1
|
Panicucci C, Sahin E, Bartolucci M, Casalini S, Brolatti N, Pedemonte M, Baratto S, Pintus S, Principi E, D'Amico A, Pane M, Sframeli M, Messina S, Albamonte E, Sansone VA, Mercuri E, Bertini E, Sezerman U, Petretto A, Bruno C. Proteomics profiling and machine learning in nusinersen-treated patients with spinal muscular atrophy. Cell Mol Life Sci 2024; 81:393. [PMID: 39254732 PMCID: PMC11387582 DOI: 10.1007/s00018-024-05426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
AIM The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to identify cerebrospinal fluid (CSF) prognostic protein biomarkers in CSF samples of SMA patients collected at baseline (T0), and to describe proteomic profile changes and biological pathways influenced by nusinersen before the sixth nusinersen infusion (T302). METHODS In this multicenter retrospective longitudinal study, we employed an untargeted liquid chromatography mass spectrometry (LC-MS)-based proteomic approach on CSF samples collected from 61 SMA patients treated with nusinersen (SMA1 n=19, SMA2 n=19, SMA3 n=23) at T0 at T302. The Random Forest (RF) machine learning algorithm and pathway enrichment analysis were applied for analysis. RESULTS The RF algorithm, applied to the protein expression profile of naïve patients, revealed several proteins that could classify the different types of SMA according to their differential abundance at T0. Analysis of changes in proteomic profiles identified a total of 147 differentially expressed proteins after nusinersen treatment in SMA1, 135 in SMA2, and 289 in SMA3. Overall, nusinersen-induced changes on proteomic profile were consistent with i) common effects observed in allSMA types (i.e. regulation of axonogenesis), and ii) disease severity-specific changes, namely regulation of glucose metabolism in SMA1, of coagulation processes in SMA2, and of complement cascade in SMA3. CONCLUSIONS This untargeted LC-MS proteomic profiling in the CSF of SMA patients revealed differences in protein expression in naïve patients and showed nusinersen-related modulation in several biological processes after 10 months of treatment. Further confirmatory studies are needed to validate these results in larger number of patients and over abroader timeframe.
Collapse
Affiliation(s)
- Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Eray Sahin
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sara Casalini
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Noemi Brolatti
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Marina Pedemonte
- Pediatric Neurology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Serena Baratto
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Sara Pintus
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Elisa Principi
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marika Pane
- Centro Clinico Nemo, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Marina Sframeli
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Sonia Messina
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Emilio Albamonte
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Valeria A Sansone
- Neurorehabilitation Unit, Centro Clinico NeMO, University of Milan, Milan, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini, 5, I-16147, Genova, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health- DINOGMI, University of Genova, Genova, Italy.
| |
Collapse
|
2
|
Stojanovski BM, Di Cera E. Codon switching of conserved Ser residues in coagulation and fibrinolytic proteases. J Thromb Haemost 2024; 22:2495-2501. [PMID: 38821294 PMCID: PMC11343676 DOI: 10.1016/j.jtha.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Unique among all amino acids, Ser is encoded by 2 sets of codons, TCN and AGY (N = any nucleotide, Y = pyrimidine), that cannot interconvert through single nucleotide substitutions. Both codons are documented at the essential residues S195 and S214 within the active site of serine proteases. However, it is not known how the codons interconverted during evolution because replacement of S195 or S214 by other amino acids typically results in loss of activity. OBJECTIVE To characterize the prevalence of codon switching among essential and non-essential Ser residues in coagulation and fibrinolytic proteases from different vertebrate lineages. METHODS TCN and AGY codon usage was analyzed in >550 sequences. RESULTS Evolutionary pressure to preserve the codon of S195 is absolute, with no evidence of interconversion. Pressure to preserve the codon of S214 is also strong, but an AGY↔TCN interconversion is observed in factor VII-inactive and protein C from ray-finned fish. In both cases, the interconversion occurred in genes that were rapidly evolving. In contrast, codon switching at nonessential Ser residues in the kringle domains of coagulation and fibrinolytic proteases is quite common and could be identified in half of the kringles analyzed. CONCLUSION Codon interconversion of essential Ser residues of coagulation and fibrinolytic proteases only occurred in genes that were rapidly evolving and that-at least in some cases-evolved following genome duplication. Interconversion is common at nonessential Ser residues as found in kringle domains.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
3
|
Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, Khalid M, Wang Y. Combined effects of pentachlorophenol and nano-TiO 2 with different sizes on antioxidant, digestive, and immune responses of the swimming crab Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106900. [PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
Collapse
Affiliation(s)
- Xukai Lan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - Hanting Song
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
4
|
Burzynski LC, Morales-Maldonado A, Rodgers A, Kitt LA, Humphry M, Figg N, Bennett MR, Clarke MCH. Thrombin-activated interleukin-1α drives atherogenesis, but also promotes vascular smooth muscle cell proliferation and collagen production. Cardiovasc Res 2023; 119:2179-2189. [PMID: 37309666 PMCID: PMC10578913 DOI: 10.1093/cvr/cvad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Atherosclerosis is driven by multiple processes across multiple body systems. For example, the innate immune system drives both atherogenesis and plaque rupture via inflammation, while coronary artery-occluding thrombi formed by the coagulation system cause myocardial infarction and death. However, the interplay between these systems during atherogenesis is understudied. We recently showed that coagulation and immunity are fundamentally linked by the activation of interleukin-1α (IL-1α) by thrombin, and generated a novel knock-in mouse in which thrombin cannot activate endogenous IL-1α [IL-1α thrombin mutant (IL-1αTM)]. METHODS AND RESULTS Here, we show significantly reduced atherosclerotic plaque formation in IL-1αTM/Apoe-/- mice compared with Apoe-/- and reduced T-cell infiltration. However, IL-1αTM/Apoe-/- plaques have reduced vascular smooth muscle cells, collagen, and fibrous caps, indicative of a more unstable phenotype. Interestingly, the reduced atherogenesis seen with thrombin inhibition was absent in IL-1αTM/Apoe-/- mice, suggesting that thrombin inhibitors can affect atherosclerosis via reduced IL-1α activation. Finally, bone marrow chimeras show that thrombin-activated IL-1α is derived from both vessel wall and myeloid cells. CONCLUSIONS Together, we reveal that the atherogenic effect of ongoing coagulation is, in part, mediated via thrombin cleavage of IL-1α. This not only highlights the importance of interplay between systems during disease and the potential for therapeutically targeting IL-1α and/or thrombin, but also forewarns that IL-1 may have a role in plaque stabilization.
Collapse
Affiliation(s)
- Laura C Burzynski
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Alejandra Morales-Maldonado
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Amanda Rodgers
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Lauren A Kitt
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Melanie Humphry
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Nichola Figg
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Martin R Bennett
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| | - Murray C H Clarke
- Section of CardioRespiratory Medicine, The Heart and Lung Research
Institute, The University of Cambridge, Papworth Road,
Cambridge Biomedical Campus, Cambridge CB2 0BB, UK
| |
Collapse
|
5
|
Golomingi M, Kohler J, Lamers C, Pouw RB, Ricklin D, Dobó J, Gál P, Pál G, Kiss B, Dopler A, Schmidt CQ, Hardy ET, Lam W, Schroeder V. Complement inhibition can decrease the haemostatic response in a microvascular bleeding model at multiple levels. Front Immunol 2023; 14:1226832. [PMID: 37771595 PMCID: PMC10525698 DOI: 10.3389/fimmu.2023.1226832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Background Haemostasis is a crucial process by which the body stops bleeding. It is achieved by the formation of a platelet plug, which is strengthened by formation of a fibrin mesh mediated by the coagulation cascade. In proinflammatory and prothrombotic conditions, multiple interactions of the complement system and the coagulation cascade are known to aggravate thromboinflammatory processes and increase the risk of arterial and venous thrombosis. Whether those interactions also play a relevant role during the physiological process of haemostasis is not yet completely understood. The aim of this study was to investigate the potential role of complement components and activation during the haemostatic response to mechanical vessel injury. Methods We used a microvascular bleeding model that simulates a blood vessel, featuring human endothelial cells, perfusion with fresh human whole blood, and an inducible mechanical injury to the vessel. We studied the effects of complement inhibitors against components of the lectin (MASP-1, MASP-2), classical (C1s), alternative (FD) and common pathways (C3, C5), as well as a novel triple fusion inhibitor of all three complement pathways (TriFu). Effects on clot formation were analysed by recording of fibrin deposition and the platelet activation marker CD62P at the injury site in real time using a confocal microscope. Results With the inhibitors targeting MASP-2 or C1s, no significant reduction of fibrin formation was observed, while platelet activation was significantly reduced in the presence of the FD inhibitor. Both common pathway inhibitors targeting C3 or C5, respectively, were associated with a substantial reduction of fibrin formation, and platelet activation was also reduced in the presence of the C3 inhibitor. Triple inhibition of all three activation pathways at the C3-convertase level by TriFu reduced both fibrin formation and platelet activation. When several complement inhibitors were directly compared in two individual donors, TriFu and the inhibitors of MASP-1 and C3 had the strongest effects on clot formation. Conclusion The observed impact of complement inhibition on reducing fibrin clot formation and platelet activation suggests a role of the complement system in haemostasis, with modulators of complement initiation, amplification or effector functions showing distinct profiles. While the interactions between complement and coagulation might have evolved to support haemostasis and protect against bleeding in case of vessel injury, they can turn harmful in pathological conditions when aggravating thromboinflammation and promoting thrombosis.
Collapse
Affiliation(s)
- Murielle Golomingi
- Experimental Haemostasis Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jessie Kohler
- Experimental Haemostasis Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christina Lamers
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B. Pouw
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Arthur Dopler
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Christoph Q. Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Elaissa Trybus Hardy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Wilbur Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Burns J, Wilding CP, Krasny L, Zhu X, Chadha M, Tam YB, Ps H, Mahalingam AH, Lee ATJ, Arthur A, Guljar N, Perkins E, Pankova V, Jenks A, Djabatey V, Szecsei C, McCarthy F, Ragulan C, Milighetti M, Roumeliotis TI, Crosier S, Finetti M, Choudhary JS, Judson I, Fisher C, Schuster EF, Sadanandam A, Chen TW, Williamson D, Thway K, Jones RL, Cheang MCU, Huang PH. The proteomic landscape of soft tissue sarcomas. Nat Commun 2023; 14:3834. [PMID: 37386008 PMCID: PMC10310735 DOI: 10.1038/s41467-023-39486-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes. Characterisation of undifferentiated pleomorphic sarcomas and dedifferentiated liposarcomas with low infiltrating CD3 + T-lymphocyte levels nominates the complement cascade as a candidate immunotherapeutic target. Comparative analysis of proteomic and transcriptomic profiles highlights the proteomic-specific features for optimal risk stratification in angiosarcomas. Finally, we define functional signatures termed Sarcoma Proteomic Modules which transcend histological subtype classification and show that a vesicle transport protein signature is an independent prognostic factor for distant metastasis. Our study highlights the utility of proteomics for identifying molecular subgroups with implications for risk stratification and therapy selection and provides a rich resource for future sarcoma research.
Collapse
Affiliation(s)
- Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Xixuan Zhu
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Madhumeeta Chadha
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Yuen Bun Tam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Hari Ps
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Alexander T J Lee
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Amani Arthur
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Nafia Guljar
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Emma Perkins
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Valeriya Pankova
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Andrew Jenks
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Vanessa Djabatey
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Cornelia Szecsei
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Frank McCarthy
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Chanthirika Ragulan
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Martina Milighetti
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Stephen Crosier
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Martina Finetti
- Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Jyoti S Choudhary
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Ian Judson
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Cyril Fisher
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Eugene F Schuster
- Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden NHS Foundation Trust, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Tom W Chen
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine Taipei, Taipei City, Taiwan
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Robin L Jones
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Maggie C U Cheang
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
7
|
Dong Y, Hou Q, Ye M, Li Z, Li J, You M, Yuchi Z, Lin J, You S. Clip-SP1 cleavage activates downstream prophenoloxidase activating protease (PAP) in Plutella xylostella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104737. [PMID: 37236330 DOI: 10.1016/j.dci.2023.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Melanization is a component of the humoral immune defense of insects and is induced by serine protease-mediated phenoloxidase (PO) catalysis. Prophenoloxidase (PPO) in the midgut of Plutella xylostella is activated by the CLIP domain serine protease (clip-SP) in response to Bacillus thuringiensis (Bt) infection, but the detailed signaling cascade following this activation is unknown. Here, we report that activation of clip-SP enhances PO activity in the P. xylostella midgut by cleaving three downstream PPO-activating proteases (PAPs). First, the expression level of clip-SP1 was increased in the midgut after Bt8010 infection of P. xylostella. Then, purified recombinant clip-SP1 was able to activate three PAPs - PAPa, PAPb and PAP3 - which in turn enhanced their PO activity in the hemolymph. Furthermore, clip-SP1 showed a dominant effect on PO activity compared to the individual PAPs. Our results indicate that Bt infection induces the expression of clip-SP1, which is upstream of a signaling cascade, to efficiently activate PO catalysis and mediate melanization in the midgut of P. xylostella. And it provides a basis for studying the complex PPO regulatory system in the midgut during Bt infection.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Qing Hou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Min Ye
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Zeyun Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Jingge Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Junhan Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China; Department of Food and Biological Engineering, Fujian Vocational College of Bioengineering, Fuzhou, 350002, China.
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Rowley MA, Thawanyarat K, Shah JK, Yesantharao PS, Nazerali R. A recent national analysis of breast reconstruction outcomes in patients with underlying autoimmune connective tissue diseases. EUROPEAN JOURNAL OF PLASTIC SURGERY 2023. [DOI: 10.1007/s00238-023-02043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Sagona S, D’Onofrio C, Miragliotta V, Felicioli A. Detection and pH-Thermal Characterization of Proteinases Exclusive of Honeybee Worker-Fate Larvae ( Apis mellifera L.). Int J Mol Sci 2022; 23:ijms232415546. [PMID: 36555186 PMCID: PMC9779378 DOI: 10.3390/ijms232415546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The occurrence of the honeybee caste polyphenism arises when a change in diet is transduced into cellular metabolic responses, resulting in a developmental shift mediated by gene expression. The aim of this investigation was to detect and describe the expression profile of water-soluble proteases during the ontogenesis of honeybee worker-fate larvae. The extraction of insect homogenates was followed by the electrophoretic separation of the protein extract in polyacrylamide gels under semi-denaturing condition, precast with gelatin, pollen, or royal jelly protein extracts. The worker-fate honeybee larva showed a proteolytic pattern that varied with aging, and a protease with the highest activity at 72 h after hatching was named PS4. PS4 has a molecular weight of 45 kDa, it remained active until cell sealing, and its enzymatic properties suggest a serine-proteinase nature. To define the process that originates a queen-fate larvae, royal jelly and pollen were analysed, but PS4 was not detected in either of them. The effect of food on the PS4 was investigated by mixing crude extracts of queen and worker-fate larvae with pollen and royal jelly, respectively. Only royal jelly inhibited PS4 in worker-fate larvae. Taken together, our data suggest that PS4 could be involved in caste differentiation.
Collapse
Affiliation(s)
- Simona Sagona
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Chiara D’Onofrio
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
- Biosensor Technologies, Austrian Institute of Technology GmbH, Konrad-Lorenz Straße, 24, 3430 Tulln, Austria
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-6835
| |
Collapse
|
10
|
Shen C, Zhang M, Liang H, He J, Zhang B, Liang B. Gene cloning and functional study of PmKSPI from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1157-1165. [PMID: 36400373 DOI: 10.1016/j.fsi.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Kunitz-type serine protease inhibitors (KSPI) are a family of serine protease inhibitors (SPIs) and are extensively found in animals, plants, and microbes. SPI can inhibit proteases that may be harmful or unwanted to its cells. Here, a four-domain Kunitz-type SPI, PmKSPI, was cloned by RACE in the pearl oyster Pinctada fucata martensii. The full-length cDNA sequence of PmKSPI was 1318 bp, including the 5' UTR (25 bp), the 3' UTR (96 bp) and ORF (1197 bp). Homology analysis indicated that PmKSPI had the highest resemblance (30.14%) with its homolog in Crassostrea gigas. Phylogenetic analysis revealed that PmKSPI clustered with homologs in other molluscs. We found that PmKSPI mRNA expression in P. f. martensii was distributed in all six tissues, with the highest level in the mantle, and almost no expression in other tissues. After PAMPs challenge, expression of PmKSPI mRNA in the mantle was significantly up-regulated. The recombinant protein rPmKSPI significantly inhibited the growth of 5 kinds of Gram-negative bacteria but had little effect on Gram-positive bacterial activity. Transmission electron microscopy showed that plasmolysis occurred in two Gram-negative bacteria species when treated with rPmKSPI. rPmKSPI may thus have a bactericidal effect by destroying the bacterial cell membrane or cell walls and releasing its contents. Therefore, our results suggest that PmKSPI is tightly associated with the immunological defence of P. f. martensii.
Collapse
Affiliation(s)
- Chenghao Shen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Meizhen Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Junjun He
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bidan Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
11
|
Coban A, Bornberg-Bauer E, Kemena C. Domain Evolution of Vertebrate Blood Coagulation Cascade Proteins. J Mol Evol 2022; 90:418-428. [PMID: 36181519 PMCID: PMC9643190 DOI: 10.1007/s00239-022-10071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/26/2022] [Indexed: 10/06/2022]
Abstract
Vertebrate blood coagulation is controlled by a cascade containing more than 20 proteins. The cascade proteins are found in the blood in their zymogen forms and when the cascade is triggered by tissue damage, zymogens are activated and in turn activate their downstream proteins by serine protease activity. In this study, we examined proteomes of 21 chordates, of which 18 are vertebrates, to reveal the modular evolution of the blood coagulation cascade. Additionally, two Arthropoda species were used to compare domain arrangements of the proteins belonging to the hemolymph clotting and the blood coagulation cascades. Within the vertebrate coagulation protein set, almost half of the studied proteins are shared with jawless vertebrates. Domain similarity analyses revealed that there are multiple possible evolutionary trajectories for each coagulation protein. During the evolution of higher vertebrate clades, gene and genome duplications led to the formation of other coagulation cascade proteins.
Collapse
Affiliation(s)
- Abdulbaki Coban
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany
- Max Planck-Institute for Biology Tuebingen, Tübingen, Germany
| | - Carsten Kemena
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany.
| |
Collapse
|
12
|
Stojanovski BM, Di Cera E. Comparative sequence analysis of vitamin K-dependent coagulation factors. J Thromb Haemost 2022; 20:2837-2849. [PMID: 36156849 PMCID: PMC9669250 DOI: 10.1111/jth.15897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prothrombin, protein C, and factors VII, IX, and X are vitamin K (VK)-dependent coagulation proteins that play an important role in the initiation, amplification, and subsequent attenuation of the coagulation response. Blood coagulation evolved in the common vertebrate ancestor as a specialization of the complement system and immune response, which in turn bear close evolutionary ties with developmental enzyme cascades. There is currently no comprehensive analysis of the evolutionary changes experienced by these coagulation proteins during the radiation of vertebrates and little is known about conservation of residues that are important for zymogen activation and catalysis. OBJECTIVES To characterize the conservation level of functionally important residues among VK-dependent coagulation proteins from different vertebrate lineages. METHODS The conservation level of residues important for zymogen activation and catalysis was analyzed in >1600 primary sequences of VK-dependent proteins. RESULTS Functionally important residues are most conserved in prothrombin and least conserved in protein C. Some of the most profound functional modifications in protein C occurred in the ancestor of bony fish when the basic residue in the activation site was replaced by an aromatic residue. Furthermore, during the radiation of placental mammals from marsupials, protein C acquired a cysteine-rich insert that introduced an additional disulfide in the EGF1 domain and evolved a proprotein convertase cleavage site in the activation peptide linker that also became significantly elongated. CONCLUSIONS Sequence variabilities at functionally important residues may lead to interspecies differences in the zymogen activation and catalytic properties of orthologous VK-dependent proteins.
Collapse
Affiliation(s)
- Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
13
|
Wu CY, Xiao KR, Wang LZ, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Identification and expression profiling of serine protease-related genes in Tenebrio molitor. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21963. [PMID: 36039637 DOI: 10.1002/arch.21963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In insects, serine proteases and serine protease homologs (SPs/SPHs) are involved in a variety of physiological processes including digestion, development, and immunity. Here, we identified 112 SP and 88 SPH genes in the genome of the yellow mealworm, Tenebrio molitor. Based on the features of domain structure, they were divided into "S" group containing single Tryp-SPc or Tryp-SPHc domain, "C" group containing 1-4 CLIP domain (CLIPA-D) and "M" group containing the CBD, CUB, EGF, Fz, Gd, LDLa, PAN, SEA, SR, Sushi, and TSP domains, and have 115, 48, and 37 gene members, respectively. According to the active sites in the catalytic triad, the putative trypsin, chymotrypsin, or elastase-like enzyme specificity of the identified SPs/SPHs were predicted. Phylogenetic and genomic location analyses revealed that gene duplication exists in the large amount of SPs/SPHs. Gene expression profiling using RNA-seq data along with real time reverse transcription-polymerase chain reaction analysis showed that most SP/SPH genes display life stage specific expression patterns, indicating their important roles in development. Many SP/SPH genes are specifically or highly expressed in the gut, salivary gland, fat body, hemocyte, ovary, and testis, suggesting that they participate in digestion, immunity, and reproduction. The findings lay the foundation for further functional characterization of SPs/SPHs in T. molitor.
Collapse
Affiliation(s)
- Chao-Yan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Long-Zhang Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
14
|
Kawabata SI, Shibata T. New insights into the hemolymph coagulation cascade of horseshoe crabs initiated by autocatalytic activation of a lipopolysaccharide-sensitive zymogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104491. [PMID: 35850280 DOI: 10.1016/j.dci.2022.104491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The concept of a chain reaction of proteolytic activation of multiple protease zymogens was first proposed to explain the blood clotting system in mammals as an enzyme cascade. In multicellular organisms, similar enzyme cascades are widely present in signal transduction and amplification systems. The initiation step of the blood coagulation cascade often consists of autocatalytic activation of the corresponding zymogens located on the surfaces of host- or foreign-derived substances at injured sites. However, the molecular mechanism underlying the concept of autocatalytic activation remains speculative. In this review, we will focus on the autocatalytic activation of prochelicerase C on the surface of lipopolysaccharide as a potential initiator of hemolymph coagulation in horseshoe crabs. Prochelicerase C is presumed to have evolved from a common complement factor in Chelicerata; thus, evolutionary insights into the hemolymph coagulation and complement systems in horseshoe crabs will also be discussed.
Collapse
Affiliation(s)
- Shun-Ichiro Kawabata
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| | - Toshio Shibata
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| |
Collapse
|
15
|
Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Cryo-EM structures of coagulation factors. Res Pract Thromb Haemost 2022; 6:e12830. [PMID: 36349261 PMCID: PMC9630041 DOI: 10.1002/rth2.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
16
|
Evolutionary Insight into Immunothrombosis as a Healing Mechanism. Int J Mol Sci 2022; 23:ijms23158346. [PMID: 35955499 PMCID: PMC9368803 DOI: 10.3390/ijms23158346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Both invertebrates and vertebrates possess a cluster of immediate and local wound-sealing, pathogen-killing, and tissue healing responses known as immunoclotting and immunothrombosis, respectively, to cope with two life-threatening emergencies, namely, bleeding and microbial invasion. Despite their convergence in function, immunoclotting and immunothrombosis are deployed by different blood cells and intravascular multidomain proteins. In vertebrates, these proteins share some domains with intrinsic chemical affinities useful in generating cooperative networks such as pathogen and damage pattern recognition molecules. Moreover, many of the proteins involved in coagulation and fibrinolysis in humans are multifunctional molecules playing roles in other processes from inflammation to healing and beyond. In our modern society, however, the interaction of activated intravascular allosteric proteins with one another and with blood cells entails vulnerabilities posing a biological paradox: intravascular proteins that locally operate as tissue repair enhancers can nevertheless generate pathogenic processes by acting systemically. In this manuscript, we contextualize and frame the coagulation system and hemostasis through an evolutionary time scale, illustrating their role as dual players in the defense against exsanguination and pathogens while significantly influencing wound healing.
Collapse
|
17
|
Dobó J, Kocsis A, Dani R, Gál P. Proprotein Convertases and the Complement System. Front Immunol 2022; 13:958121. [PMID: 35874789 PMCID: PMC9296861 DOI: 10.3389/fimmu.2022.958121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
Proteins destined for secretion - after removal of the signal sequence - often undergo further proteolytic processing by proprotein convertases (PCs). Prohormones are typically processed in the regulated secretory pathway, while most plasma proteins travel though the constitutive pathway. The complement system is a major proteolytic cascade in the blood, serving as a first line of defense against microbes and also contributing to the immune homeostasis. Several complement components, namely C3, C4, C5 and factor I (FI), are multi-chain proteins that are apparently processed by PCs intracellularly. Cleavage occurs at consecutive basic residues and probably also involves the action of carboxypeptidases. The most likely candidate for the intracellular processing of complement proteins is furin, however, because of the overlapping specificities of basic amino acid residue-specific proprotein convertases, other PCs might be involved. To our surprise, we have recently discovered that processing of another complement protein, mannan-binding lectin-associated serine protease-3 (MASP-3) occurs in the blood by PCSK6 (PACE4). A similar mechanism had been described for the membrane protease corin, which is also activated extracellularly by PCSK6. In this review we intend to point out that the proper functioning of the complement system intimately depends on the action of proprotein convertases. In addition to the non-enzymatic components (C3, C4, C5), two constitutively active complement proteases are directly activated by PCs either intracellularly (FI), or extracellularly (MASP-3), moreover indirectly, through the constitutive activation of pro-factor D by MASP-3, the activity of the alternative pathway also depends on a PC present in the blood.
Collapse
Affiliation(s)
| | | | | | - Péter Gál
- *Correspondence: József Dobó, ; Péter Gál,
| |
Collapse
|
18
|
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood 2022; 139:3463-3473. [PMID: 35427420 PMCID: PMC9203702 DOI: 10.1182/blood.2022015807] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | | | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Ziani PR, Feiten JG, Goularte JF, Colombo R, Antqueviezc B, Géa LP, Rosa AR. Potential Candidates for Biomarkers in Bipolar Disorder: A Proteomic Approach through Systems Biology. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:211-227. [PMID: 35466093 PMCID: PMC9048014 DOI: 10.9758/cpn.2022.20.2.211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics - Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| | - Jacson Gabriel Feiten
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Rafael Colombo
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- University of Caxias do Sul, Caxias do Sul, Brasil
| | - Bárbara Antqueviezc
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
| | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Adriane Ribeiro Rosa
- Laboratory of Molecular Psychiatry, Hospital Clinic of Porto Alegre, Porto Alegre, Brasil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics - Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
- Postgraduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
20
|
Kassem A, Dahabra L, Abou Yassine A, Assaad M, Muhammad M, El-Sayegh D. Association Between Sarcoidosis and Risk of Venous Thromboembolism: A Retrospective Chart Review. Cureus 2022; 14:e25520. [PMID: 35800801 PMCID: PMC9245334 DOI: 10.7759/cureus.25520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Sarcoidosis is a multisystemic disorder of an unclear etiology. It has been postulated that sarcoidosis is a chronic autoimmune inflammation, which may predispose to venous thromboembolism (VTE). Recent studies showed increased VTE events in patients with sarcoidosis and other autoimmune disorders. This multicenter retrospective study aims at determining a possible correlation between VTE and sarcoidosis. Subjects and Method We reviewed charts from a commercial database (Explorys Inc, Cleveland, OH, USA), which is an aggregate of electronic health records from 26 major health care systems. We included patients between 30 and 69 of age. Patients with a condition known to cause a hypercoagulable state were excluded. We calculated the prevalence of VTE in patients with and without a diagnosis of sarcoidosis and compared the results. A multivariate analysis was performed to adjust for gender, race, age, tobacco use, and obesity. Results The overall prevalence of the VTE in patients without sarcoidosis was 1.4% compared to 4.9% in patients with sarcoidosis. Patients with sarcoidosis were more likely to develop VTE (OR: 2.96; 95% CI: 2.84-3.08; p < 0.001). Predictors of VTE in patients with sarcoidosis were gender, age, race, and obesity. Conclusion Our study indicates that sarcoidosis poses a risk of developing VTE. Further prospective studies are needed to shed light on this association and explain the prothrombotic phenotype of sarcoidosis.
Collapse
|
21
|
Heal SL, Hardy LJ, Wilson CL, Ali M, Ariëns RAS, Foster R, Philippou H. Novel interaction of properdin and coagulation factor XI: Crosstalk between complement and coagulation. Res Pract Thromb Haemost 2022; 6:e12715. [PMID: 35647477 PMCID: PMC9130567 DOI: 10.1002/rth2.12715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Background Evidence of crosstalk between the complement and coagulation cascades exists, and dysregulation of either pathway can lead to serious thromboinflammatory events. Both the intrinsic pathway of coagulation and the alternative pathway of complement interact with anionic surfaces, such as glycosaminoglycans. Hitherto, there is no evidence for a direct interaction of properdin (factor P [FP]), the only known positive regulator of complement, with coagulation factor XI (FXI) or activated FXI (FXIa). Objectives The aim was to investigate crosstalk between FP and the intrinsic pathway and the potential downstream consequences. Methods Chromogenic assays were established to characterize autoactivation of FXI in the presence of dextran sulfate (DXS), enzyme kinetics of FXIa, and the downstream effects of FP on intrinsic pathway activity. Substrate specificity changes were investigated using SDS-PAGE and liquid chromatography-mass spectrometry (LC-MS). Surface plasmon resonance (SPR) was used to determine direct binding between FP and FXIa. Results/Conclusions We identified a novel interaction of FP with FXIa resulting in functional consequences. FP reduces activity of autoactivated FXIa toward S-2288. FXIa can cleave FP in the presence of DXS, demonstrated using SDS-PAGE, and confirmed by LC-MS. FXIa can cleave factor IX (FIX) and FP in the presence of DXS, determined by SDS-PAGE. DXS alone modulates FXIa activity, and this effect is further modulated by FP. We demonstrate that FXI and FXIa bind to FP with high affinity. Furthermore, FX activation downstream of FXIa cleavage of FIX is modulated by FP. These findings suggest a novel intercommunication between complement and coagulation pathways.
Collapse
Affiliation(s)
- Samantha L. Heal
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Lewis J. Hardy
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Clare L. Wilson
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Majid Ali
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Robert A. S. Ariëns
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Helen Philippou
- Discovery and Translational Science DepartmentLeeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
22
|
Qin W, Lu Y, Wang H, Liu B, Jiang Z, Zhou C, Huang X, Dai X, Ren Q. Characterization and functional analysis of a clip domain serine protease (MncSP) and its alternative transcript (MncSP-isoform) from Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104237. [PMID: 34450128 DOI: 10.1016/j.dci.2021.104237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Clip domain serine protease (cSPs) play an important role in the innate immune defense of crustaceans. In this study, a clip domain serine protease (MncSP) and its alternative transcript (MncSP-isoform) were identified from Macrobrachium nipponense. The full-length cDNA sequences of MncSP and MncSP-isoform were 2447 and 2351 bp with open reading frames comprising 1497 and 1401 bp nucleotides and encoding 498 and 466 amino acids, respectively. The genome of MncSP had 10 exons and 9 introns. MncSP contained all 10 exons, whereas MncSP-isoform lacked the second exon. MncSP and MncSP-isoform contained a signal peptide, a clip domain, and a Tryp_SPc domain. Phylogenetic tree analysis showed that MncSP and MncSP-isoform clustered with cSPs from Palaemonidae. MncSP and MncSP-isoform were widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. The expression profiles of MncSP and MncSP-isoform in the hemocytes of M. nipponense changed after simulation by Vibrio parahaemolyticus or Staphylococcus aureus. The RNAi of MncSP could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. Phenoloxidase activity was also down-regulated in MncSP-silenced prawns. This study indicated that MncSP participated in the synthesis of AMPs and the activation of prophenoloxidase.
Collapse
Affiliation(s)
- Wei Qin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Yang Lu
- Nanjing Hydraulic Research Institute, Nanjing, Jiangsu Province, 210024, China
| | - Hongyu Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Beixiang Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Zuosheng Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Chengxiang Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China.
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023,China.
| |
Collapse
|
23
|
Pelc LA, Koester SK, Kukla CR, Chen Z, Di Cera E. The active site region plays a critical role in Na + binding to thrombin. J Biol Chem 2022; 298:101458. [PMID: 34861239 PMCID: PMC8695361 DOI: 10.1016/j.jbc.2021.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N∗) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the N∗→N transition is strongly correlated with the analogous E∗→E transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.
Collapse
Affiliation(s)
- Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Cassandra R Kukla
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
24
|
Tilikj N, Novo M. How to resist soil desiccation: Transcriptional changes in a Mediterranean earthworm during aestivation. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111112. [PMID: 34748936 DOI: 10.1016/j.cbpa.2021.111112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Earthworms have a central role in ministering the terrestrial ecosystems and are proving to have an important role in modulating the effects climate change has on soil. Aestivation is a form of dormancy employed by the organisms living in deserts and arid environments, when confronted with prolonged periods of drought. Understanding global metabolic adjustments required for withstanding the harsh conditions of the ever more severe Iberian drought, we performed a global transcriptomic exploration of the endogeic earthworm Carpetania matritensis during aestivation. There were a total of 6352 differentially expressed transcripts in the aestivating group, with 65% being downregulated. Based on GO and KEGG enrichment analyses, downregulated genes seem to be indicative of an overall metabolic depression during aestivation. Indeed we noted a reduction of protein turnover and macromolecule metabolism coupled with suppression of genes involved in digestion. Upregulated genes, namely antioxidant genes and DNA repair genes showed clear signs of abiotic stress caused by ROS generation. Abiotic stress led to transcriptomic changes of genes involved in immune response, mostly affecting the NF-kb signaling pathway as well as changes in apoptotic genes indicating the necessity of investigating these processes in a tissue specific manner. Lastly we uncovered a possible mechanism for water retention by nitrogenous waste accumulation. This study provides the first ever transcriptomic investigation done on aestivating earthworms and as such serves as a general framework for investigation on other earthworm species and other soil invertebrates, which is becoming increasingly important with the current scenario of climate change.
Collapse
Affiliation(s)
- Natasha Tilikj
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
25
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
26
|
Chen L, Du K, Bai X, Shao J, Tang T, Xia S, Fan H, Wang J, Jia X, Lai S. Transcriptomics Analysis Reveals the Immune Response Mechanism of Rabbits with Diarrhea Fed an Antibiotic-Free Diet. Animals (Basel) 2021; 11:ani11102994. [PMID: 34680013 PMCID: PMC8532911 DOI: 10.3390/ani11102994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Feeding an antibiotic-free diet is an inevitable trend in animal husbandry in China. In this study, high-throughput sequencing was used to analyze the gene expression differences in various intestinal segments of rabbits. Our analysis identified 168, 593, 2069, 334, 321, and 1423 DEGs in the comparison groups S_Z (the duodenum of healthy rabbits) vs. S_B (diarrhea in the duodenum of rabbits), K_Z (healthy rabbit jejunum) vs. K_B (rabbits with diarrhea in the jejunum), H_Z (healthy rabbit ileum) vs. H_B (rabbits with diarrhea in the ileum), M_Z (healthy cecum of rabbits) vs. M_B (rabbit with diarrhea in the cecum), J_Z (healthy rabbit colon) vs. J_B (colon of rabbits with diarrhea), and Z_Z (healthy rabbit rectum) vs. Z_B (rectum of rabbits with diarrhea), respectively. The reproducibility and repeatability of the results were validated by RT-qPCR. Enrichment analyses of GO annotations and KEGG pathways revealed the host DEGs that are potentially related to acute inflammation, stress response, tissue dehydration, adaptive immune response, protein binding, activation of related enzymes, migration of immune cells, and so on. In this descriptive study, our findings revealed the changes in the host transcriptome expression profile while feeding an antibiotic-free diet and suggested that feeding an antibiotic-free diet alters the host’s metabolic network and the expression of antiviral proteins. Abstract China officially promulgated the announcement of banning the use of antibiotics in the animal industry in 2020. However, the prohibition of antibiotics in the animal industry would reduce the feed conversion rate and increase the mortality of animals. In order to obtain information about the pathogenesis and host immune response of rabbits with diarrhea after being fed an antibiotic-free diet, we first analyzed the intestinal tissue sections of rabbits. Secondly, the gene expression differences of rabbit intestinal segments were analyzed by high-throughput sequencing. Our analysis identified 168, 593, 2069, 334, 321, and 1423 DEGs in the comparison groups S_Z (the duodenum of healthy rabbits) vs. S_B (diarrhea in the duodenum of rabbits), K_Z (healthy rabbit jejunum) vs. K_B (rabbits with diarrhea in the jejunum), H_Z (healthy rabbit ileum) vs. H_B (rabbits with diarrhea in the ileum), M_Z (healthy cecum of rabbits) vs. M_B (rabbits with diarrhea in the cecum), J_Z (healthy rabbit colon) vs. J_B (colon of rabbits with diarrhea), and Z_Z (healthy rabbit rectum) vs. Z_B (rectum of rabbits with diarrhea), respectively. The reproducibility and repeatability of the results were validated by RT-qPCR. Enrichment analyses of GO annotations and KEGG pathways revealed the host DEGs that are potentially related to acute inflammation, stress response, tissue dehydration, adaptive immune response, protein binding, activation of related enzymes, migration of immune cells, and so on. In this descriptive study, our findings revealed the changes in the host transcriptome expression profile after feeding an antibiotic-free diet and suggested that feeding an antibiotic-free diet alters the host’s metabolic network and the expression of antiviral proteins, which provides a theoretical basis for further study on the immune response of animals fed an antibiotic-free diet.
Collapse
Affiliation(s)
- Li Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.C.); (K.D.)
| | - Kun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.C.); (K.D.)
| | - Xue Bai
- Department of Animal Science, University of Florida, Gainesville, FL 32611, USA; (X.B.); (J.S.); (T.T.); (S.X.); (H.F.)
| | - Jiahao Shao
- Department of Animal Science, University of Florida, Gainesville, FL 32611, USA; (X.B.); (J.S.); (T.T.); (S.X.); (H.F.)
| | - Tao Tang
- Department of Animal Science, University of Florida, Gainesville, FL 32611, USA; (X.B.); (J.S.); (T.T.); (S.X.); (H.F.)
| | - Siqi Xia
- Department of Animal Science, University of Florida, Gainesville, FL 32611, USA; (X.B.); (J.S.); (T.T.); (S.X.); (H.F.)
| | - Huimei Fan
- Department of Animal Science, University of Florida, Gainesville, FL 32611, USA; (X.B.); (J.S.); (T.T.); (S.X.); (H.F.)
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (X.J.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (X.J.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (X.J.)
- Correspondence:
| |
Collapse
|
27
|
Detection of Circulating Serum Protein Biomarkers of Non-Muscle Invasive Bladder Cancer after Protein Corona-Silver Nanoparticles Analysis by SWATH-MS. NANOMATERIALS 2021; 11:nano11092384. [PMID: 34578700 PMCID: PMC8467878 DOI: 10.3390/nano11092384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Because cystoscopy is expensive and invasive, a new method of detecting non-invasive muscular bladder cancer (NMIBC) is needed. This study aims to identify potential serum protein markers for NMIBC to improve diagnosis and to find treatment approaches that avoid disease progression to a life-threatening phenotype (muscle-invasive bladder cancer, MIBC). Here, silver nanoparticles (AgNPs, 9.73 ± 1.70 nm) as a scavenging device together with sequential window acquisition of all theoretical mass spectra (SWATH-MS) were used to quantitatively analyze the blood serum protein alterations in two NMIBC subtypes, T1 and Ta, and they were compared to normal samples (HC). NMIBC’s analysis of serum samples identified three major groups of proteins, the relative content of which is different from the HC content: proteins implicated in the complement and coagulation cascade pathways and apolipoproteins. In conclusion, many biomarker proteins were identified that merit further examination to validate their useful significance and utility within the clinical management of NMIBC patients.
Collapse
|
28
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
29
|
Coagulation factor XII contributes to hemostasis when activated by soil in wounds. Blood Adv 2021; 4:1737-1745. [PMID: 32339233 DOI: 10.1182/bloodadvances.2019000425] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
Bleeding is a common contributor to death and morbidity in animals and provides strong selective pressure for the coagulation system to optimize hemostasis for diverse environments. Although coagulation factor XII (FXII) is activated by nonbiologic surfaces, such as silicates, which leads to blood clotting in vitro, it is unclear whether FXII contributes to hemostasis in vivo. Humans and mice lacking FXII do not appear to bleed more from clean wounds than their counterparts with normal FXII levels. We tested the hypothesis that soil, a silicate-rich material abundant in the environment and wounds of terrestrial mammals, is a normal and potent activator of FXII and coagulation. Blood loss was compared between wild-type (WT) and FXII-knocked out (FXII-/-) mice after soil or exogenous tissue factor was applied to transected tails. The activation of FXII and other components of the coagulation and contact system was assessed with in vitro coagulation and enzyme assays. Soils were analyzed by time-of-flight secondary ionization mass spectrometry and dynamic light scattering. Soil reduced blood loss in WT mice, but not FXII-/- mice. Soil accelerated clotting of blood plasma from humans and mice in a FXII-dependent manner, but not plasma from a cetacean or a bird, which lack FXII. The procoagulant activity of 13 soils strongly correlated with the surface concentration of silicon, but only moderately correlated with the ζ potential. FXII augments coagulation in soil-contaminated wounds of terrestrial mammals, perhaps explaining why this protein has a seemingly minor role in hemostasis in clean wounds.
Collapse
|
30
|
Takahashi K, Banda NK, Holers VM, Van Cott EM. Complement component factor B has thrombin-like activity. Biochem Biophys Res Commun 2021; 552:17-22. [PMID: 33740660 PMCID: PMC8035301 DOI: 10.1016/j.bbrc.2021.02.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 01/13/2023]
Abstract
Serine proteases are fundamental components of biology, including innate immunity, which is systematically orchestrated in an orderly, balanced fashion in the healthy host. Such serine proteases are found in two well-recognized pathways of an innate immune network, coagulation and complement. Both pathways, if uncontrolled due to a variety of causes, are pathogenic in numerous diseases, including coagulation disorders and infectious diseases. Previous studies have reported sequence homologies, functional similarities and interplay between these two pathways with some implications in health and disease. The current study newly reveals that complement component factor B (Bf), the second component of the alternative complement pathway, has thrombin-like activity, which is supported by a characteristic homology of the trypsin-like domain of Bf to that of thrombin. Moreover, we newly report that the trypsin-like domain of Bf is closely related to Limulus clotting factor C, the LPS sensitive clotting factor of the innate immune system. We will also discuss potential implications of our findings in diseases.
Collapse
Affiliation(s)
- Kazue Takahashi
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States.
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, United States
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, United States
| | - Elizabeth M Van Cott
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
31
|
Xiao HY, Li GC, Wang ZQ, Guo YR, Liu NY. Combined transcriptomic, proteomic and genomic analysis identifies reproductive-related proteins and potential modulators of female behaviors in Spodoptera litura. Genomics 2021; 113:1876-1894. [PMID: 33839272 DOI: 10.1016/j.ygeno.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 11/30/2022]
Abstract
The common cutworm, Spodoptera litura, is a polyandrous moth with high reproductive ability. Sexual reproduction is a unique strategy for survival and reproduction of population in this species. However, to date available information about its reproductive genes is rare. Here, we combined transcriptomics, genomics and proteomics approaches to characterize reproductive-related proteins in S. litura. Illumina sequencing in parallel with the reference genome led to the yields of 12,161 reproductive genes, representing 47.83% of genes annotated in the genome. Further, 524 genes of 19 specific gene families annotated in the genome were detected in reproductive tissues of both sexes, some of which exhibited sex-biased and/or tissue-enriched expression. Of these, manual efforts together with the transcriptome analyses re-annotated 54 odorant binding proteins (OBPs) and 23 chemosensory proteins (CSPs) with an increase of 18 OBPs and one CSP compared to those previously annotated in the genome. Interestingly, at least 35 OBPs and 22 CSPs were transcribed in at least one reproductive tissue, suggestive of their involvement in reproduction. Further proteomic analysis revealed 2381 common proteins between virgin and mated female reproductive systems, 79 of which were differentially expressed. More importantly, 74 proteins exclusive to mated females were identified as transferred relatives, coupled with their specific or high expression in male reproductive systems. Of the transferred proteins, several conserved protein classes across insects were observed including OBPs, serpins, trypsins and juvenile hormone-binding proteins. Our current study has extensively surveyed reproductive genes in S. litura with an emphasis on the roles of OBPs and CSPs in reproduction, and identifies potentially transferred proteins serving as modulators of female post-mating behaviors.
Collapse
Affiliation(s)
- Hai-Yan Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Gen-Ceng Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zheng-Quan Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Ruo Guo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
32
|
Migdał P, Murawska A, Strachecka A, Bieńkowski P, Roman A. Honey Bee Proteolytic System and Behavior Parameters under the Influence of an Electric Field at 50 Hz and Variable Intensities for a Long Exposure Time. Animals (Basel) 2021; 11:ani11030863. [PMID: 33803600 PMCID: PMC8003097 DOI: 10.3390/ani11030863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The amount of electromagnetic field (EMF) in the environment emitted by electrical and electronic devices, mobile phone masts, or power lines is constantly increasing. Honey bee can be exposed to the EMF in the environment, and the influence of this factor on bees is still under consideration. Studying the impact of EMF on honey bees can give valuable information about whether it poses a threat to them. The honey bee is an important pollinator, playing a significant role in maintaining biodiversity and food production. Our research showed that a 50 Hz electric field at various intensities reduced the number of occurrences of walking, contacts between individuals, and self-grooming, and increased the activity of proteases, which are involved in the immune system response. Abstract The effect of an artificial electromagnetic field on organisms is a subject of extensive public debate and growing numbers of studies. Our study aimed to show the effect of an electromagnetic field at 50 Hz and variable intensities on honey bee proteolytic systems and behavior parameters after 12 h of exposure. Newly emerged worker bees were put into cages and exposed to a 50 Hz E-field with an intensity of 5.0 kV/m, 11.5 kV/m, 23.0 kV/m, or 34.5 kV/m. After 12 h of exposure, hemolymph samples were taken for protease analysis, and the bees were recorded for behavioral analysis. Six behaviors were chosen for observation: walking, flying, self-grooming, contact between individuals, stillness, and wing movement. Bees in the control group demonstrated the highest number of all behavior occurrences, except flying, and had the lowest protease activity. Bees in the experimental groups showed a lower number of occurrences of walking, self-grooming, and contacts between individuals than the control bees and had significantly higher protease activity than the control bees (except that of alkaline proteases in the 23.0 kV/m group).
Collapse
Affiliation(s)
- Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland; (A.M.); (A.R.)
- Correspondence:
| | - Agnieszka Murawska
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland; (A.M.); (A.R.)
| | - Aneta Strachecka
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Paweł Bieńkowski
- Telecommunications and Teleinformatics Department, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland;
| | - Adam Roman
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 25 C.K. Norwida St., 51-630 Wroclaw, Poland; (A.M.); (A.R.)
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To discuss the crosstalk between the complement system and hemostatic factors (coagulation cascade, platelet, endothelium, and Von Willebrand Factor), and the consequences of this interaction under physiologic and pathologic conditions. RECENT FINDINGS The complement and coagulation systems are comprised of serine proteases and are genetically related. In addition to the common ancestral genes, the complement system and hemostasis interact directly, through protein-protein interactions, and indirectly, on the surface of platelets and endothelial cells. The close interaction between the complement system and hemostatic factors is manifested both in physiologic and pathologic conditions, such as in the inflammatory response to thrombosis, thrombosis at the inflamed area, and thrombotic complications of complement disorders. SUMMARY The interaction between the complement system and hemostasis is vital for homeostasis and the protective response of the host to tissue injury, but also results in the pathogenesis of several thrombotic and inflammatory disorders.
Collapse
|
34
|
Sun T, Guan Q, Wang Y, Qian K, Sun W, Ji Q, Wu Y, Guo K, Xiang J. Identification of differentially expressed genes and signaling pathways in papillary thyroid cancer: a study based on integrated microarray and bioinformatics analysis. Gland Surg 2021; 10:629-644. [PMID: 33708546 DOI: 10.21037/gs-20-673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The techniques of DNA microarray and bioinformatic analysis have exhibited efficiency in identifying dysregulated gene expression in human cancers. In this study, we used integrated bioinformatics analysis to improve our understanding of the pathogenesis of papillary thyroid cancer (PTC). Methods In this study, we integrated four Gene Expression Omnibus (GEO) datasets, GSE33630, GSE35570, GSE60542 and GSE29265, including 136 normal samples and 157 PTC specimens. The contents of the four datasets are based on GPL570, an Affymetrix Human Genome U133 Plus 2.0 array. Gene ontology (GO) analysis was used to identify characteristic the biological attributes of differentially expressed genes (DEGs) between PTC and normal samples. GO annotation was performed on the DEGs obtained, and the process relied on the DAVID online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) approach enrichment analyses were adopted to obtain the basic functions of the DEGs. The KOBAS online analysis database was used to complete DEG KEGG pathway comparison and analysis. The search tool (STRING) database was mainly used to search for interacting genes and complete the construction of protein-protein interaction (PPI) networks. Results Five hundred-ninety DEGs were consistently expressed in the four datasets; 327 of them were upregulated, while 263 were downregulated. Ten DEGs, including five upregulated (ENTPD1, THRSP, KLK10, ADAMTS9, MIR31HG) and five downregulated (SCARA5, EPHB1, CHRDL1, LOC440934, FOXP2) genes, were randomly selected for q-PCR in our own tissue samples to validate the integrated data. The most highly enriched GO terms were extracellular exosome (GO:0070062), cell adhesion (GO:0070062), positive regulation of gene expression (GO:0010628), and extracellular matrix (ECM) organization (GO:0030198). KEGG pathway analysis was performed, and it was found that abnormally expressed genes effectively participated in pathways such as tyrosine metabolism, complement and coagulation cascades, cell adhesion molecules (CAMs), transcriptional misregulation and ECM-receptor interaction pathways. Conclusions Five hundred-ninety DEGs were identified in PTC by integrated microarray analysis. The GO and KEGG analyses presented here suggest that the DEGs were enriched in extracellular exosome, tyrosine metabolism, CAMs, complement and coagulation cascades, transcriptional misregulation and ECM-receptor interaction pathways. Functional studies of PTC should focus on these pathways.
Collapse
Affiliation(s)
- Tuanqi Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Qian
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenyu Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Guo
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
35
|
PCE3 Plays a Role in the Reproduction of Male Nilaparvata lugens. INSECTS 2021; 12:insects12020114. [PMID: 33525429 PMCID: PMC7911326 DOI: 10.3390/insects12020114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary The brown planthopper (BPH), Nilaparvata lugens, is one of the most harmful rice crop pest insects. The use of RNAi is a feasible strategy for controlling this pest. In this study, we evaluated the importance of PCE3 in the development and reproduction of male BPH. We found that PCE3 could regulate the development of the male internal genitalia and reduce the oviposition level of the females that mated with males treated with dsRNA targeting the N. lugens PCE3 gene, causing eggs not to hatch. Our findings indicate that PCE3 is an important gene in regulating male fecundity and a promising target for controlling BPH. Abstract Nilaparvata lugens proclotting enzymes (NlPCEs) belong to the clip domain serine protease (clip-SP) family, which is a characteristic protease family in arthropods. NlPCE3 was previously reported to regulate egg production and development in female N. lugens, but its role in male N. lugens is unclear. In the present study, qPCR analysis showed that NlPCE3 was expressed in three different tissues (gut, testis and fat body). RNAi revealed that dsNlPCE3 injection made the male vas deferens thinner and reduced the oviposition level of the females that mated with dsNlPCE3-treated males, causing eggs not to hatch. Furthermore, immunofluorescence staining showed that NlPCE3 was widely expressed in the male internal genitalia. However, after dsNlPCE3 injection, expression of NlPCE3 was diffuse in the male internal genitalia, whose peripheral cells seemed degraded. Overall, these results indicate that NlPCE3 is important for reproduction in male N. lugens.
Collapse
|
36
|
Stojanovski BM, Pelc LA, Zuo X, Di Cera E. Zymogen and activated protein C have similar structural architecture. J Biol Chem 2020; 295:15236-15244. [PMID: 32855236 PMCID: PMC7650249 DOI: 10.1074/jbc.ra120.014789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Indexed: 11/06/2022] Open
Abstract
Activated protein C is a trypsin-like protease with anticoagulant and cytoprotective properties that is generated by thrombin from the zymogen precursor protein C in a reaction greatly accelerated by the cofactor thrombomodulin. The molecular details of this activation remain elusive due to the lack of structural information. We now fill this gap by providing information on the overall structural organization of these proteins using single molecule FRET and small angle X-ray scattering. Under physiological conditions, both zymogen and protease adopt a conformation with all domains vertically aligned along an axis 76 Å long and maximal particle size of 120 Å. This conformation is stabilized by binding of Ca2+ to the Gla domain and is affected minimally by interaction with thrombin. Hence, the zymogen protein C likely interacts with the thrombin-thrombomodulin complex through a rigid body association that produces a protease with essentially the same structural architecture. This scenario stands in contrast to an analogous reaction in the coagulation cascade where conversion of the zymogen prothrombin to the protease meizothrombin by the prothrombinase complex is linked to a large conformational transition of the entire protein. The presence of rigid epidermal growth factor domains in protein C as opposed to kringles in prothrombin likely accounts for the different conformational plasticity of the two zymogens. The new structural features reported here for protein C have general relevance to vitamin K-dependent clotting factors containing epidermal growth factor domains, such as factors VII, IX, and X.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
37
|
Han X, Li C, Zhang S, Hou X, Chen Z, Zhang J, Zhang Y, Sun J, Wang Y. Why thromboembolism occurs in some patients with thrombocytopenia and treatment strategies. Thromb Res 2020; 196:500-509. [PMID: 33091704 DOI: 10.1016/j.thromres.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Platelets play such an important role in the process of thrombosis that patients with thrombocytopenia generally have an increased risk of bleeding. However, abnormal thrombotic events can sometimes occur in patients with thrombocytopenia, which is unusual and inexplicable. The treatments for thrombocytopenia and thromboembolism are usually contradictory. This review introduces the mechanisms of thromboembolism in patients with different types of thrombocytopenia and outlines treatment recommendations for the prevention and treatment of thrombosis. According to the cause of thrombocytopenia, this article addresses four etiologies, including inherited thrombocytopenia (Myh9-related disease, ANKRD26-associated thrombocytopenia, Glanzmann thrombasthenia, Bernard-Soulier syndrome), thrombotic microangiopathy (thrombotic thrombocytopenic purpura, atypical hemolytic uremic syndrome, hemolytic uremic syndrome, Hemolysis Elevated Liver enzymes and Low Platelets syndrome, disseminated intravascular coagulation), autoimmune-related thrombocytopenia (immune thrombocytopenic purpura, antiphospholipid syndrome, systemic lupus erythematosus), and acquired thrombocytopenia (Infection-induced thrombocytopenia and drug-induced thrombocytopenia, heparin-induced thrombocytopenia). We hope to provide more evidence for clinical applications and future research.
Collapse
Affiliation(s)
- Xiaorong Han
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Cheng Li
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Shuai Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China.
| | - Zhongbo Chen
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jin Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Ying Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jian Sun
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Yonggang Wang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| |
Collapse
|
38
|
Thachil J, Srivastava A. SARS-2 Coronavirus-Associated Hemostatic Lung Abnormality in COVID-19: Is It Pulmonary Thrombosis or Pulmonary Embolism? Semin Thromb Hemost 2020; 46:777-780. [PMID: 32396963 PMCID: PMC7645824 DOI: 10.1055/s-0040-1712155] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jecko Thachil
- Department of Haematology, Manchester University Hospitals, Manchester, United Kingdom
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|
39
|
Fletcher-Sandersjöö A, Bellander BM. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res 2020; 194:36-41. [PMID: 32569879 PMCID: PMC7301826 DOI: 10.1016/j.thromres.2020.06.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is responsible for the current COVID-19 pandemic resulting in an escalating number of cases and fatalities worldwide. Preliminary evidence from these patients, as well as past coronavirus epidemics, indicates that those infected suffer from disproportionate complement activation as well as excessive coagulation, leading to thrombotic complications and poor outcome. In non-coronavirus cohorts, evidence has accumulated of an interaction between the complement and coagulation systems, with one amplifying activation of the other. A pressing question is therefore if COVID-19 associated thrombosis could be caused by overactivation of the complement cascade? In this review, we summarize the literature on thrombotic complications in COVID-19, complement activation in coronavirus infections, and the crosstalk between the complement and coagulation systems. We demonstrate how the complement system is able to activate the coagulation cascade and platelets, inhibit fibrinolysis and stimulate endothelial cells. We also describe how these interactions see clinical relevance in several disorders where overactive complement results in a prothrombotic clinical presentation, and how it could be clinically relevant in COVID-19.
Collapse
Affiliation(s)
- Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Bo-Michael Bellander
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Wang Y, Yang F, Cao X, Zou Z, Lu Z, Kanost MR, Jiang H. Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A 2020; 117:23581-23587. [PMID: 32900946 PMCID: PMC7519321 DOI: 10.1073/pnas.2004761117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolytic activation of phenoloxidase (PO) and the cytokine Spätzle during immune responses of insects is mediated by a network of hemolymph serine proteases (HPs) and noncatalytic serine protease homologs (SPHs) and inhibited by serpins. However, integration and conservation of the system and its control mechanisms are not fully understood. Here we present biochemical evidence that PO-catalyzed melanin formation, Spätzle-triggered Toll activation, and induced synthesis of antimicrobial peptides are stimulated via hemolymph (serine) protease 5 (HP5) in Manduca sexta Previous studies have demonstrated a protease cascade pathway in which HP14 activates proHP21; HP21 activates proPAP2 and proPAP3, which then activate proPO in the presence of a complex of SPH1 and SPH2. We found that both HP21 and PAP3 activate proHP5 by cleavage at ESDR176*IIGG. HP5 then cleaves proHP6 at a unique site of LDLH112*ILGG. HP6, an ortholog of Drosophila Persephone, activates both proHP8 and proPAP1. HP8 activates proSpätzle-1, whereas PAP1 cleaves and activates proPO. HP5 is inhibited by Manduca sexta serpin-4, serpin-1A, and serpin-1J to regulate its activity. In summary, we have elucidated the physiological roles of HP5, a CLIPB with unique cleavage specificity (cutting after His) that coordinates immune responses in the caterpillar.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Zhen Zou
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Zhiqiang Lu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
41
|
Paulus JK, Kourelis J, Ramasubramanian S, Homma F, Godson A, Hörger AC, Hong TN, Krahn D, Ossorio Carballo L, Wang S, Win J, Smoker M, Kamoun S, Dong S, van der Hoorn RAL. Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proc Natl Acad Sci U S A 2020; 117:17409-17417. [PMID: 32616567 PMCID: PMC7382257 DOI: 10.1073/pnas.1921101117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proteolytic cascades regulate immunity and development in animals, but these cascades in plants have not yet been reported. Here we report that the extracellular immune protease Rcr3 of tomato is activated by P69B and other subtilases (SBTs), revealing a proteolytic cascade regulating extracellular immunity in solanaceous plants. Rcr3 is a secreted papain-like Cys protease (PLCP) of tomato that acts both in basal resistance against late blight disease (Phytophthora infestans) and in gene-for-gene resistance against the fungal pathogen Cladosporium fulvum (syn. Passalora fulva) Despite the prevalent model that Rcr3-like proteases can activate themselves at low pH, we found that catalytically inactive proRcr3 mutant precursors are still processed into mature mRcr3 isoforms. ProRcr3 is processed by secreted P69B and other Asp-selective SBTs in solanaceous plants, providing robust immunity through SBT redundancy. The apoplastic effector EPI1 of P. infestans can block Rcr3 activation by inhibiting SBTs, suggesting that this effector promotes virulence indirectly by preventing the activation of Rcr3(-like) immune proteases. Rcr3 activation in Nicotiana benthamiana requires a SBT from a different subfamily, indicating that extracellular proteolytic cascades have evolved convergently in solanaceous plants or are very ancient in the plant kingdom. The frequent incidence of Asp residues in the cleavage region of Rcr3-like proteases in solanaceous plants indicates that activation of immune proteases by SBTs is a general mechanism, illuminating a proteolytic cascade that provides robust apoplastic immunity.
Collapse
Affiliation(s)
- Judith K Paulus
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Selva Ramasubramanian
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Felix Homma
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Alice Godson
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Anja C Hörger
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Tram Ngoc Hong
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Daniel Krahn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Laura Ossorio Carballo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Shuaishuai Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 2JD, United Kingdom;
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
42
|
Donat C, Kölm R, Csorba K, Tuncer E, Tsakiris DA, Trendelenburg M. Complement C1q Enhances Primary Hemostasis. Front Immunol 2020; 11:1522. [PMID: 32765527 PMCID: PMC7381122 DOI: 10.3389/fimmu.2020.01522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The cross-talk between the inflammatory complement system and hemostasis is becoming increasingly recognized. The interaction between complement C1q, initiation molecule of the classical pathway, and von Willebrand factor (vWF), initiator molecule of primary hemostasis, has been shown to induce platelet rolling and adhesion in vitro. As vWF disorders result in prolonged bleeding, a lack of C1q as binding partner for vWF might also lead to an impaired hemostasis. Therefore, this study aimed to investigate the in vivo relevance of C1q-dependent binding of vWF in hemostasis. For this purpose, we analyzed parameters of primary and secondary hemostasis and performed bleeding experiments in wild type (WT) and C1q-deficient (C1qa−/−) mice, with reconstitution experiments of C1q in the latter. Bleeding tendency was examined by quantification of bleeding time and blood loss. First, we found that complete blood counts and plasma vWF levels do not differ between C1qa−/− mice and WT mice. Moreover, platelet aggregation tests indicated that the platelets of both strains of mice are functional. Second, while the prothrombin time was comparable between both groups, the activated partial thromboplastin time was shorter in C1qa−/− mice. In contrast, tail bleeding times of C1qa−/− mice were prolonged accompanied by an increased blood loss. Upon reconstitution of C1qa−/− mice with C1q, parameters of increased bleeding could be reversed. In conclusion, our data indicate that C1q, a molecule of the first-line of immune defense, actively participates in primary hemostasis by promoting arrest of bleeding. This observation might be of relevance for the understanding of thromboembolic complications in inflammatory disorders, where excess of C1q deposition is observed.
Collapse
Affiliation(s)
- Claudia Donat
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robert Kölm
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kinga Csorba
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eylul Tuncer
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dimitrios A Tsakiris
- Department of Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
43
|
Stojanovski BM, Pelc LA, Di Cera E. Role of the activation peptide in the mechanism of protein C activation. Sci Rep 2020; 10:11079. [PMID: 32632109 PMCID: PMC7338465 DOI: 10.1038/s41598-020-68078-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Protein C is a natural anticoagulant activated by thrombin in a reaction accelerated by the cofactor thrombomodulin. The zymogen to protease conversion of protein C involves removal of a short activation peptide that, relative to the analogous sequence present in other vitamin K-dependent proteins, contains a disproportionately high number of acidic residues. Through a combination of bioinformatic, mutagenesis and kinetic approaches we demonstrate that the peculiar clustering of acidic residues increases the intrinsic disorder propensity of the activation peptide and adversely affects the rate of activation. Charge neutralization of the acidic residues in the activation peptide through Ala mutagenesis results in a mutant activated by thrombin significantly faster than wild type. Importantly, the mutant is also activated effectively by other coagulation factors, suggesting that the acidic cluster serves a protective role against unwanted proteolysis by endogenous proteases. We have also identified an important H-bond between residues T176 and Y226 that is critical to transduce the inhibitory effect of Ca2+ and the stimulatory effect of thrombomodulin on the rate of zymogen activation. These findings offer new insights on the role of the activation peptide in the function of protein C.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
44
|
Li SW, Wright M, Healey JF, Hutchinson JM, O’Rourke S, Mesa KA, Lollar P, Berman PW. Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. PLoS One 2020; 15:e0233866. [PMID: 32470085 PMCID: PMC7259603 DOI: 10.1371/journal.pone.0233866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Several candidate HIV subunit vaccines based on recombinant envelope (Env) glycoproteins have been advanced into human clinical trials. To facilitate biopharmaceutical production, it is necessary to produce these in CHO (Chinese Hamster Ovary) cells, the cellular substrate used for the manufacturing of most recombinant protein therapeutics. However, previous studies have shown that when recombinant Env proteins from clade B viruses, the major subtype represented in North America, Europe, and other parts of the world, are expressed in CHO cells, they are proteolyzed and lack important glycan-dependent epitopes present on virions. Previously, we identified C1s, a serine protease in the complement pathway, as the endogenous CHO protease responsible for the cleavage of clade B laboratory isolates of -recombinant gp120s (rgp120s) expressed in stable CHO-S cell lines. In this paper, we describe the development of two novel CHOK1 cell lines with the C1s gene inactivated by gene editing, that are suitable for the production of any protein susceptible to C1s proteolysis. One cell line, C1s-/- CHOK1 2.E7, contains a deletion in the C1s gene. The other cell line, C1s-/- MGAT1- CHOK1 1.A1, contains a deletion in both the C1s gene and the MGAT1 gene, which limits glycosylation to mannose-5 or earlier intermediates in the N-linked glycosylation pathway. In addition, we compare the substrate specificity of C1s with thrombin on the cleavage of both rgp120 and human Factor VIII, two recombinant proteins known to undergo unintended proteolysis (clipping) when expressed in CHO cells. Finally, we demonstrate the utility and practicality of the C1s-/- MGAT1- CHOK1 1.A1 cell line for the expression of clinical isolates of clade B Envs from rare individuals that possess broadly neutralizing antibodies and are able to control virus replication without anti-retroviral drugs (elite neutralizer/controller phenotypes). The Envs represent unique HIV vaccine immunogens suitable for further immunogenicity and efficacy studies.
Collapse
Affiliation(s)
- Sophia W. Li
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John F. Healey
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Jennie M. Hutchinson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Pete Lollar
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
45
|
Anitua E, Nurden P, Nurden AT, Padilla S. More than 500 million years of evolution in a fibrin-based therapeutic scaffold. Regen Med 2020; 15:1493-1498. [PMID: 32441555 DOI: 10.2217/rme-2020-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
46
|
Sinha A, Singh V, Tandon R, Mohan Srivastava L. Dichotomy of complement system: Tumorigenesis or destruction. Immunol Lett 2020; 223:89-96. [PMID: 32333965 DOI: 10.1016/j.imlet.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 01/12/2023]
Abstract
Complement system proteins, their regulators and endpoint effector complex significantly promote tumor growth by upregulation of oncogenic growth factors, activation of mitogenic signalling pathways and breakage of normal cell cycle. Contrastingly, complement cascades, initiated by anti-tumor therapeutic antibodies, also play a pivotal role in therapy response. This contradictory role of complement system possibly be a very crucial factor for the outcomes of antibody mediated immunotherapies. Herein, we reviewed the twin role of the complement system in cancer and also the genetic variations in complement system genes. Future studies should be focused on the biomarker discovery for the personalised cancer immunotherapies.
Collapse
Affiliation(s)
- Ashima Sinha
- Department of BiochemIstry, Sir Ganga Ram Hospital, New Delhi-110060, India; SAGE Publications India Pvt Ltd., New Delhi-110044, India
| | - Virendra Singh
- Laboratory of Precision Medicine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravi Tandon
- Laboratory of AIDS research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Lalit Mohan Srivastava
- Department of Biochemistry and Lab Medicine, Sir Ganga Ram Kolmet Hospital, New Delhi-110005, India.
| |
Collapse
|
47
|
Liu H, Heng J, Wang L, Tang X, Guo P, Li Y, Xia Q, Zhao P. Identification, characterization, and expression analysis of clip-domain serine protease genes in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103584. [PMID: 31863792 DOI: 10.1016/j.dci.2019.103584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Clip-domain serine proteases (CLIPs), characterized by regulatory module clip domains, constitute an important serine protease family identified in insects and other arthropods. They participate in host immune response and embryonic development in a cascade-activated manner. Here, we present a genome-wide identification and expression analysis of CLIP genes in the silkworm, Bombyx mori. A total of 26 CLIP genes were identified in the silkworm genome. Bioinformatics analysis indicated that these CLIPs clustered into four subfamilies (CLIPA-D), and exhibit a close evolutionary relationship with CLIPs of Manduca sexta. Tissue expression profiling revealed that silkworm CLIP genes are mainly expressed in the integument, head, fat body, and hemocytes. Temporal expression profiles showed that 15 CLIP genes were predominantly expressed during the fifth-instar larval stage, early and later period of the pupal stage, and adult stage, whereas 10 CLIP genes were mainly expressed in the wandering stage and middle to later period of the pupal stage in the integument. Pathogens and 20-hydroxyecdysone (20E) induction analysis indicated that 14 CLIP genes were positively regulated by 20E, 9 were negatively regulated by 20E but positively regulated by pathogens, and 5 were positively regulated by both factors in the integument. Together, these results suggested that silkworm CLIP genes may play multiple functions in integument development, including melanization of new cuticle, molting and immune defense. Our data provide a comprehensive understanding of CLIP genes in the silkworm integument and lays a foundation for further functional studies of CLIP genes in the silkworm.
Collapse
Affiliation(s)
- Huawei Liu
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jingya Heng
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Luoling Wang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Xin Tang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi Province, China
| | - Qingyou Xia
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
48
|
Huang Y, Ren Q. Research progress in innate immunity of freshwater crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103569. [PMID: 31830502 DOI: 10.1016/j.dci.2019.103569] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Invertebrates lack adaptive immunity and innate immunity plays important roles in combating foreign invasive pathogens. Freshwater crustaceans, which are invertebrates, depend completely on their innate immune system. In recent years, many immune-related molecules in freshwater crustaceans, as well as their functions, have been identified. Three main immune signaling pathways, namely, Toll, immune deficiency (IMD), and Janus kinase-signal transducer activator of transcription (JAK/STAT) pathways, were found in freshwater crustaceans. A series of pattern recognition receptors (PRRs), including Toll receptors, lectins, lipopolysaccharide and β-1,3-glucan binding protein, scavenger receptors, Down syndrome cell adhesion molecules, and thioester-containing proteins, were reported. Prophenoloxidase activation system and antimicrobial peptide synthesis are two important immune effector systems. These components are involved in the innate immunity of freshwater crustaceans, and they function in the innate immune defense against invading pathogens. This review mainly summarizes innate immune signaling pathways, PRRs, and effector molecules in freshwater crustaceans.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
49
|
Does Complement-Mediated Hemostatic Disturbance Occur in Traumatic Brain Injury? A Literature Review and Observational Study Protocol. Int J Mol Sci 2020; 21:ijms21051596. [PMID: 32111078 PMCID: PMC7084711 DOI: 10.3390/ijms21051596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Despite improvements in medical triage and tertiary care, traumatic brain injury (TBI) remains associated with significant morbidity and mortality. Almost two-thirds of patients with severe TBI develop some form of hemostatic disturbance, which contributes to poor outcome. In addition, the complement system, which is abundant in the healthy brain, undergoes significant intra- and extracranial amplification following TBI. Previously considered to be structurally similar but separate systems, evidence of an interaction between the complement and coagulation systems in non-TBI cohorts has accumulated, with the activation of one system amplifying the activation of the other, independent of their established pathways. However, it is not known whether this interaction exists in TBI. In this review we summarize the available literature on complement activation following TBI, and the crosstalk between the complement and coagulation systems. We demonstrate how the complement system interacts with the coagulation cascade by activating the intrinsic coagulation pathway and by bypassing the initial cascade and directly producing thrombin as well. This crosstalk also effects platelets, where evidence points to a relationship with the complement system on multiple levels, with complement anaphylatoxins being able to induce disproportionate platelet activation and adhesion. The complement system also stimulates thrombosis by inhibiting fibrinolysis and stimulating endothelial cells to release prothrombotic microparticles. These interactions see clinical relevance in several disorders where a deficiency in complement regulation seems to result in a prothrombotic clinical presentation. Finally, based on these observations, we present the outline of an observational cohort study that is currently under preparation and aimed at assessing how complement influences coagulation in patients with isolated TBI.
Collapse
|
50
|
Wang Y, Yang F, Cao X, Huang R, Paskewitz S, Hartson SD, Kanost MR, Jiang H. Inhibition of immune pathway-initiating hemolymph protease-14 by Manduca sexta serpin-12, a conserved mechanism for the regulation of melanization and Toll activation in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103261. [PMID: 31698082 PMCID: PMC6983340 DOI: 10.1016/j.ibmb.2019.103261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 06/01/2023]
Abstract
A network of serine proteases (SPs) and their non-catalytic homologs (SPHs) activates prophenoloxidase (proPO), Toll pathway, and other insect immune responses. However, integration and conservation of the network and its control mechanisms have not yet been fully understood. Here we present evidence that these responses are initiated through a conserved serine protease and negatively regulated by serpins in two species, Manduca sexta and Anopheles gambiae. We have shown that M. sexta serpin-12 reduces the proteolytic activation of HP6, HP8, proPO activating proteases (PAPs), SPHs, and POs in larval hemolymph, and we hypothesized that these effects are due to the inhibition of the immune pathway-initiating protease HP14. To test whether these changes are due to HP14 inhibition, we isolated a covalent complex of HP14 with serpin-12 from plasma using polyclonal antibodies against the HP14 protease domain or against serpin-12, and confirmed formation of the complex by 2D-electrophoresis, immunoblotting, and mass spectrometry. Upon recognition of bacterial peptidoglycans or fungal β-1,3-glucan, the zymogen proHP14 became active HP14, which formed an SDS-stable complex with serpin-12 in vitro. Activation of proHP21 by HP14 was suppressed by serpin-12, consistent with the decrease in steps downstream of HP21, proteolytic activation of proPAP3, proSPH1/2 and proPO in hemolymph. Guided by the results of phylogenetic analysis, we cloned and expressed A. gambiae proSP217 (an ortholog of HP14) and core domains of A. gambiae serpin-11 and -17. The recombinant SP217 zymogen became active during expression, with cleavage between Tyr394 and Ile395. Both MsHP14 and AgSP217 cleaved MsSerpin-12 and AgSRPN11 at Leu*Ser (P1*P1') and formed complexes in vitro. ProPO activation in M. sexta plasma increased after recombinant AgSP217 had been added, indicating that it may function in a similar manner as the endogenous initiating protease HP14. Based on these data, we propose that inhibition of an initiating modular protease by a serpin may be a common mechanism in holometabolous insects to regulate proPO activation and other protease-induced immune responses.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Fan Yang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Rudan Huang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Steve D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|