1
|
Qin J, Yuchi Z. Identification of a Novel Inhibitor of Cimex lectularius Acetylcholinesterase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12498-12507. [PMID: 38771663 DOI: 10.1021/acs.jafc.4c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Acetylcholinesterase (AChE) stands as a primary target of commercial insecticides, notably organophosphates and carbamates. Despite their widespread use in agricultural and indoor pest control, concerns over their high toxicity and the emergence of resistance have restricted their efficacy. In this study, we conducted high-throughput virtual screening against both wild-type (WT) and resistant Cimex lectularius AChE utilizing a library encompassing 1 270 000 compounds. From this screening, we identified 100 candidate compounds and subsequently assessed their inhibitory effects on purified AChE enzymes. Among these candidates, AE027 emerged as a potent inhibitor against both WT and resistant AChE, exhibiting IC50 values of 10 and 43 μM, respectively. Moreover, the binding of AE027 significantly stabilized AChE, elevating its melting temperature by approximately 7 °C. Through molecular docking and molecular dynamics simulation, we delineated the binding mode of AE027, revealing its interaction with a site adjacent to the catalytic center, which is distinct from known inhibitors, with differing poses observed between WT and resistant AChE. Notably, the resistance mutation F348Y, positioned at a site directly interfacing with AE027, impedes ligand binding through steric hindrance. Furthermore, we evaluated the toxicity and pharmacokinetic properties of AE027 utilizing bioinformatics tools. These findings lay a crucial foundation for the development of a novel generation of insecticides that can combat both WT and resistant pest populations effectively and safely.
Collapse
Affiliation(s)
- Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| |
Collapse
|
2
|
Wang C, Dong W, Shang J, Li H, Chen Z, Zhu B, Liang P, Shi X. S431F mutation on AChE1 and overexpression of P450 genes confer high pirimicarb resistance in Sitobion miscanthi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105957. [PMID: 38879339 DOI: 10.1016/j.pestbp.2024.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 07/02/2024]
Abstract
Sitobion miscanthi is a destructive wheat pest responsible for significant wheat yield losses. Pirimicarb, one of the most important representatives of N, N-dimethylcarbamate insecticides, is widely used to control wheat aphids. In present work, heterozygous S431F mutation of acetylcholinesterase 1 (AChE1) was identified and verified in three pirimicarb-resistant S. miscanthi populations (two field populations (HA and HS, >955.8-fold) and one lab-selected population (PirR, 486.1-fold)), which has not been reported in S. miscanthi yet. The molecular docking results revealed that AChE1 containing the S431F mutation of S. miscanthi (SmAChE1S431F) showed higher free binding energy to three insecticides (pirimicarb, omethoate, and methomyl) than wild-type AChE1 of S. miscanthi (SmAChE1). Enzyme kinetic and inhibition experiments showed that the recombinant SmAChE1S431F was more insensitive to pirimicarb and omethoate than the recombinant SmAChE1. Furthermore, two overexpression P450 genes (CYP6K1 and CYP6A14) associated with pirimicarb resistance of S. miscanthi were verified by RNAi. These results suggested both target alteration and enhanced metabolism contributed to high pirimicarb resistance of S. miscanthi in the field and laboratory. These findings lay a foundation for further elucidating the mechanism of pirimicarb resistance in S. miscanthi, and have important implications for the resistance management of S. miscanthi control.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenyang Dong
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jiao Shang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hongbao Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhao Chen
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Bin Zhu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xueyan Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Njiru C, Vandenhole M, Jonckheere W, Wybouw N, Van Leeuwen T. The host plant strongly modulates acaricide resistance levels to mitochondrial complex II inhibitors in a multi-resistant field population of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105591. [PMID: 37945242 DOI: 10.1016/j.pestbp.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 11/12/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is a polyphagous pest with an extraordinary ability to develop acaricide resistance. Here, we characterize the resistance mechanisms in a T. urticae population (VR-BE) collected from a Belgian tomato greenhouse, where the grower was unsuccessful in chemically controlling the mite population resulting in crop loss. Upon arrival in the laboratory, the VR-BE population was established both on bean and tomato plants as hosts. Toxicity bioassays on both populations confirmed that the population was highly multi-resistant, recording resistance to 12 out of 13 compounds tested from various mode of action groups. DNA sequencing revealed the presence of multiple target-site resistance mutations, but these could not explain resistance to all compounds. In addition, striking differences in toxicity for six acaricides were observed between the populations on bean and tomato. The highest difference was recorded for the complex II inhibitors cyenopyrafen and cyflumetofen, which were 4.4 and 3.3-fold less toxic for VR-BE mites on tomato versus bean. PBO synergism bioassays suggested increased P450 based detoxification contribute to the host-dependent toxicity. Given the involvement of increased detoxification, we subsequently determined genome-wide gene expression levels of VR-BE on both hosts, in comparison to a reference susceptible population, revealing overexpression of a large set of detoxification genes in VR-BE on both hosts compared to the reference. In addition, a number of mainly detoxification genes with higher expression in VR-BE on tomato compared to bean was identified, including several cytochrome P450s. Together, our work suggests that multi-resistant field populations can accumulate a striking number of target-site resistance mutations. We also show that the host plant can have a profound effect on the P450-associated resistance levels to cyenopyrafen and cyflumetofen.
Collapse
Affiliation(s)
- Christine Njiru
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Wang J, Cao Y, Lai B, Liu Y, Li C, Bu C. Discovery selective acetylcholinesterase inhibitors to control Tetranychus urticae (Acari: Tetranychidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:19. [PMID: 37578847 PMCID: PMC10424716 DOI: 10.1093/jisesa/iead073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
The two-spotted spider mite, Tetranychus urticae Koch, has a broad host plant range and presents an extreme capacity for developing pesticide resistance, becoming a major economic pest in agriculture. Anticholinesterase insecticides still account for a big part of global insecticide sales. However, there is a growing concern about the serious resistance problems of anticholinesterase insecticides and their nontarget toxicity. In this study, structure-based virtual screening was performed to discover selective AChE inhibitors from the ChemBridge database, and 39 potential species-specific AChE inhibitor were obtained targeting T. urticae AChE, but not human AChE. Among them, compound No. 8 inhibited AChE from T. urticae, but not from human, and had an inhibitory activity comparable to that of eserine. Compound No. 8 had dose-dependent toxicity to T. urticae in glass slide-dipping assay and had significant mite control effects in a pot experiment, but required a high concentration to achieve similar control effects to spirodiclofen. The toxicity evaluation suggested that compound No. 8 had no acute toxicity on pollinator honey bees and natural predator N. californicus and did not affect strawberry growth in our assay. Compound No. 8 is a potential lead compound for developing novel acaricides with reduced nontarget toxicity.
Collapse
Affiliation(s)
- Jiachen Wang
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Cao
- Center for Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Bin Lai
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yongshuai Liu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chao Li
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
6
|
Kim S, Yoon KA, Cho S, Lee J, Lim Y, Lee SH. Molecular and kinetic properties of three acetylcholinesterases in the Varroa mite, Varroa destructor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105277. [PMID: 36464382 DOI: 10.1016/j.pestbp.2022.105277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The Varroa mite, Varroa destructor, poses one of the most serious threats to honey bees worldwide. Although coumaphos, an anticholinesterase pesticide, is widely used for varroa mite control, little information is available on the properties of Varroa mite acetylcholinesterases (VdAChEs). In this study, three putative VdAChEs were annotated and named VdAChE1, VdAChE2, and VdAChE3. All VdAChEs possessed most of the functionally important signature domains, suggesting that they are catalytically active. Phylogenetic analysis revealed that VdAChE1 was clustered into a clade containing most arthropod AChE1s, whereas VdAChE2 and VdAChE3 formed a unique clade with other arachnid AChEs. VdAChE1 was determined to be membrane-anchored, but both VdAChE2 and VdAChE3 are soluble, as judged by electrophoresis in conjunction with western blotting. Tissue-specific transcription profiling revealed that VdAChE1 was most predominantly expressed in the synganglion. In contrast, VdAChE2 was most predominantly expressed in the legs and cuticle. VdAChE3 showed negligible expression levels in all the tissues examined. In a kinetic analysis using recombinant VdAChEs, VdAChE1 exhibited the highest catalytic efficiency, followed by VdAChE2 and VdAChE3. Inhibition experiments revealed that VdAChE1 was most sensitive to all tested inhibitors. Taken together, VdAChE1 appears to be the major synaptic enzyme with a more toxicological relevance, whereas VdAChE2 is involved in other noncatalytic functions, including chemical defense against xenobiotics. Current findings contribute to a more detailed understanding of the evolutionary and functional traits of VdAChEs and to the design of novel anticholinesterase varroacides.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - SuSie Cho
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Joonhee Lee
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngcheon Lim
- Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Entomology Program, Department of Agricultural Biotechnology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Teng H, Zuo Y, Jin Z, Wu Y, Yang Y. Associations between acetylcholinesterase-1 mutations and chlorpyrifos resistance in beet armyworm, Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105105. [PMID: 35715044 DOI: 10.1016/j.pestbp.2022.105105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Control of the beet armyworm, Spodoptera exigua depends heavily on chemical insecticides. Chlorpyrifos, an acetylcholinesterase (AChE) inhibitor, has been used in beet armyworm control for many years in China. Here we describe high level resistance to chlorpyrifos in a S. exigua strain, FX19-R, which was developed from a field-collected Chinese strain (FX) by selection with chlorpyrifos in the laboratory. FX19-R showed 1001-fold resistance to chlorpyrifos compared with the laboratory reference strain WH-S. The esterase inhibitor triphenyl phosphate (TPP) provided significant but small synergism (only 3.5-fold) for chlorpyrifos and neither of the glutathione s-transferase depletor diethyl maleate and the cytochrome P450s inhibitor piperonyl butoxide provided any detectable synergism, indicating that AChE insensitivity may play the major role in the resistance in FX19-R. Consistent with this, an amino acid substitution, F443Y (F331Y in standard Torpedo californica numbering) in AChE1 was identified in the FX19-R strain and shown to be tightly linked to chlorpyrifos resistance. Precisely homologous substitutions have been associated with organophosphate resistance in other pest species. A novel amino acid substitution, G311S (or G198S in standard numbering), was also identified in the reference strain WH-S. Recombinantly expressed AChE1 proteins carrying the G311S and F443Y substitutions were about 4.2-fold and 210-fold less sensitive to inhibition by chlorpyrifos oxon than wild-type AChE1, respectively. These results enhance our understanding of the mechanisms of chlorpyrifos resistance and provide a basis for resistance management based on monitoring the F443Y and G311S substitutions.
Collapse
Affiliation(s)
- Haiyuan Teng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zeng Jin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
İnak E. Geographical distribution and origin of acetylcholinesterase mutations conferring acaricide resistance in Tetranychus urticae populations from Turkey. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:49-59. [PMID: 34731389 DOI: 10.1007/s10493-021-00673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a cosmopolitan pest species that can feed on more than 1000 host plant species. Historically, organophosphate (OP) and carbamate insecticides have been used to control this extremely polyphagous pest. However, its ability to develop acaricide resistance rapidly has led to failure in control. Mutations in acetylcholinesterase gene (ace), the target-site of OP and carbamate insecticides, have been reported to be one of the major mechanisms underlying this developing resistance. In this study, mutations previously associated with resistance (G119S, A201S, T280A, G328A, F331W/Y) in ace have been screened in 37 T. urticae populations collected across Turkey. All mutations were found in various populations, except G119S. Almost all populations had F331W/Y mutation (being fixed in 32 populations), whereas only two populations harboured A201S mutation, but not fixed. On the other hand, more than half of the populations contained T280A and G328A mutations. In addition, the presence of same haplotypes in populations originating from distinct geographic locations and a wide variety of ace haplotypes might indicate multiple origins of F331W and F331Y mutations; however, this needs further investigation. The results of area-wide screening showed that ace mutations are widely distributed among T. urticae populations. Therefore, the use of this group of insecticides should be limited or only rotational use might be regarded as a resistance management tool due to its different mode of action from other main acaricide groups in T. urticae control across Turkey.
Collapse
Affiliation(s)
- Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, 06110, Diskapi, Ankara, Turkey.
| |
Collapse
|
9
|
Albayrak T, Yorulmaz S, İnak E, Toprak U, Van Leeuwen T. Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104984. [PMID: 34955177 DOI: 10.1016/j.pestbp.2021.104984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
The predatory mite Neoseiulus californicus McGregor (Acari: Phytoseiidae) is an important natural enemy of phytophagous mites, and naturally established populations are often found in apple orchards. However, insecticide applications to control pests cause side effects to non-target organisms such as N. californicus. Pirimicarb, a widely used carbamate insecticide in apple orchards, is generally considered a selective aphidicide, however, toxicity to beneficial insects and predatory mites has been reported. Furthermore, the molecular basis for this selectivity, if present in N. californicus, is still largely unknown. In this study, 8 field-collected N. californicus populations were investigated and showed up to 27-fold resistance compared to a susceptible laboratory population. Selection in the laboratory for 5 consecutive generations resulted in a 69-fold pirimicarb resistance. Although there were no significant difference in terms of the acetlycholinesterase (AChE) activity between susceptible and field-collected populations, the selected population exhibited a significantly higher AChE activity. In addition, gene copy number variation of acetylcholinesterase (ace) gene among populations was detected and ranged from 1.6 to 2.1-fold relative to the susceptible population. All field-collected populations, but not the selected population, had a significantly higher ace copy number compared to the susceptible population (t-test, p < 0.05). Molecular analysis of the target-site (AChE) revealed, for the first time, a phenylalanine to tryptophan substition at position 331 in AChE (Torpedo californica numbering), both in field-collected and the selected population, but not in the susceptible population. Last, the selected F5 population consumed significantly more Tetranychusurticae adults than the parental population. Together, the results of this study shed light on the molecular determinants of acaricide selectivity in predatory mites, and will contribute to a better design of an integrated mite management program, including the use of pesticide resistant N. californicus in apple orchards.
Collapse
Affiliation(s)
- Tuba Albayrak
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Isparta University of Applied Sciences, Isparta, Turkey
| | - Sibel Yorulmaz
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Isparta University of Applied Sciences, Isparta, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi, 06110 Ankara, Turkey
| | - Umut Toprak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi, 06110 Ankara, Turkey
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Komagata O, Kasai S, Itokawa K, Minagawa K, Kazuma T, Mizutani K, Muto A, Tanikawa T, Adachi M, Komatsu N, Tomita T. Common substitution mutation F348Y of acetylcholinesterase gene contributes to organophosphate and carbamate resistance in Cimex lectularius and C. hemipterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103637. [PMID: 34454015 DOI: 10.1016/j.ibmb.2021.103637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.
Collapse
Affiliation(s)
- Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keiko Minagawa
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Toru Kazuma
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Kiyoshi Mizutani
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Atsuhiko Muto
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, IKARI Shodoku Co., Ltd., Narashino, Chiba, 275-0024, Japan
| | | | - Noriyuki Komatsu
- Civil International Corporation, Taito-ku, Tokyo, 110-0014, Japan
| | - Takashi Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
11
|
Li C, Cao Y, Yang J, Li M, Li B, Bu C. Acetylcholinesterase target sites for developing environmentally friendly insecticides against Tetranychus urticae (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:419-431. [PMID: 33914192 DOI: 10.1007/s10493-021-00624-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The non-target toxicity and resistance problems of acetylcholinesterase (AChE) insecticides, such as organophosphates and carbamates, are of growing concern. To explore the potential targets for achieving inhibitor selectivity, the AChE structures at or near the catalytic pocket of Tetranychus urticae (TuAChE), honey bees, and humans were compared. The entrances to the AChE catalytic pocket differ significantly because of their different peripheral sites. The role of these potential mite-specific sites in AChE function was further elucidated by site-directed mutagenesis of these sites and then examining the catalytic activities of TuAChE mutants. The spider mite E316, H369, and V105 active sites are important for AChE function. By further analyzing their physostigmine inhibitory properties and the detailed interaction between physostigmine and TuAChE, the peripheral site H369 locating near the gorge entrance, and S154 at the oxyanion hole, affects substrate and inhibitor trafficking. The discovery of conserved mite-specific residues in Tetranychus will enable the development of safer, effective pesticides that target residues present only in mite AChEs, potentially offering effective control against this important agricultural pest.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Yang Cao
- Center for Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jin Yang
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengyi Li
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Bo Li
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
12
|
Langmüller AM, Nolte V, Galagedara R, Poupardin R, Dolezal M, Schlötterer C. Fitness effects for Ace insecticide resistance mutations are determined by ambient temperature. BMC Biol 2020; 18:157. [PMID: 33121485 PMCID: PMC7597021 DOI: 10.1186/s12915-020-00882-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Such mutations are typically costly in an insecticide-free environment, and their frequency is determined by the balance between insecticide treatment and cost of resistance. Ace, a key gene in neuronal signaling, is a prominent target of many insecticides and across several species, three amino acid replacements (I161V, G265A, and F330Y) provide resistance against several insecticides. Because temperature disturbs neuronal signaling homeostasis, we reasoned that the cost of insecticide resistance could be modulated by ambient temperature. RESULTS Experimental evolution of a natural Drosophila simulans population at hot and cold temperature regimes uncovered a surprisingly strong effect of ambient temperature. In the cold temperature regime, the resistance mutations were strongly counter selected (s = - 0.055), but in a hot environment, the fitness costs of resistance mutations were reduced by almost 50% (s = - 0.031). We attribute this unexpected observation to the advantage of the reduced enzymatic activity of resistance mutations in hot environments. CONCLUSION We show that fitness costs of insecticide resistance genes are temperature-dependent and suggest that the duration of insecticide-free periods need to be adjusted for different climatic regions to reflect these costs. We suggest that such environment-dependent fitness effects may be more common than previously assumed and pose a major challenge for modeling climate change.
Collapse
Affiliation(s)
- Anna Maria Langmüller
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Ruwansha Galagedara
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Rodolphe Poupardin
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Present Address: Paracelsus Medical University Salzburg, Strubergasse 21, 5020, Salzburg, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
13
|
Vu PD, Rault LC, Jenson LJ, Bloomquist JR, Anderson TD. Voltage-gated chloride channel blocker DIDS as an acaricide for Varroa mites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104603. [PMID: 32527437 DOI: 10.1016/j.pestbp.2020.104603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The Varroa mite is a primary driver behind periodical losses of honey bee colonies. These mites require honey bees for food and reproduction and, in turn, elicit physiological deficiencies and diseases that compromise colony health. Current acaricides for Varroa mite control, such as Apistan® (the pyrethroid tau-fluvalinate), CheckMite+® (the organophosphate coumaphos), and Apivar® (the formamidine amitraz) target the nervous system, can have adverse health effects on honey bees, and have limited effectiveness due to reported resistance issues. New target sites are needed to circumvent these obstacles in Varroa mite management, and voltage-gated chloride channels (VGCCs) are promising candidates due to their important role in the maintenance of nerve and muscle excitability in arthropod pests. Toxicological analysis of Varroa mites sensitive to tau-fluvalinate and coumaphos and Varroa mites with reduced sensitivity to these acaricides showed a significant increase in metabolic detoxification enzyme activities for the latter. Acetylcholinesterase activity in the Varroa mites exhibiting reduced mortality to coumaphos was significantly less sensitive to coumaphos-oxon compared to coumaphos-sensitive Varroa mites, which suggests target-site insensitivity to the acaricide. Voltage-gated chloride channel blocker DIDS had significantly greater field efficacy compared to Apistan® and CheckMite+® against Varroa mites from honey bee hives where tau-fluvalinate and coumaphos were observed to be ineffective, respectively. These data suggest that DIDS, and potentially other stilbene chemistries, might serve as candidates for continued field efficacy testing of alternative acaricides in apiaries where Apistan®- and CheckMite+® efficacy has been. reduced or lost for Varroa mites.
Collapse
Affiliation(s)
- Philene D Vu
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | - Leslie C Rault
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Lacey J Jenson
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
14
|
Le Navenant A, Siegwart M, Maugin S, Capowiez Y, Rault M. Metabolic mechanisms and acetylcholinesterase sensitivity involved in tolerance to chlorpyrifos-ethyl in the earwig Forficula auricularia. CHEMOSPHERE 2019; 227:416-424. [PMID: 31003126 DOI: 10.1016/j.chemosphere.2019.04.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Apple orchards are highly treated crops, in which organophosphorus (OP) are among the most heavily sprayed insecticides. These pesticides are toxic to non-target arthropods and their repeated use increases the risk of resistance. We studied mechanisms involved in tolerance and resistance to OP insecticides in the earwig Forficula auricularia, an effective generalist predator in pomefruit orchards. Adult earwigs were sampled in three apple orchards managed under contrasting strategies: conventional, Integrated Pest Management, and organic. The threshold activities of enzyme families involved in pesticides tolerance: Glutathione-S-transferases (GSTs) and Carboxylesterases (CbEs) were measured in earwig extracts. Acetylcholinesterase (AChE) was monitored as a toxicological endpoint. Variations in these activities were assessed prior to and after exposure to chlorpyrifos-ethyl at the normal application rate. We observed that the mortality of earwigs exposed to chlorpyrifos-ethyl depended on the management strategy of orchards. Significantly lower mortality was seen in individuals sampled from conventional orchard. The basal activities of CbEs and GSTs of collected organisms were higher in conventional orchard. After in vivo exposure, AChE activity appeared to be inhibited in surviving males with no difference between orchards. However an in vitro inhibition trial with chlorpyrifos-oxon showed that AChE from earwigs collected in organic and IPM orchards were more sensitive than from conventional ones. These observations support the hypothesis of a molecular target modification in AChE and highlight the possible role of CbEs in effective protection of AChE. Our findings suggest that the earwigs with a high historic level of insecticide exposure could acquire resistance to chlorpyrifos-ethyl.
Collapse
Affiliation(s)
- Adrien Le Navenant
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France; INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France.
| | - Myriam Siegwart
- INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Sandrine Maugin
- INRA, Unité PSH, Equipe Ecologie de la Production Intégrée, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Yvan Capowiez
- INRA, UMR 1114 EMMAH Domaine Saint Paul 84914, Avignon Cedex 09, France
| | - Magali Rault
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| |
Collapse
|
15
|
Umina PA, Lord A, Micic S, Edwards O. Discovery and characterisation of field resistance to organophosphorus chemicals in a major mite pest, Halotydeus destructor. PEST MANAGEMENT SCIENCE 2017; 73:1719-1724. [PMID: 28066973 DOI: 10.1002/ps.4520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/21/2016] [Accepted: 12/27/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The redlegged earth mite (Halotydeus destructor) is an agricultural pest in Australia that attacks a wide variety of crops and pasture species. Chemicals remain an important part of control strategies for H. destructor, despite the existence of resistance to pyrethroid insecticides in this species. Recent chemical control failures involving a second insecticide class, organophosphates, were investigated using pesticide bioassays. RESULTS We confirmed, for the first time, resistance to organophosphates in H. destructor, and show that resistance is not confined to a single property, or region. There was no evidence that resistance to organophosphorus chemicals has evolved in Australian states outside of Western Australia. CONCLUSION These findings demonstrate the strong evolutionary capability of H. destructor and highlight the need for ongoing resistance surveillance within Australia. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paul A Umina
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
- Cesar, 293 Royal Parade, Parkville, Victoria, Australia
| | - Alan Lord
- Department of Agriculture and Food Western Australia, South Perth, WA, Australia
| | - Svetlana Micic
- Department of Agriculture and Food Western Australia, Albany, WA, Australia
| | - Owain Edwards
- CSIRO Land & Water, Centre for Environment and Life Sciences, Floreat, WA, Australia
| |
Collapse
|
16
|
Mechanism of Fenpropathrin Resistance in Red Spider Mite, Oligonychus coffeae (Acarina: Tetranychidae), Infesting Tea [Camellia sinensis L. (O. Kuntze)]. Appl Biochem Biotechnol 2016; 181:548-561. [DOI: 10.1007/s12010-016-2230-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022]
|
17
|
Kwon DH, Kang TJ, Kim YH, Lee SH. Phenotypic- and Genotypic-Resistance Detection for Adaptive Resistance Management in Tetranychus urticae Koch. PLoS One 2015; 10:e0139934. [PMID: 26545209 PMCID: PMC4636269 DOI: 10.1371/journal.pone.0139934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022] Open
Abstract
Rapid resistance detection is necessary for the adaptive management of acaricide-resistant populations of Tetranychus urticae. Detection of phenotypic and genotypic resistance was conducted by employing residual contact vial bioassay (RCV) and quantitative sequencing (QS) methods, respectively. RCV was useful for detecting the acaricide resistance levels of T. urticae, particularly for on-site resistance detection; however, it was only applicable for rapid-acting acaricides (12 out of 19 tested acaricides). QS was effective for determining the frequencies of resistance alleles on a population basis, which corresponded to 12 nonsynonymous point mutations associated with target-site resistance to five types of acaricides [organophosphates (monocrotophos, pirimiphos-methyl, dimethoate and chlorpyrifos), pyrethroids (fenpropathrin and bifenthrin), abamectin, bifenazate and etoxazole]. Most field-collected mites exhibited high levels of multiple resistance, as determined by RCV and QS data, suggesting the seriousness of their current acaricide resistance status in rose cultivation areas in Korea. The correlation analyses revealed moderate to high levels of positive relationships between the resistance allele frequencies and the actual resistance levels in only five of the acaricides evaluated, which limits the general application of allele frequency as a direct indicator for estimating actual resistance levels. Nevertheless, the resistance allele frequency data alone allowed for the evaluation of the genetic resistance potential and background of test mite populations. The combined use of RCV and QS provides basic information on resistance levels, which is essential for choosing appropriate acaricides for the management of resistant T. urticae.
Collapse
Affiliation(s)
- Deok Ho Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151–921, Republic of Korea
- * E-mail: (DHK); (SHL)
| | - Taek-Jun Kang
- Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science, RDA, Jeonju 565–852, Republic of Korea
| | - Young Ho Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151–921, Republic of Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151–921, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151–921, Republic of Korea
- * E-mail: (DHK); (SHL)
| |
Collapse
|
18
|
Bu C, Peng B, Cao Y, Wang X, Chen Q, Li J, Shi G. Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:129-135. [PMID: 26520174 DOI: 10.1016/j.ibmb.2015.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychidae), is an economically important and extremely polyphagous herbivorous pest, with the title of "resistance champion" among arthropods. Anticholinesterase insecticides such as organophosphate and carbamate account for more than one-third of global insecticide sales. The non-target toxicity and resistance problem of organophosphate and carbamate have become of growing concern, which may be due to the fact that they target the ubiquitous catalytic serine residue of acetylcholinesterase (AChE) in mammals, birds, and beneficial insects. In this study, the structural differences between T. cinnabarinus AChE and human AChE, at or near the catalytic pocket, were illustrated. From the SPECS chemical lead-compound database, 55 AChE inhibitor candidates were screened for high affinity for T. cinnabarinus AChE, but low affinity for human AChE, using the DOCK 6 and AutoDock Vina software. Three of the fifty-five candidates had inhibitory activity greater than that of the reversible AChE inhibitor eserine, with no observed inhibitory activities against human AChE. Two of the three had toxicity to T. cinnabarinus comparable to that of natural insecticidal pyrethrins. However, their potency is low compared with that of etoxazole, and further work is needed to optimize their potency. The selectivity of the three compounds over human and mite AChE may be due to their interaction with the mite-specific residues, as analyzed by Cyscore. The three compounds are potential lead compounds for development of novel acaricides against T. cinnabarinus with reduced toxicity to non-target species and a low propensity for resistance.
Collapse
Affiliation(s)
- Chunya Bu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China
| | - Bo Peng
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Cao
- Center for Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaoqin Wang
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China
| | - Qing Chen
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China
| | - Jinling Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Guanglu Shi
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture People's Republic of China, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
19
|
Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:61-77. [PMID: 26047113 DOI: 10.1016/j.pestbp.2015.01.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 05/13/2023]
Abstract
The recent accumulation of molecular studies on mutations in insects, ticks and mites conferring resistance to insecticides, acaricides and biopesticides is reviewed. Resistance is traditionally classified by physiological and biochemical criteria, such as target-site insensitivity and metabolic resistance. However, mutations are discrete molecular changes that differ in their intrinsic frequency, effects on gene dosage and fitness consequences. These attributes in turn impact the population genetics of resistance and resistance management strategies, thus calling for a molecular genetic classification. Mutations in structural genes remain the most abundantly described, mostly in genes coding for target proteins. These provide the most compelling examples of parallel mutations in response to selection. Mutations causing upregulation and downregulation of genes, both in cis (in the gene itself) and in trans (in regulatory processes) remain difficult to characterize precisely. Gene duplications and gene disruption are increasingly reported. Gene disruption appears prevalent in the case of multiple, hetero-oligomeric or redundant targets.
Collapse
Affiliation(s)
- René Feyereisen
- INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France.
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
20
|
Kwon DH, Clark JM, Lee SH. Toxicodynamic mechanisms and monitoring of acaricide resistance in the two-spotted spider mite. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:97-101. [PMID: 26047116 DOI: 10.1016/j.pestbp.2014.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
The two-spotted spider (Tetranychus urticae) is one of the most serious pests world-wide and has developed resistance to many types of acaricides. Various mutations on acaricide target site genes have been determined to be responsible for toxicodynamic resistance, and the genotyping and frequency prediction of these mutations can be employed as an alternative resistance monitoring strategy. A quantitative sequencing (QS) protocol was reported as a population-based genotyping technique, and applied for the determination of resistance allele frequencies in T. urticae field populations. In addition, a modified glass vial bioassay method (residual contact vial bioassay, RCV) was implemented as a rapid on-site resistance monitoring tool. The QS protocol, together with the RCV, would greatly facilitate monitoring of T. urticae resistance. Recent completion of T. urticae genome analysis should facilitate the identification of additional resistance genetic markers that can be employed for molecular resistance monitoring.
Collapse
Affiliation(s)
- Deok Ho Kwon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| | - J Marshall Clark
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
21
|
Lee SH, Kim YH, Kwon DH, Cha DJ, Kim JH. Mutation and duplication of arthropod acetylcholinesterase: Implications for pesticide resistance and tolerance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:118-124. [PMID: 25987229 DOI: 10.1016/j.pestbp.2014.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 06/04/2023]
Abstract
A series of common/shared point mutations in acetylcholinesterase (AChE) confers resistance to organophosphorus and carbamate insecticides in most arthropod pests. However, the mutations associated with reduced sensitivity to insecticides usually results in the reduction of catalytic efficiency and leads to a fitness disadvantage. To compensate for the reduced catalytic activity, overexpression of neuronal AChE appears to be necessary, which is achieved by a relatively recent duplication of the AChE gene (ace) as observed in the two-spotted spider mite and other insects. Unlike the cases with overexpression of neuronal AChE, the extensive generation of soluble AChE is observed in some insects either from a distinct non-neuronal ace locus or from a single ace locus via alternative splicing. The production of soluble AChE in the fruit fly is induced by chemical stress. Soluble AChE acts as a potential bioscavenger and provides tolerance to xenobiotics, suggesting its role in chemical adaptation during evolution.
Collapse
Affiliation(s)
- Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Young Ho Kim
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deok Ho Kwon
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deok Jea Cha
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ju Hyeon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
22
|
Kaur K, Helgesen KO, Bakke MJ, Horsberg TE. Mechanism behind Resistance against the Organophosphate Azamethiphos in Salmon Lice (Lepeophtheirus salmonis). PLoS One 2015; 10:e0124220. [PMID: 25893248 PMCID: PMC4403986 DOI: 10.1371/journal.pone.0124220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/10/2015] [Indexed: 11/18/2022] Open
Abstract
Acetylcholinesterase (AChE) is the primary target for organophosphates (OP). Several mutations have been reported in AChE to be associated with the reduced sensitivity against OP in various arthropods. However, to the best of our knowledge, no such reports are available for Lepeophtheirus salmonis. Hence, in the present study, we aimed to determine the association of AChE(s) gene(s) with resistance against OP. We screened the AChE genes (L. salmonis ace1a and ace1b) in two salmon lice populations: one sensitive (n=5) and the other resistant (n=5) for azamethiphos, a commonly used OP in salmon farming. The screening led to the identification of a missense mutation Phe362Tyr in L. salmonis ace1a, (corresponding to Phe331 in Torpedo californica AChE) in all the samples of the resistant population. We confirmed the potential role of the mutation, with reduced sensitivity against azamethiphos in L. salmonis, by screening for Phe362Tyr in 2 sensitive and 5 resistant strains. The significantly higher frequency of the mutant allele (362Tyr) in the resistant strains clearly indicated the possible association of Phe362Tyr mutation in L. salmonis ace1a with resistance towards azamethiphos. The 3D modelling, short term survival experiments and enzymatic assays further supported the imperative role of Phe362Tyr in reduced sensitivity of L. salmonis for azamethiphos. Based on all these observations, the present study, for the first time, presents the mechanism of resistance in L. salmonis against azamethiphos. In addition, we developed a rapid diagnostic tool for the high throughput screening of Phe362Tyr mutation using High Resolution Melt analysis.
Collapse
Affiliation(s)
- Kiranpreet Kaur
- NMBU School of Veterinary Science, Sea Lice Research Centre, PO Box 8146 Dep., NO-0033 Oslo, Norway
- * E-mail:
| | - Kari Olli Helgesen
- NMBU School of Veterinary Science, Sea Lice Research Centre, PO Box 8146 Dep., NO-0033 Oslo, Norway
| | - Marit Jørgensen Bakke
- NMBU School of Veterinary Science, Sea Lice Research Centre, PO Box 8146 Dep., NO-0033 Oslo, Norway
| | - Tor Einar Horsberg
- NMBU School of Veterinary Science, Sea Lice Research Centre, PO Box 8146 Dep., NO-0033 Oslo, Norway
| |
Collapse
|
23
|
Bu CY, Feng XJ, Wang XQ, Cao Y, Wang YN, Chen Q, Gao P, Peng B, Li JL, Han JY, Shi GL. Cloning and Characterization of the Acetylcholinesterase1 Gene of Tetranychus cinnabarinus (Acari: Tetranychidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:769-779. [PMID: 26470189 DOI: 10.1093/jee/tou046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 11/21/2014] [Indexed: 06/05/2023]
Abstract
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a major agriculture pest. It can be found worldwide, has an extensive host plant range, and has shown resistance to pesticides. Organophosphate and carbamate insecticides account for more than one-third of all insecticide sales. Insecticide resistance and the toxicity of organophosphate and carbamate insecticides to mammals have become a growing concern. Acetylcholinesterase (AChE) is the major targeted enzyme of organophosphate and carbamate insecticides. In this study, we fully cloned, sequenced and characterized the ace1 gene of T. cinnabarinus, and identified the differences between T. cinnabarinus AChE1, Tetranychus urticae Koch AChE1, and human AChE1. Resistance-associated target-site mutations were displayed by comparing the AChE amino acid sequences and their AChE three-dimensional (3D) structures of the insecticide-susceptible strains of T. cinnabarinus and T. urticae to that of a T. urticae-resistant strain. We identified variation in the active-site gorge and the sites interacting with gorge residues by comparing AChE1 3D structures of T. cinnabarinus, T. urticae, and humans, though their 3D structures were similar. Furthermore, the expression profile of T. cinnabarinus AChE, at the different developmental stages, was determined by quantitative real-time polymerase chain reaction; the transcript levels of AChE were higher in the larvae stage than in other stages. The changes in AChE expression between different developmental stages may be related to their growth habits and metabolism characteristics. This study may offer new insights into the problems of insecticide resistance and insecticide toxicity of nontarget species.
Collapse
Affiliation(s)
- Chun-Ya Bu
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Xiao-Jiao Feng
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Xiao-Qin Wang
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Yang Cao
- Center for Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - You-Nian Wang
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Qing Chen
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China
| | - Pin Gao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Bo Peng
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Jin-Ling Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Jing-Yu Han
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206 China
| | - Guang-Lu Shi
- College of Biology Science and Engineering, Beijing University of Agriculture, Beijing 102206 China. Key Laboratory of Urban Agriculture (North) Ministry of Agriculture P. R. China, Beijing University of Agriculture Beijing, 102206 China. Corresponding author, e-mail:
| |
Collapse
|
24
|
Zhang LJ, Jing YP, Li XH, Li CW, Bourguet D, Wu G. Temperature-sensitive fitness cost of insecticide resistance in Chinese populations of the diamondback mothPlutella xylostella. Mol Ecol 2015; 24:1611-27. [DOI: 10.1111/mec.13133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Jie Zhang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education); Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Yu Pu Jing
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education); Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Xiao Hui Li
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education); Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Chang Wei Li
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education); Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Denis Bourguet
- Centre de Biologie pour la Gestion des Populations (CBGP); UMR Inra-IRD-Cirad-Montpellier SupAgro; Montpellier France
| | - Gang Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education); Fujian Agriculture and Forestry University; Fuzhou 350002 China
| |
Collapse
|
25
|
Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:537-59. [PMID: 25564745 DOI: 10.1146/annurev-ento-010814-020828] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mosquito-borne diseases, the most well known of which is malaria, are among the leading causes of human deaths worldwide. Vector control is a very important part of the global strategy for management of mosquito-associated diseases, and insecticide application is the most important component in this effort. However, mosquito-borne diseases are now resurgent, largely because of the insecticide resistance that has developed in mosquito vectors and the drug resistance of pathogens. A large number of studies have shown that multiple, complex resistance mechanisms-in particular, increased metabolic detoxification of insecticides and decreased sensitivity of the target proteins-or genes are likely responsible for insecticide resistance. Gene overexpression and amplification, and mutations in protein-coding-gene regions, have frequently been implicated as well. However, no comprehensive understanding of the resistance mechanisms or regulation involved has yet been developed. This article reviews current knowledge of the molecular mechanisms, genes, gene interactions, and gene regulation governing the development of insecticide resistance in mosquitoes and discusses the potential impact of the latest research findings on the basic and practical aspects of mosquito resistance research.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Insect Molecular Toxicology and Physiology Program, Auburn University, Auburn, Alabama 36849;
| |
Collapse
|
26
|
Zimmer CT, Maiwald F, Schorn C, Bass C, Ott MC, Nauen R. A de novo transcriptome of European pollen beetle populations and its analysis, with special reference to insecticide action and resistance. INSECT MOLECULAR BIOLOGY 2014; 23:511-26. [PMID: 24707894 DOI: 10.1111/imb.12099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The pollen beetle Meligethes aeneus is the most important coleopteran pest in European oilseed rape cultivation, annually infesting millions of hectares and responsible for substantial yield losses if not kept under economic damage thresholds. This species is primarily controlled with insecticides but has recently developed high levels of resistance to the pyrethroid class. The aim of the present study was to provide a transcriptomic resource to investigate mechanisms of resistance. cDNA was sequenced on both Roche (Indianapolis, IN, USA) and Illumina (LGC Genomics, Berlin, Germany) platforms, resulting in a total of ∼53 m reads which assembled into 43 396 expressed sequence tags (ESTs). Manual annotation revealed good coverage of genes encoding insecticide target sites and detoxification enzymes. A total of 77 nonredundant cytochrome P450 genes were identified. Mapping of Illumina RNAseq sequences (from susceptible and pyrethroid-resistant strains) against the reference transcriptome identified a cytochrome P450 (CYP6BQ23) as highly overexpressed in pyrethroid resistance strains. Single-nucleotide polymorphism analysis confirmed the presence of a target-site resistance mutation (L1014F) in the voltage-gated sodium channel of one resistant strain. Our results provide new insights into the important genes associated with pyrethroid resistance in M. aeneus. Furthermore, a comprehensive EST resource is provided for future studies on insecticide modes of action and resistance mechanisms in pollen beetle.
Collapse
Affiliation(s)
- C T Zimmer
- University of Hohenheim, Institute of Phytomedicine, Stuttgart, Germany; Bayer CropScience AG, Small Molecules Research, Monheim, Germany; Centre for Sustainable Pest and Disease Management, Rothamsted Research, Harpenden, UK
| | | | | | | | | | | |
Collapse
|
27
|
Pan Y, Shang Q, Fang K, Zhang J, Xi J. Down-regulated transcriptional level of Ace1 combined with mutations in Ace1 and Ace2 of Aphis gossypii are related with omethoate resistance. Chem Biol Interact 2010; 188:553-7. [DOI: 10.1016/j.cbi.2010.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/29/2022]
|
28
|
Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:563-72. [PMID: 20685616 DOI: 10.1016/j.ibmb.2010.05.008] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/27/2010] [Accepted: 05/31/2010] [Indexed: 05/07/2023]
Abstract
The two-spotted spider mite Tetranychus urticae Koch is one of the economically most important pests in a wide range of outdoor and protected crops worldwide. Its control has been and still is largely based on the use of insecticides and acaricides. However, due to its short life cycle, abundant progeny and arrhenotokous reproduction, it is able to develop resistance to these compounds very rapidly. As a consequence, it has the dubious reputation to be the"most resistant species" in terms of the total number of pesticides to which populations have become resistant, and its control has become problematic in many areas worldwide. Insecticide and acaricide resistance has also been reported in the ectoparasite Sarcoptes scabiei, the causative organism of scabies, and other economically important Acari, such as the Southern cattle tick Rhipicephalus microplus, one of the biggest arthropod threats to livestock, and the parasitic mite Varroa destructor, a major economic burden for beekeepers worldwide. Although resistance research in Acari has not kept pace with that in insects, a number of studies on the molecular mechanisms responsible for the resistant phenotype has been conducted recently. In this review, state-of-the-art information on T. urticae resistance, supplemented with data on other important Acari has been brought together. Considerable attention is given to the underlying resistance mechanisms that have been elucidated at the molecular level. The incidence of bifenazate resistance in T. urticae is expanded as an insecticide resistance evolutionary paradigm in arthropods.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
29
|
Karasov T, Messer PW, Petrov DA. Evidence that adaptation in Drosophila is not limited by mutation at single sites. PLoS Genet 2010; 6:e1000924. [PMID: 20585551 PMCID: PMC2887467 DOI: 10.1371/journal.pgen.1000924] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
Adaptation in eukaryotes is generally assumed to be mutation-limited because of small effective population sizes. This view is difficult to reconcile, however, with the observation that adaptation to anthropogenic changes, such as the introduction of pesticides, can occur very rapidly. Here we investigate adaptation at a key insecticide resistance locus (Ace) in Drosophila melanogaster and show that multiple simple and complex resistance alleles evolved quickly and repeatedly within individual populations. Our results imply that the current effective population size of modern D. melanogaster populations is likely to be substantially larger (> or = 100-fold) than commonly believed. This discrepancy arises because estimates of the effective population size are generally derived from levels of standing variation and thus reveal long-term population dynamics dominated by sharp--even if infrequent--bottlenecks. The short-term effective population sizes relevant for strong adaptation, on the other hand, might be much closer to census population sizes. Adaptation in Drosophila may therefore not be limited by waiting for mutations at single sites, and complex adaptive alleles can be generated quickly without fixation of intermediate states. Adaptive events should also commonly involve the simultaneous rise in frequency of independently generated adaptive mutations. These so-called soft sweeps have very distinct effects on the linked neutral polymorphisms compared to the standard hard sweeps in mutation-limited scenarios. Methods for the mapping of adaptive mutations or association mapping of evolutionarily relevant mutations may thus need to be reconsidered.
Collapse
Affiliation(s)
| | | | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kwon DH, Clark JM, Lee SH. Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two-spotted spider mite. INSECT MOLECULAR BIOLOGY 2010; 19:195-204. [PMID: 20002213 DOI: 10.1111/j.1365-2583.2009.00958.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Monocrotophos-resistant two-spotted spider mites (TSSMs), Tetranychus urticae, are known to possess three mutations on the acetylcholinesterase (AChE) gene (Tuace) that are involved in target site insensitivity. Cross-strain comparison of three strains (highly resistant AD, moderately resistant PyriF and susceptible UD strains) revealed that resistant strains have relatively more Tuace copies than the UD strain and that the levels of transcript were directly proportional to copy numbers. AChEs from the AD and PyriF strains had similar V(max) values to those of AChE from the UD strain but increased K(m) and reduced k(cat) constants, suggesting that the mutated, resistant form of AChE may carry a fitness cost. Relative copy numbers of Tuace in field populations varied from 2.4 to 6.1, correlating well with their levels of resistance (r(2)= 0.895). These results are suggestive of the involvement of Tuace gene duplication in resistance. Thus, monocrotophos resistance in TSSMs appears to have evolved through a combination of mutation accumulation and extensive gene duplication.
Collapse
Affiliation(s)
- D H Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
31
|
Khajehali J, Van Leeuwen T, Grispou M, Morou E, Alout H, Weill M, Tirry L, Vontas J, Tsagkarakou A. Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. PEST MANAGEMENT SCIENCE 2010; 66:220-228. [PMID: 19894225 DOI: 10.1002/ps.1884] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND In Tetranychus urticae Koch, acetylcholinesterase insensitivity is often involved in organophosphate (OP) and carbamate (CARB) resistance. By combining toxicological, biochemical and molecular data from three reference laboratory and three OP selected strains (OP strains), the AChE1 mutations associated with resistance in T. urticae were characterised. RESULTS The resistance ratios of the OP strains varied from 9 to 43 for pirimiphos-methyl, from 78 to 586 for chlorpyrifos, from 8 to 333 for methomyl and from 137 to 4164 for dimethoate. The insecticide concentration needed to inhibit 50% of the AChE1 activity was, in the OP strains, at least 2.7, 55, 58 and 31 times higher for the OP pirimiphos-methyl, chlorpyrifos oxon, paraoxon and omethoate respectively, and 87 times higher for the CARB carbaryl. By comparing the AChE1 sequence, four amino acid substitutions were detected in the OP strains: (1) F331W (Torpedo numbering) in all the three OP strains; (2) T280A found in the three OP strains but not in all clones; (3) G328A, found in two OP strains; (4) A201S found in only one OP strain. CONCLUSIONS Four AChE1 mutations were found in resistant strains of T. urticae, and three of them, F331W, G328A and A201S, are possibly involved in resistance to OP and CARB insecticides. Among them, F331W is probably the most important and the most common in T. urticae. It can be easily detected by the diagnostic PCR-RLFP assay developed in this study.
Collapse
Affiliation(s)
- Jahangir Khajehali
- Laboratory of Agrozoology, Department of Crop Protection, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nardi F, Barazzuoli B, Ciolfi S, Carapelli A, Dallai R, Frati F. Acetylcholinesterase genes in the basal Hexapod Orchesella villosa. INSECT MOLECULAR BIOLOGY 2009; 18:45-54. [PMID: 19016914 DOI: 10.1111/j.1365-2583.2008.00848.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Acetylcholinesterase (AChE) is a key enzyme of the cholinergic nerve system. Of the two forms found in insects, the predominant one is active in the synapses and is the target of organophosphate and carbamate insecticides, while the role of the second is currently unknown. Two acetylcholinesterase cDNAs from the basal hexapod Orchesella villosa have been characterized and compared with others reported form insects. One form conforms well to the typical structure, while the other is characterized by an unusual 3' region. No amino acid mutation could be directly associated with known resistance mutations in other insect species or to a clear signal of selection in the distribution of alleles, although the action of some population process is suggested.
Collapse
Affiliation(s)
- F Nardi
- Department of Evolutionary Biology, University of Siena, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Chen MH, Han ZJ, Qiao XF, Qu MJ. Mutations in acetylcholinesterase genes of Rhopalosiphum padi resistant to organophosphate and carbamate insecticides. Genome 2007; 50:172-9. [PMID: 17546082 DOI: 10.1139/g07-021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apple grain aphid, Rhopalosiphum padi (Linnaeus), is an important wheat pest. In China, it has been reported that R. padi has developed high resistance to carbamate and organophosphate insecticides. Previous work cloned from this aphid 2 different genes encoding acetylcholinesterase (AChE), which is the target enzyme for carbamate and organophosphate insecticides, and its insensitive alteration has been proven to be an important mechanism for insecticide resistance in other insects. In this study, both resistant and susceptible strains of R, padi were developed, and their AChEs were compared to determine whether resistance resulted from this mechanism and whether these 2 genes both play a role in resistance. Bioassays showed that the resistant strain used was highly or moderately resistant to pirimicarb, omethoate, and monocrotophos (resistance ratio, 263.8, 53.8, and 17.5, respectively), and showed little resistance to deltamethrin or thiodicarb (resistance ratio, 5.2 and 3.4, respectively). Correspondingly, biochemistry analysis found that AChE from resistant aphids was very insensitive to the first 3 insecticides (I50 increased 43.0-, 15.2-, and 8.8-fold, respectively), but not to thiodicarb (I50 increased 1.1-fold). Enzyme kinetics tests showed that resistant and susceptible strains had different AChEs. Sequence analysis of the 2 AChE genes cloned from resistant and susceptible aphids revealed that 2 mutations in Ace2 and 1 in Ace1 were consistently associated with resistance. Mutation F368(290)L in Ace2 localized at the same position as a previously proven resistance mutation site in other insects. The other 2 mutations, S329(228)P in Ace1 and V435(356)A in Ace2, were also found to affect the enzyme structure. These findings indicate that resistance in this aphid is mainly the result of insensistive AChE alteration, that the 3 mutations found might contribute to resistance, and that the AChEs encoded by both genes could serve as targets of insecticides.
Collapse
Affiliation(s)
- Mao-hua Chen
- Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
34
|
Coutinho-Abreu IV, Balbino VQ, Valenzuela JG, Sonoda IV, Ramalho-Ortigão JM. Structural characterization of acetylcholinesterase 1 from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2007; 44:639-50. [PMID: 17695019 DOI: 10.1603/0022-2585(2007)44[639:scoaft]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Acetylcholinesterase (AChE) plays a key role in cholinergic impulse transmission, and it is the target enzyme for organophosphorus and carbamate insecticides. Two genes, AceI and AceII, have been characterized from different insect species, and point mutations in either gene can lead to significant resistance to these classes of insecticides. In this report, we describe the partial characterization of the AceI gene from Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae), and we show that the possibility exists for the development of a resistant phenotype to organophosphates and carbamates in sand flies. Our results point to the presence of a single AceI gene in L. longipalpis (LlAce1) and that AChE activity is inhibited by organophosphorus at a concentration of 5 x 10(-5) M. Regarding insecticide resistance, analysis of the truncated LlAce1 cDNA suggests that a single missense mutation leading to a glycine-to-serine substitution at amino acid position 119 (G119S) may arise in L. longipalpis, similar to what has been detected in Anopheles gambiae s.s. Another missense mutation involved in resistant phenotypes, F331W, detected in Culex tritaeniorhynchus Giles, is less likely to occur in L. longipalpis, because it faces codon constraint in this sand fly species. Comparison of the three-dimensional structures of the deduced amino acid sequence of the truncated LLAChE1 with that of An. gambiae and Cx. tritaeniorhynchus also suggests that similar structural modifications due to the missense amino acid changes in the active site gorge are detected in all three insects.
Collapse
Affiliation(s)
- I V Coutinho-Abreu
- Laboratório de Genética Molecular Humana, Departamento de Genética, UFPE, Recife-PE, Brazil
| | | | | | | | | |
Collapse
|
35
|
Alout H, Berthomieu A, Cui F, Tan Y, Berticat C, Qiao C, Weill M. Different amino-acid substitutions confer insecticide resistance through acetylcholinesterase 1 insensitivity in Culex vishnui and Culex tritaeniorhynchus (Diptera: Culicidae) from China. JOURNAL OF MEDICAL ENTOMOLOGY 2007; 44:463-9. [PMID: 17547232 DOI: 10.1603/0022-2585(2007)44[463:dascir]2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Insecticide resistance owing to insensitive acetylcholinesterase (AChE)1 has been reported in several mosquito species, and only two mutations in the ace-1 gene have been implicated in resistance: 119S and 331W substitutions. We analyzed the AChE1 resistance status of Culex vishnui (Theobald) and Culex tritaeniorhynchus Giles sampled in various regions of China. These two species displayed distinct mutations leading to AChE1 insensitivity; the 119S substitution in resistant C. vishnui mosquitoes and the 331W substitution in resistant C. tritaeniorhynchus. A biochemical test was validated to detect the 331W mutation in field samples. The comparison of the recombinant G119S and 331W mutant proteins produced in vitro with the AChE1 extracted from resistant mosquitoes indicated that the AChE1 insensitivity observed could be specifically attributed to these substitutions. Comparison of their biochemical characteristics indicated that the resistance conferred by these mutations depends on the insecticide used, regardless of its class. This resistance seemed to be fixed in the Cx. tritaeniorhynchus populations sampled in a 2000-km transect, suggesting a very high level of insecticide application or a low fitness cost associated with this 331W mutation.
Collapse
Affiliation(s)
- Haoues Alout
- Team Genetics of Adaptation, Laboratoire Génétique et Environnement, Institut des Sciences de l'Evolution (UMR CNRS 5554), Université de Montpellier II (C.C. 065), F-34095 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Cardona G, Guisantes J, Eraso E, Serna LA, Martínez J. Enzymatic analysis of Blomia tropicalis and Blomia kulagini (Acari: Echimyopodidae) allergenic extracts obtained from different phases of culture growth. EXPERIMENTAL & APPLIED ACAROLOGY 2006; 39:281-8. [PMID: 16868679 DOI: 10.1007/s10493-006-9009-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 05/05/2006] [Indexed: 05/11/2023]
Abstract
The majority of important allergenic extracts from arthropods present enzymatic activity. This activity has been studied particularly in Dermatophagoides house dust mites because of its implication in the stability and immunogenicity of extracts used as tools for the diagnosis and specific treatment of allergic diseases. Extracts from cultures of Blomia tropicalis [van Bronswijk (1973a, b). Acarologia 15:477-489, 490-505] and Blomia kulagini (Zakhvatkin 1936) were used to study enzymatic profiles during three growth periods of the mite population: latency phase, maximum mite concentration during exponential growth, and drop stage. The activities of 19 enzymes were analyzed using the Api Zym system. The results show a large variety of enzymes. Some enzymatic activity was found to be (almost) exclusively attributable to mites. The activity levels of proteases, glycosidases and lipases overlapped with the growth curve. Only phosphatase activity showed no significant change during mite growth when compared with the culture medium. We suggest that the glycosidases (beta-galactosidase, beta-glucuronidase, beta-N-acetylglucosaminidase, alpha-mannosidase and alpha-fucosidase) and proteases (leucine aminopeptidase and trypsin) may constitute suitable parameters for inclusion in the quality control process for the production of allergenic mite extracts, and may help define a new index for conducting environmental controls.
Collapse
Affiliation(s)
- G Cardona
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country, Paseo de la Universidad 7, 01006, Vitoria, Spain
| | | | | | | | | |
Collapse
|
37
|
Oakeshott JG, Devonshire AL, Claudianos C, Sutherland TD, Horne I, Campbell PM, Ollis DL, Russell RJ. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases. Chem Biol Interact 2005; 157-158:269-75. [PMID: 16289012 DOI: 10.1016/j.cbi.2005.10.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutant insect carboxyl/cholinesterases underlie over 60 cases of resistance to organophosphorus and/or carbamate insecticides. Biochemical and molecular data on about 20 of these show recurrent use of a very small number of mutational options to generate either target site or metabolic resistance. Moreover, the mutant enzymes are often kinetically inefficient and associated with significant fitness costs, due to impaired performance of the enzymes' original function. By contrast many bacterial enzymes are now known which can effectively detoxify these pesticides. It appears that the constraints of the genetic code and eukaryote genetic systems have severely limited the evolutionary response of insects to the widespread use of the insecticides over the last 60 years.
Collapse
|
38
|
Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact 2005; 157-158:257-61. [PMID: 16274684 DOI: 10.1016/j.cbi.2005.10.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance-modified acetylcholinesterases have been described in many insect species and sequencing of their genes has allowed several point mutations to be described. Most mutations line the active site gorge. Each mutation provides a specific resistance pattern: it confers resistance to one insecticide but may increase sensitivity to another. Most mutations alter hydrolysis of the substrate by decreasing the rate of enzyme deacetylation and by diminishing the stability of the enzyme. Mutations are often found in combination in the same protein. This has several consequences: it increases the level of resistance, it enlarges the spectrum of resistance and it may restore the catalytic efficiency of the enzyme. Natural populations are heterogeneous, composed of a mixture of different alleles.
Collapse
Affiliation(s)
- D Fournier
- IPBS, Biotechnologie des Proteines, 205 route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
39
|
Liu H, Xu Q, Zhang L, Liu N. Chlorpyrifos resistance in mosquito Culex quinquefasciatus. JOURNAL OF MEDICAL ENTOMOLOGY 2005; 42:815-20. [PMID: 16363165 DOI: 10.1093/jmedent/42.5.815] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two mosquito strains of Culex quinquefasciatus Say, MAmCq and HAmCq, were collected from Mobile and Huntsville, AL, respectively, after the control of mosquitoes with insecticides proved difficult. A synergism study showed that resistance to chlorpyrifos in MAmCq and HAmCq was not suppressed by piperonyl butoxide (PBO) and S,S,S,-tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenase- and hydrolase-mediated detoxication does not contribute to chlorpyrifos resistance in either strain. Diethyl maleate (DEM) did not cause any significant change in the level of chlorpyrifos toxicity to HAmCq. However, DEM enhanced toxicity of chlorpyrifos to MAmCq 2.5-fold, indicating that glutathione S-transferase (GST)-mediated detoxication may play a minor role in the resistance of MAmCq. An inhibition study of acetylcholinesterase (AChE) by chlorpyrifos showed that bimolecular rate constants (Ki) of chlorpyrifos for the inhibition of AChE in adults and larvae of the susceptible S-Lab strain were 2.2- and 1.9-fold higher, respectively, than in the HAmCq strain and 3.4- and 3.8-fold higher than in the MAmCq strain. The single mutation, G119S, resulting from a single nucleotide polymorphism (SNP), G to A, in ace-1 acetylcholinesterase gene was present in HAmCq and MAmCq mosquitoes. The frequency of the heterozygote for the G119S mutant allele in the HAmCq and MAmCq mosquito populations was 0.25 and 0.45, respectively, and no individuals in either of these mosquito strains were homozygous for the A allele. It thus seems likely that the presence of heterozygous individuals for the G119S allele in HAmCq and MAmCq populations may be a response to the insensitivity of AChE observed in these two mosquito strains.
Collapse
Affiliation(s)
- Huqi Liu
- Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL 36849-5413, USA
| | | | | | | |
Collapse
|
40
|
Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:653-65. [PMID: 15242706 DOI: 10.1016/j.ibmb.2004.03.018] [Citation(s) in RCA: 638] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/09/2023]
Abstract
Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.
Collapse
Affiliation(s)
- Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | | | |
Collapse
|
41
|
Heidari R, Devonshire AL, Campbell BE, Bell KL, Dorrian SJ, Oakeshott JG, Russell RJ. Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:353-363. [PMID: 15041019 DOI: 10.1016/j.ibmb.2004.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 01/16/2004] [Accepted: 01/19/2004] [Indexed: 05/24/2023]
Abstract
Resistance of the blowfly, Lucilia cuprina, to organophosphorus (OP) insecticides is due to mutations in LcalphaE7, the gene encoding carboxylesterase E3, that enhance the enzyme's ability to hydrolyse insecticides. Two mutations occur naturally, G137D in the oxyanion hole of the esterase, and W251L in the acyl binding pocket. Previous in vitro mutagenesis and expression of these modifications to the cloned gene have confirmed their functional significance. G137D enhances hydrolysis of diethyl and dimethyl phosphates by 55- and 33-fold, respectively. W251L increases dimethyl phosphate hydrolysis similarly, but only 10-fold for the diethyl homolog; unlike G137D however, it also retains ability to hydrolyse carboxylesters in the leaving group of malathion (malathion carboxylesterase, MCE), conferring strong resistance to this compound. In the present work, we substituted these and nearby amino acids by others expected to affect the efficiency of the enzyme. Changing G137 to glutamate or histidine was less effective than aspartate in improving OP hydrolase activity and like G137D, it diminished MCE activity, primarily through increases in Km. Various substitutions of W251 to other smaller residues had a broadly similar effect to W251L on OP hydrolase and MCE activities, but at least two were quantitatively better in kinetic parameters relating to malathion resistance. One, W251G, which occurs naturally in a malathion resistant hymenopterous parasitoid, improved MCE activity more than 20-fold. Mutations at other sites near the bottom of the catalytic cleft generally diminished OP hydrolase and MCE activities but one, F309L, also yielded some improvements in OP hydrolase activities. The results are discussed in relation to likely steric effects on enzyme-substrate interactions and future evolution of this gene.
Collapse
Affiliation(s)
- R Heidari
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Menozzi P, Shi MA, Lougarre A, Tang ZH, Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evol Biol 2004; 4:4. [PMID: 15018651 PMCID: PMC362867 DOI: 10.1186/1471-2148-4-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 02/05/2004] [Indexed: 11/21/2022] Open
Abstract
Background Organophosphate and carbamate insecticides irreversibly inhibit acetylcholinesterase causing death of insects. Resistance-modified acetylcholinesterases(AChEs) have been described in many insect species and sequencing of their genes allowed several point mutations to be described. However, their relative frequency and their cartography had not yet been addressed. Results To analyze the most frequent mutations providing insecticide resistance in Drosophila melanogaster acetylcholinesterase, the Ace gene was cloned and sequenced in several strains harvested from different parts of the world. Sequence comparison revealed four widespread mutations, I161V, G265A, F330Y and G368A. We confirm here that mutations are found either isolated or in combination in the same protein and we show that most natural populations are heterogeneous, composed of a mixture of different alleles. In vitro expression of mutated proteins showed that combining mutations in the same protein has two consequences: it increases resistance level and provides a wide spectrum of resistance. Conclusion The presence of several alleles in natural populations, offering various resistance to carbamate and organophosphate compounds will complicate the establishment of resistance management programs.
Collapse
Affiliation(s)
- Philippe Menozzi
- Groupe de Biotechnologie des Protéines, IPBS-UMR 5089, F-31077 Toulouse, France
| | - Ming An Shi
- Groupe de Biotechnologie des Protéines, IPBS-UMR 5089, F-31077 Toulouse, France
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, 200025 Shanghai, P.R. China
| | - Andrée Lougarre
- Groupe de Biotechnologie des Protéines, IPBS-UMR 5089, F-31077 Toulouse, France
| | - Zhen Hua Tang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, 200025 Shanghai, P.R. China
| | - Didier Fournier
- Groupe de Biotechnologie des Protéines, IPBS-UMR 5089, F-31077 Toulouse, France
| |
Collapse
|
43
|
Nabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh O, Harada S, Kasai S, Severson DW, Kono Y, Tomita T. An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem Biophys Res Commun 2004; 313:794-801. [PMID: 14697262 DOI: 10.1016/j.bbrc.2003.11.141] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A cDNA sequence encoding a Drosophila Ace-paralogous acetylcholinesterase (AChE) precursor of 701 amino acid residues was identified as the second AChE gene (Ace2) transcript from Culex tritaeniorhynchus. The Ace2 gene is tightly linked to organophosphorus insecticide (OP)-insensitivity of AChE on chromosome 2. The cDNA sequences were compared between an insecticide-susceptible strain and the resistant strain, TYM, that exhibits a 870-fold decrease in fenitroxon-sensitivity of AChE. Two amino acid substitutions were present in TYM mosquitoes. One is F455W whose homologous position in Torped AChE (Phe331) is located in the vicinity of the catalytic His in the acyl pocket of the active site gorge. The other substitution is located to a C-terminal Ile697 position that apparently seems to be excluded from the mature protein and is irrelevant to catalytic activity. The F455W replacement in the Ace2 gene is solely responsible for the insecticide-insensitivity of AChE in TYM mosquitoes.
Collapse
Affiliation(s)
- Takeshi Nabeshima
- Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|