1
|
Yip V, Figueroa I, Latifi B, Masih S, Ng C, Leipold D, Kamath A, Shen BQ. Anti-Lymphocyte Antigen 6 Complex, Locus E- Seco-Cyclopropabenzindol-4-One-Dimer Antibody-Drug Conjugate That Forms Adduct with α1-Microglobulin Demonstrates Slower Systemic Antibody Clearance and Reduced Tumor Distribution in Animals. Drug Metab Dispos 2020; 48:1247-1256. [PMID: 33020064 DOI: 10.1124/dmd.120.000145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023] Open
Abstract
Anti-Ly6E-seco-cyclopropabenzindol-4-one dimer antibody-drug conjugate (ADC) has been reported to form an adduct with α1-microglobulin (A1M) in animal plasma, but with unknown impact on ADC PK and tissue distribution. In this study, we compared the PK and tissue distribution of anti-Ly6E ADC with unconjugated anti-Ly6E mAb in rodents and monkeys. For PK studies, animals received an intravenous administration of anti-Ly6E ADC or unconjugated anti-Ly6E mAb. Plasma samples were analyzed for total antibody (Tab) levels and A1M adduct formation. PK parameters were generated from dose-normalized plasma concentrations. Tissue distribution was determined in tumor-bearing mice after a single intravenous dosing of radiolabeled ADC or mAb. Tissue radioactivity levels were analyzed using a gamma counter. The impact of A1M adduct formation on target cell binding was assessed in an in vitro cell binding assay. The results show that ADC Tab clearance was slower than that of mAb in mice and rats but faster than mAb in monkeys. Correspondingly, the formation of A1M adduct appeared to be faster and higher in mice, followed by rats, and slowest in monkeys. Although ADC tended to show an overall lower distribution to normal tissues, it had a strikingly reduced distribution to tumors compared with mAb, likely due to A1M adduct formation interfering with target binding, as demonstrated by the in vitro cell binding assay. Together, these data 1) demonstrate that anti-Ly6E ADC that forms A1M adduct had slower systemic clearance with strikingly reduced tumor distribution and 2) highlight the importance of selecting an appropriate linker-drug for successful ADC development. SIGNIFICANCE STATEMENT: Anti-lymphocyte antigen 6 complex, locus E, ADC with seco-cyclopropabenzindol-4-one-dimer payload formed adduct with A1M, which led to a decrease in systemic clearance but also attenuated tumor distribution. These findings demonstrate the importance of selecting an appropriate linker-drug for ADC development and also highlight the value of a mechanistic understanding of ADC biotransformation, which could provide insight into ADC molecule design, optimization, and selection.
Collapse
Affiliation(s)
- Victor Yip
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Isabel Figueroa
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Brandon Latifi
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Shab Masih
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Carl Ng
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Doug Leipold
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Amrita Kamath
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| |
Collapse
|
2
|
Mhetre AB, Sreedhar E, Dubey R, Sable GA, Lee H, Yang H, Lee K, Nam DH, Lim D. Synthesis and biological evaluation of potent benzoselenophene and heteroaromatic analogues of ( S)-1-(chloromethyl)-8-methoxy-2,3-dihydro-1 H-benzo[ e]indol-5-ol ( seco-MCBI). RSC Adv 2019; 9:29023-29036. [PMID: 35528410 PMCID: PMC9071829 DOI: 10.1039/c9ra04749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
A diverse series of compounds (18a-x) were synthesized from (S)-1-(chloromethyl)-8-methoxy-2,3-dihydro-1H-benzo[e]indol-5-ol (seco-MCBI) and benzoselenophene or heteroaromatic acids. These new compounds were evaluated for their cytotoxicity against the human gastric NCI-N87 and human ovarian SK-OV3 cancer cell lines. The incorporation of a methoxy substituent at the C-7 position of the seco-CBI unit enhances the cytotoxicity through its additional van der Waals interaction and gave a much higher potency than the corresponding seco-CBI-based analogues. Similarly, the seco-MCBI-benzoselenophene conjugates (18h-x) exhibited substitution effects on biological activity, and the N-butyramido and N-methylthiopropanamido analogues are highly potent, possessing >77- and >24-fold better activity than seco-MCBI-TMI for the SK-OV3 and NCI-N87 cell lines, respectively.
Collapse
Affiliation(s)
- Amol B Mhetre
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | | | - Rashmi Dubey
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | - Ganesh A Sable
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | - Hangeun Lee
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| | - Heekyoung Yang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Kyoungmin Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Dongyeol Lim
- Department of Chemistry, Sejong University Seoul 143-747 Republic of Korea
| |
Collapse
|
3
|
Su D, Chen J, Cosino E, dela Cruz-Chuh J, Davis H, Del Rosario G, Figueroa I, Goon L, He J, Kamath AV, Kaur S, Kozak KR, Lau J, Lee D, Lee MV, Leipold D, Liu L, Liu P, Lu GL, Nelson C, Ng C, Pillow TH, Polakis P, Polson AG, Rowntree RK, Saad O, Safina B, Stagg NJ, Tercel M, Vandlen R, Vollmar BS, Wai J, Wang T, Wei B, Xu K, Xue J, Xu Z, Yan G, Yao H, Yu SF, Zhang D, Zhong F, Dragovich PS. Antibody–Drug Conjugates Derived from Cytotoxic seco-CBI-Dimer Payloads Are Highly Efficacious in Xenograft Models and Form Protein Adducts In Vivo. Bioconjug Chem 2019; 30:1356-1370. [DOI: 10.1021/acs.bioconjchem.9b00133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dian Su
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ely Cosino
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Helen Davis
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Isabel Figueroa
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Leanne Goon
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jintang He
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Amrita V. Kamath
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Surinder Kaur
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R. Kozak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeffrey Lau
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donna Lee
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - M. Violet Lee
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Douglas Leipold
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Luna Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter Liu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Chris Nelson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul Polakis
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Andrew G. Polson
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rebecca K. Rowntree
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ola Saad
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Safina
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicola J. Stagg
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard Vandlen
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Breanna S. Vollmar
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Tao Wang
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Juanjuan Xue
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zijin Xu
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Gang Yan
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shang-Fan Yu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fiona Zhong
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter S. Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
4
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Tercel M, Lee HH, Mehta SY, Youte Tendoung JJ, Bai SY, Liyanage HDS, Pruijn FB. Influence of a Basic Side Chain on the Properties of Hypoxia-Selective Nitro Analogues of the Duocarmycins: Demonstration of Substantial Anticancer Activity in Combination with Irradiation or Chemotherapy. J Med Chem 2017. [PMID: 28644035 DOI: 10.1021/acs.jmedchem.7b00563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new series of nitro analogues of the duocarmycins was prepared and evaluated for hypoxia-selective anticancer activity. The compounds incorporate 13 different amine-containing side chains designed to bind in the minor groove of DNA while spanning a wide range of base strength from pKa 9.64 to 5.24. The most favorable in vitro properties were associated with strongly basic side chains, but the greatest in vivo antitumor activity was found for compounds containing a weakly basic morpholine. This applies to single-agent activity and for activity in combination with irradiation or chemotherapy (gemcitabine or docetaxel). In combination with a single dose of γ irradiation 50 at 42 μmol/kg eliminated detectable clonogens in some SiHa cervical carcinoma xenografts, and in combination with gemcitabine using a well-tolerated multidose schedule, the same compound caused regression of all treated A2780 ovarian tumor xenografts. In the latter experiment, three of seven animals receiving the combination treatment were completely tumor free at day 100.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Ho H Lee
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sunali Y Mehta
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Jean-Jacques Youte Tendoung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sally Y Bai
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - H D Sarath Liyanage
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Frederik B Pruijn
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Mhetre AB, Lee H, Yang H, Lee K, Nam DH, Lim D. Synthesis and anticancer activity of benzoselenophene and heteroaromatic derivatives of 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). Org Biomol Chem 2017; 15:1198-1208. [DOI: 10.1039/c6ob02729f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel benzoselenophene analogs of duocarmycin were prepared. The anticancer activity of the butyramide analog of benzoselenophene was 120 times more potent than the corresponding indole analog.
Collapse
Affiliation(s)
- Amol B. Mhetre
- Department of Chemistry
- Sejong University
- Seoul 143-747
- Republic of Korea
| | - Hangeun Lee
- Department of Chemistry
- Sejong University
- Seoul 143-747
- Republic of Korea
| | - Heekyoung Yang
- Department of Neurosurgery
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul
- Republic of Korea
| | - Kyoungmin Lee
- Department of Neurosurgery
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul
- Republic of Korea
| | - Do-Hyun Nam
- Department of Neurosurgery
- Samsung Medical Center
- Sungkyunkwan University School of Medicine
- Seoul
- Republic of Korea
| | - Dongyeol Lim
- Department of Chemistry
- Sejong University
- Seoul 143-747
- Republic of Korea
| |
Collapse
|
7
|
El-Deeb IM, Rose FJ, Healy PC, von Itzstein M. A versatile synthesis of "tafuramycin A": a potent anticancer and parasite attenuating agent. Org Biomol Chem 2016; 12:4260-4. [PMID: 24838868 DOI: 10.1039/c4ob00842a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved and versatile synthesis of tafuramycin A, a potent anticancer and parasite-attenuating agent, is reported. The three major improvements that optimized yield, simplified purification and allowed the synthesis of more versatile duocarmycin analogues are: a first-time reported regioselective bromination using DMAP as catalyst; the control of the aryl radical alkene cyclization step to prevent the dechlorination side reaction; and the design of a new protection/deprotection method to avoid furan double bond reduction during the classical O-benzyl deprotection in the final step. This alternative protection/deprotection strategy provides ready access to duocarmycin seco-analogues that carry labile functionalities under reducing reaction conditions. Tafuramycin A (3) was prepared in either 8 steps from intermediate 6 or 7 steps from intermediate 17 in 52% or 37% yield respectively. Our strategy provides a significant improvement on the original procedure (11% overall yield) and greater versatility for analogue development.
Collapse
Affiliation(s)
- Ibrahim M El-Deeb
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | | | | | | |
Collapse
|
8
|
Uematsu M, Brody DM, Boger DL. A five-membered lactone prodrug of CBI-based analogs of the duocarmycins. Tetrahedron Lett 2015; 56:3101-3104. [PMID: 26069351 PMCID: PMC4459655 DOI: 10.1016/j.tetlet.2014.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation, characterization and examination of the CBI-based 5-membered lactone 5 capable of serving as a prodrug or protein (antibody) conjugation reagent are disclosed along with its incorporation into the corresponding CC-1065 and duocarmycin analog 6, and the establishment of their properties.
Collapse
Affiliation(s)
- Mika Uematsu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel M. Brody
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Hojczyk KN, Feng P, Zhan C, Ngai MY. Trifluoromethoxylation of Arenes: Synthesis ofortho-Trifluoromethoxylated Aniline Derivatives by OCF3Migration. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409375] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Hojczyk KN, Feng P, Zhan C, Ngai MY. Trifluoromethoxylation of Arenes: Synthesis ofortho-Trifluoromethoxylated Aniline Derivatives by OCF3Migration. Angew Chem Int Ed Engl 2014; 53:14559-63. [DOI: 10.1002/anie.201409375] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 11/06/2022]
|
11
|
Sheldrake HM, Travica S, Johansson I, Loadman PM, Sutherland M, Elsalem L, Illingworth N, Cresswell AJ, Reuillon T, Shnyder SD, Mkrtchian S, Searcey M, Ingelman-Sundberg M, Patterson LH, Pors K. Re-engineering of the Duocarmycin Structural Architecture Enables Bioprecursor Development Targeting CYP1A1 and CYP2W1 for Biological Activity. J Med Chem 2013; 56:6273-7. [DOI: 10.1021/jm4000209] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Helen M. Sheldrake
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Sandra Travica
- Department of Physiology and
Pharmacology, Karolinska Institute, SE-17177
Stockholm, Sweden
| | - Inger Johansson
- Department of Physiology and
Pharmacology, Karolinska Institute, SE-17177
Stockholm, Sweden
| | - Paul M. Loadman
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Mark Sutherland
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Lina Elsalem
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Nicola Illingworth
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | | | - Tristan Reuillon
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Steven D. Shnyder
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| | - Souren Mkrtchian
- Department of Physiology and
Pharmacology, Karolinska Institute, SE-17177
Stockholm, Sweden
| | - Mark Searcey
- School
of Pharmacy, University of East Anglia,
Norwich Research Park, Norwich
NR4 7TJ, U.K
| | | | | | - Klaus Pors
- Institute
of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, U.K
| |
Collapse
|
12
|
Wolfe AL, Duncan KK, Parelkar NK, Brown D, Vielhauer GA, Boger DL. Efficacious cyclic N-acyl O-amino phenol duocarmycin prodrugs. J Med Chem 2013; 56:4104-15. [PMID: 23627265 PMCID: PMC3687800 DOI: 10.1021/jm400413r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two novel cyclic N-acyl O-amino phenol prodrugs are reported as new members of a unique class of reductively cleaved prodrugs of the duocarmycin family of natural products. These prodrugs were explored with the expectation that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles and were designed to liberate the free drug without the release of an extraneous group. In vivo evaluation of the prodrug 6 showed that it exhibits extraordinary efficacy (T/C > 1500, L1210; 6/10 one year survivors), substantially exceeding that of the free drug, that its therapeutic window of activity is much larger, permitting a dosing ≥ 40-fold higher than the free drug, and yet that it displays a potency in vivo that approaches the free drug (within 3-fold). Clearly, the prodrug 6 benefits from either its controlled slow release of the free drug or its preferential intracellular reductive cleavage.
Collapse
Affiliation(s)
- Amanda L Wolfe
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wirth T, Pestel GF, Ganal V, Kirmeier T, Schuberth I, Rein T, Tietze PLF, Sieber PSA. The Two Faces of Potent Antitumor Duocarmycin-Based Drugs: A Structural Dissection Reveals Disparate Motifs for DNA versus Aldehyde Dehydrogenase 1 Affinity. Angew Chem Int Ed Engl 2013; 52:6921-5. [DOI: 10.1002/anie.201208941] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/27/2013] [Indexed: 01/15/2023]
|
14
|
Wirth T, Pestel GF, Ganal V, Kirmeier T, Schuberth I, Rein T, Tietze PLF, Sieber PSA. The Two Faces of Potent Antitumor Duocarmycin-Based Drugs: A Structural Dissection Reveals Disparate Motifs for DNA versus Aldehyde Dehydrogenase 1 Affinity. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208941] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Wolfe AL, Duncan KK, Parelkar NK, Weir SJ, Vielhauer GA, Boger DL. A novel, unusually efficacious duocarmycin carbamate prodrug that releases no residual byproduct. J Med Chem 2012; 55:5878-86. [PMID: 22650244 PMCID: PMC3386426 DOI: 10.1021/jm300330b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unique heterocyclic carbamate prodrug of seco-CBI-indole(2) that releases no residual byproduct is reported as a new member of a class of hydrolyzable prodrugs of the duocarmycin and CC-1065 family of natural products. The prodrug was designed to be activated by hydrolysis of a carbamate releasing the free drug without the cleavage release of a traceable extraneous group. Unlike prior carbamate prodrugs examined that are rapidly cleaved in vivo, the cyclic carbamate was found to be exceptionally stable to hydrolysis under both chemical and biological conditions providing a slow, sustained release of the exceptionally potent free drug. An in vivo evaluation of the prodrug found that its efficacy exceeded that of the parent drug, that its therapeutic window of efficacy versus toxicity is much larger than the parent drug, and that its slow free drug release permitted the safe and efficacious use of doses 150-fold higher than the parent compound.
Collapse
Affiliation(s)
- Amanda L. Wolfe
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Katharine K. Duncan
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikhil K. Parelkar
- University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Scott J. Weir
- University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - George A. Vielhauer
- Department of Urology University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
- University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Structural influence of indole C5-N-substitutents on the cytotoxicity of seco-duocarmycin analogs. Arch Pharm Res 2011; 34:357-67. [DOI: 10.1007/s12272-011-0302-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/01/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
17
|
Wang W, Zhao M, Wang Y, Liu J, Wu J, Kang G, Peng S. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM): its anti-cancer efficacy and intercalation mechanism identified via multi-model systems. MOLECULAR BIOSYSTEMS 2010; 7:766-72. [PMID: 21116565 DOI: 10.1039/c0mb00049c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
{2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) was provided as a DNA-intercalator. For the comprehensive evaluation of this new intercalator, an assay system consisting of cell, S180 mouse, healthy mouse, spectrum, non-spectrum, and gel electrophoresis models was constructed. On the cell (S180, K562, MCF-7, HeLa and HepG2) models, MIAM selectively inhibited the viability of HeLa. On the S180 mouse model, 0.89, 8.9, 89 and 890 μmol kg(-1) of MIAM dose-dependently inhibited the tumor growth. Even at a dose of 890 μmol kg(-1), MIAM did not damage the treated S180 mice. The safety of MIAM was supported by a high spleen index and an obvious increase of body weight of the treated S180 mice. On the healthy mouse model the LD(50) value of MIAM is higher than 890 μmol kg(-1). The ultraviolet (UV), fluorescence, circular dichroism (CD), relative viscosity, melting curve, and gel electrophoresis assays of DNA with or without MIAM consistently supported an intercalation mechanism for MIAM.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 1000, 69, P.R. China
| | | | | | | | | | | | | |
Collapse
|
18
|
Structural necessity of indole C5-O-substitution of seco-duocarmycin analogs for their cytotoxic activity. Molecules 2010; 15:7971-84. [PMID: 21060303 PMCID: PMC6259254 DOI: 10.3390/molecules15117971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/24/2010] [Accepted: 10/28/2010] [Indexed: 11/24/2022] Open
Abstract
A series of racemic indole C5-O-substituted seco-cyclopropylindole (seco-CI) compounds 1-5 were prepared by coupling in the presence of EDCI of 1-(tert-butyloxycarbonyl)-3-(chloromethyl)indoline (seg-A) with 5-hydroxy-, 5-O-methylsulfonyl, 5-O-aminosulfonyl, 5-O-(N,N-dimethylaminosulfonyl)- and 5-O-benzyl-1H-indole-2-carboxylic acid as seg-B. Compounds 1-5 were tested for cytotoxic activity against four human cancer cell lines (COLO 205, SK-MEL-2, A549, and JEG-3) using a MTT assay. Compounds 2 and 3 with small sized sulfonyl substituents like 5-O-methylsulfonyl and 5-O-aminosulfonyl exhibit a similar level of activity as doxorubicin against all cell lines tested.
Collapse
|
19
|
Robertson WM, Kastrinsky DB, Hwang I, Boger DL. Synthesis and evaluation of a series of C5'-substituted duocarmycin SA analogs. Bioorg Med Chem Lett 2010; 20:2722-5. [PMID: 20381346 PMCID: PMC2867475 DOI: 10.1016/j.bmcl.2010.03.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
The synthesis and evaluation of a key series of analogs of duocarmycin SA, bearing a single substituent at the C5' position of the DNA binding subunit, are described.
Collapse
Affiliation(s)
- William M. Robertson
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - David B. Kastrinsky
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Inkyu Hwang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
20
|
Determination of the biological activity and structure activity relationships of drugs based on the highly cytotoxic duocarmycins and CC-1065. Toxins (Basel) 2009; 1:134-50. [PMID: 22069536 PMCID: PMC3202783 DOI: 10.3390/toxins1020134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/28/2009] [Accepted: 12/01/2009] [Indexed: 01/17/2023] Open
Abstract
The natural antibiotics CC‑1065 and the duocarmycins are highly cytotoxic compounds which however are not suitable for cancer therapy due to their general toxicity. We have developed glycosidic prodrugs of seco-analogues of these antibiotics for a selective cancer therapy using conjugates of glycohydrolases and tumour-selective monoclonal antibodies for the liberation of the drugs from the prodrugs predominantly at the tumour site. For the determination of structure activity relationships of the different seco-drugs, experiments addressing their interaction with synthetic DNA were performed. Using electrospray mass spectrometry and high performance liquid chromatography, the experiments revealed a correlation of the stability of these drugs with their cytotoxicity in cell culture investigations. Furthermore, it was shown that the drugs bind to AT-rich regions of double-stranded DNA and the more cytotoxic drugs induce DNA fragmentation at room temperature in several of the selected DNA double-strands. Finally, an explanation for the very high cytotoxicity of CC-1065, the duocarmycins and analogous drugs is given.
Collapse
|
21
|
MacMillan KS, Boger DL. Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J Med Chem 2009; 52:5771-80. [PMID: 19639994 PMCID: PMC2755654 DOI: 10.1021/jm9006214] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karen S MacMillan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
22
|
Jin W, Trzupek JD, Rayl TJ, Broward MA, Vielhauer GA, Weir SJ, Hwang I, Boger DL. A unique class of duocarmycin and CC-1065 analogues subject to reductive activation. J Am Chem Soc 2007; 129:15391-7. [PMID: 18020335 PMCID: PMC2519901 DOI: 10.1021/ja075398e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-Acyl O-amino phenol derivatives of CBI-TMI and CBI-indole2 are reported as prototypical members of a new class of reductively activated prodrugs of the duocarmycin and CC-1065 class of antitumor agents. The expectation being that hypoxic tumor environments, with their higher reducing capacity, carry an intrinsic higher concentration of "reducing" nucleophiles (e.g., thiols) capable of activating such derivatives (tunable N-O bond cleavage) and increasing their sensitivity to the prodrug treatment. Preliminary studies indicate the prodrugs effectively release the free drug in functional cellular assays for cytotoxic activity approaching or matching the activity of the free drug, yet remain essentially stable and unreactive to in vitro DNA alkylation conditions (<0.1-0.01% free drug release) and pH 7.0 phosphate buffer, and exhibit a robust half-life in human plasma (t1/2 = 3 h). Characterization of a representative O-(acylamino) prodrug in vivo indicates that they approach the potency and exceed the efficacy of the free drug itself (CBI-indole2), indicating that not only is the free drug effectively released from the inactive prodrug but also that they offer additional advantages related to a controlled or targeted release in vivo.
Collapse
Affiliation(s)
- Wei Jin
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - John D. Trzupek
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Thomas J. Rayl
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Melinda A. Broward
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - George A. Vielhauer
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Scott J. Weir
- Office of Therapeutics, Discovery and Development, University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Inkyu Hwang
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, E-mail:
| |
Collapse
|
23
|
Tichenor MS, MacMillan KS, Trzupek JD, Rayl TJ, Hwang I, Boger DL. Systematic exploration of the structural features of yatakemycin impacting DNA alkylation and biological activity. J Am Chem Soc 2007; 129:10858-69. [PMID: 17691783 PMCID: PMC2519902 DOI: 10.1021/ja072777z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A systematic examination of the impact of the yatakemycin left and right subunits and their substituents is detailed along with a study of its unique three subunit arrangement (sandwiched vs extended and reversed analogues). The examination of the ca. 50 analogues prepared illustrate that within the yatakemycin three subunit structure, the subunit substituents are relatively unimportant and that it is the unique sandwiched arrangement that substantially increases the rate and optimizes the efficiency of its DNA alkylation reaction. This potentiates the cytotoxic activity of yatakemycin and its analogues overcoming limitations typically observed with more traditional compounds in the series (CC-1065, duocarmycins). Moreover, a study of the placement of the alkylation subunit within the three subunit arrangement (sandwiched vs extended and reversed analogues) indicates that it not only has a profound impact on the rate and efficiency of DNA alkylation but also controls and establishes the DNA alkylation selectivity as well, where both enantiomers of such sandwiched agents alkylate the same adenine sites exhibiting the same DNA alkylation selectivity independent of their absolute configuration.
Collapse
|
24
|
Tietze LF, Major F, Schuberth I, Spiegl DA, Krewer B, Maksimenka K, Bringmann G, Magull J. Selective Treatment of Cancer: Synthesis, Biological Evaluation and Structural Elucidation of Novel Analogues of the Antibiotic CC-1065 and the Duocarmycins. Chemistry 2007; 13:4396-409. [PMID: 17455190 DOI: 10.1002/chem.200700113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel diastereomerically pure beta-D-galactosidic prodrugs (+)-12 a-e of the cytotoxic antibiotics CC-1065 and the duocarmycins were prepared for an antibody directed enzyme prodrug therapy (ADEPT) using 4 as a substrate via a radical cyclization to give rac-5 and rac-6 followed by a chromatographic resolution of the enantiomers of rac-5, glycosidation and linkage to the DNA-binding units 10 a-e. These only slightly toxic compounds can be toxified enzymatically by an antibody-beta-D-galactosidase conjugate at the surface of malignant cells to give the cytotoxic drugs, which then alkylate DNA. The new prodrugs were tested in in vitro cytotoxicity assays showing excellent QIC(50) values of 4800 and 4300 for (+)-12 a and (+)-12 b, respectively. The absolute configuration of precursor (+)-5 was determined by comparison of the experimental CD spectrum with the theoretically predicted CD spectra and by X-ray structure analysis.
Collapse
Affiliation(s)
- Lutz F Tietze
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tietze LF, Major F. Synthesis of New Water-Soluble DNA-Binding Subunits for Analogues of the Cytotoxic Antibiotic CC-1065 and Their Prodrugs. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Parrish JP, Trzupek JD, Hughes TV, Hwang I, Boger DL. Synthesis and evaluation of N-aryl and N-alkenyl CBI derivatives. Bioorg Med Chem 2005; 12:5845-56. [PMID: 15498660 DOI: 10.1016/j.bmc.2004.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 08/23/2004] [Accepted: 08/23/2004] [Indexed: 11/29/2022]
Abstract
The preparation of a novel series of N-aryl CBI derivatives in which an aryl substituent could be used to predictably modulate the reactivity of the resulting CC-1065/duocarmycin alkylation subunit analogue is detailed and its extension to a unique series of N-alkenyl derivatives is reported. The N-aryl derivatives were found to be exceptionally stable and to exhibit well-defined relationships between structure (X-ray), reactivity, and cytotoxic potency. When combined with the results of past investigations, the studies define a fundamental parabolic relationship between reactivity and cytotoxic potency. The parabolic relationship establishes that compounds in the series should possess sufficient stability to reach their biological target (DNA), yet maintain sufficient reactivity to effectively alkylate DNA upon reaching the biological target. Just as importantly, it defined this optimal balance of stability and reactivity that may be used for future design of related analogues. Notably, the duocarmycin SA and yatakemycin alkylation subunit lies at this optimal stability/reactivity position, whereas the CC-1065 and duocarmycin A alkylation subunits lie progressively and significantly to the left of this optimal position (too reactive).
Collapse
Affiliation(s)
- Jay P Parrish
- Department of Chemistry and the Skaggs, Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
27
|
Lillo AM, Sun C, Gao C, Ditzel H, Parrish J, Gauss CM, Moss J, Felding-Habermann B, Wirsching P, Boger DL, Janda KD. A human single-chain antibody specific for integrin alpha3beta1 capable of cell internalization and delivery of antitumor agents. ACTA ACUST UNITED AC 2005; 11:897-906. [PMID: 15271348 DOI: 10.1016/j.chembiol.2004.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/26/2004] [Accepted: 04/07/2004] [Indexed: 11/26/2022]
Abstract
Selective antitumor chemotherapy can be achieved by using antibody-drug conjugates that recognize surface proteins upregulated in cancer cells. One such receptor is integrin alpha3beta1, which is overexpressed on malignant melanoma, prostate carcinoma, and glioma cells. We previously identified a human single-chain Fv antibody (scFv), denoted Pan10, specific for integrin alpha3beta1 that is internalized by human pancreatic cancer cells. Herein, we describe the chemical introduction of reactive thiol groups onto Pan10, the specific conjugation of the modified scFv to maleimide-derivatized analogs of the potent cytotoxic agent duocarmycin SA, and the properties of the resultant conjugates. Our findings provide evidence that Pan10-drug conjugates maintain the internalizing capacity of the parent scFv and are cytotoxic at nanomolar concentrations. Our Pan10-drug conjugates may be promising candidates for targeted chemotherapy of malignant diseases associated with overexpression of integrin alpha3beta1.
Collapse
Affiliation(s)
- Antonietta M Lillo
- Department of Chemistry, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ham YW, Boger DL. A powerful selection assay for mixture libraries of DNA alkylating agents. J Am Chem Soc 2004; 126:9194-5. [PMID: 15281804 DOI: 10.1021/ja0477930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple and powerful selection assay that permits the separation (rpHPLC), quantitation (ELSD), and identification (ESI-MS) of thermally released adenine adducts derived from duocarmycin analogues is detailed that can establish the most effective DNA alkylating agents in synthetic combinatorial mixtures.
Collapse
Affiliation(s)
- Young-Wan Ham
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
29
|
Parrish JP, Hughes TV, Hwang I, Boger DL. Establishing the parabolic relationship between reactivity and activity for derivatives and analogues of the duocarmycin and CC-1065 alkylation subunits. J Am Chem Soc 2004; 126:80-1. [PMID: 14709069 DOI: 10.1021/ja038162t] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation of a novel series of N-aryl CBI derivatives is detailed in which an aryl para substituent could be used to predictably modulate the reactivity of the resulting CC-1065/duocarmycin alkylation subunit analogue (rho = 0.17). The derivatives were found to be exceptionally stable and to exhibit a well-defined relationship between reactivity and cytotoxic potency. When combined with the results of an extensive series of N-acyl CBI analogues and derivatives assembled over the past 15 years, the studies define a fundamental parabolic relationship between reactivity and cytotoxic potency.
Collapse
Affiliation(s)
- Jay P Parrish
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
30
|
Kastrinsky DB, Boger DL. Effective Asymmetric Synthesis of 1,2,9,9a-Tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). J Org Chem 2004; 69:2284-9. [PMID: 15049620 DOI: 10.1021/jo035465x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A short, asymmetric synthesis of the 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI) analogue of the CC-1065 and duocarmycin alkylation subunits is detailed that employs an effective enzymatic desymmetrization reaction of prochiral diol 12 using a commercially available Pseudomonas sp. lipase. The optically active monoacetate (S)-13 is furnished in exceptional conversions (88%) and optical purity (99% ee) and serves as an intermediate for the preparation of either enantiomer of CBI. Similarly, the Pseudomonas sp. lipase resolved the racemic intermediate 19, affording advanced intermediates of CBI in good conversions and optical purity (99% ee), and provided an alternative approach to the preparation of optically active CBI derivatives.
Collapse
Affiliation(s)
- David B Kastrinsky
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|