1
|
Rai M, Feitosa CM, Ingle AP, Golinska P. Harnessing bioactive nanocurcumin and curcumin nanocomposites to combat microbial pathogens: a comprehensive review. Crit Rev Biotechnol 2025:1-23. [PMID: 39978957 DOI: 10.1080/07388551.2025.2458006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 02/22/2025]
Abstract
The alarming rise in bacterial infections including those caused by multidrug-resistant pathogens has garnered the attention of the scientific community, compelling them to explore as novel and effective alternatives to combat these infections. Moreover, the emerging viruses such as Influenza A virus subtype H1N1 (A/H1N1), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Ebolavirus, recent coronavirus (SARS-CoV-2), etc. also has a significant impact all over the world. Therefore, the management of all such infections without any side effects is one of the most important challenges for the scientific community. Hence, the development of novel and effective antimicrobial agents is a need of the hour. In this context, Curcuma longa, commonly known as turmeric, has been used as traditional medicine for centuries to manage and treat such infections. Its bioactive constituent, curcumin has garnered significant attention in medicine due to its multifunctional bioactivities. Apart from antimicrobial properties, it also possesses potent antioxidant and anti-inflammatory activities. However, available reports suggest that its low solubility, stability, and biocompatibility limit its use. Moreover, on the other hand, it has been reported that these limitations associated with the use of curcumin can be resolved by transforming it into its nano-form, specifically curcumin nanoparticles. Recent advancements have brought curcumin nanoparticles into the spotlight, showcasing superior properties and a broad spectrum of antimicrobial applications. In this review, we have mainly focused on antimicrobial potential of curcumin and nanocurcumin, mechanisms underpinning their antimicrobial actions. Moreover, other aspects of toxicity and safety guidelines for nano-based products have been also discussed.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
- Department of Chemistry, Federal University of Piaui, Teresina, Brazil
| | | | - Avinash P Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. PDKV, Akola, Maharashtra, India
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
2
|
Ebrahimi S, Sadeghizadeh M, Aghasadeghi MR, Ardestani MS, Amini SA, Vahabpour R. Inhibition of HIV-1 infection with curcumin conjugated PEG-citrate dendrimer; a new nano formulation. BMC Complement Med Ther 2024; 24:350. [PMID: 39358802 PMCID: PMC11448447 DOI: 10.1186/s12906-024-04634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Nano-drug delivery systems have become a promising approach to overcoming problems such as low solubility and cellular uptake of drugs. Along with various delivery devices, dendrimers are widely used through their unique features. PEG-citrate dendrimers are biocompatible and nontoxic, with the ability to improve drug solubility. Curcumin, a naturally occurring polyphenol, has multiple beneficial properties, such as antiviral activities. However, its optimum potential has been significantly hampered due to its poor water solubility, which leads to reduced bioavailability. So, the present study attempted to address this issue and investigate its antiviral effects against HIV-1. METHOD The G2 PEG-citrate dendrimer was synthesized. Then, curcumin was conjugated to it directly. FTIR, HNMR, DLS, and LCMS characterized the structure of products. The conjugate displayed an intense yellow color. In addition, increased aqueous solubility and cell permeability of curcumin were achieved based on flow cytometry results. So, it could be a suitable vehicle for improving the therapeutic applications of curcumin. Moreover, cell toxicity was assessed using XTT method. Ultimately, the SCR HIV system provided an opportunity to evaluate the level of HIV-1 inhibition by the curcumin-dendrimer conjugate using a p24 HIV ELISA kit. RESULTS The results demonstrated a 50% up to 90% inhibition of HIV proliferation at 12 μm and 60 μm, respectively. Inhibition of HIV-1 at concentrations much lower than CC50 (300 µM) indicates a high potential of curcumin-dendrimer conjugate against this virus. CONCLUSION Thereby, curcumin-dendrimer conjugate proves to be a promising tool to use in HIV-1 therapy.
Collapse
Affiliation(s)
- Saeideh Ebrahimi
- Arak Branch of Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organisation (AREEO), Arak, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | | | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roohollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Dar OA, Hashmi AA, Al-Bogami AS, Ahmad A, Wani MY. Heteroleptic cobalt complex augments antifungal activity with fluconazole and causes membrane disruption in Candida albicans. Dalton Trans 2024; 53:11720-11735. [PMID: 38932585 DOI: 10.1039/d4dt01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Heteroleptic metal complexes containing CuII, CoII, and ZnII, incorporating curcumin and a Schiff base ligand (L), were synthesized and characterized, and their antifungal activity was evaluated. Their antifungal activities were investigated individually and in combination with fluconazole. Utilizing various analytical techniques such as UV-Vis, FT-IR, NMR, ESI-MS, TGA-DTG, elemental analyses, conductance, and magnetic susceptibility measurements, complex C1 ([Cu(Cur)LCl(H2O)]) was assigned a distorted octahedral geometry, while complexes C2 ([Co(Cur)LCl(H2O)]) and C3 ([Zn(Cur)LCl(H2O)]) were assigned octahedral geometries. Among these complexes, C2 exhibited the highest inhibitory activity against both FLC-susceptible and resistant strains of Candida albicans. Furthermore, C2 demonstrated candidicidal activity and synergistic interactions with fluconazole, effectively inhibiting the growth and survival of both FLC-resistant and FLC-sensitive C. albicans strains. The complex displayed a dose-dependent inhibition of drug efflux pumps in FLC-resistant C. albicans strains, indicating its potential to disrupt the cell membrane of these strains. The significant role of membrane efflux transporters in the development of antifungal drug resistance within Candida species has been extensively documented and our findings indicate that complex C2 specifically targets this crucial factor, thereby playing a pivotal role in mitigating drug resistance in C. albicans.
Collapse
Affiliation(s)
- Ovas Ahmad Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Athar Adil Hashmi
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Aghakhani N, Soraya H. Curcumin supplementation as a complementary and alternative medicine for COVID-19 patients. Phytother Res 2024; 38:2724-2727. [PMID: 38520269 DOI: 10.1002/ptr.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Nader Aghakhani
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Sadeghizadeh M, Asadollahi E, Jahangiri B, Yadollahzadeh M, Mohajeri M, Afsharpad M, Najafi F, Rezaie N, Eskandari M, Tavakoli-Ardakani M, Feizabadi F, Masjedi MR. Promising clinical outcomes of nano-curcumin treatment as an adjunct therapy in hospitalized COVID-19 patients: A randomized, double-blinded, placebo-controlled trial. Phytother Res 2023; 37:3631-3644. [PMID: 37118944 DOI: 10.1002/ptr.7844] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/01/2023] [Accepted: 04/08/2023] [Indexed: 04/30/2023]
Abstract
Different immunomodulation strategies have been used to manage COVID-19 due to the complex immune-inflammatory processes involved in the pathogenesis of this infection. Curcumin with its powerful anti-inflammatory and antiviral properties could serve as a possible COVID-19 therapy. In this study, a randomized, double-blinded, placebo-controlled trial was performed to investigate the effectiveness and safety of nano-curcumin oral soft gels as a complementary therapy in moderate-severe COVID-19 patients. Hydroxychloroquine (HCQ) plus sofosbuvir was routinely administered to all 42 COVID-19 patients, who were randomly assigned to receive 140 mg of nano-curcumin or placebo for 14 days. CT scans of the chest were taken, and blood tests were run for all patients at time points of 0, 7, and 14 days. Our results indicated that C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) levels significantly decreased from baseline in the nano-curcumin-treated group on day 7. Furthermore, blood levels of D-dimer, CRP, serum ferritin, ESR, and inflammatory cytokines including IL-6, IL-8, and IL-10 decreased more significantly in the nano-curcumin-treated group after 14 days. Additionally, the nano-curcumin group showed significant improvements in chest CT scores, oxygen saturation levels, and hospitalization duration. Based on our data, oral administration of nano-curcumin may be regarded as a promising adjunct treatment for COVID-19 patients due to its ability to speed up chest clearance and recovery.
Collapse
Affiliation(s)
- Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Asadollahi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Jahangiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Yadollahzadeh
- Firoozgar Medical & Educational Hospital Department of Internal Medicine School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mandana Afsharpad
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Nader Rezaie
- Department of Pulmonology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohana Eskandari
- Firoozgar Medical & Educational Hospital Department of Internal Medicine School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Feizabadi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Masjedi
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
- Department of Pulmonary Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tobacco Control Research Center (TCRC), Iranian Anti-tobacco Association, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Priyadarsani Mandhata C, Ranjan Sahoo C, Nath Padhy R. A comprehensive overview on the role of phytocompounds in human immunodeficiency virus treatment. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00040-7. [PMID: 37244763 DOI: 10.1016/j.joim.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 05/29/2023]
Abstract
Acquired immune deficiency syndrome (AIDS) is a worldwide epidemic caused by human immunodeficiency virus (HIV) infection. Newer medicines for eliminating the viral reservoir and eradicating the virus are urgently needed. Attempts to locate relatively safe and non-toxic medications from natural resources are ongoing now. Natural-product-based antiviral candidates have been exploited to a limited extent. However, antiviral research is inadequate to counteract for the resistant patterns. Plant-derived bioactive compounds hold promise as powerful pharmacophore scaffolds, which have shown anti-HIV potential. This review focuses on a consideration of the virus, various possible HIV-controlling methods and the recent progress in alternative natural compounds with anti-HIV activity, with a particular emphasis on recent results from natural sources of anti-HIV agents. Please cite this article as: Mandhata CP, Sahoo CR, Padhy RN. A comprehensive overview on the role of phytocompounds in human immunodeficiency virus treatment. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
7
|
Mirochnik AG, Puzyrkov ZN, Fedorenko EV, Svistunova IV, Markova AA, Shibaeva AV, Burtsev ID, Kostyukov AA, Egorov AE, Kuzmin VA. Fluorescent boron difluoride curcuminoides as perspective materials for bio-visualization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122319. [PMID: 36630811 DOI: 10.1016/j.saa.2023.122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Curcuminoids of boron difluoride, 1-aryl(hetaryl)-5-phenylpenta-2,4-dien-1-onates of boron difluoride, have been synthesized. A comparative study of the electronic structure, luminescent properties and their potential for applications in bio-imaging has been carried out. The influence of the electronic structure of α-substituents on the luminescence of compounds was studied by the methods of stationary and time-resolved luminescence spectroscopy and DFT modeling. The introduction of π-donor substituents leads to a noticeable bathochromic shift and an increase in the Stokes shift in the luminescence spectra. On going from σ-donor substituents in the phenyl ring to π-donor substituents, the luminescence quantum yield increases from 0.03 to 0.22. The maximum Stokes shift and high quantum yield of luminescence is exhibited by the complex with a stilbene substituent, which has the longest π-system and the maximum efficiency of charge transfer. Dyes are able to penetrate into the cells of the model cell line and accumulate, moreover, accumulation occurs mainly in the cytoplasm of cells. The compounds penetrate into the cells by 12 h of incubation without damaging it's structure and without causing rapid cell death. The submicromolar range of non-toxic concentrations during long-term incubation for a model cell line was determined, which is a characteristic of fluorescent imaging. Due to uniform distribution in the cytoplasm of cells dye with naphtyl substituent is promising for visualization of the cell cytoplasm. This leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent. The leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent.
Collapse
Affiliation(s)
- Anatolii G Mirochnik
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation
| | - Zakhar N Puzyrkov
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation; Far Eastern Federal University, 8, Sukhanova Str., Vladivostok 690950, Russian Federation
| | - Elena V Fedorenko
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Prosp. 100-letiya Vladivostoka, Vladivostok 690022, Russian Federation.
| | - Irina V Svistunova
- Far Eastern Federal University, 8, Sukhanova Str., Vladivostok 690950, Russian Federation
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ivan D Burtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anton E Egorov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
8
|
Golpour-Hamedani S, Pourmasoumi M, Askari G, Bagherniya M, Majeed M, Guest PC, Sahebkar A. Antiviral Mechanisms of Curcumin and Its Derivatives in Prevention and Treatment of COVID-19: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:397-411. [PMID: 37378779 DOI: 10.1007/978-3-031-28012-2_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now plagued the world for almost 3 years. Although vaccines are now available, the severity of the pandemic and the current dearth of approved effective medications have prompted the need for novel treatment approaches. Curcumin, as a food nutraceutical with anti-inflammatory and antioxidant effects, is now under consideration for the prevention and treatment of COVID-19. Curcumin has been demonstrated to retard the entrance of SARS-CoV-2 into cells, interfere with its proliferation inside cells, and curb the hyperinflammatory state caused by the virus by modulating immune system regulators, minimizing the cytokine storm effect, and modulating the renin-angiotensin system. This chapter discusses the role of curcumin and its derivatives in the prevention and treatment of COVID-19 infection, considering the molecular mechanisms involved. It will also focus on the molecular and cellular profiling techniques as essential tools in this research, as these can be used in the identification and development of new biomarkers, drug targets, and therapeutic approaches for improved patient care.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Makan Pourmasoumi
- Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
9
|
Farfán-García ED, Kilic A, García-Machorro J, Cuevas-Galindo ME, Rubio-Velazquez BA, García-Coronel IH, Estevez-Fregoso E, Trujillo-Ferrara JG, Soriano-Ursúa MA. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:733-754. [DOI: 10.1016/b978-0-323-85730-7.00026-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Liu Y, Hu K, Lian G, Zhou M, Lu C, Jin G. Bioactivity and Cell Imaging of Antitumor Fluorescent Agents (Curcumin Derivatives) Coated by Two-Way Embedded Cyclodextrin Strategy. Chem Biodivers 2022; 19:e202200644. [PMID: 36283978 DOI: 10.1002/cbdv.202200644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 12/27/2022]
Abstract
Curcumin has a wide range of pharmacological activities, which can be used to treat tumors, inflammation and other diseases. However, curcumin's poor solubility and low bioavailability limit its application. In this article, the structure of curcumin was modified with boron trifluoride ether to change fluorescent labeling. The compounds were then embedded into the hydrophobic cavity of α-cyclodextrin and hydroxypropyl β-cyclodextrin to form inclusion complexes. The two inclusion complexes have excellent photophysical properties, and the maximum emission wavelength is in the range of 550-565 nm. In addition, the two compounds were applied to the fluorescence imaging of HCT-116 cells and HeLa cells, and the proliferation toxicity of the compounds was detected. Both compounds showed certain inhibitory effects on the proliferation of cancer cells. In short, the fluorescent drug molecule synthesized in this article has great reference value for the development of new dosage forms of curcumin.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Kaibo Hu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Guangchang Lian
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Meng Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Chichong Lu
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| |
Collapse
|
11
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
12
|
Enwemeka CS, Bumah VV, Castel JC, Suess SL. Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 227:112378. [PMID: 35085988 PMCID: PMC8713422 DOI: 10.1016/j.jphotobiol.2021.112378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
In a recent study, we showed that pulsed blue light (PBL) inactivates as much as 52.3% of human beta coronavirus HCoV-OC43, a surrogate of SARS-CoV-2, and one of the major strains of viruses responsible for the annual epidemic of the common cold. Since curcumin and saliva are similarly antiviral and curcumin acts as blue light photosensitizer, we used Qubit fluorometry and WarmStart RT-LAMP assays to study the effect of combining 405 nm, 410 nm, 425 nm or 450 nm wavelengths of PBL with curcumin, saliva or a combination of curcumin and saliva against human beta coronavirus HCoV-OC43. The results showed that PBL, curcumin and saliva independently and collectively inactivate HCoV-OC43. Without saliva or curcumin supplementation 21.6 J/cm2 PBL reduced HCoV-OC43 RNA concentration a maximum of 32.8% (log10 = 2.13). Saliva supplementation alone inactivated the virus, reducing its RNA concentration by 61% (log10 = 2.23); with irradiation the reduction was as much as 79.1%. Curcumin supplementation alone decreased viral RNA 71.1%, and a maximum of 87.8% with irradiation. The combination of saliva and curcumin reduced viral RNA to 83.1% and decreased the RNA up to 90.2% with irradiation. The reduced levels could not be detected with qPCR. These findings show that PBL in the range of 405 nm to 450 nm wavelength is antiviral against human coronavirus HCoV-OC43, a surrogate of the COVID-19 virus. Further, it shows that with curcumin as a photosensitizer, it is possible to photodynamically inactivate the virus beyond qPCR detectable level using PBL. Since HCoV-OC43 is of the same beta coronavirus family as SARS-CoV-2, has the same genomic size, and is often used as its surrogate, these findings heighten the prospect of similarly inactivating novel coronavirus SARS-CoV-2, the virus responsible for COVID-19 pandemic.
Collapse
Affiliation(s)
- Chukuka S Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; James Hope University, Lagos, Nigeria; Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
| | - Violet V Bumah
- College of Health and Human Services, San Diego State University, San Diego, CA, USA; Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, USA
| | | | - Samantha L Suess
- Department of Biology, College of Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
13
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
14
|
Photophysical Properties and Electronic Structure of Symmetrical Curcumin Analogues and Their BF2 Complexes, Including a Phenothiazine Substituted Derivative. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symmetrically substituted curcumin analogue compounds possess electron donor moieties at both ends of the conjugated systems; their difluoroboron complexes were synthesized, and their structures were fully characterized. A novel compound with enhanced photophysical properties bearing phenothiazine moieties is reported. The introduction of BF2 into the molecular structures resulted in bathochromic shifts both in the absorption and emission spectra, indicating that the π-conjugation was more extended than the one in the initial compounds. The solvatochromic effects were studied, which in case of the phenothiazinyl-curcumin BF2 complex was the most notable. Theoretical study of the investigated compounds was carried out using DFT and TD-DFT methods to evaluate the ground state geometries and vertical excitation energies.
Collapse
|
15
|
Albalawi AE, Alanazi AD, Sharifi I, Ezzatkhah F. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol 2021; 66:797-811. [PMID: 33770343 DOI: 10.1007/s11686-021-00351-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.
Collapse
Affiliation(s)
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
- Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
16
|
Witika BA, Makoni PA, Matafwali SK, Mweetwa LL, Shandele GC, Walker RB. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules 2021; 26:4244. [PMID: 34299519 PMCID: PMC8303961 DOI: 10.3390/molecules26144244] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- ApotheCom|A MEDiSTRAVA Company (Medical Division of Huntsworth), London WC2A 1AN, UK;
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTM, London WC1E 7HT, UK;
| | - Larry Lawrence Mweetwa
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Ginnethon Chaamba Shandele
- Department of Biochemistry, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, P.O. Box 33991, Lusaka 10101, Zambia;
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
17
|
Dourado D, Freire DT, Pereira DT, Amaral-Machado L, N Alencar É, de Barros ALB, Egito EST. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomed Pharmacother 2021; 139:111578. [PMID: 33848774 PMCID: PMC8023207 DOI: 10.1016/j.biopha.2021.111578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 has become of striking interest since the number of deaths is constantly rising all over the globe, and the search for an efficient treatment is more urgent. In light of this worrisome scenario, this opinion review aimed to discuss the current knowledge about the potential role of curcumin and its nanostructured systems on the SARS-CoV-2 targets. From this perspective, this work demonstrated that curcumin urges as a potential antiviral key for the treatment of SARS-CoV-2 based on its relation to the infection pathways. Moreover, the use of curcumin-loaded nanocarriers for increasing its bioavailability and therapeutic efficiency was highlighted. Additionally, the potential of the nanostructured systems by themselves and their synergic action with curcumin on molecular targets for viral infections have been explored. Finally, a viewpoint of the studies that need to be carried out to implant curcumin as a treatment for COVID-19 was addressed.
Collapse
Affiliation(s)
- Douglas Dourado
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Danielle T Freire
- Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Daniel T Pereira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Éverton N Alencar
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | | | - E Sócrates T Egito
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil.
| |
Collapse
|
18
|
Liu Y, Zhang C, Pan H, Li L, Yu Y, Liu B. An insight into the in vivo imaging potential of curcumin analogues as fluorescence probes. Asian J Pharm Sci 2021; 16:419-431. [PMID: 34703492 PMCID: PMC8520045 DOI: 10.1016/j.ajps.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022] Open
Abstract
Curcumin and its derivatives have good electrical and optical properties due to the highly symmetric structure of delocalized π electrons. Apart from that, curcumin and its derivatives can interact with numerous molecular targets, thereby exerting less side effects on human body. The fluorescence emission wavelength and fluorescence intensity of curcumin can be enhanced by modifying its π-conjugated system and ß-diketone structure. Some curcumin-based fluorescent probes have been utilized to detect soluble/insoluble amyloid-ß protein, intracranial reactive oxygen species, cysteine, cancer cells, etc. Based on the binding characteristics of curcumin-based fluorescent probes with various target molecules, the factors affecting the fluorescence intensity and emission wavelength of the probes are analyzed, in order to obtain a curcumin probe with higher sensitivity and selectivity. Such an approach will be greatly applicable to in vivo fluorescence imaging.
Collapse
Affiliation(s)
- Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
- Judicial Identification Center of Liaoning university, Shenyang 110036, China
| | - Chuang Zhang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, China
| | - Hao Pan
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
- Liaoning Key Laboratory of New Drug Research & Development, Shenyang 110036, China
| | - Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
- Judicial Identification Center of Liaoning university, Shenyang 110036, China
| | - Yanjie Yu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
- Liaoning Pharmaceutical Engineering Research Center for Natural Medicine, Shenyang 110036, China
| | - Bingmi Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
- Judicial Identification Center of Liaoning university, Shenyang 110036, China
| |
Collapse
|
19
|
Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal-Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. Int J Mol Sci 2021; 22:ijms22137094. [PMID: 34209461 PMCID: PMC8268053 DOI: 10.3390/ijms22137094] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin, an active component of the rhizome turmeric, has gained much attention as a plant-based compound with pleiotropic pharmacological properties. It possesses anti-inflammatory, antioxidant, hypoglycemic, antimicrobial, neuroprotective, and immunomodulatory activities. However, the health-promoting utility of curcumin is constrained due to its hydrophobic nature, water insolubility, poor bioavailability, rapid metabolism, and systemic elimination. Therefore, an innovative stride was taken, and complexes of metals with curcumin have been synthesized. Curcumin usually reacts with metals through the β-diketone moiety to generate metal–curcumin complexes. It is well established that curcumin strongly chelates several metal ions, including boron, cobalt, copper, gallium, gadolinium, gold, lanthanum, manganese, nickel, iron, palladium, platinum, ruthenium, silver, vanadium, and zinc. In this review, the pharmacological, chemopreventive, and therapeutic activities of metal–curcumin complexes are discussed. Metal–curcumin complexes increase the solubility, cellular uptake, and bioavailability and improve the antioxidant, anti-inflammatory, antimicrobial, and antiviral effects of curcumin. Metal–curcumin complexes have also demonstrated efficacy against various chronic diseases, including cancer, arthritis, osteoporosis, and neurological disorders such as Alzheimer’s disease. These biological activities of metal–curcumin complexes were associated with the modulation of inflammatory mediators, transcription factors, protein kinases, antiapoptotic proteins, lipid peroxidation, and antioxidant enzymes. In addition, metal–curcumin complexes have shown usefulness in biological imaging and radioimaging. The future use of metal–curcumin complexes may represent a new approach in the prevention and treatment of chronic diseases.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Research and Development Laboratory, Noble Pharma LLC, Menomonie, WI 54751, USA
- Correspondence: or ; Tel.: +1-715-231-1234
| | - Dan DuBourdieu
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| | - Ajay Srivastava
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| | - Prafulla Kumar
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| | - Rajiv Lall
- Research and Development Laboratory, Vets-Plus Inc., Menomonie, WI 54751, USA; (D.D.); (A.S.); (P.K.); (R.L.)
| |
Collapse
|
20
|
Wang R, Wei Y, Wang M, Yan P, Jiang H, Du Z. Interaction of Natural Compounds in Licorice and Turmeric with HIV-NCp7 Zinc Finger Domain: Potential Relevance to the Mechanism of Antiviral Activity. Molecules 2021; 26:molecules26123563. [PMID: 34200973 PMCID: PMC8230585 DOI: 10.3390/molecules26123563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023] Open
Abstract
Nucleocapsid proteins (NCp) are zinc finger (ZF) proteins, and they play a central role in HIV virus replication, mainly by interacting with nucleic acids. Therefore, they are potential targets for anti-HIV therapy. Natural products have been shown to be able to inhibit HIV, such as turmeric and licorice, which is widely used in traditional Chinese medicine. Liquiritin (LQ), isoliquiritin (ILQ), glycyrrhizic acid (GL), glycyrrhetinic acid (GA) and curcumin (CUR), which were the major active components, were herein chosen to study their interactions with HIV-NCp7 C-terminal zinc finger, aiming to find the potential active compounds and reveal the mechanism involved. The stacking interaction between NCp7 tryptophan and natural compounds was evaluated by fluorescence. To elucidate the binding mode, mass spectrometry was used to characterize the reaction mixture between zinc finger proteins and active compounds. Subsequently, circular dichroism (CD) spectroscopy and molecular docking were used to validate and reveal the binding mode from a structural perspective. The results showed that ILQ has the strongest binding ability among the tested compounds, followed by curcumin, and the interaction between ILQ and the NCp7 zinc finger peptide was mediated by a noncovalent interaction. This study provided a scientific basis for the antiviral activity of turmeric and licorice.
Collapse
Affiliation(s)
- Runjing Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
- Ningxia Pharmaceutical Inspection and Research Institute, Yinchuan 750001, China
| | - Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Meiqin Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; (R.W.); (Y.W.); (M.W.); (P.Y.); (H.J.)
- Correspondence:
| |
Collapse
|
21
|
Carota G, Ronsisvalle S, Panarello F, Tibullo D, Nicolosi A, Li Volti G. Role of Iron Chelation and Protease Inhibition of Natural Products on COVID-19 Infection. J Clin Med 2021; 10:2306. [PMID: 34070628 PMCID: PMC8198259 DOI: 10.3390/jcm10112306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Although the epidemic caused by SARS-CoV-2 callings for international attention to develop new effective therapeutics, no specific protocol is yet available, leaving patients to rely on general and supportive therapies. A range of respiratory diseases, including pulmonary fibrosis, have been associated with higher iron levels that may promote the course of viral infection. Recent studies have demonstrated that some natural components could act as the first barrier against viral injury by affecting iron metabolism. Moreover, a few recent studies have proposed the combination of protease inhibitors for therapeutic use against SARS-CoV-2 infection, highlighting the role of viral protease in virus infectivity. In this regard, this review focuses on the analysis, through literature and docking studies, of a number of natural products able to counteract SARS-CoV-2 infection, acting both as iron chelators and protease inhibitors.
Collapse
Affiliation(s)
- Giuseppe Carota
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (D.T.)
| | - Simone Ronsisvalle
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy; (S.R.); (F.P.)
| | - Federica Panarello
- Department of Drug Sciences, University of Catania, 95123 Catania, Italy; (S.R.); (F.P.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (D.T.)
| | - Anna Nicolosi
- Hospital Pharmacy Unit, Ospedale Cannizzaro, 95125 Catania, Italy;
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.C.); (D.T.)
| |
Collapse
|
22
|
Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. Biofactors 2021; 47:311-350. [PMID: 33606322 DOI: 10.1002/biof.1716] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Curcuma longa (C. longa) or turmeric is a plant with a long history of use in traditional medicine, especially for treating inflammatory conditions C. longa and its main constituent, curcumin (CUR), showed various pharmacological effects such as antioxidant and anti-microbial properties. The updated knowledge of anti-inflammatory, antioxidant, and immunomodulatory effects of C. longa and CUR is provided in this review article. Pharmacological effects of C. longa, and CUR, including anti-inflammatory, antioxidant, and immunomodulatory properties, were searched using various databases and appropriate keywords until September 2020. Various studies showed anti-inflammatory effects of C. longa and CUR, including decreased white blood cell, neutrophil, and eosinophil numbers, and its protective effects on serum levels of inflammatory mediators such as phospholipase A2 and total protein in different inflammatory disorders. The antioxidant effects of C. longa and CUR were also reported in several studies. The plant extracts and CUR decreased malondialdehyde and nitric oxide levels but increased thiol, superoxide dismutase, and catalase levels in oxidative stress conditions. Treatment with C. longa and CUR also improved immunoglobulin E (Ig)E, pro-inflammatory cytokine interleukin 4 (IL)-4, transforming growth factor-beta, IL-17, interferon-gamma levels, and type 1/type 2 helper cells (Th1)/(Th2) ratio in conditions with disturbance in the immune system. Therefore C. longa and CUR showed anti-inflammatory, antioxidant, and immunomodulatory effects, indicating a potential therapeutic effect of the plant and its constituent, CUR, for treating of inflammatory, oxidative, and immune dysregulation disorders.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad R Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Behrouz
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Jafarnezhad
- Department of Anesthesia, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad H Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Estevez-Fregoso E, Farfán-García ED, García-Coronel IH, Martínez-Herrera E, Alatorre A, Scorei RI, Soriano-Ursúa MA. Effects of boron-containing compounds in the fungal kingdom. J Trace Elem Med Biol 2021; 65:126714. [PMID: 33453473 DOI: 10.1016/j.jtemb.2021.126714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of known boron-containing compounds (BCCs) is increasing due to their identification in nature and innovative synthesis procedures. Their effects on the fungal kingdom are interesting, and some of their mechanisms of action have recently been elucidated. METHODS In this review, scientific reports from relevant chemistry and biomedical databases were collected and analyzed. RESULTS It is notable that several BCC actions in fungi induce social and economic benefits for humans. In fact, boric acid was traditionally used for multiple purposes, but some novel synthetic BCCs are effective antifungal agents, particularly in their action against pathogen species, and some were recently approved for use in humans. Moreover, most reports testing BCCs in fungal species suggest a limiting effect of these compounds on some vital reactions. CONCLUSIONS New BCCs have been synthesized and tested for innovative technological and biomedical emerging applications, and new interest is developing for discovering new strategic compounds that can act as environmental or wood protectors, as well as antimycotic agents that let us improve food acquisition and control some human infections.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Eunice D Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| | - Itzel H García-Coronel
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico; Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, C.P. 56530, Ixtapaluca, State of Mexico, Mexico
| | - Alberto Alatorre
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico
| | - Romulus I Scorei
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Marvin A Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Mexico.
| |
Collapse
|
24
|
Sharma M, Pal U, Kumari M, Bagchi D, Rani S, Mukherjee D, Bera A, Pal SK, Saha Dasgupta T, Mozumdar S. Effect of solvent on the photophysical properties of isoxazole derivative of curcumin: A combined spectroscopic and theoretical study. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Abouelela ME, Assaf HK, Abdelhamid RA, Elkhyat ES, Sayed AM, Oszako T, Belbahri L, El Zowalaty AE, Abdelkader MSA. Identification of Potential SARS-CoV-2 Main Protease and Spike Protein Inhibitors from the Genus Aloe: An In Silico Study for Drug Development. Molecules 2021; 26:1767. [PMID: 33801151 PMCID: PMC8004122 DOI: 10.3390/molecules26061767] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease is a global rapidly spreading virus showing very high rates of complications and mortality. Till now, there is no effective specific treatment for the disease. Aloe is a rich source of isolated phytoconstituents that have an enormous range of biological activities. Since there are no available experimental techniques to examine these compounds for antiviral activity against SARS-CoV-2, we employed an in silico approach involving molecular docking, dynamics simulation, and binding free energy calculation using SARS-CoV-2 essential proteins as main protease and spike protein to identify lead compounds from Aloe that may help in novel drug discovery. Results retrieved from docking and molecular dynamics simulation suggested a number of promising inhibitors from Aloe. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) calculations indicated that compounds 132, 134, and 159 were the best scoring compounds against main protease, while compounds 115, 120, and 131 were the best scoring ones against spike glycoprotein. Compounds 120 and 131 were able to achieve significant stability and binding free energies during molecular dynamics simulation. In addition, the highest scoring compounds were investigated for their pharmacokinetic properties and drug-likeness. The Aloe compounds are promising active phytoconstituents for drug development for SARS-CoV-2.
Collapse
Affiliation(s)
- Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Hamdy K. Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Ehab S. Elkhyat
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Tomasz Oszako
- Department of Forest Protection, Forest Research Institute, 05-090 Sekocin Stary, Poland;
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Ahmed E. El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | |
Collapse
|
26
|
Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam K, Radhakrishnan A, Bhojraj S, Kuppusamy G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7:e06350. [PMID: 33655086 PMCID: PMC7899028 DOI: 10.1016/j.heliyon.2021.e06350] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease-19 (COVID-19), a devastating respiratory illness caused by SARS-associated coronavirus-2 (SARS-CoV-2), has already affected over 64 million people and caused 1.48 million deaths, just 12 months from the first diagnosis. COVID-19 patients develop serious complications, including severe pneumonia, acute respiratory distress syndrome (ARDS), and or multiorgan failure due to exaggerated host immune response following infection. Currently, drugs that were effective against SARS-CoV are being repurposed for SARS-CoV-2. During this public health emergency, food nutraceuticals could be promising prophylactic therapeutics for COVID-19. Curcumin, a bioactive compound in turmeric, exerts diverse pharmacological activities and is widely used in foods and traditional medicines. This review presents several lines of evidence, which suggest curcumin as a promising prophylactic, therapeutic candidate for COVID-19. First, curcumin exerts antiviral activity against many types of enveloped viruses, including SARS-CoV-2, by multiple mechanisms: direct interaction with viral membrane proteins; disruption of the viral envelope; inhibition of viral proteases; induce host antiviral responses. Second, curcumin protects from lethal pneumonia and ARDS via targeting NF-κB, inflammasome, IL-6 trans signal, and HMGB1 pathways. Third, curcumin is safe and well-tolerated in both healthy and diseased human subjects. In conclusion, accumulated evidence indicates that curcumin may be a potential prophylactic therapeutic for COVID-19 in the clinic and public health settings.
Collapse
Affiliation(s)
- Rajesh K. Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, India
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysore, India
| | - K.J.Thirumalai Subramaniam
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arun Radhakrishnan
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | | | - Gowthamarajan Kuppusamy
- Centre of Excellence in Nanoscience & Technology, Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
27
|
Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020; 9:E1228. [PMID: 33291560 PMCID: PMC7761780 DOI: 10.3390/antiox9121228] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614335, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417614335, Iran
| | - Mansoureh Mazaheri
- Research Center of Food Technology and Agricultural Products, Department of Food Toxicology, Standard Research Institute, Karaj 3158777871, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
28
|
Jennings MR, Parks RJ. Curcumin as an Antiviral Agent. Viruses 2020; 12:v12111242. [PMID: 33142686 PMCID: PMC7693600 DOI: 10.3390/v12111242] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Curcumin, the primary curcuminoid compound found in turmeric spice, has shown broad activity as an antimicrobial agent, limiting the replication of many different fungi, bacteria and viruses. In this review, we summarize recent studies supporting the development of curcumin and its derivatives as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-8123
| |
Collapse
|
29
|
Yang JS, Chiang JH, Tsai S, Hsu YM, Bau DT, Lee KH, Tsai FJ. In Silico De Novo Curcuminoid Derivatives From the Compound Library of Natural Products Research Laboratories Inhibit COVID-19 3CLpro Activity. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease 2019 (COVID‐19) outbreak caused by the 2019 novel coronavirus (2019-nCOV) is becoming increasingly serious. In March 2019, the Food and Drug Administration (FDA) designated remdesivir for compassionate use to treat COVID-19. Thus, the development of novel antiviral agents, antibodies, and vaccines against COVID-19 is an urgent research subject. Many laboratories and research organizations are actively investing in the development of new compounds for COVID-19. Through in silico high-throughput virtual screening, we have recently identified compounds from the compound library of Natural Products Research Laboratories (NPRL) that can bind to COVID-19 3Lpro polyprotein and block COVID-19 3Lpro activity through in silico high-throughput virtual screening. Curcuminoid derivatives (including NPRL334, NPRL339, NPRL342, NPRL346, NPRL407, NPRL415, NPRL420, NPRL472, and NPRL473) display strong binding affinity to COVID-19 3Lpro polyprotein. The binding site of curcuminoid derivatives to COVID-19 3Lpro polyprotein is the same as that of the FDA-approved human immunodeficiency virus protease inhibitor (lopinavir) to COVID-19 3Lpro polyprotein. The binding affinity of curcuminoid derivatives to COVID-19 3Lpro is stronger than that of lopinavir and curcumin. Among curcuminoid derivatives, NPRL-334 revealed the strongest binding affinity to COVID-19 3Lpro polyprotein and is speculated to have an anti-COVID-19 effect. In vitro and in vivo ongoing experiments are currently underway to confirm the present findings. This study sheds light on the drug design for COVID-19 3Lpro polyprotein. Basing on lead compound development, we provide new insights on inhibiting COVID-19 attachment to cells, reducing COVID-19 infection rate and drug side effects, and increasing therapeutic success rate.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County, Taiwan
| | - Shih‑Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Kuo-Hsiung Lee
- UNC Eshelman School of Pharmacy, Natural Products Research Laboratories, University of North Carolina, Chapel Hill, NC, USA
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, Human Genetics Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
31
|
Seetaha S, Hannongbua S, Rattanasrisomporn J, Choowongkomon K. Novel peptides with HIV-1 reverse transcriptase inhibitory activity derived from the fruits of Quercus infectoria. Chem Biol Drug Des 2020; 97:157-166. [PMID: 32757477 DOI: 10.1111/cbdd.13770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/28/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023]
Abstract
The HIV-1 reverse transcriptase (HIV-1 RT), which is responsible for transcription of viral RNA genomes into DNA genomes, has become an important target for the treatment of patients with HIV infection. Hydrolyzed peptides from plants are considered a new source of potential drugs. In order to develop new effective inhibitors, peptides extracted from 111 Asian medicinal plants were screened against the HIV-1 RT. The crude hydrolyzed peptides from the fruit peel of Quercus infectoria were selected for purification and peptide sequence determination by HPLC and LC-MS. Two peptides of interest were synthesized, and an IC50 test was performed to determine their ability to inhibit the HIV-1 RT. The IC50 values of the peptides AIHIILI and LIAVSTNIIFIVV were determined to be 274 ± 5.10 nm and 236.4 ± 7.07 nm, respectively. This indicated that these peptides could be further developed as potential HIV-1 RT inhibitors.
Collapse
Affiliation(s)
- Supaphorn Seetaha
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jatuporn Rattanasrisomporn
- Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand.,Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
32
|
Scorei IR, Biţă A, Mogoşanu GD. Letter to the Editor: Boron enhances the antiviral activity of the curcumin against SARS-CoV-2. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:967-970. [PMID: 33817742 PMCID: PMC8112755 DOI: 10.47162/rjme.61.3.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ion Romulus Scorei
- BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | | | | |
Collapse
|
33
|
Biţă A, Scorei IR, Mogoantă L, Bejenaru C, Mogoşanu GD, Bejenaru LE. Natural and semisynthetic candidate molecules for COVID-19 prophylaxis and treatment. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:321-334. [PMID: 33544784 PMCID: PMC7864303 DOI: 10.47162/rjme.61.2.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Coronaviruses (CoVs) represent a family of viruses that have numerous animal hosts, and they cause severe respiratory, as well as systemic and enteric infections, in humans. Currently, there are limited antiviral strategies for treating patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The lack of specific antiviral medicines and SARS-CoV-2 vaccines continues to aggravate the situation. Natural product-based antiviral drugs have been used in the two previous CoV outbreaks: Middle East respiratory syndrome coronavirus (MERS-CoV) and the first SARS-CoV. This review emphasizes the role of natural and semisynthetic candidate molecules for coronavirus disease 2019 (COVID-19) prophylaxis and treatment. The experimental evidence suggests that nature could offer huge possibilities for treatment of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Andrei Biţă
- BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | | | | | | | | | | |
Collapse
|
34
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
35
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
36
|
Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45:304-317. [PMID: 31018024 DOI: 10.1002/biof.1504] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Curcumin, a naturally occurring phenolic compound isolated from Curcuma longa, has different pharmacological effects, including antiinflammatory, antimicrobial, antioxidant, and anticancer properties. However, curcumin has been found to have a limited bioavailability because of its hydrophobic nature, low-intestinal absorption, and rapid metabolism. Therefore, there is a need for enhancing the bioavailability and its solubility in water in order to increase the pharmacological effects of this bioactive compound. One strategy is curcumin complexation with transition metals to circumvent the abovementioned problems. Curcumin can undergo chelation with various metal ions to form metallo-complexes of curcumin, which may show greater effects as compared with curcumin alone. Promising results with metal curcumin complexes have been observed with regard to antioxidant, anticancer, and antimicrobial activity, as well as in treatment of Alzheimer's disease. The present review provides a concise summary of the characterization and biological properties of curcumin-metal complexes. © 2019 BioFactors, 45(3):304-317, 2019.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Kim H, Im YH, Ahn J, Yang J, Choi JY, Lee KH, Kim BT, Choe YS. Synthesis and in vivo characterization of 18F-labeled difluoroboron-curcumin derivative for β-amyloid plaque imaging. Sci Rep 2019; 9:6747. [PMID: 31043696 PMCID: PMC6494845 DOI: 10.1038/s41598-019-43257-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 11/09/2022] Open
Abstract
Positron emission tomography imaging of β-amyloid (Aβ) plaques has proven useful in the diagnosis of Alzheimer’s disease. A previous study from our group showed that 4′-O-[18F]fluoropropylcurcumin has poor brain permeability, which is thought to be due to its rapid metabolism. In this study, we synthesized difluoroboron complexes of fluorine-substituted curcumin derivatives (1–4) and selected one of them based on the in vitro binding assays. The selected ligand 2 was found to distinctively stain Aβ plaques in APP/PS1 transgenic mouse brain sections. Radioligand [18F]2 was synthesized via a two-step reaction consisting of [18F]fluorination and subsequent aldol condensation. Biodistribution and metabolism studies indicated that radioligand [18F]2 was converted to polar radioactive products and trapped in the normal mouse brain. In contrast, optical images of mice acquired after injection of 2 showed moderate fluorescence signal intensity in the mouse brain at 2 min with a decrease in the signal within 30 min. In the ex vivo optical images, the fluorescence signals in major tissues disappeared within 30 min. Taken together, these results suggest that [18F]2 may be converted to polar 18F-labeled blue-shifted fluorescent products. Further structural modifications are thus needed to render the radioligand metabolically stable.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - Young Hoon Im
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jinhee Ahn
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jehoon Yang
- Laboratory Animal Research Center, Samsung Medical Center, Seoul, 06351, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Kyung-Han Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.,Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Byung-Tae Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Yearn Seong Choe
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea. .,Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| |
Collapse
|
38
|
Hernandez-Patlan D, Solís-Cruz B, Patrin Pontin K, Latorre JD, Baxter MFA, Hernandez-Velasco X, Merino-Guzman R, Méndez-Albores A, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of the Dietary Supplementation of a Formulation Containing Ascorbic Acid and a Solid Dispersion of Curcumin with Boric Acid against Salmonella Enteritidis and Necrotic Enteritis in Broiler Chickens. Animals (Basel) 2019; 9:E184. [PMID: 31013587 PMCID: PMC6524164 DOI: 10.3390/ani9040184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Two experiments were conducted to evaluate the effect of the prophylactic or therapeutic administration of a 0.1% mixture containing ascorbic acid and a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid (AA-CUR/PVP-BA) against Salmonella Enteritidis (S. Enteritidis) in broiler chickens. A third experiment was conducted to evaluate the impact of the dietary administration of 0.1% AA-CUR/PVP-BA in a necrotic enteritis (NE) model in broiler chickens. The prophylactic administration of 0.1% AA-CUR/PVP-BA significantly decreased S. Enteritidis colonization in cecal tonsils (CT) when compared to the positive control group (PC, p < 0.05). The therapeutic administration of 0.1% AA-CUR/PVP-BA significantly reduced the concentration of S. Enteritidis by 2.05 and 2.71 log in crop and CT, respectively, when compared with the PC on day 10 post-S. Enteritidis challenge. Furthermore, the serum FITC-d concentration and total intestinal IgA levels were also significantly lower in chickens that received 0.1% AA-CUR/PVP-BA. Contrary, the PC group showed significantly higher total intestinal IgA levels compared to the negative control or AA-CUR/PVP-BA groups in the NE model. However, 0.1% AA-CUR/PVP-BA showed a better effect in reducing the concentration of S. Enteritidis when compared to the NE model. Further studies with higher concentration of AA-CUR/PVP-BA into the feed to extend these preliminary results are currently being evaluated.
Collapse
Affiliation(s)
- Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de México, Cuautitlan Izcalli 54714, Mexico.
| | - Bruno Solís-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de México, Cuautitlan Izcalli 54714, Mexico.
| | - Karine Patrin Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul, Porto Alegre RS 97105-900, Brazil.
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Abraham Méndez-Albores
- Laboratorio 14: Alimentos, Micotoxinas y Micotoxicosis, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli 54714, Mexico.
| | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA.
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de México, Cuautitlan Izcalli 54714, Mexico.
| | | |
Collapse
|
39
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
40
|
Anjana S, Joseph J, John J, Balachandran S, Kumar TRS, Abraham A. Novel flourescent spiroborate esters: potential therapeutic agents in in vitro cancer models. Mol Biol Rep 2018; 46:727-740. [PMID: 30554314 DOI: 10.1007/s11033-018-4529-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The current treatment system in cancer therapy, which includes chemotherapy/radiotherapy is expensive and often deleterious to surrounding healthy tissue. Presently, several medicinal plants and their constituents are in use to manage the development and progression of these diseases.They have been found effective, safe, and less expensive. In the present study, we are proposing the utility of a new class of curcumin derivative, Rubrocurcumin, the spiroborate ester of curcumin with boric acid and oxalic acid (1:1:1), which have enhanced biostability for therapeutic applications. In vitro cytocompatibility of this drug complex was analysed using MTT assay, neutral red assay, lactate dehydrogenase assay in 3T3L1 adipocytes. Anti tumour activity of this drug complex on MCF7 and A431 human cancer cell line was studied by morphological analysis using phase contrast microscopy, Hoechst staining and cell cycle analysis by FACS. To explore the chemotherapeutic effect, the cytotoxic effect of this compound was also carried out. Rubrocurcumin is more biostable than natural curcumin in physiological medium. Our results prove that this curcumin derivative drug complex possess more efficacy and anti-cancer activity compared with curcumin. The findings out of this study suggests this novel compound as potential candidate for site targeted drug delivery.
Collapse
Affiliation(s)
- S Anjana
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Josna Joseph
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Jeena John
- Department of Chemistry, MG College, Thiruvananthapuram, Kerala, India
| | - S Balachandran
- Department of Chemistry, MG College, Thiruvananthapuram, Kerala, India
| | - T R Santhosh Kumar
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
41
|
Batra H, Pawar S, Bahl D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol Res 2018; 139:91-105. [PMID: 30408575 DOI: 10.1016/j.phrs.2018.11.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022]
Abstract
A huge surge of research is being conducted on combination therapy with anticancer compounds formulated in the form of nanoparticles (NPs). Numerous advantages like dose minimalization and synergism, reversal of multi drug resistance (MDRs), enhanced efficacy have emerged with nanoencapsulation of chemotherapeutic agents with chemo-sensitizing agent like curcumin. Within last couple of years various nano-sized formulations have been designed and tested both in vitro with cell lines for different types of cancers and in vivo with cancer types and drug resistance models. Despite the combinatorial models being advanced, translation to human trials has not been as smooth as one would have hoped, with as few as twenty ongoing clinical trials with curcumin combination, with less than 1/10th being nano-particulate formulations. Mass production of nano-formulation based on their physico-chemical and pharmacokinetics deficits poses as major hurdle up the ladder. Combination of these nano-sized dosage with poorly bioavailable drugs, unspecific target binding ability and naturally unstable curcumin further complicates the formulation aspects. Emphasis is now therefore being laid on altering natural forms of curcumin and usage of formulations like prodrug or coating of curcumin to overcome stability issues and focus more on enhancing the pharmaceutical and therapeutic ability of the nano-composites. Current studies and futuristic outlook in this direction are discussed in the review, which can serve as the basis for upcoming research which could boost commercial translational of improved nano-sized curcumin combination chemotherapy.
Collapse
Affiliation(s)
- Harshul Batra
- Neuroscience Institute & Center for Behavioral Neuroscience, Georgia State University, 789 Petit Science Center, Atlanta, GA, 30303, United States.
| | - Shrikant Pawar
- Department of Computer Science, Georgia State University, 34 Peachtree Street, Atlanta, GA, 30303, United States; Department of Biology, Georgia State University, 34 Peachtree Street, Atlanta, GA, 30303, United States
| | - Dherya Bahl
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
42
|
Raikwar MM, Rhyman L, Ramasami P, Sekar N. Theoretical Investigation of Difluoroboron Complex of Curcuminoid Derivatives with and without Phenyl Substituent (at Meso Position): Linear and Non-Linear Optical Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201802231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Manish M. Raikwar
- Dyestuff Technology Department; Institute of Chemical Technology Nathalal Parekh Marg; Matunga, Mumbai 400019 India
| | - Lydia Rhyman
- Department of Chemistry; Computational Chemistry Group; Faculty of Science University of Mauritius; Réduit 80837 Mauritius
- Department of Applied Chemistry; University of Johannesburg; Doornfontein Campus; Johannesburg 2028 South Africa
| | - Ponnadurai Ramasami
- Department of Chemistry; Computational Chemistry Group; Faculty of Science University of Mauritius; Réduit 80837 Mauritius
- Department of Applied Chemistry; University of Johannesburg; Doornfontein Campus; Johannesburg 2028 South Africa
| | - Nagaiyan Sekar
- Dyestuff Technology Department; Institute of Chemical Technology Nathalal Parekh Marg; Matunga, Mumbai 400019 India
| |
Collapse
|
43
|
Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe 3O 4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018; 108:1244-1252. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Abdorahim
- Faculté de science, Université Paris-Sud 11, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Mohammad Amin Abdollahifar
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habiballah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box, 11365-11155, Tehran, Iran.
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Olavarría-Contreras IJ, Etcheverry-Berríos A, Qian W, Gutiérrez-Cerón C, Campos-Olguín A, Sañudo EC, Dulić D, Ruiz E, Aliaga-Alcalde N, Soler M, van der Zant HSJ. Electric-field induced bistability in single-molecule conductance measurements for boron coordinated curcuminoid compounds. Chem Sci 2018; 9:6988-6996. [PMID: 30210774 PMCID: PMC6124902 DOI: 10.1039/c8sc02337a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022] Open
Abstract
We have studied the single-molecule conductance of a family of curcuminoid molecules (CCMs) using the mechanically controlled break junction (MCBJ) technique. The CCMs under study contain methylthio (MeS-) as anchoring groups: MeS-CCM (1), the free-ligand organic molecule, and two coordination compounds, MeS-CCM-BF2 (2) and MeS-CCM-Cu (3), where ligand 1 coordinates to a boron center (BF2 group) and to a CuII moiety, respectively. We found that the three molecules present stable molecular junctions allowing detailed statistical analysis of their electronic properties. Compound 3 shows a slight increase in the conductance with respect to free ligand 1, whereas incorporation of BF2 (compound 2) promotes the presence of two conductance states in the measurements. Additional experiments with control molecules point out that this bistability is related to the combination of MeS- anchoring groups and the BF2 moiety within the structure of the molecules. Theoretical calculations show that this can be explained by the presence of two conformers once compound 2 is anchored between the gold electrodes. An energy minimum is found for a flat structure but there is a dramatic change in the magnitude and orientation of dipole moment (favouring a non-flat conformer in the presence of an external electric field) due to a conformational change of one of the terminal MeS- groups. The results thus point to an intricate interplay between the applied bias voltage and the molecule dipole moment which could be the basis for designing new molecules aiming at controlling their conformation in devices.
Collapse
Affiliation(s)
| | - Alvaro Etcheverry-Berríos
- Departamento de Ingeniería Química , Biotecnología y Materiales , Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , Santiago , Chile .
| | - Wenjie Qian
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona) , Campus de la Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain .
| | - Cristian Gutiérrez-Cerón
- Departamento de Física , Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Av. Blanco Encalada 2008 , Santiago , Chile
| | - Aldo Campos-Olguín
- Departamento de Ingeniería Química , Biotecnología y Materiales , Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , Santiago , Chile .
| | - E Carolina Sañudo
- Departament de Química Inorgànica i Orgànica , Universitat de Barcelona , Diagonal 645 , 08028 , Barcelona , Spain
- Institut de Nanociència i Nanotecnologia , Universitat de Barcelona , Diagonal 645 , 08028 , Barcelona , Spain
| | - Diana Dulić
- Departamento de Física , Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Av. Blanco Encalada 2008 , Santiago , Chile
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica , Universitat de Barcelona , Diagonal 645 , 08028 , Barcelona , Spain
- Institut de Química Teòrica i Computacional , Universitat de Barcelona , Diagonal 645 , E-08028 Barcelona , Spain
| | - Núria Aliaga-Alcalde
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona) , Campus de la Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain .
- ICREA (Institució Catalana de Recerca i Estudis Avançats) , Passeig Lluís Companys, 23 , 08018 Barcelona , Spain
| | - Monica Soler
- Departamento de Ingeniería Química , Biotecnología y Materiales , Facultad de Ciencias Físicas y Matemáticas , Universidad de Chile , Beauchef 851 , Santiago , Chile .
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience , Delft University of Technology , Lorentzweg 1 , Delft 2628 CJ , The Netherlands .
| |
Collapse
|
45
|
Lin X, Ammosova T, Kumari N, Nekhai S. Protein Phosphatase-1 -targeted Small Molecules, Iron Chelators and Curcumin Analogs as HIV-1 Antivirals. Curr Pharm Des 2018; 23:4122-4132. [PMID: 28677499 DOI: 10.2174/1381612823666170704123620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite efficient suppression of HIV-1 replication, current antiviral drugs are not able to eradicate HIV-1 infection. Permanent HIV-1 suppression or complete eradication requires novel biological approaches and therapeutic strategies. Our previous studies showed that HIV-1 transcription is regulated by host cell protein phosphatase-1. We also showed that HIV-1 transcription is sensitive to the reduction of intracellular iron that affects cell cycle-dependent kinase 2. We developed protein phosphatase 1-targeting small molecules that inhibited HIV-1 transcription. We also found an additional class of protein phosphatase-1-targeting molecules that activated HIV-1 transcription and reported HIV-1 inhibitory iron chelators and novel curcumin analogs that inhibit HIV-1. Here, we review HIV-1 transcription and replication with focus on its regulation by protein phosphatase 1 and cell cycle dependent kinase 2 and describe novel small molecules that can serve as future leads for anti-HIV drug development. RESULTS Our review describes in a non-exhaustive manner studies in which HIV-1 transcription and replication are targeted with small molecules. Previously, published studies show that HIV-1 can be inhibited with protein phosphatase-1-targeting and iron chelating compounds and curcumin analogs. These results are significant in light of the current efforts to eradicate HIV-1 through permanent inhibition. Also, HIV-1 activating compounds can be useful for "kick and kill" therapy in which the virus is reactivated prior to its inhibition by the combination antiretroviral therapy. CONCLUSION The studies described in our review point to protein phosphatase-1 as a new drug target, intracellular iron as subject for iron chelation and novel curcumin analogs that can be developed for novel HIV-1 transcription- targeting therapeutics.
Collapse
Affiliation(s)
- Xionghao Lin
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Tatyana Ammosova
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Namita Kumari
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| | - Sergei Nekhai
- Center for Sickle Cell Disease, 1840 7th Street, N.W. HURB1, Suite 202, Washington DC 20001. United States
| |
Collapse
|
46
|
Muta K, Inomata S, Fukuhara T, Nomura J, Nishiyama T, Tagawa YI, Amano S. Inhibitory effect of the extract of rhizome of Curcuma longa L in gelatinase activity and its effect on human skin. J Biosci Bioeng 2018; 125:353-358. [DOI: 10.1016/j.jbiosc.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/16/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
47
|
John J, Rugmini SD, Nair BS. Kinetics and Mechanism of the Thermal and Hydrolytic Decomposition Reaction of Rosocyanin. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jeena John
- Department of Chemistry; Mahatma Gandhi College; University of Kerala; Thiruvananthapuram India
| | - Sudha Devi Rugmini
- Department of Chemistry; Mahatma Gandhi College; University of Kerala; Thiruvananthapuram India
| | | |
Collapse
|
48
|
|
49
|
Chao SC, Hu DN, Roberts J, Shen X, Lee CY, Nien CW, Lin HY. Inhibition effect of curcumin on UVB-induced secretion of pro-inflammatory cytokines from corneal limbus epithelial cells. Int J Ophthalmol 2017; 10:827-833. [PMID: 28730070 DOI: 10.18240/ijo.2017.06.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/23/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To study the effects of curcumin on the secretion of interleukin (IL)-6 and IL-8 by corneal limbus epithelial cells. METHODS Human corneal limbus epithelial cells were isolated and cultured from donor eyes and irradiated by UVB at different dosages with or without curcumin. MTT test was used for studying the effects of UVB and curcumin on the cell viability. The role of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways on the UVB-induced secretion of IL-6 and IL-8 were tested by addition of their inhibitors to the culture with or without UVB-radiation. Levels of various signal pathways, IL-6 and IL-8 in the cells and in the conditioned culture medium were measured by ELISA analysis. RESULTS UVB at 20 mJ/cm2 or less and curcumin at 20 µmol/L or less did not affect the cell viability of cultured limbus epithelial cells (P>0.05). UVB irradiation at 10 and 20 mJ/cm2 induced a significant increase of secretion of IL-6 and IL-8 and upregulated NF-κB and phosphorylated MAPK pathways of cultured limbus epithelial cells (P<0.05). Various signal pathway inhibitors, including SP600125 (JNK inhibitor), SB203580 (p38 MAPK inhibitor) and BAY11-7082 (NF-κB inhibitor) significantly decreased the UVB-induced secretion of IL-6 and IL-8 secretion (P<0.05). Curcumin at 5-20 µmol/L significantly inhibited UVB-induced secretion of IL-6 and IL-8 by limbus epithelial cells in a dose-dependent manner; while curcumin alone did not affect the secretion of IL-6 and IL-8. The upregulation of NF-κB and MAPK pathways induced by UVB treatment was significantly inhibited by curcumin, suggesting that NF-κB and MAPK pathways are involved in the inhibitory effect of curcumin on UVB-induced production of IL-6 and IL-8. CONCLUSION Curcumin may be a promising agent to be explored for the prevention and treatment of pterygium.
Collapse
Affiliation(s)
- Shih-Chun Chao
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 50093, Taiwan, China.,Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, China.,Department of Optometry, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, China
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA.,Ichan School of Medicine in Mount Sinai, New York, NY 10029, USA
| | | | - Xilun Shen
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Chia-Yi Lee
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 50093, Taiwan, China
| | - Chan-Wei Nien
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 50093, Taiwan, China
| | - Hung-Yu Lin
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua 50093, Taiwan, China.,Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, China.,Department of Optometry, Chung Shan Medical University, Taichung 40201, Taiwan, China.,Department of Optometry, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan, China
| |
Collapse
|
50
|
Powers CN, Setzer WN. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever. Comb Chem High Throughput Screen 2017; 19:516-36. [PMID: 27151482 PMCID: PMC5411999 DOI: 10.2174/1386207319666160506123715] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 01/28/2016] [Accepted: 04/13/2016] [Indexed: 01/19/2023]
Abstract
A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets.
Collapse
Affiliation(s)
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|