1
|
Rizzetto G, De Simoni E, Molinelli E, Busignani C, Tagliati C, Gambini D, Offidani A, Simonetti O. Protegrin-1 and Analogues Against Acinetobacter baumannii: A Narrative Review. Pharmaceuticals (Basel) 2025; 18:289. [PMID: 40143068 PMCID: PMC11944781 DOI: 10.3390/ph18030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
A. baumannii is recognised as an important etiologic agent for hospital infections and increases the risk of postoperative complications, worsening mortality and prolonging hospitalisation. Protegrin-1 (PG-1) is one of the most promising antimicrobial peptides (AMPs) in the literature, since its antimicrobial action covers a wide range of Gram-positive and Gram-negative bacteria, including A. baumannii. PG-1 represents a valid new therapeutic option for the treatment of A. baumannii multi-drug resistant infections, showing synergic activity with traditional antibiotics, such as colistin. However, its clinical use in humans still requires studies, especially considering the haemolytic risk. For this reason, the use of PG-1 analogues, such as PLP-3, HV2, CDP-1, and IB367, seems to be the most promising way for the clinical use of this class of AMPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (G.R.); (E.D.S.); (E.M.); (C.B.); (C.T.); (D.G.); (A.O.)
| |
Collapse
|
2
|
Kanwal S, Aziz UBA, Quaas E, Achazi K, Klinger D. Sulfonium-based polymethacrylamides for antimicrobial use: influence of the structure and composition. Biomater Sci 2025; 13:993-1009. [PMID: 39801426 DOI: 10.1039/d4bm01247j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
We are facing a shortage of new antibiotics to fight against increasingly resistant bacteria. As an alternative to conventional small molecule antibiotics, antimicrobial polymers (AMPs) have great potential. These polymers contain cationic and hydrophobic groups and disrupt bacterial cell membranes through a combination of electrostatic and hydrophobic interactions. While most examples focus on ammonium-based cations, sulfonium groups are recently emerging to broaden the scope of polymeric therapeutics. Here, main-chain sulfonium polymers exhibit good antimicrobial activity. In contrast, the potential of side-chain sulfonium polymers remains less explored with structure-activity relationships still being limited. To address this limitation, we thoroughly investigated key factors influencing antimicrobial activity in side-chain sulfonium-based AMPs. For this, we combined sulfonium cations with different hydrophobic (aliphatic/aromatic) and hydrophilic polyethylene glycol (PEG) groups to create a library of polymers with comparable chain lengths. For all compositions, we additionally examined the position of cationic and hydrophobic groups on the polymer backbone, i.e., we systematically compared same center and different center structures. Bactericidal tests against Gram-positive and Gram-negative bacteria suggest that same center polymers are more active than different center polymers of similar clog P. Ultimately, sulfonium-based AMPs show superior bactericidal activity and selectivity when compared to their quaternary ammonium cationic analogues.
Collapse
Affiliation(s)
- Sidra Kanwal
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| | | | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Sceglovs A, Skadins I, Chitto M, Kroica J, Salma-Ancane K. Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers. Front Microbiol 2025; 16:1526250. [PMID: 39963493 PMCID: PMC11830819 DOI: 10.3389/fmicb.2025.1526250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
The global crisis of antimicrobial resistance (AMR) is escalating due to the misuse and overuse of antibiotics, the slow development of new therapies, and the rise of multidrug-resistant (MDR) infections. Traditional antibiotic treatments face limitations, including the development of resistance, disruption of the microbiota, adverse side effects, and environmental impact, emphasizing the urgent need for innovative alternative antibacterial strategies. This review critically examines naturally derived biopolymers with intrinsic (essential feature) antibacterial properties as a sustainable, next-generation alternative to traditional antibiotics. These biopolymers may address bacterial resistance uniquely by disrupting bacterial membranes rather than cellular functions, potentially reducing microbiota interference. Through a comparative analysis of the mechanisms and applications of antibiotics and antibacterial naturally derived biopolymers, this review highlights the potential of such biopolymers to address AMR while supporting human and environmental health.
Collapse
Affiliation(s)
- Artemijs Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | | | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | - Kristine Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
4
|
Braik A, Serna-Duque JA, Nefzi A, Aroui S, Esteban MÁ. Potential therapeutic use of dermaseptin S4 from the frog Phyllomedusa sauvagii and its derivatives against bacterial pathogens in fish. J Appl Microbiol 2024; 135:lxae222. [PMID: 39187398 DOI: 10.1093/jambio/lxae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
AIM Dermaseptins are one of the main families of antimicrobial peptides (AMPs) derived from the skin secretions of Hylidae frogs. Among them, dermaseptin S4 (DS4) is characterized by its broad-spectrum of activity against bacteria, protozoa, and fungi. In this study, the physicochemical properties of the native peptide DS4 (1-28) and two derivatives [DS4 (1-28)a and DS4 (1-26)a] isolated from the skin of the frog Phyllomedusa sauvagii were investigated and their antimicrobial properties against two marine pathogenic bacteria (Vibrio harveyi and Vibrio anguillarum) were examined. METHODS AND RESULTS The results indicate that the peptide DS4 (1-26)a has high-antibacterial activity against the tested strains and low-hemolytic activity (<30% lysis at the highest tested concentration of 100 µg/mL) compared to the other two peptides tested. In addition, all three peptides affect the membrane and cell wall integrity of both pathogenic bacteria, causing leakage of cell contents, with DS4 (1-26)a having the most severe impact. These skills were corroborated by transmission electron microscopy and by the variation of cations in their binding sites due to the effects caused by the AMPs. CONCLUSIONS These results suggest that DS4 and its derivatives, in particular the truncated and amidated peptide DS4 (1-26)a could be effective in the treatment of infections caused by these marine pathogenic bacteria. Future studies are required to validate the use of DS4 in vivo for the prevention of bacterial diseases in fish.
Collapse
Affiliation(s)
- Afef Braik
- Research Unit of Analysis and Process Applied on The Environment- APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5019, Tunisia
| | - John Alberto Serna-Duque
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| | - Adel Nefzi
- Florida International University, Port St. Lucie, FL 34987, USA
| | - Sonia Aroui
- Laboratory of Biochemistry, Research Unit: UR 12ES08 "Cell Signaling and Pathologies", Faculty of Medicine of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| |
Collapse
|
5
|
Iram D, Sansi MS, Puniya AK, Gandhi K, Meena S, Vij S. Phenotypic and molecular characterization of clinically isolated antibiotics-resistant S. aureus (MRSA), E. coli (ESBL) and Acinetobacter 1379 bacterial strains. Braz J Microbiol 2024; 55:2293-2312. [PMID: 38773046 PMCID: PMC11405748 DOI: 10.1007/s42770-024-01347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Antibiotic-resistant bacteria causing nosocomial infections pose a significant global health concern. This study focused on examining the lipid profiles of both non-resistant and clinically resistant strains of Staphylococcus aureus (MRSA 1418), E. coli (ESBL 1384), and Acinetobacter 1379. The main aim was to investigate the relationship between lipid profiles, hydrophobicity, and antibiotic resistance so as to identify the pathogenic potential and resistance factors of strains isolated from patients with sepsis and urinary tract infections (UTIs). The research included various tests, such as antimicrobial susceptibility assays following CLSI guidelines, biochemical tests, biofilm assays, and hydrophobicity assays. Additionally, gas chromatography mass spectrometry (GC-MS) and GC-Flame Ionization Detector (GC-FID) analysis were used for lipid profiling and composition. The clinically isolated resistant strains (MRSA-1418, ESBL-1384, and Acinetobacter 1379) demonstrated resistance phenotypes of 81.80%, 27.6%, and 63.6%, respectively, with a multiple antibiotic resistance index of 0.81, 0.27, and 0.63. Notably, the MRSA-1418 strain, which exhibited resistance, showed significantly higher levels of hemolysin, cell surface hydrophobicity, biofilm index, and a self-aggregative phenotype compared to the non-resistant strains. Gene expression analysis using quantitative real-time PCR (qPCR). Indicated elevated expression levels of intercellular adhesion biofilm-related genes (icaA, icaC, and icaD) in MRSA-1418 (pgaA, pgaC, and pgaB) and Acinetobacter 1379 after 24 h compared to non-resistant strains. Scanning electron microscopy (SEM) was employed for structural investigation. These findings provide valuable insights into the role of biofilms in antibiotic resistance and suggest potential target pathways for combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Daraksha Iram
- Antimicrobial Peptides, Biofunctional Probiotics and Peptidomics Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Biofunctional Peptidomics and Metabolic Syndrome Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Anil Kumar Puniya
- Anaerobic Microbial Fermentation Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Kamal Gandhi
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, India
| | - Sunita Meena
- Biofunctional Peptidomics and Metabolic Syndrome Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Shilpa Vij
- Antimicrobial Peptides, Biofunctional Probiotics and Peptidomics Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
6
|
Li P, Schulte J, Wurpts G, Hornef MW, Wolz C, Yazdi AS, Burian M. Transcriptional Profiling of Staphylococcus aureus during the Transition from Asymptomatic Nasal Colonization to Skin Colonization/Infection in Patients with Atopic Dermatitis. Int J Mol Sci 2024; 25:9165. [PMID: 39273114 PMCID: PMC11394835 DOI: 10.3390/ijms25179165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Staphylococcus aureus acts both as a colonizing commensal bacterium and invasive pathogen. Nasal colonization is associated with an increased risk of infection caused by the identical strain. In patients with atopic dermatitis (AD), the degree of S. aureus colonization is associated with the severity of the disease. Here, we comparatively analyzed the in vivo transcriptional profile of S. aureus colonizing the nose and non-diseased skin (non-lesional skin) as opposed to the diseased skin (lesional skin-defined here as infection) of 12 patients with AD. The transcriptional profile during the asymptomatic colonization of the nose closely resembled that of the lesional skin samples for many of the genes studied, with an elevated expression of the genes encoding adhesion-related proteins and proteases. In addition, the genes that modify and remodel the cell wall and encode proteins that facilitate immune evasion showed increased transcriptional activity. Notably, in a subgroup of patients, the global virulence regulator Agr (accessory gene regulator) and downstream target genes were inactive during nasal colonization but upregulated in the lesional and non-lesional skin samples. Taken together, our results demonstrate a colonization-like transcriptional profile on diseased skin and suggest a role for the peptide quorum sensing system Agr during the transition from asymptomatic nasal colonization to skin colonization/infection.
Collapse
Affiliation(s)
- Peijuan Li
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Julia Schulte
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Gerda Wurpts
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, D-72076 Tuebingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tuebingen, D-72076 Tuebingen, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Marc Burian
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| |
Collapse
|
7
|
Elbediwi M, Rolff J. Metabolic pathways and antimicrobial peptide resistance in bacteria. J Antimicrob Chemother 2024; 79:1473-1483. [PMID: 38742645 DOI: 10.1093/jac/dkae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Animal Health Research Institute, Agriculture Research Centre, 12618 Cairo, Egypt
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
8
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
9
|
Shimoda S, Ito J, Ando T, Tobe R, Nakagawa K, Yoneyama H. Identification of Genes Associated with Resistance to Persulcatusin, a Tick Defensin from Ixodes persulcatus. Microorganisms 2024; 12:412. [PMID: 38399816 PMCID: PMC10892762 DOI: 10.3390/microorganisms12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial peptides (AMPs) are present in a wide range of plants, animals, and microorganisms. Since AMPs are characterized by their effectiveness against emergent antibiotic-resistant bacteria, they are attracting attention as next-generation antimicrobial compounds that could solve the problem of drug-resistant bacteria. Persulcatusin (IP), an antibacterial peptide derived from the hard tick Ixodes persulcatus, shows high antibacterial activity against various Gram- positive bacteria as well as multidrug-resistant bacteria. However, reports on the antibacterial action and resistance mechanisms of IP are scarce. In this study, we spontaneously generated mutants showing increased a minimum inhibitory concentration (MIC) of IP and analyzed their cross-resistance to other AMPs and antibiotics. We also used fluorescent probes to investigate the target of IP activity by evaluating IP-induced damage to the bacterial cytoplasmic membrane. Our findings suggest that the antimicrobial activity of IP on bacterial cytoplasmic membranes occurs via a mechanism of action different from that of known AMPs. Furthermore, we screened for mutants with high susceptibility to IP using a transposon mutant library and identified 16 genes involved in IP resistance. Our results indicate that IP, like other AMPs, depolarizes the bacterial cytoplasmic membrane, but it may also alter membrane structure and inhibit cell-wall synthesis.
Collapse
Affiliation(s)
- So Shimoda
- Laboratory of Animal Microbiology, Department of Animal Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan; (S.S.); (T.A.); (R.T.)
| | - Junya Ito
- Laboratory of Food and Biodynamic Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan; (J.I.); (K.N.)
| | - Tasuke Ando
- Laboratory of Animal Microbiology, Department of Animal Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan; (S.S.); (T.A.); (R.T.)
| | - Ryuta Tobe
- Laboratory of Animal Microbiology, Department of Animal Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan; (S.S.); (T.A.); (R.T.)
| | - Kiyotaka Nakagawa
- Laboratory of Food and Biodynamic Chemistry, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan; (J.I.); (K.N.)
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Animal Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan; (S.S.); (T.A.); (R.T.)
| |
Collapse
|
10
|
Moazzami Goudarzi Z, Zaszczyńska A, Kowalczyk T, Sajkiewicz P. Electrospun Antimicrobial Drug Delivery Systems and Hydrogels Used for Wound Dressings. Pharmaceutics 2024; 16:93. [PMID: 38258102 PMCID: PMC10818291 DOI: 10.3390/pharmaceutics16010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort in patients. To solve this problem, scientists are working to create modern wound dressings with antibacterial additives, mainly because traditional materials cannot meet the general requirements for complex wounds and cannot promote wound healing. This demand is met by material engineering, through which we can create electrospun wound dressings. Electrospun wound dressings, as well as those based on hydrogels with incorporated antibacterial compounds, can meet these requirements. This manuscript reviews recent materials used as wound dressings, discussing their formation, application, and functionalization. The focus is on presenting dressings based on electrospun materials and hydrogels. In contrast, recent advancements in wound care have highlighted the potential of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels contain adaptable polymers that offer targeted drug delivery and show promise in managing various wound types while addressing bacterial infections. In this way, the article is intended to serve as a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers, providing up-to-date information on the state of the art, possibilities of innovative solutions, and potential challenges in the area of materials used in dressings.
Collapse
Affiliation(s)
| | | | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (Z.M.G.); (A.Z.); (P.S.)
| | | |
Collapse
|
11
|
Aleksandrowicz A, Kolenda R, Baraniewicz K, Thurston TLM, Suchański J, Grzymajlo K. Membrane properties modulation by SanA: implications for xenobiotic resistance in Salmonella Typhimurium. Front Microbiol 2024; 14:1340143. [PMID: 38249450 PMCID: PMC10797042 DOI: 10.3389/fmicb.2023.1340143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Multidrug resistance in bacteria is a pressing concern, particularly among clinical isolates. Gram-negative bacteria like Salmonella employ various strategies, such as altering membrane properties, to resist treatment. Their two-membrane structure affects susceptibility to antibiotics, whereas specific proteins and the peptidoglycan layer maintain envelope integrity. Disruptions can compromise stability and resistance profile toward xenobiotics. In this study, we investigated the unexplored protein SanA's role in modifying bacterial membranes, impacting antibiotic resistance, and intracellular replication within host cells. Methods We generated a sanA deletion mutant and complemented it in trans to assess its biological function. High-throughput phenotypic profiling with Biolog Phenotype microarrays was conducted using 240 xenobiotics. Membrane properties and permeability were analyzed via cytochrome c binding, hexadecane adhesion, nile red, and ethidium bromide uptake assays, respectively. For intracellular replication analysis, primary bone marrow macrophages served as a host cells model. Results Our findings demonstrated that the absence of sanA increased membrane permeability, hydrophilicity, and positive charge, resulting in enhanced resistance to certain antibiotics that target peptidoglycan synthesis. Furthermore, the sanA deletion mutant demonstrated enhanced replication rates within primary macrophages, highlighting its ability to evade the bactericidal effects of the immune system. Taking together, we provide valuable insights into a poorly known SanA protein, highlighting the complex interplay among bacterial genetics, membrane physiology, and antibiotic resistance, underscoring its significance in understanding Salmonella pathogenicity.
Collapse
Affiliation(s)
- Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Karolina Baraniewicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
12
|
Wächter J, Vestweber PK, Planz V, Windbergs M. Unravelling host-pathogen interactions by biofilm infected human wound models. Biofilm 2023; 6:100164. [PMID: 38025836 PMCID: PMC10656240 DOI: 10.1016/j.bioflm.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Approximately 80 % of persistent wound infections are affected by the presence of bacterial biofilms, resulting in a severe clinical challenge associated with prolonged healing periods, increased morbidity, and high healthcare costs. Unfortunately, in vitro models for wound infection research almost exclusively focus on early infection stages with planktonic bacteria. In this study, we present a new approach to emulate biofilm-infected human wounds by three-dimensional human in vitro systems. For this purpose, a matured biofilm consisting of the clinical key wound pathogen Pseudomonas aeruginosa was pre-cultivated on electrospun scaffolds allowing for non-destructive transfer of the matured biofilm to human in vitro wound models. We infected tissue-engineered human in vitro skin models as well as ex vivo human skin explants with the biofilm and analyzed structural tissue characteristics, biofilm growth behavior, and biofilm-tissue interactions. The structural development of biofilms in close proximity to the tissue, resulting in high bacterial burden and in vivo-like morphology, confirmed a manifest wound infection on all tested wound models, validating their applicability for general investigations of biofilm growth and structure. The extent of bacterial colonization of the wound bed, as well as the subsequent changes in molecular composition of skin tissue, were inherently linked to the characteristics of the underlying wound models including their viability and origin. Notably, the immune response observed in viable ex vivo and in vitro models was consistent with previous in vivo reports. While ex vivo models offered greater complexity and closer similarity to the in vivo conditions, in vitro models consistently demonstrated higher reproducibility. As a consequence, when focusing on direct biofilm-skin interactions, the viability of the wound models as well as their advantages and limitations should be aligned to the particular research question of future studies. Altogether, the novel model allows for a systematic investigation of host-pathogen interactions of bacterial biofilms and human wound tissue, also paving the way for development and predictive testing of novel therapeutics to combat biofilm-infected wounds.
Collapse
Affiliation(s)
| | | | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
13
|
Lee SY, Kim U, Kim Y, Lee SJ, Park EY, Oh SW. Enhanced detection of Listeria monocytogenes using tetraethylenepentamine-functionalized magnetic nanoparticles and LAMP-CRISPR/Cas12a-based biosensor. Anal Chim Acta 2023; 1281:341905. [PMID: 38783743 DOI: 10.1016/j.aca.2023.341905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Listeria monocytogenes is a pathogenic bacterium that can lead to severe illnesses, especially among vulnerable populations. Therefore, the development of rapid and sensitive detection methods is vital to prevent and manage foodborne diseases. In this study, we used tetraethylenepentamine (TEPA)-functionalized magnetic nanoparticles (MNPs) and a loop-mediated isothermal amplification (LAMP)-based CRISPR/Cas12a-based biosensor to concentrate and detect, respectively, L. monocytogenes. LAMP enables DNA amplification at a constant temperature, providing a highly suitable approach for point-of-care testing (POCT). The ability of CRISPR/Cas12a to cleave ssDNA reporter, coupled with TEPA-functionalized MNPs effective attachment to negatively charged bacteria, forms a promising biosensor. RESULTS The LAMP assay was meticulously developed by selecting specific primers and designing crRNA sequences targeting a specific region within the hly gene of L. monocytogenes. We selected primer and refined the amplification conditions by systematically exploring a temperature range from 59 °C to 69 °C, ensuring the attainment of optimal performance. This process was complemented by systematic optimization of LAMP-CRISPR/Cas12a system parameters. In particular, we successfully established the optimal ssDNA reporter concentrations (0-1.2 μM) and Cas12a-mediated trans-cleavage times (0-20 min), crucial components that underpin the effectiveness of the LAMP-CRISPR/Cas12a-based biosensor. For optimizing parameters in capturing L. monocytogenes using TEPA-functionalized MNPs, capture efficiency was significantly enhanced through adjustments in TEPA-functionalized MNPs concentration, incubation times, and magnetic separation duration. Large-volume (20 mL) magnetic separation exhibited a 10-fold sensitivity improvement over conventional methods. Utilizing TEPA-functionalized MNPs, the LAMP-CRISPR/Cas12a-based biosensor achieved detection limits of 100 CFU mL-1 in pure cultures and 100 CFU g-1 in enoki mushrooms. SIGNIFICANCE The integration of this novel technique with the LAMP-CRISPR/Cas12a-based biosensor enhances the accuracy and sensitivity of L. monocytogenes detection in foods, and it can be a promising biosensor for POCT. The 10-fold increase in sensitivity compared to conventional methods makes this approach a groundbreaking advancement in pathogenic bacteria detection for food safety and public health.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 136-702, Republic of Korea
| | - Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 136-702, Republic of Korea
| | - Younggyu Kim
- Lumimac, Inc, B1, 4, Dongnam-ro 2 gil, Songpa-gu, Seoul, Republic of Korea
| | - Seung Jae Lee
- Lumimac, Inc, B1, 4, Dongnam-ro 2 gil, Songpa-gu, Seoul, Republic of Korea
| | - Eun Young Park
- Lumimac, Inc, B1, 4, Dongnam-ro 2 gil, Songpa-gu, Seoul, Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 136-702, Republic of Korea.
| |
Collapse
|
14
|
Lian L, Pang C, Wei H, Hong L. Citronellol-Based Long-Lasting Antibacterial Cotton Fabrics without Bacterial Resistance. Macromol Biosci 2023; 23:e2300169. [PMID: 37306307 DOI: 10.1002/mabi.202300169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Antibacterial cotton helps prevent the growth and spread of harmful microorganisms, reduces the risk of infection, and has a prolonged service life by reducing bacterial degradation. However, most antibacterial agents used are toxic to humans and the environment. Citronellol-poly(N,N-dimethyl ethyl methacrylate) (CD), a highly effective antibacterial polymer, is synthesized from natural herbal essential oils (EOs). CD exhibited efficient, rapid bactericidal activity against Gram-positive, Gram-negative, and drug-resistant bacteria. Citronellol's environmental benignity makes CDs less hemolytic. Notably, negligible drug resistance developed after 15 bacterial subcultures. The CD-treated cotton fabric displayed better antibacterial performance than AAA-grade antibacterial fabric, even after repeated washing. This study extends the practical application of EOs to antibacterial surfaces and fabrics, which is promising for use in personal care products and medical settings.
Collapse
Affiliation(s)
- Liqin Lian
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chuming Pang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hongxin Wei
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
15
|
Tavares-Carreon F, De Anda-Mora K, Rojas-Barrera IC, Andrade A. Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: a literature review. PeerJ 2023; 11:e14399. [PMID: 36627920 PMCID: PMC9826615 DOI: 10.7717/peerj.14399] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Serratia marcescens is a ubiquitous bacterium from order Enterobacterales displaying a high genetic plasticity that allows it to adapt and persist in multiple niches including soil, water, plants, and nosocomial environments. Recently, S. marcescens has gained attention as an emerging pathogen worldwide, provoking infections and outbreaks in debilitated individuals, particularly newborns and patients in intensive care units. S. marcescens isolates recovered from clinical settings are frequently described as multidrug resistant. High levels of antibiotic resistance across Serratia species are a consequence of the combined activity of intrinsic, acquired, and adaptive resistance elements. In this review, we will discuss recent advances in the understanding of mechanisms guiding resistance in this opportunistic pathogen.
Collapse
Affiliation(s)
- Faviola Tavares-Carreon
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Karla De Anda-Mora
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Idalia C. Rojas-Barrera
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, Plön, Germany,Christian-Albrechts-University Kiel, Kiel, Germany
| | - Angel Andrade
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
16
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Resistance Mechanism and Physiological Effects of Microcin Y in Salmonella enterica subsp. enterica Serovar Typhimurium. Microbiol Spectr 2022; 10:e0185922. [PMID: 36453909 PMCID: PMC9769762 DOI: 10.1128/spectrum.01859-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Salmonella bacteria pose a significant threat to animal husbandry and human health due to their virulence and multidrug resistance. The lasso peptide MccY is a recently discovered antimicrobial peptide that acts against various serotypes of Salmonella. In this study, we further explore the resistance mechanism and activity of MccY. Mutants of Ton system genes, including tonB, exbB, and exbD, in Salmonella enterica subsp. enterica serovar Typhimurium were constructed, and the MICs to MccY exhibited significant increases in these deletion mutants compared to the MIC of the parent strain. Subsequently, MccY resistance was quantitatively analyzed, and these mutants also showed greatly reduced rates of killing, even with a high concentration of MccY. In addition, a minimal medium with low iron environment enhanced the sensitivity of these mutants to MccY. Measurements of a series of physiological indicators, including iron utilization, biofilm formation, and motility, demonstrated that MccY may decrease the virulence of S. Typhimurium. Transcriptomic analysis showed that iron utilization, biofilm formation, flagellar assembly, and virulence-related genes were downregulated to varying degrees when S. Typhimurium was treated with MccY. In conclusion, deletion of Ton system genes resulted in resistance to MccY and the susceptibility of these mutants to MccY was increased and differed under a low-iron condition. This lasso peptide can alter multiple physiological properties of S. Typhimurium. Our study will contribute to improve the knowledge and understanding of the mechanism of MccY resistance in Salmonella strains. IMPORTANCE The resistance of Salmonella to traditional antibiotics remains a serious challenge. Novel anti-Salmonella drugs are urgently needed to address the looming crisis. The newly identified antimicrobial peptide MccY shows broad prospects for development and application because of its obvious antagonistic effect on various serotypes of Salmonella. However, our previous study showed that the peptide could confer resistance to Salmonella by disrupting the receptor gene fhuA. In this study, we further explored the potential resistance mechanism of MccY and demonstrated the importance of the Salmonella Ton complex for MccY transport. Disruption in Ton system genes resulted in S. Typhimurium resistance to this peptide, and MccY could alter multiple bacterial physiological properties. In summary, this study further explored the resistance mechanism and antibacterial effect of MccY in S. Typhimurium and provided a scientific basis for its development and application.
Collapse
|
18
|
Remodeling of the Enterococcal Cell Envelope during Surface Penetration Promotes Intrinsic Resistance to Stress. mBio 2022; 13:e0229422. [PMID: 36354750 PMCID: PMC9765498 DOI: 10.1128/mbio.02294-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enterococcus faecalis is a normal commensal of the human gastrointestinal tract (GIT). However, upon disruption of gut homeostasis, this nonmotile bacterium can egress from its natural niche and spread to distal organs. While this translocation process can lead to life-threatening systemic infections, the underlying mechanisms remain largely unexplored. Our prior work showed that E. faecalis migration across diverse surfaces requires the formation of matrix-covered multicellular aggregates and the synthesis of exopolysaccharides, but how enterococcal cells are reprogrammed during this process is unknown. Whether surface penetration endows E. faecalis with adaptive advantages is also uncertain. Here, we report that surface penetration promotes the generation of a metabolically and phenotypically distinct E. faecalis population with an enhanced capacity to endure various forms of extracellular stress. Surface-invading enterococci demonstrated major ultrastructural alterations in their cell envelope characterized by increased membrane glycolipid content. These changes were accompanied by marked induction of specific transcriptional programs enhancing cell envelope biogenesis and glycolipid metabolism. Notably, the surface-invading population demonstrated superior tolerance to membrane-damaging antimicrobials, including daptomycin and β-defensins produced by epithelial cells. Genetic mutations impairing glycolipid biosynthesis sensitized E. faecalis to envelope stressors and reduced the ability of this bacterium to penetrate semisolid surfaces and translocate through human intestinal epithelial cell monolayers. Our study reveals that surface penetration induces distinct transcriptional, metabolic, and ultrastructural changes that equip E. faecalis with enhanced capacity to resist external stressors and thrive in its surrounding environment. IMPORTANCE Enterococcus faecalis inhabits the GIT of multiple organisms, where its establishment could be mediated by the formation of biofilm-like aggregates. In susceptible individuals, this bacterium can overgrow and breach intestinal barriers, a process that may lead to lethal systemic infections. While the formation of multicellular aggregates promotes E. faecalis migration across surfaces, little is known about the metabolic and physiological states of the enterococci encased in these surface-penetrating structures. The present study reveals that E. faecalis cells capable of migrating through semisolid surfaces genetically reprogram their metabolism toward increased cell envelope and glycolipid biogenesis, which confers superior tolerance to membrane-damaging agents. E. faecalis's success as a pathobiont depends on its antimicrobial resistance, as well as on its rapid adaptability to overcome multiple environmental challenges. Thus, targeting adaptive genetic and/or metabolic pathways induced during E. faecalis surface penetration may be useful to better confront infections by this bacterium in the clinic.
Collapse
|
19
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
20
|
Ghimire J, Guha S, Nelson BJ, Morici LA, Wimley WC. The Remarkable Innate Resistance of Burkholderia bacteria to Cationic Antimicrobial Peptides: Insights into the Mechanism of AMP Resistance. J Membr Biol 2022; 255:503-511. [PMID: 35435452 PMCID: PMC9576820 DOI: 10.1007/s00232-022-00232-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
Gram-negative bacteria belonging to the genus Burkholderia are remarkably resistant to broad-spectrum, cationic, antimicrobial peptides (AMPs). It has been proposed that this innate resistance is related to changes in the outer membrane lipopolysaccharide (OM LPS), including the constitutive, essential modification of outer membrane Lipid A phosphate groups with cationic 4-amino-4-deoxy-arabinose. This modification reduces the overall negative charge on the OM LPS which may change the OM structure and reduce the binding, accumulation, and permeation of cationic AMPs. Similarly, the Gram-negative pathogen Pseudomonas aeruginosa can quickly become resistant to many AMPs by multiple mechanisms, frequently, including activation of the arn operon, which leads, transiently, to the same modification of Lipid A. We recently discovered a set of synthetically evolved AMPs that do not invoke any resistance in P. aeruginosa over multiple passages and thus are apparently not inhibited by aminorabinosylation of Lipid A in P. aeruginosa. Here we test these resistance-avoiding peptides, within a set of 18 potent AMPs, against Burkholderia thailandensis. We find that none of the AMPs tested have measurable activity against B. thailandensis. Some were inactive at concentrations as high as 150 μM, despite all having sterilizing activity at ≤ 10 μM against a panel of common, human bacterial pathogens, including P. aeruginosa. We speculate that the constitutive modification of Lipid A in members of the Burkholderia genus is only part of a broader set of modifications that change the architecture of the OM to provide such remarkable levels of resistance to cationic AMPs.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Benjamin J. Nelson
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112
| | - William C. Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112,To whom correspondence should be addressed at
| |
Collapse
|
21
|
Jin L, Wang Y, Liu X, Peng R, Lin S, Sun D, Ji H, Wang L, Zhang Y, Ahmad N. Codon optimization of chicken β Gallinacin-3 gene results in constitutive expression and enhanced antimicrobial activity in transgenic Medicago sativa L. Gene 2022; 835:146656. [PMID: 35680025 DOI: 10.1016/j.gene.2022.146656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022]
Abstract
Gallinacin-3 (Gal-3) is a newly discovered epithelial beta-defensin that acts as cationic antimicrobial peptides, and plays an important role in chicken innate immunity. However, the gallinacin-3 precursor containeda lengthy C-terminal region, which often hindered itsexpression. After codon optimization of Gal-3 and construction of an expression vector, the transgenic plants of Medicago sativa were obtained. Transgenic plants were validated and expression of proteins was detected. The antimicrobial activity of chicken β Gal-3 was analyzed and effects of chicken β Gal-3 on the body weight and intestinal microflora of mice were described. Our results demonstrated that the codon optimized chicken Gal-3 was stably expressed in transgenic Medicago sativa using the pCAMBIA3301 expression vector under the control of protein phosphatase (Ppha) promoter. Five transgenic plants with the highest expression of chicken β Gal-3 were selected, and were evaluated for the in vitro antimicrobial activity against Escherichia coli, Staphylococcus aureus and Salmonella typhi. Our findings confirmed that the Minimum Inhibitory Concentration (MIC) of the three bacterial strains were 32, 16 and 128 μg/mL, respectively. In addition, the effect of chicken Gal-3 on the body weight of mice fed with transgenic plants showed no significant deviation compared with that of the control group. Similarly, no loss of intestinal microflora was evident in the experimental group compared with the control group. Together, our findings demonstrate an alternative method for the stable expression of chicken Gal-3 withsignificant antibacterial effects and potential probiotics uses. In addition, this study may also be useful in the development of resistant M. sativa plants against pathogenic bacteria in future studies.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Yunpeng Wang
- Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Naveed Ahmad
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| |
Collapse
|
22
|
Flourensia fiebrigii S.F. Blake in combination with Lactobacillus paracasei subsp. paracasei CE75. A novel anti-pathogenic and detoxifying strategy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhu S, Gao B, Umetsu Y, Peigneur S, Li P, Ohki S, Tytgat J. Adaptively evolved human oral actinomyces-sourced defensins show therapeutic potential. EMBO Mol Med 2021; 14:e14499. [PMID: 34927385 PMCID: PMC8819291 DOI: 10.15252/emmm.202114499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The development of eukaryote‐derived antimicrobial peptides as systemically administered drugs has proven a challenging task. Here, we report the first human oral actinomyces‐sourced defensin—actinomycesin—that shows promise for systemic therapy. Actinomycesin and its homologs are only present in actinobacteria and myxobacteria, and share similarity with a group of ancient invertebrate‐type defensins reported in fungi and invertebrates. Signatures of natural selection were detected in defensins from the actinomyces colonized in human oral cavity and ruminant rumen and dental plaque, highlighting their role in adaptation to complex multispecies bacterial communities. Consistently, actinomycesin exhibited potent antibacterial activity against oral bacteria and clinical isolates of Staphylococcus and synergized with two classes of human salivary antibacterial factors. Actinomycesin specifically inhibited bacterial peptidoglycan synthesis and displayed weak immunomodulatory activity and low toxicity on human and mammalian cells and ion channels in the heart and central nervous system. Actinomycesin was highly efficient in mice infected with Streptococcus pneumoniae and mice with MRSA‐induced experimental peritoneal infection. This work identifies human oral bacteria as a new source of systemic anti‐infective drugs.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yoshitaka Umetsu
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Ping Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), National Center for Nanoscience and Technology, Beijing, China
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Gul A, Gallus I, Tegginamath A, Maryska J, Yalcinkaya F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. MEMBRANES 2021; 11:908. [PMID: 34940410 PMCID: PMC8707140 DOI: 10.3390/membranes11120908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
Collapse
Affiliation(s)
- Aysegul Gul
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Izabela Gallus
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Akshat Tegginamath
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Jiri Maryska
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Fatma Yalcinkaya
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| |
Collapse
|
25
|
Anselmo S, Sancataldo G, Mørck Nielsen H, Foderà V, Vetri V. Peptide-Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13148-13159. [PMID: 34714654 PMCID: PMC8582253 DOI: 10.1021/acs.langmuir.1c02392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions of the multifunctional amphiphilic peptide transportan 10 with model membranes. Our approach, based on the use of suitable fluorescence reporters, exploits the advantages of phasor plot analysis of fluorescence lifetime imaging microscopy measurements to highlight the molecular details of occurring membrane alterations in terms of rigidity and hydration. Simultaneously, it allows following dynamic events in real time without sample manipulation distinguishing, with high spatial resolution, whether the peptide is adsorbed to or inserted in the membrane.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Hanne Mørck Nielsen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| |
Collapse
|
26
|
Douglas EJA, Duggan S, Brignoli T, Massey RC. The MpsB protein contributes to both the toxicity and immune evasion capacity of Staphylococcus aureus. MICROBIOLOGY-SGM 2021; 167. [PMID: 34618666 PMCID: PMC8698210 DOI: 10.1099/mic.0.001096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the role specific bacterial factors play in the development of severe disease in humans is critical if new approaches to tackle such infections are to be developed. In this study we focus on genes we have found to be associated with patient outcome following bacteraemia caused by the major human pathogen Staphylococcus aureus. By examining the contribution these genes make to the ability of the bacteria to survive exposure to the antibacterial factors found in serum, we identify three novel serum resistance-associated genes, mdeA, mpsB and yycH. Detailed analysis of an MpsB mutant supports its previous association with the slow growing small colony variant (SCV) phenotype of S. aureus, and we demonstrate that the effect this mutation has on membrane potential prevents the activation of the Agr quorum sensing system, and as a consequence the mutant bacteria do not produce cytolytic toxins. Given the importance of both toxin production and immune evasion for the ability of S. aureus to cause disease, we believe that these findings explain the role of the mpsB gene as a mortality-associated locus during human disease.
Collapse
Affiliation(s)
- Edward J A Douglas
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Seána Duggan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.,Schools of Microbiology and Medicine, University College Cork and APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
27
|
Anandan A, Dunstan NW, Ryan TM, Mertens HDT, Lim KYL, Evans GL, Kahler CM, Vrielink A. Conformational flexibility of EptA driven by an interdomain helix provides insights for enzyme-substrate recognition. IUCRJ 2021; 8:732-746. [PMID: 34584735 PMCID: PMC8420757 DOI: 10.1107/s2052252521005613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Many pathogenic gram-negative bacteria have developed mechanisms to increase resistance to cationic antimicrobial peptides by modifying the lipid A moiety. One modification is the addition of phospho-ethano-lamine to lipid A by the enzyme phospho-ethano-lamine transferase (EptA). Previously we reported the structure of EptA from Neisseria, revealing a two-domain architecture consisting of a periplasmic facing soluble domain and a transmembrane domain, linked together by a bridging helix. Here, the conformational flexibility of EptA in different detergent environments is probed by solution scattering and intrinsic fluorescence-quenching studies. The solution scattering studies reveal the enzyme in a more compact state with the two domains positioned close together in an n-do-decyl-β-d-maltoside micelle environment and an open extended structure in an n-do-decyl-phospho-choline micelle environment. Intrinsic fluorescence quenching studies localize the domain movements to the bridging helix. These results provide important insights into substrate binding and the molecular mechanism of endotoxin modification by EptA.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Nicholas W. Dunstan
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Timothy M. Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Haydyn D. T. Mertens
- European Molecular Biology Laboratory, Hamburg Unit, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Katherine Y. L. Lim
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Genevieve L. Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Charlene M. Kahler
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| |
Collapse
|
28
|
|
29
|
Jiang Y, Chen Y, Song Z, Tan Z, Cheng J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev 2021; 170:261-280. [PMID: 33400958 DOI: 10.1016/j.addr.2020.12.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
The recent outbreaks of infectious diseases caused by multidrug-resistant pathogens have sounded a piercing alarm for the need of new effective antimicrobial agents to guard public health. Among different types of candidates, antimicrobial peptides (AMPs) and the synthetic mimics of AMPs (SMAMPs) have attracted significant enthusiasm in the past thirty years, due to their unique membrane-active antimicrobial mechanism and broad-spectrum antimicrobial activity. The extensive research has brought many drug candidates into clinical and pre-clinical development. Despite tremendous progresses have been made, several major challenges inherent to current design strategies have slowed down the clinical translational development of AMPs and SMAMPs. However, these challenges also triggered many efforts to redesign and repurpose AMPs. In this review, we will first give an overview on AMPs and their synthetic mimics, and then discuss the current status of their clinical translation. Finally, the recent advances in redesign and repurposing AMPs and SMAMPs are highlighted.
Collapse
|
30
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
32
|
A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog 2020; 148:104431. [PMID: 32801004 DOI: 10.1016/j.micpath.2020.104431] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, a significant infection of bone tissue, gives rise to two main groups of infection: acute and chronic. These groups are further categorized in terms of the duration of infection. Usually, children and adults are more susceptible to acute and chronic infections, respectively. The aforementioned groups of osteomyelitis share almost 80% of the corresponding bacterial pathogens. Among all bacteria, Staphylococcus aureus (S. aureus) is a significant pathogen and is associated with a high range of osteomyelitis symptoms. S. aureus has many strategies for interacting with host cells including Small Colony Variant (SCV), biofilm formation, and toxin secretion. In addition, it induces an inflammatory response and causes host cell death by apoptosis and necrosis. However, any possible step to take in this respect is dependent on the conditions and host responses. In the absence of any immune responses and antibiotics, bacteria actively duplicate themselves; however, in the presence of phagocytic cell and harassing conditions, they turn into a SCV, remaining sustainable for a long time. SCV is characterized by notable advantages such as (a) intracellular life that mediates a dam against immune cells and (b) low ATP production that mediates resistance against antibiotics.
Collapse
|
33
|
Phylloseptin-1 is Leishmanicidal for Amastigotes of Leishmania amazonensis Inside Infected Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134856. [PMID: 32640562 PMCID: PMC7370015 DOI: 10.3390/ijerph17134856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Leishmania protozoans are the causal agents of neglected diseases that represent an important public health issue worldwide. The growing occurrence of drug-resistant strains of Leishmania and severe side effects of available treatments represent an important challenge for the leishmaniases treatment. We have previously reported the leishmanicidal activity of phylloseptin-1 (PSN-1), a peptide found in the skin secretion of Phyllomedusa azurea (=Pithecopus azureus), against Leishmania amazonensis promastigotes. However, its impact on the amastigote form of L. amazonensis and its impact on infected macrophages are unknown. In this work, we evaluated the effects of PSN-1 on amastigotes of L. amazonensis inside macrophages infected in vitro. We assessed the production of hydrogen peroxide and nitric oxide, as well as the levels of inflammatory and immunomodulatory markers (TGF-β, TNF-α and IL-12), in infected and non-infected macrophages treated with PSN-1. Treatment with PSN-1 decreased the number of infected cells and the number of ingested amastigotes per cell when compared with the untreated cells. At 32 µM (64 µg/mL), PSN-1 reduced hydrogen peroxide levels in both infected and uninfected macrophages, whereas it had little effect on NO production or TGF-β release. The effect of PSN-1 on IL-12 and TNF-α secretion depended on its concentration, but, in general, their levels tended to increase as PSN-1 concentration increased. Further in vitro and in vivo studies are needed to clarify the mechanisms of action of PSN-1 and its interaction with the immune system aiming to develop pharmacological applications.
Collapse
|
34
|
Mouafo HT, Mbawala A, Somashekar D, Tchougang HM, Harohally NV, Ndjouenkeu R. Biological properties and structural characterization of a novel rhamnolipid like-biosurfactants produced by Lactobacillus casei subsp. casei TM1B. Biotechnol Appl Biochem 2020; 68:585-596. [PMID: 32497351 DOI: 10.1002/bab.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/30/2020] [Indexed: 11/08/2022]
Abstract
Biosurfactants are microbial surface-active compounds with antimicrobial and antioxidant activities that display a range of physiological functions. In this study, a strain isolated from a Cameroonian fermented milk "pendidam" and identified as Lactobacillus casei subsp. casei TM1B was used for biosurfactants production. The biosurfactants produced by L. casei TM1B with molasses as the substrate had a good surface (40.77 mN/m) and emulsifying (84.50%) activities. The scavenging of the ABTS+• radical (IC50 value of 0.60 ± 0.03 mg/mL) by the biosurfactants was found to be higher than that of DPPH• radical (IC50 value of 0.97 ± 0.13 mg/mL). The maximum chelating activity of biosurfactants (82.29%) was observed at 3.5 mg/mL. The biologically active compound of the biosurfactants produced by L. casei TM1B was identified as 2,5-O-methylrhamnofuranosyl-palmitate, a novel rhamnolipid-like biosurfactant by using chemical, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and NMR analysis. The biosurfactants were bactericidal against several Gram-negative and Gram-positive pathogens (minimum inhibitory concentration values ranged from 3.22 to 12.83 mg/mL), and scanning electron microscope analysis revealed bacterial cell walls and membranes as main targets.
Collapse
Affiliation(s)
- Hippolyte T Mouafo
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon.,Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Augustin Mbawala
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Devappa Somashekar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Hervé M Tchougang
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Nanishankar V Harohally
- Spice and Flavour Science Department, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Robert Ndjouenkeu
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| |
Collapse
|
35
|
Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 2020; 107:25-49. [PMID: 32084600 DOI: 10.1016/j.actbio.2020.02.022] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Globally, chronic wounds impose a notable burden to patients and healthcare systems. Such skin wounds are readily subjected to bacteria that provoke inflammation and hence challenge the healing process. Furthermore, bacteria induce infection impeding re-epithelialization and collagen synthesis. With an estimated global market of $20.4 billion by 2021, appropriate wound dressing materials e.g. those composed of biopolymers originating from nature, are capable of alleviating the infection incidence and of accelerating the healing process. Particularly, biopolymeric nanofibrous dressings are biocompatible and mostly biodegradable and biomimic the extracellular matrix structure. Such nanofibrous dressings provide a high surface area and the ability to deliver antibiotics and antibacterial agents locally into the wound milieu to control infection. In this regard, with the dangerous evolution of antibiotic resistant bacteria, antibiotic delivery systems are being gradually replaced with antibacterial biohybrid nanofibrous wound dressings. This emerging class of wound dressings comprises biopolymeric nanofibers containing antibacterial nanoparticles, nature-derived compounds and biofunctional agents. Here, the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings, particularly those made of biohybrids, are reviewed and their antibacterial efficiency is evaluated based on a comprehensive literature analysis. Lastly, the prospects and challenges are discussed to draw a roadmap for further progresses and to open up future research avenues in this area. STATEMENT OF SIGNIFICANCE: With a global market of $20.4 billion by 2021, skin wound dressings are a crucial segment of the wound care industry. As an advanced class of bioactive wound dressing materials, natural polymeric nanofibers loaded with antibacterial agents, e.g. antimicrobial nanoparticles/ions, nature-derived compounds and biofunctional agents, have shown a remarkable potential for replacement of their classic counterparts. Also, given the expanding concern regarding antibiotic resistant bacteria, such biohybrid nanofibrous wound dressings can outperform classical drug delivery systems. Here, an updated overview of the most recent (since 2015) developments of antibacterial biopolymeric nanofibrous wound dressings is presented. In this review, while discussing about the antibacterial efficiency of such systems, the prospects and challenges are highlighted to draw a roadmap for further progresses in this area.
Collapse
|
36
|
Thibault D, Jensen PA, Wood S, Qabar C, Clark S, Shainheit MG, Isberg RR, van Opijnen T. Droplet Tn-Seq combines microfluidics with Tn-Seq for identifying complex single-cell phenotypes. Nat Commun 2019; 10:5729. [PMID: 31844066 PMCID: PMC6914776 DOI: 10.1038/s41467-019-13719-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
While Tn-Seq is a powerful tool to determine genome-wide bacterial fitness in high-throughput, culturing transposon-mutant libraries in pools can mask community or other complex single-cell phenotypes. Droplet Tn-Seq (dTn-Seq) solves this problem by microfluidics facilitated encapsulation of individual transposon mutants into growth medium-in-oil droplets, thereby enabling isolated growth, free from the influence of the population. Here we describe and validate microfluidic chip design, production, encapsulation, and dTn-Seq sample preparation. We determine that 1-3% of mutants in Streptococcus pneumoniae have a different fitness when grown in isolation and show how dTn-Seq can help identify leads for gene function, including those involved in hyper-competence, processing of alpha-1-acid glycoprotein, sensitivity against the human leukocyte elastase and microcolony formation. Additionally, we show dTn-Seq compatibility with microscopy, FACS and investigations of bacterial cell-to-cell and bacteria-host cell interactions. dTn-Seq reduces costs and retains the advantages of Tn-Seq, while expanding the method's original applicability.
Collapse
Affiliation(s)
- Derek Thibault
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Paul A Jensen
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephen Wood
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Christine Qabar
- Department of Biological Sciences, Towson University, Towson, MD, 21252, USA
| | - Stacie Clark
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Mara G Shainheit
- Department of Biological Sciences, Towson University, Towson, MD, 21252, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
37
|
Roles of lytic transglycosylases in biofilm formation and β-lactam resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2019:AAC.01277-19. [PMID: 31570396 DOI: 10.1128/aac.01277-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is responsible for numerous community outbreaks and is one of the most frequent causes of nosocomial infections with significant morbidity and mortality. While the function of lytic transglycosylases (LTs) in relation to cell division, biofilm formation, and antibiotic resistance has been determined for several bacteria, their role in S. aureus remains largely unknown. The only known LTs in S. aureus are immunodominant staphylococcal antigen A (IsaA) and Staphylococcus epidermidis D protein (SceD). Our study demonstrates that, in a strain of methicillin-resistant S. aureus (MRSA), IsaA and SceD contribute differently to biofilm formation and β-lactam resistance. Deletion of isaA, but not sceD, led to decreased biofilm formation. Additionally, in isaA-deleted strains, β-lactam resistance was significantly decreased compared to that of wild-type strains. Plasmid-based expression of mecA, a major determinant of β-lactam resistance in MRSA, in an isaA-deleted strain did not restore β-lactam resistance, demonstrating that the β-lactam susceptibility phenotype is exhibited by isaA mutant regardless of the production level of PBP2a. Overall, our results suggest that IsaA is a potential therapeutic target for MRSA infections.
Collapse
|
38
|
Anandan A, Vrielink A. Structure and function of lipid A-modifying enzymes. Ann N Y Acad Sci 2019; 1459:19-37. [PMID: 31553069 DOI: 10.1111/nyas.14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharides are complex molecules found in the cell envelop of many Gram-negative bacteria. The toxic activity of these molecules has led to the terminology of endotoxins. They provide bacteria with structural integrity and protection from external environmental conditions, and they interact with host signaling receptors to induce host immune responses. Bacteria have evolved enzymes that act to modify lipopolysaccharides, particularly the lipid A region of the molecule, to enable the circumvention of host immune system responses. These modifications include changes to lipopolysaccharide by the addition of positively charged sugars, such as N-Ara4N, and phosphoethanolamine (pEtN). Other modifications include hydroxylation, acylation, and deacylation of fatty acyl chains. We review the two-component regulatory mechanisms for enzymes that carry out these modifications and provide details of the structures of four enzymes (PagP, PagL, pEtN transferases, and ArnT) that modify the lipid A portion of lipopolysaccharides. We focus largely on the three-dimensional structures of these enzymes, which provide an understanding of how their substrate binding and catalytic activities are mediated. A structure-function-based understanding of these enzymes provides a platform for the development of novel therapeutics to treat antibiotic resistance.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
39
|
Wu X, Zha J, Koffas MAG, Dordick JS. ReducingStaphylococcus aureusresistance to lysostaphin using CRISPR‐dCas9. Biotechnol Bioeng 2019; 116:3149-3159. [DOI: 10.1002/bit.27143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Xia Wu
- School of Food and Biological EngineeringShaanxi University of Science and Technology Xi'an Shaanxi China
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Jian Zha
- School of Food and Biological EngineeringShaanxi University of Science and Technology Xi'an Shaanxi China
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy New York
| | - Jonathan S. Dordick
- Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy New York
- Department of Biomedical EngineeringRensselaer Polytechnic Institute Troy New York
- Department of Biological SciencesRensselaer Polytechnic Institute Troy New York
| |
Collapse
|
40
|
Hünnefeld M, Persicke M, Kalinowski J, Frunzke J. The MarR-Type Regulator MalR Is Involved in Stress-Responsive Cell Envelope Remodeling in Corynebacterium glutamicum. Front Microbiol 2019; 10:1039. [PMID: 31164873 PMCID: PMC6536590 DOI: 10.3389/fmicb.2019.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/25/2019] [Indexed: 12/03/2022] Open
Abstract
It is the enormous adaptive capacity of microorganisms, which is key to their competitive success in nature, but also challenges antibiotic treatment of human diseases. To deal with a diverse set of stresses, bacteria are able to reprogram gene expression using a wide variety of transcription factors. Here, we focused on the MarR-type regulator MalR conserved in the Corynebacterineae, including the prominent pathogens Corynebacterium diphtheriae and Mycobacterium tuberculosis. In several corynebacterial species, the malR gene forms an operon with a gene encoding a universal stress protein (uspA). Chromatin affinity purification and sequencing (ChAP-Seq) analysis revealed that MalR binds more than 60 target promoters in the C. glutamicum genome as well as in the large cryptic prophage CGP3. Overproduction of MalR caused severe growth defects and an elongated cell morphology. ChAP-Seq data combined with a global transcriptome analysis of the malR overexpression strain emphasized a central role of MalR in cell envelope remodeling in response to environmental stresses. For example, prominent MalR targets are involved in peptidoglycan biosynthesis and synthesis of branched-chain fatty acids. Phenotypic microarrays suggested an altered sensitivity of a ΔmalR mutant toward several β-lactam antibiotics. Furthermore, we revealed MalR as a repressor of several prophage genes, suggesting that MalR may be involved in the control of stress-responsive induction of the large CGP3 element. In conclusion, our results emphasize MalR as a regulator involved in stress-responsive remodeling of the cell envelope of C. glutamicum and suggest a link between cell envelope stress and the control of phage gene expression.
Collapse
Affiliation(s)
- Max Hünnefeld
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Marcus Persicke
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
41
|
Moldovan A, Fraunholz MJ. In or out: Phagosomal escape of Staphylococcus aureus. Cell Microbiol 2019; 21:e12997. [PMID: 30576050 DOI: 10.1111/cmi.12997] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is internalised by host cells in vivo, and recent research results suggest that the bacteria use this intracellularity to persist in the host and form a reservoir for recurrent infections. However, in different cells types, the pathogen resorts to alternative strategies to survive phagocytosis and the antimicrobial mechanisms of host cells. In non-professional phagocytes, S. aureus either escapes the endosome followed by cytoplasmic replication or replicates within autophagosomes. Professional phagocytes possess a limited capacity to kill S. aureus and hence the bacteria, well equipped with immune evasive mechanisms, replicate within the cells, eventually lyse out of the cells and thus persist in a continuous cycle of phagocytosis, host cell death, and bacterial release.
Collapse
Affiliation(s)
- Adriana Moldovan
- Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
42
|
Microplate-based surface area assay for rapid phenotypic antibiotic susceptibility testing. Sci Rep 2019; 9:237. [PMID: 30659207 PMCID: PMC6338723 DOI: 10.1038/s41598-018-35916-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/08/2018] [Indexed: 11/08/2022] Open
Abstract
Rapid delivery of proper antibiotic therapies to infectious disease patients is essential for improving patient outcomes, decreasing hospital lengths-of-stay, and combating the antibiotic resistance epidemic. Antibiotic stewardship programs are designed to address these issues by coordinating hospital efforts to rapidly deliver the most effective antibiotics for each patient, which requires bacterial identification and antimicrobial susceptibility testing (AST). Despite the clinical need for fast susceptibility testing over a wide range of antibiotics, conventional phenotypic AST requires overnight incubations, and new rapid phenotypic AST platforms restrict the number of antibiotics tested for each patient. Here, we introduce a novel approach to AST based on signal amplification of bacterial surfaces that enables phenotypic AST within 5 hours for non-fastidious bacteria. By binding bacterial surfaces, this novel method allows more accurate measurements of bacterial replication in instances where organisms filament or swell in response to antibiotic exposure. Further, as an endpoint assay performed on standard microplates, this method should enable parallel testing of more antibiotics than is currently possible with available automated systems. This technology has the potential to revolutionize clinical practice by providing rapid and accurate phenotypic AST data for virtually all available antibiotics in a single test.
Collapse
|
43
|
Wimley WC. Application of Synthetic Molecular Evolution to the Discovery of Antimicrobial Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:241-255. [PMID: 30980361 DOI: 10.1007/978-981-13-3588-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite long-standing promise and many known examples, antimicrobial peptides (AMPs) have failed, with few exceptions, to significantly impact human medicine. Impediments to the systemic activity of AMPs include proteolysis, host cell interactions, and serum protein binding, factors that are not often considered in the early stages of AMP development. Here we discuss how synthetic molecular evolution, iterative cycles of library design, and physiologically relevant screening can be used to evolve AMPs that do not have these impediments.
Collapse
Affiliation(s)
- William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
44
|
Hickey SM, Ashton TD, Boer G, Bader CA, Thomas M, Elliott AG, Schmuck C, Yu HY, Li J, Nation RL, Cooper MA, Plush SE, Brooks DA, Pfeffer FM. Norbornane-based cationic antimicrobial peptidomimetics targeting the bacterial membrane. Eur J Med Chem 2018; 160:9-22. [PMID: 30316060 DOI: 10.1016/j.ejmech.2018.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 09/29/2018] [Indexed: 11/27/2022]
Abstract
The design, synthesis and evaluation of a small series of potent amphiphilic norbornane antibacterial agents has been performed (compound 10 MIC = 0.25 μg/mL against MRSA). Molecular modelling indicates rapid aggregation of this class of antibacterial agent prior to membrane association and insertion. Two fluorescent analogues (compound 29 with 4-amino-naphthalimide and 34 with 4-nitrobenz-2-oxa-1,3-diazole fluorophores) with good activity (MIC = 0.5 μg/mL against MRSA) were also constructed and confocal microscopy studies indicate that the primary site of interaction for this family of compounds is the bacterial membrane.
Collapse
Affiliation(s)
- Shane M Hickey
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Gareth Boer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Christie A Bader
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Michael Thomas
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Heidi Y Yu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sally E Plush
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Douglas A Brooks
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Frederick M Pfeffer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
45
|
The increase of O-acetylation and N-deacetylation in cell wall promotes acid resistance and nisin production through improving cell wall integrity in Lactococcus lactis. ACTA ACUST UNITED AC 2018; 45:813-825. [DOI: 10.1007/s10295-018-2052-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023]
Abstract
Abstract
Cell wall is closely related to bacterial robustness and adsorption capacity, playing crucial roles in nisin production in Lactococcus lactis. Peptidoglycan (PG), the essential component of cell wall, is usually modified with MurNAc O-acetylation and GlcNAc N-deacetylation, catalyzed by YvhB and XynD, respectively. In this study, increasing the two modifications in L. lactis F44 improved autolysis resistance by decreasing the susceptibility to PG hydrolases. Furthermore, both modifications were positively associated with overall cross-linkage, contributing to cell wall integrity. The robust cell wall rendered the yvhB/xynD-overexpression strains more acid resistant, leading to the increase of nisin production in fed-batch fermentations by 63.7 and 62.9%, respectively. Importantly, the structural alterations also reduced nisin adsorption capacity, resulting in reduction of nisin loss. More strikingly, the co-overexpression strain displayed the highest nisin production (76.3% higher than F44). Our work provides a novel approach for achieving nisin overproduction via extensive cell wall remodeling.
Collapse
|
46
|
Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol 2018; 16:457-470. [DOI: 10.1038/s41579-018-0036-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Abstract
Antimicrobial peptides are short amphipathic peptides that are produced by the innate immune system in order to protect a host from pathogens. They have been shown to have broad-spectrum antimicrobial activity toward Gram-positive and Gram-negative bacteria, as well as antifungal, antiprotozoan, and antiviral activity. These peptides are able to exert their activity through a variety of mechanisms that include inhibiting DNA and RNA replication, inhibiting protein synthesis, permeabilizing the cell membrane, disrupting proton and ion transmembrane gradients, and inhibiting cell wall biosynthesis. Certain antimicrobial peptides are able to utilize metals to modulate their activity through structural changes upon metal binding, metal sequestration, and redox chemistry. This work aims to provide a review of the current literature regarding the influence of metals on the activity of antimicrobial metallopeptides and their uses in drug delivery and the treatment of implant-associated infections.
Collapse
Affiliation(s)
- Jessica L. Alexander
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Zechariah Thompson
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - J. A. Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
48
|
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2018; 41:854-879. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article.
Collapse
Affiliation(s)
- Ditte Høyer Engholm
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Rutgers, the State University of New Jersey, NJ 08901, USA
| | - Ebbe Sloth Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
49
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
50
|
Kamar R, Réjasse A, Jéhanno I, Attieh Z, Courtin P, Chapot-Chartier MP, Nielsen-Leroux C, Lereclus D, El Chamy L, Kallassy M, Sanchis-Borja V. DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects. Front Microbiol 2017; 8:1437. [PMID: 28824570 PMCID: PMC5541007 DOI: 10.3389/fmicb.2017.01437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs.
Collapse
Affiliation(s)
- Rita Kamar
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France.,Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Agnès Réjasse
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Isabelle Jéhanno
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Zaynoun Attieh
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Pascal Courtin
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | | | | | - Didier Lereclus
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Laure El Chamy
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Mireille Kallassy
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Vincent Sanchis-Borja
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| |
Collapse
|