but unexpectedly also labels Rab5-negative late endosomes, which are positive for PI(3)P but lack Rab7. APPL1 is restricted to small Rab5-positive, tubulo-vesicular profiles. Rab7 primarily labels late endosomes and lysosomes. These data increase our understanding of the structural-functional organization of the endosomal system and introduce quantitative CLEM as a sensitive alternative for immuno-EM.
Collapse
Affiliation(s)
- Jan van der Beek
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Cecilia de Heus
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Zhang J, Jiang Z, Shi A. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking. Comput Struct Biotechnol J 2022; 20:4464-4472. [PMID: 36051867 PMCID: PMC9418685 DOI: 10.1016/j.csbj.2022.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
After endocytosis, diverse cargos are sorted into endosomes and directed to various destinations, including extracellular macromolecules, membrane lipids, and membrane proteins. Some cargos are returned to the plasma membrane via endocytic recycling. In contrast, others are delivered to the Golgi apparatus through the retrograde pathway, while the rest are transported to late endosomes and eventually to lysosomes for degradation. Rab GTPases are major regulators that ensure cargos are delivered to their proper destinations. Rabs are localized to distinct endosomes and play predominant roles in membrane budding, vesicle formation and motility, vesicle tethering, and vesicle fusion by recruiting effectors. The cascades between Rabs via shared effectors or the recruitment of Rab activators provide an additional layer of spatiotemporal regulation of endocytic trafficking. Notably, several recent studies have indicated that disorders of Rab-mediated endocytic transports are closely associated with diseases such as immunodeficiency, cancer, and neurological disorders.
Collapse
|
11
|
Hatoyama Y, Homma Y, Hiragi S, Fukuda M. Establishment and analysis of conditional Rab1- and Rab5-knockout cells using the auxin-inducible degron system. J Cell Sci 2021; 134:273782. [PMID: 34817057 DOI: 10.1242/jcs.259184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Two small GTPases, Rab1 and Rab5, are key membrane trafficking regulators that are conserved in all eukaryotes. They have recently been found to be essential for cell survival and/or growth in cultured mammalian cells, thereby precluding the establishment of Rab1-knockout (KO) and Rab5-KO cells, making it extremely difficult to assess the impact of complete Rab1 or Rab5 protein depletion on cellular functions. Here, we generated and analyzed cell lines with conditional KO (CKO) of either Rab1 (Rab1A and Rab1B) or Rab5 (Rab5A, Rab5B and Rab5C) by using the auxin-inducible protein degradation system. Rab1 CKO and Rab5 CKO led to eventual cell death from 18 h and 48 h, respectively, after auxin exposure. After acute Rab1 protein depletion, the Golgi stack and ribbon structures were completely disrupted, and endoplasmic reticulum (ER)-to-Golgi trafficking was severely inhibited. Moreover, we discovered a novel Rab1-depletion phenotype: perinuclear clustering of early endosomes and delayed transferrin recycling. In contrast, acute Rab5 protein depletion resulted in loss of early endosomes and late endosomes, but lysosomes appeared to be normal. We also observed a dramatic reduction in the intracellular signals of endocytic cargos via receptor-mediated or fluid-phase endocytosis in Rab5-depleted cells.
Collapse
Affiliation(s)
- Yuki Hatoyama
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
12
|
Wang D, Ye Z, Wei W, Yu J, Huang L, Zhang H, Yue J. Capping protein regulates endosomal trafficking by controlling F-actin density around endocytic vesicles and recruiting RAB5 effectors. eLife 2021; 10:e65910. [PMID: 34796874 PMCID: PMC8654373 DOI: 10.7554/elife.65910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Actin filaments (F-actin) have been implicated in various steps of endosomal trafficking, and the length of F-actin is controlled by actin capping proteins, such as CapZ, which is a stable heterodimeric protein complex consisting of α and β subunits. However, the role of these capping proteins in endosomal trafficking remains elusive. Here, we found that CapZ docks to endocytic vesicles via its C-terminal actin-binding motif. CapZ knockout significantly increases the F-actin density around immature early endosomes, and this impedes fusion between these vesicles, manifested by the accumulation of small endocytic vesicles in CapZ-knockout cells. CapZ also recruits several RAB5 effectors, such as Rabaptin-5 and Rabex-5, to RAB5-positive early endosomes via its N-terminal domain, and this further activates RAB5. Collectively, our results indicate that CapZ regulates endosomal trafficking by controlling actin density around early endosomes and recruiting RAB5 effectors.
Collapse
Affiliation(s)
- Dawei Wang
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Wenjie Wei
- Core Research Facilities, Southern University of Science and TechnologyShenzhenChina
| | - Jingting Yu
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
| | - Lihong Huang
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
| | - Hongmin Zhang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and TechnologyShenzhenChina
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- Department of Biomedical Sciences, City University of Hong KongHong KongChina
- City University of Hong Kong Chengdu Research InstituteChengduChina
| |
Collapse
|
13
|
Tuttolomondo A, Simonetta I, Riolo R, Todaro F, Di Chiara T, Miceli S, Pinto A. Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies. Int J Mol Sci 2021; 22:10088. [PMID: 34576250 PMCID: PMC8465525 DOI: 10.3390/ijms221810088] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anderson-Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson-Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a significant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the autophagy-lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal occlusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-dependent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibroblasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in addition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Tiziana Di Chiara
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Salvatore Miceli
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
14
|
Liu BHM, Tey SK, Mao X, Ma APY, Yeung CLS, Wong SWK, Ng TH, Xu Y, Yao Y, Fung EYM, Tan KV, Khong P, Ho DW, Ng IO, Tang AHN, Cai SH, Yun JP, Yam JWP. TPI1-reduced extracellular vesicles mediated by Rab20 downregulation promotes aerobic glycolysis to drive hepatocarcinogenesis. J Extracell Vesicles 2021; 10:e12135. [PMID: 34401050 PMCID: PMC8357635 DOI: 10.1002/jev2.12135] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Rab GTPases are major mediators that ensure the proper spatiotemporal regulation of intracellular trafficking. Functional impairment and altered expression of Rab proteins have been revealed in various human cancers. There is an emerging evidence about the role of Rab proteins in the biogenesis of extracellular vesicles (EVs). In hepatocellular carcinoma (HCC), using RNA sequencing comparing expression profiles of adjacent non-tumorous tissues and HCC, Rab20 is identified to be the most frequently downregulated Rab member in HCC. Functionally, restoration of Rab20 in metastatic HCC cells results in the release of EVs with a diminished activity to promote cell growth, motility and metastasis. Conversely, EVs released from normal liver cells with Rab20 knockdown loses suppressive effect on HCC cell growth and motility. Proteomic profiling revealed the level of triosephosphate isomerase 1 (TPI1), a glycolytic enzyme, in EVs to be positively associated with Rab20 expression of the releasing cells. TPI1 targeted to be expressed in EVs released by Rab20 knockdown cells compromises the oncogenic activity of EVs. Besides, EVs released by TPI1 knockdown cells recapitulates the promoting effect of EVs derived from HCC cells with Rab20 underexpression. Aerobic glycolysis is beneficial to the survival and proliferation of tumour cells. Here, we observed that the enhanced cell growth and motility are driven by the enhanced aerobic glycolysis induced by EVs with reduced TPI1. The addition of glycolytic inhibitor blocks the promoting effect of EVs with reduced TPI1. Taken together, our study provides a mechanistic link among tumour cell-derived EVs and glucose metabolism in HCC with Rab20 deregulation.
Collapse
Affiliation(s)
- Bonnie Hei Man Liu
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Sze Keong Tey
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xiaowen Mao
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Angel Po Yee Ma
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Cherlie Lot Sum Yeung
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Samuel Wan Ki Wong
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tung Him Ng
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yi Xu
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of Hepatopancreatobiliary SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yue Yao
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Department of EndocrinologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Eva Yi Man Fung
- Department of ChemistryState Key Laboratory of Synthetic ChemistryThe University of Hong KongHong KongChina
| | - Kel Vin Tan
- Department of Diagnostic RadiologyQueen Mary Hospitalthe University of Hong KongHong KongChina
| | - Pek‐Lan Khong
- Department of Diagnostic RadiologyQueen Mary Hospitalthe University of Hong KongHong KongChina
| | - Daniel Wai‐Hung Ho
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong KongChina
| | - Irene Oi‐Lin Ng
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong KongChina
| | - Alexander Hin Ning Tang
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Shao Hang Cai
- Department of Infectious DiseasesNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jing Ping Yun
- Department of PathologySun Yat‐sen University Cancer CentreGuangzhouChina
| | - Judy Wai Ping Yam
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- State Key Laboratory of Liver Research (The University of Hong Kong)Hong KongChina
| |
Collapse
|
15
|
Koss DJ, Campesan S, Giorgini F, Outeiro TF. Dysfunction of RAB39B-Mediated Vesicular Trafficking in Lewy Body Diseases. Mov Disord 2021; 36:1744-1758. [PMID: 33939203 DOI: 10.1002/mds.28605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Scientific employee with a honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
16
|
Tebaldi G, Pritchard SM, Nicola AV. Herpes Simplex Virus Entry by a Nonconventional Endocytic Pathway. J Virol 2020; 94:e01910-20. [PMID: 33028710 PMCID: PMC7925185 DOI: 10.1128/jvi.01910-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and mortality in humans worldwide. HSV-1 enters epithelial cells via an endocytosis mechanism that is low-pH dependent. However, the precise intracellular pathway has not been identified, including the compartment where fusion occurs. In this study, we utilized a combination of molecular and pharmacological approaches to better characterize HSV entry by endocytosis. HSV-1 entry was unaltered in both cells treated with small interfering RNA (siRNA) to Rab5 or Rab7 and cells expressing dominant negative forms of these GTPases, suggesting entry is independent of the conventional endo-lysosomal network. The fungal metabolite brefeldin A (BFA) and the quinoline compound Golgicide A (GCA) inhibited HSV-1 entry via beta-galactosidase reporter assay and impaired incoming virus transport to the nuclear periphery, suggesting a role for trans-Golgi network (TGN) functions and retrograde transport in HSV entry. Silencing of Rab9 or Rab11 GTPases, which are involved in the retrograde transport pathway, resulted in only a slight reduction in HSV infection. Together, these results suggest that HSV enters host cells by an intracellular route independent of the lysosome-terminal endocytic pathway.IMPORTANCE Herpes simplex virus 1 (HSV-1), the prototype alphaherpesvirus, is ubiquitous in the human population and causes lifelong infection that can be fatal in neonatal and immunocompromised individuals. HSV enters many cell types by endocytosis, including epithelial cells, the site of primary infection in the host. The intracellular itinerary for HSV entry remains unclear. We probed the potential involvement of several Rab GTPases in HSV-1 entry and suggest that endocytic entry of HSV-1 is independent of the canonical lysosome-terminal pathway. A nontraditional endocytic route may be employed, such as one that intersects with the trans-Golgi network (TGN). These results may lead to novel targets for intervention.
Collapse
Affiliation(s)
- Giulia Tebaldi
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
17
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
18
|
López-Hernández T, Haucke V, Maritzen T. Endocytosis in the adaptation to cellular stress. Cell Stress 2020; 4:230-247. [PMID: 33024932 PMCID: PMC7520666 DOI: 10.15698/cst2020.10.232] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular life is challenged by a multitude of stress conditions, triggered for example by alterations in osmolarity, oxygen or nutrient supply. Hence, cells have developed sophisticated stress responses to cope with these challenges. Some of these stress programs such as the heat shock response are understood in great detail, while other aspects remain largely elusive including potential stress-dependent adaptations of the plasma membrane proteome. The plasma membrane is not only the first point of encounter for many types of environmental stress, but given the diversity of receptor proteins and their associated molecules also represents the site at which many cellular signal cascades originate. Since these signaling pathways affect virtually all aspects of cellular life, changes in the plasma membrane proteome appear ideally suited to contribute to the cellular adaptation to stress. The most rapid means to alter the cell surface proteome in response to stress is by alterations in endocytosis. Changes in the overall endocytic flux or in the endocytic regulation of select proteins conceivably can help to counteract adverse environmental conditions. In this review we summarize recent data regarding stress-induced changes in endocytosis and discuss how these changes might contribute to the cellular adaptation to stress in different systems. Future studies will be needed to uncover the underlying mechanisms in detail and to arrive at a coherent picture.
Collapse
Affiliation(s)
- Tania López-Hernández
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
19
|
Yu Y, Niccoli T, Ren Z, Woodling NS, Aleyakpo B, Szabadkai G, Partridge L. PICALM rescues glutamatergic neurotransmission, behavioural function and survival in a Drosophila model of Aβ42 toxicity. Hum Mol Genet 2020; 29:2420-2434. [PMID: 32592479 PMCID: PMC7424762 DOI: 10.1093/hmg/ddaa125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the most prevalent neurodegenerative disease. Genome-wide association studies have linked PICALM to AD risk. PICALM has been implicated in Aβ42 production and turnover, but whether it plays a direct role in modulating Aβ42 toxicity remains unclear. We found that increased expression of the Drosophila PICALM orthologue lap could rescue Aβ42 toxicity in an adult-onset model of AD, without affecting Aβ42 level. Imbalances in the glutamatergic system, leading to excessive, toxic stimulation, have been associated with AD. We found that Aβ42 caused the accumulation of presynaptic vesicular glutamate transporter (VGlut) and increased spontaneous glutamate release. Increased lap expression reversed these phenotypes back to control levels, suggesting that lap may modulate glutamatergic transmission. We also found that lap modulated the localization of amphiphysin (Amph), the homologue of another AD risk factor BIN1, and that Amph itself modulated postsynaptic glutamate receptor (GluRII) localization. We propose a model where PICALM modulates glutamatergic transmission, together with BIN1, to ameliorate synaptic dysfunction and disease progression.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Benjamin Aleyakpo
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London WC1E 6BT, UK
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| |
Collapse
|
20
|
Mao F, Mu H, Wong NK, Liu K, Song J, Qiu J, Lin Y, Zhang X, Xu D, Xiang Z, Li J, Zhang Y, Yu Z. Hemocyte phagosomal proteome is dynamically shaped by cytoskeleton remodeling and interorganellar communication with endoplasmic reticulum during phagocytosis in a marine invertebrate, Crassostrea gigas. Sci Rep 2020; 10:6577. [PMID: 32313134 PMCID: PMC7171069 DOI: 10.1038/s41598-020-63676-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Phagosomes are task-force organelles of innate immune systems, and evolutionary diversity and continuity abound in the protein machinery executing this coordinately regulated process. In order to clarify molecular mechanisms underlying phagocytosis, we studied phagocyte response to beads and Vibrio species, using hemocytes of the Pacific oysters (Crassostrea gigas) as a marine invertebrate model. Phagosomes from different stages of phagocytosis were isolated by density-gradient centrifugation, and more than 400 phagosome-associated proteins were subsequently identified via high-throughput quantitative proteomics. In modeling key networks of phagosomal proteins, our results support the essential roles of several processes driving phagosome formation and maturation, including cytoskeleton remodeling and signal transduction by Rab proteins. Several endoplasmic reticulum (ER)-associated proteins were identified, while live cell imaging confirms an apparent intimate interaction between the ER and phagosomes. In further quantitative proteomic analysis, the signal transducers CgRhoGDI and CgPI4K were implicated. Through experimental validation, CgRhoGDI was shown to negatively regulate actin cytoskeleton remodeling in the formation of oyster phagosomes, while CgPI4K signaling drives phagosome maturation and bacterial killing. Our current work illustrates the diversity and dynamic interplay of phagosomal proteins, providing a framework for better understanding host-microbe interactions during phagosome activities in under-examined invertebrate species.
Collapse
Affiliation(s)
- Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Huawei Mu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Nai-Kei Wong
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingchen Song
- College of Oceanology, South China Agricultural University, Guangzhou, China
| | - Jianwen Qiu
- Croucher Institute for Environmental Sciences and the Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yue Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiangyu Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Duo Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China. .,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, ISEE, CAS, Guangzhou, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
21
|
Abstract
Defects in membrane trafficking are hallmarks of neurodegeneration. Rab GTPases are key regulators of membrane trafficking. Alterations of Rab GTPases, or the membrane compartments they regulate, are associated with virtually all neuronal activities in health and disease. The observation that many Rab GTPases are associated with neurodegeneration has proven a challenge in the quest for cause and effect. Neurodegeneration can be a direct consequence of a defect in membrane trafficking. Alternatively, changes in membrane trafficking may be secondary consequences or cellular responses. The secondary consequences and cellular responses, in turn, may protect, represent inconsequential correlates or function as drivers of pathology. Here, we attempt to disentangle the different roles of membrane trafficking in neurodegeneration by focusing on selected associations with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and selected neuropathies. We provide an overview of current knowledge on Rab GTPase functions in neurons and review the associations of Rab GTPases with neurodegeneration with respect to the following classifications: primary cause, secondary cause driving pathology or secondary correlate. This analysis is devised to aid the interpretation of frequently observed membrane trafficking defects in neurodegeneration and facilitate the identification of true causes of pathology.
Collapse
|
22
|
Syntenin: PDZ Protein Regulating Signaling Pathways and Cellular Functions. Int J Mol Sci 2019; 20:ijms20174171. [PMID: 31454940 PMCID: PMC6747541 DOI: 10.3390/ijms20174171] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Syntenin is an adaptor-like molecule that has two adjacent tandem postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ) domains. The PDZ domains of syntenin recognize multiple peptide motifs with low to moderate affinity. Many reports have indicated interactions between syntenin and a plethora of proteins. Through interactions with various proteins, syntenin regulates the architecture of the cell membrane. As a result, increases in syntenin levels induce the metastasis of tumor cells, protrusion along the neurite in neuronal cells, and exosome biogenesis in various cell types. Here, we review the updated data that support various roles for syntenin in the regulation of neuronal synapses, tumor cell invasion, and exosome control.
Collapse
|
23
|
Ackermann F, Schink KO, Bruns C, Izsvák Z, Hamra FK, Rosenmund C, Garner CC. Critical role for Piccolo in synaptic vesicle retrieval. eLife 2019; 8:46629. [PMID: 31074746 PMCID: PMC6541439 DOI: 10.7554/elife.46629] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/09/2019] [Indexed: 12/30/2022] Open
Abstract
Loss of function of the active zone protein Piccolo has recently been linked to a disease, Pontocerebellar Hypoplasia type 3, which causes brain atrophy. Here, we address how Piccolo inactivation in rat neurons adversely affects synaptic function and thus may contribute to neuronal loss. Our analysis shows that Piccolo is critical for the recycling and maintenance of synaptic vesicles. We find that boutons lacking Piccolo have deficits in the Rab5/EEA1 dependent formation of early endosomes and thus the recycling of SVs. Mechanistically, impaired Rab5 function was caused by reduced synaptic recruitment of Pra1, known to interact selectively with the zinc finger domains of Piccolo. Importantly, over-expression of GTPase deficient Rab5 or the Znf1 domain of Piccolo restores the size and recycling of SV pools. These data provide a molecular link between the active zone and endosome sorting at synapses providing hints to how Piccolo contributes to developmental and psychiatric disorders.
Collapse
Affiliation(s)
- Frauke Ackermann
- German Center for Neurodegenerative Diseases e.V. (DZNE), Charité Medical University, Berlin, Germany
| | - Kay Oliver Schink
- Center for Cancer Biomedicine, University of Oslo, Norwegian Radium Hospital, Oslo, Norway
| | - Christine Bruns
- German Center for Neurodegenerative Diseases e.V. (DZNE), Charité Medical University, Berlin, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - F Kent Hamra
- Department of Obstetrics and Gynecology, University of Texas Southwestern, Dallas, United States
| | - Christian Rosenmund
- NeuroCure Cluster of Excellence, Neuroscience Research Center, Charité Medical University, Berlin, Germany
| | - Craig Curtis Garner
- German Center for Neurodegenerative Diseases e.V. (DZNE), Charité Medical University, Berlin, Germany
| |
Collapse
|
24
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
25
|
Zhang X, Huang TY, Yancey J, Luo H, Zhang YW. Role of Rab GTPases in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:828-838. [PMID: 30261139 DOI: 10.1021/acschemneuro.8b00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) comprises two major pathological hallmarks: extraneuronal deposition of β-amyloid (Aβ) peptides ("senile plaques") and intraneuronal aggregation of the microtubule-associated protein tau ("neurofibrillary tangles"). Aβ is derived from sequential cleavage of the β-amyloid precursor protein by β- and γ-secretases, while aggregated tau is hyperphosphorylated in AD. Mounting evidence suggests that dysregulated trafficking of these AD-related proteins contributes to AD pathogenesis. Rab proteins are small GTPases that function as master regulators of vesicular transport and membrane trafficking. Multiple Rab GTPases have been implicated in AD-related protein trafficking, and their expression has been observed to be altered in postmortem AD brain. Here we review current implicated roles of Rab GTPase dysregulation in AD pathogenesis. Further elucidation of the pathophysiological role of Rab GTPases will likely reveal novel targets for AD therapeutics.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Joel Yancey
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
26
|
Zhao T, Cui L, Yu X, Zhang Z, Shen X, Hua X. Porcine sapelovirus enters PK-15 cells via caveolae-dependent endocytosis and requires Rab7 and Rab11. Virology 2019; 529:160-168. [PMID: 30710800 PMCID: PMC7125664 DOI: 10.1016/j.virol.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/30/2022]
Abstract
To comprehensively understand the endocytosis of Sapelovirus A (PSV) entry into PK-15 cells, we studied PSV infection in the context of cell perturbations through drug inhibition, siRNA silencing and overexpression of dominant negative (DN) mutants. We showed here that PSV infection of PK-15 cells was unaffected by pretreated with chlorpromazine, EIPA, knockdown of the clathrin heavy chain or overexpression of Eps15 DN mutant. Conversely, PSV infection was sensitive to NH4Cl, chloroquine, dynasore, nystatin, MβCD and wortmannin with reduced PSV VP1 expression levels and virus titer. Additionally, PSV invasion leaded to rapid actin rearrangement and disruption of the cellular actin network enhanced PSV infection. After internalization the virus was transported to late endosomes and/or cycling endosomes that requires the participation of Rab7 and Rab11. Our findings demonstrate that PSV uses caveolae-dependent endocytosis as the predominant entry portal into PK-15 cells which requires low pH, dynamin, Rab7 and Rab11.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Xiangqian Yu
- Shanghai Pudong New Area Center for Animal Disease Control and Prevention, Shanghai 200136, China
| | - Zhonghai Zhang
- Shanghai Pudong New Area Center for Animal Disease Control and Prevention, Shanghai 200136, China
| | - Xiaojuan Shen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Xiuguo Hua
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China.
| |
Collapse
|
27
|
Hanadate Y, Saito-Nakano Y, Nakada-Tsukui K, Nozaki T. Identification and Characterization of the Entamoeba Histolytica Rab8a Binding Protein: A Cdc50 Homolog. Int J Mol Sci 2018; 19:ijms19123831. [PMID: 30513690 PMCID: PMC6321534 DOI: 10.3390/ijms19123831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane proteins. Here we identified the binding proteins of EhRab8A. The Cdc50 homolog, a non-catalytic subunit of lipid flippase, was identified as an EhRab8A binding protein candidate by affinity coimmunoprecipitation. Binding of EhRab8A to EhCdc50 was also confirmed by reciprocal immunoprecipitation and blue-native polyacrylamide gel electrophoresis, the latter of which revealed an 87 kDa complex. Indirect immunofluorescence imaging with and without Triton X100 showed that endogenous EhCdc50 localized on the surface in the absence of permeabilizing agent but was observed on the intracellular structures and overlapped with the ER marker Bip when Triton X100 was used. Overexpression of N-terminal HA-tagged EhCdc50 impaired its translocation to the plasma membrane and caused its accumulation in the ER. As reported previously in other organisms, overexpression and accumulation of Cdc50 in the ER likely inhibited surface transport and function of the plasma membrane lipid flippase P4-ATPase. Interestingly, HA-EhCdc50-expressing trophozoites gained resistance to miltefosine, which is consistent with the prediction that HA-EhCdc50 overexpression caused its accumulation in the ER and mislocalization of the unidentified lipid flippase. Similarly, EhRab8A gene silenced trophozoites showed increased resistance to miltefosine, supporting EhRab8A-dependent transport of EhCdc50. This study demonstrated for the first time that EhRab8A mediates the transport of EhCdc50 and lipid flippase P4-ATPase from the ER to the plasma membrane.
Collapse
Affiliation(s)
- Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
28
|
Raza S, Alvisi G, Shahin F, Husain U, Rabbani M, Yaqub T, Anjum AA, Sheikh AA, Nawaz M, Ali MA. Role of Rab GTPases in HSV-1 infection: Molecular understanding of viral maturation and egress. Microb Pathog 2018; 118:146-153. [PMID: 29551438 DOI: 10.1016/j.micpath.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Most enveloped viruses exploit complex cellular pathways for assembly and egress from the host cell, and the large DNA virus Herpes simplex virus 1 (HSV-1) makes no exception, hijacking several cellular transport pathways for its glycoprotein trafficking and maturation, as well as for viral morphogenesis and egress according to the envelopment, de-envelopment and re-envelopment model. Importantly Rab GTPases, widely distributed master regulators of intracellular membrane trafficking pathways, have recently being tightly implicated in such process. Indeed, siRNA-mediated genetic ablation of specific Rab proteins differently affected HSV-1 production, suggesting a complex role of different Rab proteins in HSV-1 life cycle. In this review, we discuss how different Rabs can regulate HSV-1 assembly/egress and the potential therapeutic applications of such findings for the management of HSV-1 infections.
Collapse
Affiliation(s)
- Sohail Raza
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan.
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35121, Italy
| | - Farzana Shahin
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Urooj Husain
- Postgraduate Medical Institute Lahore 54000, Pakistan
| | - Masood Rabbani
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Ali Ahmad Sheikh
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Nawaz
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| | - Muhammad Asad Ali
- Department of Microbiology, University of Veterinary and Animal Sciences Lahore 54000, Pakistan
| |
Collapse
|
29
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
30
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
31
|
Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells. Virol Sin 2017. [PMID: 28634871 DOI: 10.1007/s12250-017-3968-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.
Collapse
|
32
|
Ballmer BA, Moos R, Liberali P, Pelkmans L, Hornemann S, Aguzzi A. Modifiers of prion protein biogenesis and recycling identified by a highly parallel endocytosis kinetics assay. J Biol Chem 2017; 292:8356-8368. [PMID: 28341739 DOI: 10.1074/jbc.m116.773283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein, PrPC, is attached by a glycosylphosphatidylinositol anchor to the outer leaflet of the plasma membrane. Its misfolded isoform PrPSc is the causative agent of prion diseases. Conversion of PrPC into PrPSc is thought to take place at the cell surface or in endolysosomal organelles. Understanding the intracellular trafficking of PrPC may, therefore, help elucidate the conversion process. Here we describe a time-resolved fluorescence energy transfer (FRET) assay reporting membrane expression and real-time internalization rates of PrPC The assay is suitable for high-throughput genetic and pharmaceutical screens for modulators of PrPC trafficking. Simultaneous administration of FRET donor and acceptor anti-PrPC antibodies to living cells yielded a measure of PrPC surface density, whereas sequential addition of each antibody visualized the internalization rate of PrPC (Z' factor >0.5). RNA interference assays showed that suppression of AP2M1 (AP-2 adaptor protein), RAB5A, VPS35 (vacuolar protein sorting 35 homolog), and M6PR (mannose 6-phosphate receptor) blocked PrPC internalization, whereas down-regulation of GIT2 and VPS28 increased PrPC internalization. PrPC cell-surface expression was reduced by down-regulation of RAB5A, VPS28, and VPS35 and enhanced by silencing EHD1. These data identify a network of proteins implicated in PrPC trafficking and demonstrate the power of this assay for identifying modulators of PrPC trafficking.
Collapse
Affiliation(s)
- Boris A Ballmer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Prisca Liberali
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, CH-8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
33
|
Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells. Proc Natl Acad Sci U S A 2017; 114:E2327-E2336. [PMID: 28270608 DOI: 10.1073/pnas.1602349114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.
Collapse
|
34
|
Adams A, Wayne Vogl A. High Resolution Localization of Rab5, EEA1, and Nectin-3 to Tubulobulbar Complexes in the Rat Testis. Anat Rec (Hoboken) 2017; 300:1160-1170. [PMID: 28176461 DOI: 10.1002/ar.23563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/27/2016] [Accepted: 10/02/2016] [Indexed: 11/10/2022]
Abstract
Tubulobulbar complexes are clathrin/actin-based structures that internalize intercellular junctions in the testis. They resemble coated pits with extremely long necks that are cuffed by dendritic actin networks. As the structures mature, a swollen region or bulb develops near the end of each complex. The bulbs lack actin cuffs and are closely associated with cisternae of endoplasmic reticulum. The bulbs expand and are internalized and enter endocytic compartments of the Sertoli cell. Previous immunofluorescence studies have demonstrated that markers for early endosomes (Rab5 and EEA1) are associated with tubulobulbar complexes and are localized at or near the ends of the structures. Here we use a pre-embedding immunoelectron microscopic technique to accurately localize these markers to apical tubulobulbar complexes that occur at junctions between Sertoli cells and spermatids. Staining for Rab5 occurs at bulbs, identified by the presence of two plasma membranes and a close association with cisternae of endoplasmic reticulum. EEA1 is associated with large vesicles that lack an association with the endoplasmic reticulum. Labeling for nectin-3, an adhesion junction protein in the spermatid plasma membrane, occurs at junctions, TBC bulbs, and in associated double membrane vesicles. Our results suggest that Rab5 associates with junction protein containing bulbs prior to their internalization and that EEA1 associates with the structures later and after internalization. We conclude that at tubulobulbar complexes in Sertoli cells of the seminiferous epithelium, the identity of 'bulbs' as putative early endosomes begins to be established prior to their undergoing scission or budding from their parent structures. Anat Rec, 300:1160-1170, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arlo Adams
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - A Wayne Vogl
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Fu Y, Zhu JY, Zhang F, Richman A, Zhao Z, Han Z. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes. Cell Tissue Res 2017; 368:615-627. [PMID: 28180992 DOI: 10.1007/s00441-017-2575-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.
Collapse
Affiliation(s)
- Yulong Fu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Fujian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Zhanzheng Zhao
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| |
Collapse
|
36
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
37
|
Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions. Mol Cell Neurosci 2016; 81:12-21. [PMID: 27865768 DOI: 10.1016/j.mcn.2016.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 01/24/2023] Open
Abstract
The activation of synaptic N-methyl-d-aspartate-receptors (NMDARs) is crucial for induction of synaptic plasticity and supports cell survival, whereas activation of extrasynaptic NMDARs inhibits long-term potentiation and triggers neurodegeneration. A soluble polysialylated form of the neural cell adhesion molecule (polySia-NCAM) suppresses signaling through peri-/extrasynaptic GluN2B-containing NMDARs. Genetic or enzymatic manipulations blocking this mechanism result in impaired synaptic plasticity and learning, which could be repaired by reintroduction of polySia, or inhibition of either GluN1/GluN2B receptors or downstream signaling through RasGRF1 and p38 MAP kinase. Ectodomain shedding of NCAM, and hence generation of soluble NCAM, is controlled by metalloproteases of a disintegrin and metalloprotease (ADAM) family. As polySia-NCAM is predominantly associated with GABAergic interneurons in the prefrontal cortex, it is noteworthy that EphrinA5/EphA3-induced ADAM10 activity promotes polySia-NCAM shedding in these neurons. Thus, in addition to the well-known regulation of synaptic NMDARs by the secreted molecule Reelin, shed polySia-NCAM may restrain activation of extrasynaptic NMDARs. These data support a concept that GABAergic interneuron-derived extracellular proteins control the balance in synaptic/extrasynaptic NMDAR-mediated signaling in principal cells. Strikingly, dysregulation of Reelin or polySia expression is linked to schizophrenia. Thus, targeting of the GABAergic interneuron-principle cell communication and restoring the balance in synaptic/extrasynaptic NMDARs represent promising strategies for treatment of psychiatric diseases.
Collapse
|
38
|
Lee ZY, Prouteau M, Gotta M, Barral Y. Compartmentalization of the endoplasmic reticulum in the early C. elegans embryos. J Cell Biol 2016; 214:665-76. [PMID: 27597753 PMCID: PMC5021094 DOI: 10.1083/jcb.201601047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Lee et al. show that the ER in the C. elegans embryo is continuous, but its membrane is compartmentalized, as found in budding yeast and mouse NSCs. This compartmentalization plays a potential role in the polarity of the early embryo. The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an anterior and a posterior domain, indicating that a diffusion barrier forms in the ER membrane between these two domains. Using mutants with disorganized ER, we show that ER compartmentalization is independent of the morphological transition that the ER undergoes in mitosis. In contrast, compartmentalization takes place at the position of the future cleavage plane in a par-3–dependent manner. Together, our data indicate that the ER membrane is compartmentalized in cells as diverse as budding yeast, mouse neural stem cells, and the early C. elegans embryo.
Collapse
Affiliation(s)
- Zuo Yen Lee
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| | - Manoël Prouteau
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
39
|
Mrozowska PS, Fukuda M. Regulation of podocalyxin trafficking by Rab small GTPases in epithelial cells. Small GTPases 2016; 7:231-238. [PMID: 27463697 DOI: 10.1080/21541248.2016.1211068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The characteristic feature of polarity establishment in MDCK II cells is transcytosis of apical glycoprotein podocalyxin (PCX) from the outer plasma membrane to the newly formed apical domain. This transcytotic event consists of multiple steps, including internalization from the plasma membrane, transport through early endosomes and Rab11-positive recycling endosomes, and delivery to the apical membrane. These steps are known to be tightly coordinated by Rab small GTPases, which act as molecular switches cycling between active GTP-bound and inactive GDP-bound states. However, our knowledge regarding which sets of Rabs regulate particular steps of PCX trafficking was rather limited. Recently, we have performed a comprehensive analysis of Rab GTPase engagement in the transcytotic pathway of PCX during polarity establishment in 2-dimensional (2D) and 3-dimensional (3D) MDCK II cell cultures. In this Commentary we summarize our findings and set them in the context of previous reports.
Collapse
Affiliation(s)
- Paulina S Mrozowska
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| | - Mitsunori Fukuda
- a Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences , Graduate School of Life Sciences, Tohoku University , Sendai, Miyagi , Japan
| |
Collapse
|
40
|
Basagiannis D, Christoforidis S. Constitutive Endocytosis of VEGFR2 Protects the Receptor against Shedding. J Biol Chem 2016; 291:16892-903. [PMID: 27298320 DOI: 10.1074/jbc.m116.730309] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/19/2022] Open
Abstract
VEGFR2 plays a fundamental role in blood vessel formation and in life threatening diseases, such as cancer angiogenesis and cardiovascular disorders. Although inactive growth factor receptors are mainly localized at the plasma membrane, VEGFR2 undergoes constitutive endocytosis (in the absence of ligand) and recycling. Intriguingly, the significance of these futile transport cycles of VEGFR2 remains unclear. Here we found that, unexpectedly, the function of constitutive endocytosis of VEGFR2 is to protect the receptor against plasma membrane cleavage (shedding), thereby preserving the functional state of the receptor until the time of activation by VEGF. Inhibition of constitutive endocytosis of VEGFR2, by interference with the function of clathrin, dynamin, or Rab5, increases dramatically the cleavage/shedding of VEGFR2. Shedding of VEGFR2 produces an N-terminal soluble fragment (100 kDa, s100), which is released in the extracellular space, and a residual C-terminal part (130 kDa, p130) that remains integrated at the plasma membrane. The released soluble fragment (s100) co-immunoprecipitates with VEGF, in line with the topology of the VEGF-binding domain at the N terminus of VEGFR2. Increased shedding of VEGFR2 (via inhibition of constitutive endocytosis) results in reduced response to VEGF, consistently with the loss of the VEGF-binding domain from the membrane remnant of VEGFR2. These data suggest that constitutive internalization of VEGFR2 protects the receptor against shedding and provides evidence for an unprecedented mechanism via which endocytosis can regulate the fate and activity of growth factor receptors.
Collapse
Affiliation(s)
- Dimitris Basagiannis
- From the Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina and the Department of Medicine, Laboratory of Biological Chemistry, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Savvas Christoforidis
- From the Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina and the Department of Medicine, Laboratory of Biological Chemistry, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
41
|
Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI. Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. J Biomol Struct Dyn 2016; 35:105-118. [PMID: 26727234 DOI: 10.1080/07391102.2015.1134346] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ras-related protein (Rab-5a) is primarily involved in the regulation of early endosome fusion during endocytosis and takes part in the budding process. During GTP hydrolysis, Rab5a was spotted in the cytoplasmic side of early endosomes in association with the GTP. Previous study suggested that the substitution of alanine with proline at position 30 of Rab5a reduces the GTPase activity around 12-fold, while, with arginine substitution stimulates the intrinsic GTP hydrolysis by 5-fold. Most of the other substitutions at this position show a little or no effect on the GTPase activity. In this paper, structure analysis and molecular dynamics (MD) simulation studies of human Rab5a and its mutants have been extensively carried out. The effect of binding of a non-hydrolyzable GTP analog guanosine-5'-(β, γ)-imidotriphosphate (GppNHp) with Rab5a and its mutants are described. The objective of the current study is to perform a detailed examination of structural flexibility of Rab5a and its mutants p.Ala30Pro and p.Ala30Arg using MD simulations. Our observations suggest that mutant p.Ala30Arg stabilize the protein molecule when bound to GppNHp which offers additional contacts. Despite an in silico approach, this study provides a deep insight into the impact of mutation on the structure, function, stability, and mechanism of binding of GppNHp to the Rab5a at molecular level.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Mohd Aamir
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Dong-Qing Wei
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Faizan Ahmad
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| |
Collapse
|
42
|
Amir M, Wahiduzzaman, Dar MA, Haque MA, Islam A, Ahmad F, Hassan MI. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia. Int J Biol Macromol 2016; 82:471-9. [DOI: 10.1016/j.ijbiomac.2015.10.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022]
|
43
|
Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles. Pharmaceutics 2015; 7:74-89. [PMID: 26102358 PMCID: PMC4491652 DOI: 10.3390/pharmaceutics7020074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 01/03/2023] Open
Abstract
The success of nanomedicine as a new strategy for drug delivery and targeting prompted the interest in developing approaches toward basic and clinical neuroscience. Despite enormous advances on brain research, central nervous system (CNS) disorders remain the world's leading cause of disability, in part due to the inability of the majority of drugs to reach the brain parenchyma. Many attempts to use nanomedicines as CNS drug delivery systems (DDS) were made; among the various non-invasive approaches, nanoparticulate carriers and, particularly, polymeric nanoparticles (NPs) seem to be the most interesting strategies. In particular, the ability of poly-lactide-co-glycolide NPs (PLGA-NPs) specifically engineered with a glycopeptide (g7), conferring to NPs' ability to cross the blood brain barrier (BBB) in rodents at a concentration of up to 10% of the injected dose, was demonstrated in previous studies using different routes of administrations. Most of the evidence on NP uptake mechanisms reported in the literature about intracellular pathways and processes of cell entry is based on in vitro studies. Therefore, beside the particular attention devoted to increasing the knowledge of the rate of in vivo BBB crossing of nanocarriers, the subsequent exocytosis in the brain compartments, their fate and trafficking in the brain surely represent major topics in this field.
Collapse
|
44
|
He K, Yan X, Li N, Dang S, Xu L, Zhao B, Li Z, Lv Z, Fang X, Zhang Y, Chen YG. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res 2015; 25:738-52. [PMID: 25998683 DOI: 10.1038/cr.2015.60] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 01/12/2015] [Accepted: 02/02/2015] [Indexed: 12/18/2022] Open
Abstract
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.
Collapse
Affiliation(s)
- Kangmin He
- 1] Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China [2] Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xiaohua Yan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Dang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zijian Li
- Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zhizhen Lv
- Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Youyi Zhang
- Institute of Vascular Medicine Peking University Third Hospital and Academy for Advanced Interdisciplinary Studies, Peking University, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One 2015; 10:e0121165. [PMID: 25799564 PMCID: PMC4370394 DOI: 10.1371/journal.pone.0121165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022] Open
Abstract
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Omar B. Sánchez-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Marco A. Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - M. Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., Mexico
| | - J. Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
- * E-mail:
| |
Collapse
|
46
|
Perrett RM, Alexopoulou Z, Tofaris GK. The endosomal pathway in Parkinson's disease. Mol Cell Neurosci 2015; 66:21-8. [PMID: 25701813 DOI: 10.1016/j.mcn.2015.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease is primarily a movement disorder with predilection for the nigral dopaminergic neurons and is often associated with widespread neurodegeneration and diffuse Lewy body deposition. Recent advances in molecular genetics and studies in model organisms have transformed our understanding of Parkinson's pathogenesis and suggested unifying biochemical pathways despite the clinical heterogeneity of the disease. In this review, we summarized the evidence that a number of Parkinson's associated genetic mutations or polymorphisms (LRRK2, VPS35, GBA, ATP13A2, ATP6AP2, DNAJC13/RME-8, RAB7L1, GAK) disrupt protein trafficking and degradation via the endosomal pathway and discussed how such defects could arise from or contribute to the accumulation and misfolding of α-synuclein in Lewy bodies. We propose that an age-related pathological depletion of functional endolysosomes due to neuromelanin deposition in dopaminergic neurons may increase their susceptibility to stochastic molecular defects in this pathway and we discuss how enzymes that regulate ubiquitin signaling, as exemplified by the ubiquitin ligase Nedd4, could provide the missing link between genetic and acquired defects in endosomal trafficking. This article is part of a Special Issue entitled 'Neuronal Protein'.
Collapse
Affiliation(s)
- Rebecca M Perrett
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Zoi Alexopoulou
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
47
|
Beske PH, Byrnes NM, Astruc-Diaz F, Jackson DA. Identification of NADPH oxidase as a key mediator in the post-ischemia-induced sequestration and degradation of the GluA2 AMPA receptor subunit. J Neurochem 2015; 132:504-19. [PMID: 25475532 DOI: 10.1111/jnc.13005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/22/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
Abstract
A hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2-amino-3-(3-hydroxy-5-methylisoazol-4-yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2-lacking Ca(2+) /Zn(2+) permeable AMPARs. These GluA2-lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury. At present, the mechanism(s) responsible for the ischemia/reperfusion-induced subunit composition switch and degradation of the GluA2 subunit remain unclear. In this study, we investigated the role of NADPH oxidase, and its importance in mediating endocytosis and subsequent degradation of the GluA2 AMPAR subunit in adult rat hippocampal slices subjected to oxygen-glucose deprivation/reperfusion (OGD/R) injury. In hippocampal slices pre-treated with the NADPH oxidase inhibitor apocynin attenuated OGD/R-mediated sequestration of GluA2 and GluA1 as well as prevent the degradation of GluA2. We provide compelling evidence that NADPH oxidase mediated sequestration of GluA1- and GluA2- involved activation of p38 MAPK. Furthermore, we demonstrate that inhibition of NADPH oxidase blunts the OGD/R-induced association of GluA2 with protein interacting with C kinase-1. In summary, this study identifies a novel mechanism that may underlie the ischemia/reperfusion-induced AMPAR subunit composition switch and a potential therapeutic target.
Collapse
Affiliation(s)
- Phillip H Beske
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| | - Nicole M Byrnes
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| | - Fanny Astruc-Diaz
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| | - Darrell A Jackson
- Department of Biomedical and Pharmaceutical Sciences and the Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana, USA
| |
Collapse
|
48
|
Farkaš R, Beňová-Liszeková D, Mentelová L, Mahmood S, Ďatková Z, Beňo M, Pečeňová L, Raška O, Šmigová J, Chase BA, Raška I, Mechler BM. Vacuole dynamics in the salivary glands ofDrosophila melanogasterduring prepupal development. Dev Growth Differ 2015; 57:74-96. [DOI: 10.1111/dgd.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/21/2014] [Accepted: 11/28/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Silvia Mahmood
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Medical Biochemistry; Jessenius Faculty of Medicine; Comenius University; Mala Hora 4 03601 Martin Slovakia
| | - Zuzana Ďatková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Ludmila Pečeňová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Otakar Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Jana Šmigová
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bruce A. Chase
- Department of Biology; University of Nebraska at Omaha; 6001 Dodge Street Omaha NE 68182-0040 USA
| | - Ivan Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bernard M. Mechler
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
- German Cancer Research Centre; Neuenheimer Feld 581 D-69120 Heidelberg Germany
- VIT-University; Vellore Tamil Nadu India
| |
Collapse
|
49
|
Abstract
Rab proteins represent the largest branch of the Ras-like small GTPase superfamily and there are 66 Rab genes in the human genome. They alternate between GTP- and GDP-bound states, which are facilitated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and function as molecular switches in regulation of intracellular membrane trafficking in all eukaryotic cells. Each Rab targets to an organelle and specify a transport step along exocytic, endocytic, and recycling pathways as well as the crosstalk between these pathways. Through interactions with multiple effectors temporally, a Rab can control membrane budding and formation of transport vesicles, vesicle movement along cytoskeleton, and membrane fusion at the target compartment. The large number of Rab proteins reflects the complexity of the intracellular transport system, which is essential for the localization and function of membrane and secretory proteins such as hormones, growth factors, and their membrane receptors. As such, Rab proteins have emerged as important regulators for signal transduction, cell growth, and differentiation. Altered Rab expression and/or activity have been implicated in diseases ranging from neurological disorders, diabetes to cancer.
Collapse
Affiliation(s)
- Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC 417, Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
50
|
Zhang J, Naslavsky N, Caplan S. EHDs meet the retromer: Complex regulation of retrograde transport. CELLULAR LOGISTICS 2014. [PMID: 23181199 PMCID: PMC3498075 DOI: 10.4161/cl.20582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Retrograde trafficking mediates the transport of endocytic membranes from endosomes to the trans-Golgi network (TGN). Dysregulation of these pathways can result in multiple ailments, including late-onset Alzheimer disease. One of the key retrograde transport regulators, the retromer complex, is tightly controlled by many factors, including the C-terminal Eps15 homology domain (EHD) proteins. This mini-review focuses on recent findings and discusses the regulation of the retromer complex by EHD proteins and the novel EHD1 interaction partner, Rabankyrin-5 (Rank-5).
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | | | | |
Collapse
|