1
|
Sarkar M, Ma J, Tapadar S, Caggia S, Oyelere AK, Khan SA, Xie H. Development and validation of a sensitive LC-MS/MS assay of GT-14, a novel Gα i2 inhibitor, in rat plasma, and its application in pharmacokinetic study. J Pharm Biomed Anal 2024; 245:116183. [PMID: 38744031 PMCID: PMC11138141 DOI: 10.1016/j.jpba.2024.116183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
A sensitive and selective LC-MS/MS method was developed and validated for the quantitation of a novel Gαi2 inhibitor, GT-14, in rat plasma using a SCIEX 6500+ triple QUAD LC-MS system equipped with an ExionLC UHPLC unit. GT-14 (m/z 265.2 → 134.1) and griseofulvin (Internal Standard, IS) (m/z 353.1 → 285.1) were detected in a positive mode by electrospray ionization (ESI) using multiple reaction monitoring (MRM). The assay was linear in the concentration range of 0.78-1000 ng/mL in rat plasma. Both accuracy and precision values were within the acceptance criteria of ±15 %, as established by FDA guidance. The matrix effect was negligible from plasma, with signal percentages of 98.5-106.9 %. The mean recovery was 104.5 %, indicating complete extraction of GT-14 from plasma. GT-14 was found to be stable under different experimental conditions. The validated method was successfully applied to evaluate plasma protein binding and in vivo pharmacokinetics of GT-14 in rats.
Collapse
Affiliation(s)
- Mahua Sarkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Jing Ma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA
| | - Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, Atlanta, GA 30314, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, Atlanta, GA 30314, USA
| | - Huan Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
2
|
Vithani N, Todd TD, Singh S, Trent T, Blumer KJ, Bowman GR. G Protein Activation Occurs via a Largely Universal Mechanism. J Phys Chem B 2024; 128:3554-3562. [PMID: 38580321 PMCID: PMC11034501 DOI: 10.1021/acs.jpcb.3c07028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 04/07/2024]
Abstract
Understanding how signaling proteins like G proteins are allosterically activated is a long-standing challenge with significant biological and medical implications. Because it is difficult to directly observe such dynamic processes, much of our understanding is based on inferences from a limited number of static snapshots of relevant protein structures, mutagenesis data, and patterns of sequence conservation. Here, we use computer simulations to directly interrogate allosteric coupling in six G protein α-subunit isoforms covering all four G protein families. To analyze this data, we introduce automated methods for inferring allosteric networks from simulation data and assessing how allostery is conserved or diverged among related protein isoforms. We find that the allosteric networks in these six G protein α subunits are largely conserved and consist of two pathways, which we call pathway-I and pathway-II. This analysis predicts that pathway-I is generally dominant over pathway-II, which we experimentally corroborate by showing that mutations to pathway-I perturb nucleotide exchange more than mutations to pathway-II. In the future, insights into unique elements of each G protein family could inform the design of isoform-specific drugs. More broadly, our tools should also be useful for studying allostery in other proteins and assessing the extent to which this allostery is conserved in related proteins.
Collapse
Affiliation(s)
- Neha Vithani
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tyson D. Todd
- Department
of Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sukrit Singh
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tony Trent
- Departments
of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kendall J. Blumer
- Department
of Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Departments
of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Hewitt N, Ma N, Arang N, Martin SA, Prakash A, DiBerto JF, Knight KM, Ghosh S, Olsen RHJ, Roth BL, Gutkind JS, Vaidehi N, Campbell SL, Dohlman HG. Catalytic site mutations confer multiple states of G protein activation. Sci Signal 2023; 16:eabq7842. [PMID: 36787384 PMCID: PMC10021883 DOI: 10.1126/scisignal.abq7842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.
Collapse
Affiliation(s)
- Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nadia Arang
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah A. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Current address: Illumina Inc, 5200 Illumina Way, San Diego, CA 92037, USA
| | - Reid H. J. Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Current address: GPCR Pharmacology, Discovery Biology, Exscientia Ai, Oxford, UK OX4 4GE
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Tear film and ocular surface neuropeptides: Characteristics, synthesis, signaling and implications for ocular surface and systemic diseases. Exp Eye Res 2022; 218:108973. [PMID: 35149082 DOI: 10.1016/j.exer.2022.108973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2021] [Revised: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
Abstract
Ocular surface neuropeptides are vital molecules primarily involved in maintaining ocular surface integrity and homeostasis. They also serve as communication channels between the nervous system and the immune system, maintaining the homeostasis of the ocular surface. Tear film and ocular surface neuropeptides have a role in disease often due to abnormalities in their synthesis (either high or low production), signaling through defective receptors, or both. This creates imbalances in otherwise normal physiological processes. They have been observed to be altered in many ocular surface and systemic diseases including dry eye disease, ocular allergy, keratoconus, LASIK-induced dry eye, pterygium, neurotrophic keratitis, corneal graft rejection, microbial keratitis, headaches and diabetes. This review examines the characteristics of neuropeptides, their synthesis and their signaling through G-protein coupled receptors. The review also explores the types of neuropeptides within the tears and ocular surface, and how they change in ocular and systemic diseases.
Collapse
|
5
|
Alegre KO, Paknejad N, Su M, Lou JS, Huang J, Jordan KD, Eng ET, Meyerson JR, Hite RK, Huang XY. Structural basis and mechanism of activation of two different families of G proteins by the same GPCR. Nat Struct Mol Biol 2021; 28:936-944. [PMID: 34759376 DOI: 10.1038/s41594-021-00679-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2021] [Accepted: 09/30/2021] [Indexed: 01/14/2023]
Abstract
The β1-adrenergic receptor (β1-AR) can activate two families of G proteins. When coupled to Gs, β1-AR increases cardiac output, and coupling to Gi leads to decreased responsiveness in myocardial infarction. By comparative structural analysis of turkey β1-AR complexed with either Gi or Gs, we investigate how a single G-protein-coupled receptor simultaneously signals through two G proteins. We find that, although the critical receptor-interacting C-terminal α5-helices on Gαi and Gαs interact similarly with β1-AR, the overall interacting modes between β1-AR and G proteins vary substantially. Functional studies reveal the importance of the differing interactions and provide evidence that the activation efficacy of G proteins by β1-AR is determined by the entire three-dimensional interaction surface, including intracellular loops 2 and 4 (ICL2 and ICL4).
Collapse
Affiliation(s)
- Kamela O Alegre
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minfei Su
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jian-Shu Lou
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jianyun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Kelsey D Jordan
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
6
|
Signaling Pathways Regulated by UBR Box-Containing E3 Ligases. Int J Mol Sci 2021; 22:ijms22158323. [PMID: 34361089 PMCID: PMC8346999 DOI: 10.3390/ijms22158323] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
UBR box E3 ligases, also called N-recognins, are integral components of the N-degron pathway. Representative N-recognins include UBR1, UBR2, UBR4, and UBR5, and they bind destabilizing N-terminal residues, termed N-degrons. Understanding the molecular bases of their substrate recognition and the biological impact of the clearance of their substrates on cellular signaling pathways can provide valuable insights into the regulation of these pathways. This review provides an overview of the current knowledge of the binding mechanism of UBR box N-recognin/N-degron interactions and their roles in signaling pathways linked to G-protein-coupled receptors, apoptosis, mitochondrial quality control, inflammation, and DNA damage. The targeting of these UBR box N-recognins can provide potential therapies to treat diseases such as cancer and neurodegenerative diseases.
Collapse
|
7
|
Rgs4 is a regulator of mTOR activity required for motoneuron axon outgrowth and neuronal development in zebrafish. Sci Rep 2021; 11:13338. [PMID: 34172795 PMCID: PMC8233358 DOI: 10.1038/s41598-021-92758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.
Collapse
|
8
|
Polit A, Mystek P, Błasiak E. Every Detail Matters. That Is, How the Interaction between Gα Proteins and Membrane Affects Their Function. MEMBRANES 2021; 11:222. [PMID: 33804791 PMCID: PMC8003949 DOI: 10.3390/membranes11030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
In highly organized multicellular organisms such as humans, the functions of an individual cell are dependent on signal transduction through G protein-coupled receptors (GPCRs) and subsequently heterotrimeric G proteins. As most of the elements belonging to the signal transduction system are bound to lipid membranes, researchers are showing increasing interest in studying the accompanying protein-lipid interactions, which have been demonstrated to not only provide the environment but also regulate proper and efficient signal transduction. The mode of interaction between the cell membrane and G proteins is well known. Despite this, the recognition mechanisms at the molecular level and how the individual G protein-membrane attachment signals are interrelated in the process of the complex control of membrane targeting of G proteins remain unelucidated. This review focuses on the mechanisms by which mammalian Gα subunits of G proteins interact with lipids and the factors responsible for the specificity of membrane association. We summarize recent data on how these signaling proteins are precisely targeted to a specific site in the membrane region by introducing well-defined modifications as well as through the presence of polybasic regions within these proteins and interactions with other components of the heterocomplex.
Collapse
Affiliation(s)
- Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.M.); (E.B.)
| | | | | |
Collapse
|
9
|
Malerba N, De Nittis P, Merla G. The Emerging Role of Gβ Subunits in Human Genetic Diseases. Cells 2019; 8:E1567. [PMID: 31817184 PMCID: PMC6952978 DOI: 10.3390/cells8121567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Environmental stimuli are perceived and transduced inside the cell through the activation of signaling pathways. One common type of cell signaling transduction network is initiated by G-proteins. G-proteins are activated by G-protein-coupled receptors (GPCRs) and transmit signals from hormones, neurotransmitters, and other signaling factors, thus controlling a number of biological processes that include synaptic transmission, visual photoreception, hormone and growth factors release, regulation of cell contraction and migration, as well as cell growth and differentiation. G-proteins mainly act as heterotrimeric complexes, composed of alpha, beta, and gamma subunits. In the last few years, whole exome sequencing and biochemical studies have shown causality of disease-causing variants in genes encoding G-proteins and human genetic diseases. This review focuses on the G-protein β subunits and their emerging role in the etiology of genetically inherited rare diseases in humans.
Collapse
Affiliation(s)
- Natascia Malerba
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Giuseppe Merla
- Division of Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 71013 San Giovanni Rotondo (FG), Italy;
| |
Collapse
|
10
|
Zhang H, Nielsen AL, Strømgaard K. Recent achievements in developing selective Gqinhibitors. Med Res Rev 2019; 40:135-157. [DOI: 10.1002/med.21598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co‐innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou Henan China
| | - Alexander L. Nielsen
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| |
Collapse
|
11
|
Raabe CA, Gröper J, Rescher U. Biased perspectives on formyl peptide receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:305-316. [DOI: 10.1016/j.bbamcr.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
|
12
|
Hei S, Liu Z, Huang A, She X. The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:509-518. [PMID: 32290990 DOI: 10.1071/fp17180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/26/2017] [Accepted: 11/02/2017] [Indexed: 06/11/2023]
Abstract
2-Deoxy-D-glucose, 3-O-methyl-D-glucose and D-mannose are all non-metabolisable D-glucose analogues. Among these, 2-deoxy-D-glucose and D-mannose are substrates for hexokinase (HXK). D-sorbitol and D-mannitol are reduced forms of D-glucose and are typically used as comparable osmotic solutes. Similar to 2-deoxy-D-glucose and D-mannose, D-glucose induced stomatal closure in Arabidopsis, whereas 3-O-methyl-D-glucose, D-sorbitol and D-mannitol did not. The data show that the effect of D-glucose on stomata is metabolism-independent, HXK-dependent and irrelevant to osmotic stress. Additionally, the D-glucose induced closure of stomata in wild-type Arabidopsis, but did not in rgs1-1 and rgs1-2 or gpa1-3 and gpa1-4 mutants, indicating that the regulator of G-protein signalling protein (RGS1) and heterotrimeric guanine nucleotide-binding proteins (G proteins)-α subunit (Gα) also mediate the stomatal closure triggered by D-glucose. Furthermore, the effects of D-glucose on hydrogen peroxide (H2O2) or nitric oxide (NO) production and stomatal closure were more significant in AtrbohD or Nia2-1 mutants than in AtrbohF and AtrbohD/F or Nia1-2 and Nia2-5/Nia1-2. The data indicate that H2O2 sourced from AtrbohF and NO generated by Nia1 are essential for D-glucose-mediated stomatal closure. D-glucose-induced H2O2 and NO production in guard cells were completely abolished in rgs1-1 and rgs1-2, which suggests that RGS1 stimulates H2O2 and NO production in D-glucose-induced stomatal closure. Collectively, our data reveal that both HXK and RGS1 are required for D-glucose-mediated stomatal closure. In this context, D-glucose can be sensed by its receptor RGS1, thereby inducing AtrbohF-dependent H2O2 production and Nia1-catalysed NO accumulation, which in turn stimulates stomatal closure.
Collapse
Affiliation(s)
- Shumei Hei
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zhifeng Liu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Aixia Huang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoping She
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
13
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
14
|
Cleator JH, Wells CA, Dingus J, Kurtz DT, Hildebrandt JD. The N54- αs Mutant Has Decreased Affinity for βγ and Suggests a Mechanism for Coupling Heterotrimeric G Protein Nucleotide Exchange with Subunit Dissociation. J Pharmacol Exp Ther 2018; 365:219-225. [PMID: 29491039 DOI: 10.1124/jpet.117.245779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2017] [Accepted: 02/23/2018] [Indexed: 11/22/2022] Open
Abstract
Ser54 of Gsα binds guanine nucleotide and Mg2+ as part of a conserved sequence motif in GTP binding proteins. Mutating the homologous residue in small and heterotrimeric G proteins generates dominant-negative proteins, but by protein-specific mechanisms. For αi/o, this results from persistent binding of α to βγ, whereas for small GTP binding proteins and αs this results from persistent binding to guanine nucleotide exchange factor or receptor. This work examined the role of βγ interactions in mediating the properties of the Ser54-like mutants of Gα subunits. Unexpectedly, WT-αs or N54-αs coexpressed with α1B-adrenergic receptor in human embryonic kidney 293 cells decreased receptor stimulation of IP3 production by a cAMP-independent mechanism, but WT-αs was more effective than the mutant. One explanation for this result would be that αs, like Ser47 αi/o, blocks receptor activation by sequestering βγ; implying that N54-αS has reduced affinity for βγ since it was less effective at blocking IP3 production. This possibility was more directly supported by the observation that WT-αs was more effective than the mutant in inhibiting βγ activation of phospholipase Cβ2. Further, in vitro synthesized N54-αs bound biotinylated-βγ with lower apparent affinity than did WT-αs The Cys54 mutation also decreased βγ binding but less effectively than N54-αs Substitution of the conserved Ser in αo with Cys or Asn increased βγ binding, with the Cys mutant being more effective. This suggests that Ser54 of αs is involved in coupling changes in nucleotide binding with altered subunit interactions, and has important implications for how receptors activate G proteins.
Collapse
Affiliation(s)
- John H Cleator
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher A Wells
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Jane Dingus
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - David T Kurtz
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - John D Hildebrandt
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
15
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
16
|
Au L, Green DF. Direct Calculation of Protein Fitness Landscapes through Computational Protein Design. Biophys J 2016; 110:75-84. [PMID: 26745411 DOI: 10.1016/j.bpj.2015.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022] Open
Abstract
Naturally selected amino-acid sequences or experimentally derived ones are often the basis for understanding how protein three-dimensional conformation and function are determined by primary structure. Such sequences for a protein family comprise only a small fraction of all possible variants, however, representing the fitness landscape with limited scope. Explicitly sampling and characterizing alternative, unexplored protein sequences would directly identify fundamental reasons for sequence robustness (or variability), and we demonstrate that computational methods offer an efficient mechanism toward this end, on a large scale. The dead-end elimination and A(∗) search algorithms were used here to find all low-energy single mutant variants, and corresponding structures of a G-protein heterotrimer, to measure changes in structural stability and binding interactions to define a protein fitness landscape. We established consistency between these algorithms with known biophysical and evolutionary trends for amino-acid substitutions, and could thus recapitulate known protein side-chain interactions and predict novel ones.
Collapse
Affiliation(s)
- Loretta Au
- Department of Statistics, The University of Chicago, Chicago, Illinois.
| | - David F Green
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
17
|
Sprang SR. Invited review: Activation of G proteins by GTP and the mechanism of Gα-catalyzed GTP hydrolysis. Biopolymers 2016; 105:449-62. [PMID: 26996924 PMCID: PMC5319639 DOI: 10.1002/bip.22836] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 02/02/2023]
Abstract
This review addresses the regulatory consequences of the binding of GTP to the alpha subunits (Gα) of heterotrimeric G proteins, the reaction mechanism of GTP hydrolysis catalyzed by Gα and the means by which GTPase activating proteins (GAPs) stimulate the GTPase activity of Gα. The high energy of GTP binding is used to restrain and stabilize the conformation of the Gα switch segments, particularly switch II, to afford stable complementary to the surfaces of Gα effectors, while excluding interaction with Gβγ, the regulatory binding partner of GDP-bound Gα. Upon GTP hydrolysis, the energy of these conformational restraints is dissipated and the two switch segments, particularly switch II, become flexible and are able to adopt a conformation suitable for tight binding to Gβγ. Catalytic site pre-organization presents a significant activation energy barrier to Gα GTPase activity. The glutamine residue near the N-terminus of switch II (Glncat ) must adopt a conformation in which it orients and stabilizes the γ phosphate and the water nucleophile for an in-line attack. The transition state is probably loose with dissociative character; phosphoryl transfer may be concerted. The catalytic arginine in switch I (Argcat ), together with amide hydrogen bonds from the phosphate binding loop, stabilize charge at the β-γ bridge oxygen of the leaving group. GAPs that harbor "regulator of protein signaling" (RGS) domains, or structurally unrelated domains within G protein effectors that function as GAPs, accelerate catalysis by stabilizing the pre-transition state for Gα-catalyzed GTP hydrolysis, primarily by restraining Argcat and Glncat to their catalytic conformations. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 449-462, 2016.
Collapse
Affiliation(s)
- Stephen R. Sprang
- Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, Telephone: (406) 243-6028, Fax: (406) 243-6024,
| |
Collapse
|
18
|
Schmitz AL, Schrage R, Gaffal E, Charpentier TH, Wiest J, Hiltensperger G, Morschel J, Hennen S, Häußler D, Horn V, Wenzel D, Grundmann M, Büllesbach KM, Schröder R, Brewitz HH, Schmidt J, Gomeza J, Galés C, Fleischmann BK, Tüting T, Imhof D, Tietze D, Gütschow M, Holzgrabe U, Sondek J, Harden TK, Mohr K, Kostenis E. A cell-permeable inhibitor to trap Gαq proteins in the empty pocket conformation. ACTA ACUST UNITED AC 2015; 21:890-902. [PMID: 25036778 DOI: 10.1016/j.chembiol.2014.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022]
Abstract
In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be "frozen" pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors.
Collapse
Affiliation(s)
- Anna-Lena Schmitz
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ramona Schrage
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
| | - Evelyn Gaffal
- Department of Dermatology and Allergy, Laboratory of Experimental Dermatology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Thomas H Charpentier
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | - Johannes Wiest
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Georg Hiltensperger
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Morschel
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Stephanie Hennen
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Daniela Häußler
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Velten Horn
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Manuel Grundmann
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Katrin M Büllesbach
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ralf Schröder
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - H Henning Brewitz
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, Brühler Straße 7, 53119 Bonn, Germany
| | - Johannes Schmidt
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Jesús Gomeza
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut Nataional de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, 31432 Toulouse, France
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Thomas Tüting
- Department of Dermatology and Allergy, Laboratory of Experimental Dermatology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, Brühler Straße 7, 53119 Bonn, Germany
| | - Daniel Tietze
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Michael Gütschow
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ulrike Holzgrabe
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - John Sondek
- Department of Pharmacology and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7365, United States
| | - T Kendall Harden
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Stewart A, Fisher RA. Introduction: G Protein-coupled Receptors and RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:1-11. [PMID: 26123299 DOI: 10.1016/bs.pmbts.2015.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Here, we provide an overview of the role of regulator of G protein-signaling (RGS) proteins in signaling by G protein-coupled receptors (GPCRs), the latter of which represent the largest class of cell surface receptors in humans responsible for transducing diverse extracellular signals into the intracellular environment. Given that GPCRs regulate virtually every known physiological process, it is unsurprising that their dysregulation plays a causative role in many human diseases and they are targets of 40-50% of currently marketed pharmaceuticals. Activated GPCRs function as GTPase exchange factors for Gα subunits of heterotrimeric G proteins, promoting the formation of Gα-GTP and dissociated Gβγ subunits that regulate diverse effectors including enzymes, ion channels, and protein kinases. Termination of signaling is mediated by the intrinsic GTPase activity of Gα subunits leading to reformation of the inactive Gαβγ heterotrimer. RGS proteins determine the magnitude and duration of cellular responses initiated by many GPCRs by functioning as GTPase-accelerating proteins (GAPs) for specific Gα subunits. Twenty canonical mammalian RGS proteins, divided into four subfamilies, act as functional GAPs while almost 20 additional proteins contain nonfunctional RGS homology domains that often mediate interaction with GPCRs or Gα subunits. RGS protein biochemistry has been well elucidated in vitro, but the physiological functions of each RGS family member remain largely unexplored. This book summarizes recent advances employing modified model organisms that reveal RGS protein functions in vivo, providing evidence that RGS protein modulation of G protein signaling and GPCRs can be as important as initiation of signaling by GPCRs.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
20
|
Bondar A, Lazar J. Dissociated GαGTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins. J Biol Chem 2013; 289:1271-81. [PMID: 24307173 DOI: 10.1074/jbc.m113.493643] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Although most heterotrimeric G proteins are thought to dissociate into Gα and Gβγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.
Collapse
Affiliation(s)
- Alexey Bondar
- From the Faculty of Science, University of South Bohemia, Branisovska 31a, 37005 Ceske Budejovice, Czech Republic and
| | | |
Collapse
|
21
|
Soong BW, Huang YH, Tsai PC, Huang CC, Pan HC, Lu YC, Chien HJ, Liu TT, Chang MH, Lin KP, Tu PH, Kao LS, Lee YC. Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am J Hum Genet 2013; 92:422-30. [PMID: 23434117 DOI: 10.1016/j.ajhg.2013.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2012] [Revised: 11/26/2012] [Accepted: 01/19/2013] [Indexed: 01/30/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of inherited neuropathies. Mutations in approximately 45 genes have been identified as being associated with CMT. Nevertheless, the genetic etiologies of at least 30% of CMTs have yet to be elucidated. Using a genome-wide linkage study, we previously mapped a dominant intermediate CMT to chromosomal region 3q28-q29. Subsequent exome sequencing of two affected first cousins revealed heterozygous mutation c.158G>A (p.Gly53Asp) in GNB4, encoding guanine-nucleotide-binding protein subunit beta-4 (Gβ4), to cosegregate with the CMT phenotype in the family. Further analysis of GNB4 in an additional 88 unrelated CMT individuals uncovered another de novo mutation, c.265A>G (p.Lys89Glu), in this gene in one individual. Immunohistochemistry studies revealed that Gβ4 was abundant in the axons and Schwann cells of peripheral nerves and that expression of Gβ4 was significantly reduced in the sural nerve of the two individuals carrying the c.158G>A (p.Gly53Asp) mutation. In vitro studies demonstrated that both the p.Gly53Asp and p.Lys89Glu altered proteins impaired bradykinin-induced G-protein-coupled-receptor (GPCR) signaling, which was facilitated by the wild-type Gβ4. This study identifies GNB4 mutations as a cause of CMT and highlights the importance of Gβ4-related GPCR signaling in peripheral-nerve function in humans.
Collapse
|
22
|
Bosch DE, Willard FS, Ramanujam R, Kimple AJ, Willard MD, Naqvi NI, Siderovski DP. A P-loop mutation in Gα subunits prevents transition to the active state: implications for G-protein signaling in fungal pathogenesis. PLoS Pathog 2012; 8:e1002553. [PMID: 22383884 PMCID: PMC3285607 DOI: 10.1371/journal.ppat.1002553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2011] [Accepted: 01/12/2012] [Indexed: 11/26/2022] Open
Abstract
Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gαi1(G42R) binding to GDP·AlF4− or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding Gαq(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants. Heterotrimeric G-proteins function as molecular switches to convey cellular signals. When a G-protein coupled receptor encounters its ligand at the cellular membrane, it catalyzes guanine nucleotide exchange on the Gα subunit, resulting in a shift from an inactive to an active conformation. G-protein signaling pathways are conserved from mammals to plants and fungi, including the rice blast fungus Magnaporthe oryzae. A mutation in the Gα subunit (G42R), previously thought to eliminate its GTPase activity, leading to constitutive activation, has been utilized to investigate roles of heterotrimeric G-protein signaling pathways in multiple species of filamentous fungi. Here, we demonstrate through structural, biochemical, and cellular approaches that G42R mutants are neither GTPase deficient nor constitutively active, but rather are unable to transition to the activated conformation. A direct comparison of M. oryzae fungal strains harboring either G42R or truly constitutively activating mutations in two Gα subunits, MagA and MagB, revealed markedly different phenotypes. Our results suggest that activation of MagB is critical for pathogenic development of M. oryzae in response to hydrophobic surfaces, such as plant leaves. Furthermore, the lack of constitutive activity by Gα(G42R) mutants prompts a re-evaluation of its use in previous genetic experiments in multiple fungal species.
Collapse
Affiliation(s)
- Dustin E. Bosch
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Francis S. Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (FSW); (DPS)
| | - Ravikrishna Ramanujam
- Fungal Patho-Biology Group, Temasek Life Sciences Laboratory, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Adam J. Kimple
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Melinda D. Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Naweed I. Naqvi
- Fungal Patho-Biology Group, Temasek Life Sciences Laboratory, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - David P. Siderovski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (FSW); (DPS)
| |
Collapse
|
23
|
Dingus J, Hildebrandt JD. Synthesis and assembly of G protein βγ dimers: comparison of in vitro and in vivo studies. Subcell Biochem 2012; 63:155-80. [PMID: 23161138 DOI: 10.1007/978-94-007-4765-4_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
The heterotrimeric GTP-binding proteins (G proteins) are the canonical cellular machinery used with the approximately 700 G protein-coupled receptors (GPCRs) in the human genome to transduce extracellular signals across the plasma membrane. The synthesis of the constituent G protein subunits, and their assembly into Gβγ dimers and G protein heterotrimers, determines the signaling repertoire for G-protein/GPCR signaling in cells. These synthesis/assembly -processes are intimately related to two other overlapping events in the intricate pathway leading to formation of G protein signaling complexes, posttranslational modification and intracellular trafficking of G proteins. The assembly of the Gβγ dimer is a complex process involving multiple accessory proteins and organelles. The mechanisms involved are becoming increasingly appreciated, but are still incompletely understood. In vitro and in vivo (cellular) studies provide different perspectives of these processes, and a comparison of them can provide insight into both our current level of understanding and directions to be taken in future investigations.
Collapse
Affiliation(s)
- Jane Dingus
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
24
|
Abstract
GTP-binding (G) proteins constitute a class of P-loop (phosphate-binding loop) proteins that work as molecular switches between the GDP-bound OFF and the GTP-bound ON state. The common principle is the 160-180-residue G domain with an α,β topology that is responsible for nucleotide-dependent conformational changes and drives many biological functions. Although the G domain uses a universally conserved switching mechanism, its structure, function, and GTPase reaction are modified for many different pathways and processes.
Collapse
|
25
|
Kimple AJ, Bosch DE, Giguère PM, Siderovski DP. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 2011; 63:728-49. [PMID: 21737532 DOI: 10.1124/pr.110.003038] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.
Collapse
Affiliation(s)
- Adam J Kimple
- Department of Pharmacology, UNC Neuroscience Center, UNC School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Suite 4010, Chapel Hill, NC 27599-7365, USA
| | | | | | | |
Collapse
|
26
|
Bosch DE, Kimple AJ, Sammond DW, Muller RE, Miley MJ, Machius M, Kuhlman B, Willard FS, Siderovski DP. Structural determinants of affinity enhancement between GoLoco motifs and G-protein alpha subunit mutants. J Biol Chem 2011; 286:3351-8. [PMID: 21115486 PMCID: PMC3030341 DOI: 10.1074/jbc.m110.190496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2010] [Revised: 11/01/2010] [Indexed: 11/06/2022] Open
Abstract
GoLoco motif proteins bind to the inhibitory G(i) subclass of G-protein α subunits and slow the release of bound GDP; this interaction is considered critical to asymmetric cell division and neuro-epithelium and epithelial progenitor differentiation. To provide protein tools for interrogating the precise cellular role(s) of GoLoco motif/Gα(i) complexes, we have employed structure-based protein design strategies to predict gain-of-function mutations that increase GoLoco motif binding affinity. Here, we describe fluorescence polarization and isothermal titration calorimetry measurements showing three predicted Gα(i1) point mutations, E116L, Q147L, and E245L; each increases affinity for multiple GoLoco motifs. A component of this affinity enhancement results from a decreased rate of dissociation between the Gα mutants and GoLoco motifs. For Gα(i1)(Q147L), affinity enhancement was seen to be driven by favorable changes in binding enthalpy, despite reduced contributions from binding entropy. The crystal structure of Gα(i1)(Q147L) bound to the RGS14 GoLoco motif revealed disorder among three peptide residues surrounding a well defined Leu-147 side chain. Monte Carlo simulations of the peptide in this region showed a sampling of multiple backbone conformations in contrast to the wild-type complex. We conclude that mutation of Glu-147 to leucine creates a hydrophobic surface favorably buried upon GoLoco peptide binding, yet the hydrophobic Leu-147 also promotes flexibility among residues 511-513 of the RGS14 GoLoco peptide.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David P. Siderovski
- From the Departments of Pharmacology and
- University of North Carolina Neuroscience Center, and
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
27
|
Cooper TH, Bailey-Hill K, Leifert WR, McMurchie EJ, Asgari S, Glatz RV. Identification of an in vitro interaction between an insect immune suppressor protein (CrV2) and G alpha proteins. J Biol Chem 2011; 286:10466-75. [PMID: 21233205 DOI: 10.1074/jbc.m110.214726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
The protein CrV2 is encoded by a polydnavirus integrated into the genome of the endoparasitoid Cotesia rubecula (Hymenoptera:Braconidae:Microgastrinae) and is expressed in host larvae with other gene products of the polydnavirus to allow successful development of the parasitoid. CrV2 expression has previously been associated with immune suppression, although the molecular basis for this was not known. Here, we have used time-resolved Förster resonance energy transfer (TR-FRET) to demonstrate high affinity binding of CrV2 to Gα subunits (but not the Gβγ dimer) of heterotrimeric G-proteins. Signals up to 5-fold above background were generated, and an apparent dissociation constant of 6.2 nm was calculated. Protease treatment abolished the TR-FRET signal, and the presence of unlabeled CrV2 or Gα proteins also reduced the TR-FRET signal. The activation state of the Gα subunit was altered with aluminum fluoride, and this decreased the affinity of the interaction with CrV2. It was also demonstrated that CrV2 preferentially bound to Drosophila Gα(o) compared with rat Gα(i1). In addition, three CrV2 homologs were detected in sequences derived from polydnaviruses from Cotesia plutellae and Cotesia congregata (including the immune-related early expressed transcript, EP2). These data suggest a potential mode-of-action of immune suppressors not previously reported, which in addition to furthering our understanding of insect immunity may have practical benefits such as facilitating development of novel controls for pest insect species.
Collapse
Affiliation(s)
- Tamara H Cooper
- South Australian Research and Development Institute, Entomology, Waite Road, Urrbrae, South Australia 5064, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Khafizov K, Lattanzi G, Carloni P. G protein inactive and active forms investigated by simulation methods. Proteins 2009; 75:919-30. [PMID: 19089952 DOI: 10.1002/prot.22303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
Molecular dynamics and computational alanine scanning techniques have been used to investigate G proteins in their inactive state (the Galpha(i1)beta(1)gamma(2) heterotrimer) as well as in their empty and monomeric active states (Galpha(i1) subunit). We find that: (i) the residue Q204 of Galpha(i1) plays a key role for binding Gbeta(1)gamma(2) and is classified among the most relevant in the interaction with a key cellular partner, the so-called regulator of G protein signaling protein. The mutation of this residue to L, which is observed in a variety of diseases, provides still fair stability to the inactive state because of the formation of van der Waals interactions. (ii) The empty state turns out to adopt some structural features of the active one, including a previously unrecognized rearrangement of a key residue (K46). (iii) The so-called Switch IV region increases its mobility on passing from the empty to the active state, and, even more, to the inactive state. Such change in mobility could be important for its several structural and functional roles. (iv) A large scale motion of the helical domain in the inactive state might be important for GDP release upon activation by GPCR, consistently with experimental data.
Collapse
Affiliation(s)
- Kamil Khafizov
- International School for Advanced Studies and INFM-DEMOCRITOS Modeling Center for Research in Atomistic Simulation, via Beirut 4, I-34014 Trieste, Italy
| | | | | |
Collapse
|
29
|
Khafizov K. GoLoco motif proteins binding to Galpha(i1): insights from molecular simulations. J Mol Model 2009; 15:1491-9. [PMID: 19437048 PMCID: PMC2847169 DOI: 10.1007/s00894-009-0516-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2009] [Accepted: 04/01/2009] [Indexed: 11/30/2022]
Abstract
Molecular dynamics simulations, computational alanine scanning and sequence analysis were used to investigate the structural properties of the Gαi1/GoLoco peptide complex. Using these methodologies, binding of the GoLoco motif peptide to the Gαi1 subunit was found to restrict the relative movement of the helical and catalytic domains in the Gαi1 subunit, which is in agreement with a proposed mechanism of GDP dissociation inhibition by GoLoco motif proteins. In addition, the results provide further insights into the role of the “Switch IV” region located within the helical domain of Gα, the conformation of which might be important for interactions with various Gα partners.
Collapse
Affiliation(s)
- Kamil Khafizov
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Johnston CA, Willard FS, Ramer JK, Blaesius R, Roques CN, Siderovski DP. State-selective binding peptides for heterotrimeric G-protein subunits: novel tools for investigating G-protein signaling dynamics. Comb Chem High Throughput Screen 2009; 11:370-81. [PMID: 18537558 DOI: 10.2174/138620708784534798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Heterotrimeric G-proteins, comprising Galpha, Gbeta, and Ggamma subunits, are molecular switches that regulate numerous signaling pathways involved in cellular physiology. This characteristic is achieved by the adoption of two principal states: an inactive state in which GDP-bound Galpha is complexed with the Gbetagamma dimer, and an active state in which GTP-bound Galpha is freed of its Gbetagamma binding partner. Structural studies have illustrated the basis for the distinct conformations of these states which are regulated by alterations in three precise 'switch regions' of the Galpha subunit. Discrete differences in conformation between GDP- and GTP-bound Galpha underlie its nucleotide-dependent protein-protein interactions (e.g., with Gbetagamma/receptor and effectors, respectively) that are critical for maintaining their proper nucleotide cycling and signaling properties. Recently, several screening approaches have been used to identify peptide sequences capable of interacting with Galpha (and free Gbetagamma) in nucleotide-dependent fashions. These peptides have demonstrated applications in direct modulation of the nucleotide cycle, assessing the structural basis for aspects of Galpha and Gbetagamma signaling, and serving as biosensor tools in assays for Galpha activation including high throughput drug screening. In this review, we highlight some of the methods used for such discoveries and discuss the insights that can be gleaned from application of these identified peptides.
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lupieri P, Nguyen CHH, Bafghi ZG, Giorgetti A, Carloni P. Computational molecular biology approaches to ligand-target interactions. HFSP JOURNAL 2009; 3:228-39. [PMID: 20119480 DOI: 10.2976/1.3092784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/05/2008] [Accepted: 02/11/2009] [Indexed: 11/19/2022]
Abstract
Binding of small molecules to their targets triggers complex pathways. Computational approaches are keys for predictions of the molecular events involved in such cascades. Here we review current efforts at characterizing the molecular determinants in the largest membrane-bound receptor family, the G-protein-coupled receptors (GPCRs). We focus on odorant receptors, which constitute more than half GPCRs. The work presented in this review uncovers structural and energetic aspects of components of the cellular cascade. Finally, a computational approach in the context of radioactive boron-based antitumoral therapies is briefly described.
Collapse
|
32
|
Kosloff M, Alexov E, Arshavsky VY, Honig B. Electrostatic and lipid anchor contributions to the interaction of transducin with membranes: mechanistic implications for activation and translocation. J Biol Chem 2008; 283:31197-207. [PMID: 18782760 PMCID: PMC2576562 DOI: 10.1074/jbc.m803799200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric G protein transducin is a key component of the
vertebrate phototransduction cascade. Transducin is peripherally attached to
membranes of the rod outer segment, where it interacts with other proteins at
the membrane-cytosol interface. However, upon sustained activation by light,
the dissociated Gtα and
Gβ1γ1 subunits of transducin translocate from
the outer segment to other parts of the rod cell. Here we used a computational
approach to analyze the interaction strength of transducin and its subunits
with acidic lipid bilayers, as well as the range of orientations that they are
allowed to occupy on the membrane surface. Our results suggest that the
combined constraints of electrostatics and lipid anchors substantially limit
the rotational degrees of freedom of the membrane-bound transducin
heterotrimer. This may contribute to a faster transducin activation rate by
accelerating transducin-rhodopsin complex formation. Notably, the membrane
interactions of the dissociated transducin subunits are very different from
those of the heterotrimer. As shown previously,
Gβ1γ1 experiences significant attractive
interactions with negatively charged membranes, whereas our new results
suggest that Gtα is electrostatically repelled by such
membranes. We suggest that this repulsion could facilitate the membrane
dissociation and intracellular translocation of Gtα.
Moreover, based on similarities in sequence and electrostatic properties, we
propose that the properties described for transducin are common to its
homologs within the Gi subfamily. In a broader view, this work
exemplifies how the activity-dependent association and dissociation of a G
protein can change both the affinity for membranes and the range of allowed
orientations, thereby modulating G protein function.
Collapse
Affiliation(s)
- Mickey Kosloff
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
33
|
Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure 2008; 16:1086-94. [PMID: 18611381 DOI: 10.1016/j.str.2008.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2007] [Revised: 03/04/2008] [Accepted: 04/02/2008] [Indexed: 11/24/2022]
Abstract
A critical role of the Gbetagamma dimer in heterotrimeric G-protein signaling is to facilitate the engagement and activation of the Galpha subunit by cell-surface G-protein-coupled receptors. However, high-resolution structural information of the connectivity between receptor and the Gbetagamma dimer has not previously been available. Here, we describe the structural determinants of Gbeta1gamma2 in complex with a C-terminal region of the parathyroid hormone receptor-1 (PTH1R) as obtained by X-ray crystallography. The structure reveals that several critical residues within PTH1R contact only Gbeta residues located within the outer edge of WD1- and WD7-repeat segments of the Gbeta toroid structure. These regions encompass a predicted membrane-facing region of Gbeta thought to be oriented in a fashion that is accessible to the membrane-spanning receptor. Mutation of key receptor contact residues on Gbeta1 leads to a selective loss of function in receptor/heterotrimer coupling while preserving Gbeta1gamma2 activation of the effector phospholipase-C beta.
Collapse
|
34
|
Johnston CA, Afshar K, Snyder JT, Tall GG, Gönczy P, Siderovski DP, Willard FS. Structural determinants underlying the temperature-sensitive nature of a Galpha mutant in asymmetric cell division of Caenorhabditis elegans. J Biol Chem 2008; 283:21550-8. [PMID: 18519563 DOI: 10.1074/jbc.m803023200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Heterotrimeric G-proteins are integral to a conserved regulatory module that influences metazoan asymmetric cell division (ACD). In the Caenorhabditis elegans zygote, GOA-1 (Galpha(o)) and GPA-16 (Galpha(i)) are involved in generating forces that pull on astral microtubules and position the spindle asymmetrically. GPA-16 function has been analyzed in vivo owing notably to a temperature-sensitive allele gpa-16(it143), which, at the restrictive temperature, results in spindle orientation defects in early embryos. Here we identify the structural basis of gpa-16(it143), which encodes a point mutation (G202D) in the switch II region of GPA-16. Using Galpha(i1)(G202D) as a model in biochemical analyses, we demonstrate that high temperature induces instability of the mutant Galpha. At the permissive temperature, the mutant Galpha was stable upon GTP binding, but switch II rearrangement was compromised, as were activation state-selective interactions with regulators involved in ACD, including GoLoco motifs, RGS proteins, and RIC-8. We solved the crystal structure of the mutant Galpha bound to GDP, which indicates a unique switch II conformation as well as steric constraints that suggest activated GPA-16(it143) is destabilized relative to wild type. Spindle severing in gpa-16(it143) embryos revealed that pulling forces are symmetric and markedly diminished at the restrictive temperature. Interestingly, pulling forces are asymmetric and generally similar in magnitude to wild type at the permissive temperature despite defects in the structure of GPA-16(it143). These normal pulling forces in gpa-16(it143) embryos at the permissive temperature were attributable to GOA-1 function, underscoring a complex interplay of Galpha subunit function in ACD.
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Cheever ML, Snyder JT, Gershburg S, Siderovski DP, Harden TK, Sondek J. Crystal structure of the multifunctional Gbeta5-RGS9 complex. Nat Struct Mol Biol 2008; 15:155-62. [PMID: 18204463 DOI: 10.1038/nsmb.1377] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2007] [Accepted: 01/02/2008] [Indexed: 11/09/2022]
Abstract
Regulators of G-protein signaling (RGS) proteins enhance the intrinsic GTPase activity of G protein alpha (Galpha) subunits and are vital for proper signaling kinetics downstream of G protein-coupled receptors (GPCRs). R7 subfamily RGS proteins specifically and obligately dimerize with the atypical G protein beta5 (Gbeta5) subunit through an internal G protein gamma (Ggamma)-subunit-like (GGL) domain. Here we present the 1.95-A crystal structure of the Gbeta5-RGS9 complex, which is essential for normal visual and neuronal signal transduction. This structure reveals a canonical RGS domain that is functionally integrated within a molecular complex that is poised for integration of multiple steps during G-protein activation and deactivation.
Collapse
Affiliation(s)
- Matthew L Cheever
- Department of Pharmacology, University of North Carolina School of Medicine, Campus Box 7365, Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
36
|
Austin RJ, Ja WW, Roberts RW. Evolution of class-specific peptides targeting a hot spot of the Galphas subunit. J Mol Biol 2008; 377:1406-18. [PMID: 18329041 DOI: 10.1016/j.jmb.2008.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2007] [Revised: 12/20/2007] [Accepted: 01/14/2008] [Indexed: 11/16/2022]
Abstract
The four classes of heterotrimeric G-protein alpha subunits act as molecular routers inside cells, gating signals based on a bound guanosine nucleotide (guanosine 5'-triphosphate versus guanosine 5'-diphosphate). Ligands that specifically target individual subunits provide new tools for monitoring and modulating these networks, but are challenging to design due to the high sequence homology and structural plasticity of the Galpha-binding surface. Here we have created an mRNA display library of peptides based on the short Galpha-modulating peptide R6A-1 and selected variants that target a convergent protein-binding surface of Galphas.guanosine 5'-diphosphate. After selection/evolution, the most Galphas-specific peptide, Galphas(s)-binding peptide (GSP), was used to design a second-generation library, resulting in several new affinity- and selectivity-matured peptides denoted as mGSPs. The two-step evolutionary walk from R6A-1 to mGSP-1 resulted in an 8000-fold inversion in binding specificity, altered seven out of nine residues in the starting peptide core, and incorporated both positive and negative design steps. The resulting mGSP-1 peptide shows remarkable selectivity and affinity, exhibiting little or no binding to nine homologous Galpha subunits or human H-Ras, and even discriminates the Galphas splice variant Galphas(l). Selected peptides make specific contacts with the effector-binding region of Galpha, which may explain an interesting bifunctional activity observed in GSP. Overall, our work demonstrates a design of simple, linear, highly specific peptides that target a protein-binding surface of Galphas and argues that mRNA display-based selection/evolution is a powerful route for targeting protein families with high class specificity and state specificity.
Collapse
Affiliation(s)
- Ryan J Austin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
37
|
Rusinova R, Mirshahi T, Logothetis DE. Specificity of Gβγ Signaling to Kir3 Channels Depends on the Helical Domain of Pertussis Toxin-sensitive Gα Subunits. J Biol Chem 2007; 282:34019-30. [PMID: 17872944 DOI: 10.1074/jbc.m704928200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Acetylcholine signaling through muscarinic type 2 receptors activates atrial G protein-gated inwardly rectifying K(+) (Kir3) channels via the betagamma subunits of G proteins (Gbetagamma). Different combinations of recombinant Gbetagamma subunits have been shown to activate Kir3 channels in a similar manner. In native systems, however, only Gbetagamma subunits associated with the pertussis toxin-sensitive Galpha(i/o) subunits signal to K(+) channels. Additionally, in vitro binding experiments supported the notion that the C terminus of Kir3 channels interacts preferentially with Galpha(i) over Galpha(q). In this study we confirmed in two heterologous expression systems a preference of Galpha(i) over Galpha(q) in the activation of K(+) currents. To identify determinants of Gbetagamma signaling specificity, we first exchanged domains of Galpha(i) and Galpha(q) subunits responsible for receptor coupling selectivity and swapped their receptor coupling partners. Our results established that the G proteins, regardless of the receptor type to which they coupled, conferred specificity to Kir3 activation. We next tested signaling through chimeras between the Galpha(i) and Galpha(q) subunits in which the N terminus, the helical, or the GTPase domains of the Galpha subunits were exchanged. Our results revealed that the helical domain of Galpha(i) (residues 63-175) in the background of Galpha(q) could support Kir3 activation, whereas the reverse chimera could not. Moreover, the helical domain of the Galpha(i) subunit conferred "Galpha(i)-like" binding of the Kir3 C terminus to the Galpha(q) subunits that contained it. These results implicate the helical domain of Galpha(i) proteins as a critical determinant of Gbetagamma signaling specificity.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
38
|
Johnston CA, Siderovski DP. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol Pharmacol 2007; 72:219-30. [PMID: 17430994 DOI: 10.1124/mol.107.034348] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) serve as catalytic activators of heterotrimeric G-proteins (Galphabetagamma) by exchanging GTP for the bound GDP on the Galpha subunit. This guanine nucleotide exchange factor activity of GPCRs is the initial step in the G-protein cycle and determines the onset of various intracellular signaling pathways that govern critical physiological responses to extracellular cues. Although the structural basis for many steps in the G-protein nucleotide cycle have been made clear over the past decade, the precise mechanism for receptor-mediated G-protein activation remains incompletely defined. Given that these receptors have historically represented a set of rich drug targets, a more complete understanding of their mechanism of action should provide further avenues for drug discovery. Several models have been proposed to explain the communication between activated GPCRs and Galphabetagamma leading to the structural changes required for guanine nucleotide exchange. This review is focused on the structural biology of G-protein signal transduction with an emphasis on the current hypotheses regarding Galphabetagamma activation. We highlight several recent results shedding new light on the structural changes in Galpha that may underlie GDP release.
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Pharmacology, University of North Carolina at Chapel Hill, CB# 7365, Chapel Hill, NC 27599-7365, USA
| | | |
Collapse
|
39
|
Sprang SR, Chen Z, Du X. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:1-65. [PMID: 17854654 DOI: 10.1016/s0065-3233(07)74001-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
This chapter addresses, from a molecular structural perspective gained from examination of x-ray crystallographic and biochemical data, the mechanisms by which GTP-bound Galpha subunits of heterotrimeric G proteins recognize and regulate effectors. The mechanism of GTP hydrolysis by Galpha and rate acceleration by GAPs are also considered. The effector recognition site in all Galpha homologues is formed almost entirely of the residues extending from the C-terminal half of alpha2 (Switch II) together with the alpha3 helix and its junction with the beta5 strand. Effector binding does not induce substantial changes in the structure of Galpha*GTP. Effectors are structurally diverse. Different effectors may recognize distinct subsets of effector-binding residues of the same Galpha protein. Specificity may also be conferred by differences in the main chain conformation of effector-binding regions of Galpha subunits. Several Galpha regulatory mechanisms are operative. In the regulation of GMP phospodiesterase, Galphat sequesters an inhibitory subunit. Galphas is an allosteric activator and inhibitor of adenylyl cyclase, and Galphai is an allosteric inhibitor. Galphaq does not appear to regulate GRK, but is rather sequestered by it. GTP hydrolysis terminates the signaling state of Galpha. The binding energy of GTP that is used to stabilize the Galpha:effector complex is dissipated in this reaction. Chemical steps of GTP hydrolysis, specifically, formation of a dissociative transition state, is rate limiting in Ras, a model G protein GTPase, even in the presence of a GAP; however, the energy of enzyme reorganization to produce a catalytically active conformation appears to be substantial. It is possible that the collapse of the switch regions, associated with Galpha deactivation, also encounters a kinetic barrier, and is coupled to product (Pi) release or an event preceding formation of the GDP*Pi complex. Evidence for a catalytic intermediate, possibly metaphosphate, is discussed. Galpha GAPs, whether exogenous proteins or effector-linked domains, bind to a discrete locus of Galpha that is composed of Switch I and the N-terminus of Switch II. This site is immediately adjacent to, but does not substantially overlap, the Galpha effector binding site. Interactions of effectors and exogenous GAPs with Galpha proteins can be synergistic or antagonistic, mediated by allosteric interactions among the three molecules. Unlike GAPs for small GTPases, Galpha GAPs supply no catalytic residues, but rather appear to reduce the activation energy for catalytic activation of the Galpha catalytic site.
Collapse
Affiliation(s)
- Stephen R Sprang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
40
|
Coria R, Kawasaki L, Torres-Quiroz F, Ongay-Larios L, Sánchez-Paredes E, Velázquez-Zavala N, Navarro-Olmos R, Rodríguez-González M, Aguilar-Corachán R, Coello G. The pheromone response pathway of Kluyveromyces lactis. FEMS Yeast Res 2006; 6:336-44. [PMID: 16630274 DOI: 10.1111/j.1567-1364.2005.00022.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
The mating pheromone response pathway in Saccharomyces cerevisiae is one of the best understood signalling pathways in eukaryotes. Comparison of this system with pathways in other fungal species has generated surprises and insights. Cloning and targetted disruption of genes encoding components of the pheromone response pathway has allowed the attribution of specific functions to these signal transduction components. In this review we describe current knowledge of the Kluyveromyces lactis mating system, and compare it with the well-understood S. cerevisiae pathway, emphasizing the similarities and differences in the heterotrimeric G protein activity. This mating pathway is controlled positively by both the Galpha and the Gbeta subunits of the heterotrimeric G protein.
Collapse
Affiliation(s)
- Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mirshahi T, Logothetis DE, Rosenhouse-Dantsker A. Hydrogen-bonding dynamics between adjacent blades in G-protein beta-subunit regulates GIRK channel activation. Biophys J 2006; 90:2776-85. [PMID: 16428273 PMCID: PMC1414569 DOI: 10.1529/biophysj.105.069302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Functionally critical domains in the betagamma-subunits of the G-protein (Gbetagamma) do not undergo large structural rearrangements upon binding to other proteins. Here we show that a region containing Ser(67) and Asp(323) of Gbetagamma is a critical determinant of G-protein-gated inwardly rectifying K(+) (GIRK) channel activation and undergoes only small structural changes upon mutation of these residues. Using an interactive experimental and computational approach, we show that mutants that form a hydrogen-bond between positions 67 and 323 do not activate a GIRK channel. We also show that in the absence of hydrogen-bonding between these positions, other factors, such as the displacement of the crucial Ggamma residues Pro(60) and Phe(61), can impair Gbetagamma-mediated GIRK channel activation. Our results imply that the dynamic nature of the hydrogen-bonding pattern in the wild-type serves an important functional role that regulates GIRK channel activation by Gbetagamma and that subtle changes in the flexibility of critical domains could have substantial functional consequences. Our results further strengthen the notion that the dynamic regulation of multiple interactions between Gbetagamma and effectors provides for a complex regulatory process in cellular functions.
Collapse
Affiliation(s)
- Tooraj Mirshahi
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
42
|
Chen Y, Ji F, Xie H, Liang J, Zhang J. The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. PLANT PHYSIOLOGY 2006; 140:302-10. [PMID: 16361523 PMCID: PMC1326052 DOI: 10.1104/pp.105.069872] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/11/2005] [Revised: 10/21/2005] [Accepted: 10/25/2005] [Indexed: 05/05/2023]
Abstract
The regulator of G-protein signaling (RGS) proteins, recently identified in Arabidopsis (Arabidopsis thaliana; named as AtRGS1), has a predicted seven-transmembrane structure as well as an RGS box with GTPase-accelerating activity and thus desensitizes the G-protein-mediated signaling. The roles of AtRGS1 proteins in Arabidopsis seed germination and their possible interactions with sugars and abscisic acid (ABA) were investigated in this study. Using seeds that carry a null mutation in the genes encoding RGS protein (AtRGS1) and the alpha-subunit (AtGPA1) of the G protein in Arabidopsis (named rgs1-2 and gpa1-3, respectively), our genetic evidence proved the involvement of the AtRGS1 protein in the modulation of seed germination. In contrast to wild-type Columbia-0 and gpa1-3, stratification was found not to be required and the after-ripening process had no effect on the rgs1-2 seed germination. In addition, rgs1-2 seed germination was insensitive to glucose (Glc) and sucrose. The insensitivities of rgs1-2 to Glc and sucrose were not due to a possible osmotic stress because the germination of rgs1-2 mutant seeds showed the same response as those of gpa1-3 mutants and wild type when treated with the same concentrations of mannitol and sorbitol. The gpa1-3 seed germination was hypersensitive while rgs1-2 was less sensitive to exogenous ABA. The different responses to ABA largely diminished and the inhibitory effects on seed germination by exogenous ABA and Glc were markedly alleviated when endogenous ABA biosynthesis was inhibited. Hypersensitive responses of seed germination to both Glc and ABA were also observed in the overexpressor of AtRGS1. Analysis of the active endogenous ABA levels and the expression of NCED3 and ABA2 genes showed that Glc significantly stimulated the ABA biosynthesis and increased the expression of NCED3 and ABA2 genes in germinating Columbia seeds, but not in rgs1-2 mutant seeds. These data suggest that AtRGS1 proteins are involved in the regulation of seed germination. The hyposensitivity of rgs1-2 mutant seed germination to Glc might be the result of the impairment of ABA biosynthesis during seed germination.
Collapse
Affiliation(s)
- Yun Chen
- College of Bioscience and Biotechnology, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Johnston CA, Ramer JK, Blaesius R, Fredericks Z, Watts VJ, Siderovski DP. A bifunctional Galphai/Galphas modulatory peptide that attenuates adenylyl cyclase activity. FEBS Lett 2005; 579:5746-50. [PMID: 16225870 PMCID: PMC1363735 DOI: 10.1016/j.febslet.2005.09.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2005] [Revised: 09/06/2005] [Accepted: 09/26/2005] [Indexed: 11/29/2022]
Abstract
Signaling via G-protein coupled receptors is initiated by receptor-catalyzed nucleotide exchange on Galpha subunits normally bound to GDP and Gbetagamma. Activated Galpha . GTP then regulates effectors such as adenylyl cyclase. Except for Gbetagamma, no known regulators bind the adenylyl cyclase-stimulatory subunit Galphas in its GDP-bound state. We recently described a peptide, KB-752, that binds and enhances the nucleotide exchange rate of the adenylyl cyclase-inhibitory subunit Galpha(i). Herein, we report that KB-752 binds Galpha(s) . GDP yet slows its rate of nucleotide exchange. KB-752 inhibits GTPgammaS-stimulated adenylyl cyclase activity in cell membranes, reflecting its opposing effects on nucleotide exchange by Galpha(i) and Galpha(s).
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Pharmacology, The University of North Carolina at Chapel Hill, 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
44
|
Johnston CA, Willard FS, Jezyk MR, Fredericks Z, Bodor ET, Jones MB, Blaesius R, Watts VJ, Harden TK, Sondek J, Ramer JK, Siderovski DP. Structure of Galpha(i1) bound to a GDP-selective peptide provides insight into guanine nucleotide exchange. Structure 2005; 13:1069-80. [PMID: 16004878 PMCID: PMC1405235 DOI: 10.1016/j.str.2005.04.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2005] [Accepted: 04/14/2005] [Indexed: 01/30/2023]
Abstract
Heterotrimeric G proteins are molecular switches that regulate numerous signaling pathways involved in cellular physiology. This characteristic is achieved by the adoption of two principal states: an inactive, GDP bound state and an active, GTP bound state. Under basal conditions, G proteins exist in the inactive, GDP bound state; thus, nucleotide exchange is crucial to the onset of signaling. Despite our understanding of G protein signaling pathways, the mechanism of nucleotide exchange remains elusive. We employed phage display technology to identify nucleotide state-dependent Galpha binding peptides. Herein, we report a GDP-selective Galpha binding peptide, KB-752, that enhances spontaneous nucleotide exchange of Galpha(i) subunits. Structural determination of the Galpha(i1)/peptide complex reveals unique changes in the Galpha switch regions predicted to enhance nucleotide exchange by creating a GDP dissociation route. Our results cast light onto a potential mechanism by which Galpha subunits adopt a conformation suitable for nucleotide exchange.
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Willard FS, Siderovski DP. The R6A-1 peptide binds to switch II of Galphai1 but is not a GDP-dissociation inhibitor. Biochem Biophys Res Commun 2005; 339:1107-12. [PMID: 16338227 DOI: 10.1016/j.bbrc.2005.11.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2005] [Accepted: 11/28/2005] [Indexed: 11/23/2022]
Abstract
Heterotrimeric G-proteins are molecular switches that convert signals from membrane receptors into changes in intracellular physiology. Recently, several peptides that bind heterotrimeric G-protein alpha subunits have been isolated including the novel Galpha(i1).GDP binding peptides R6A and KB-752. The R6A peptide and its minimized derivative R6A-1 interact with Galpha(i1).GDP. Based on spectroscopic analysis of BODIPYFL-GTPgammaS binding to Galpha(i1), it has been reported that R6A-1 has guanine nucleotide dissociation inhibitor (GDI) activity against Galpha(i1) [W.W. Ja, R.W. Roberts, Biochemistry 43 (28) (2004) 9265-9275]. Using radioligand binding, we show that R6A-1 is not a GDI for Galpha(i1) subunits. Furthermore, we demonstrate that R6A-1 reduces the fluorescence quantum yield of the Galpha(i1)-BODIPYFL-GTPgammaS complex, thus explaining the previously reported GDI activity as a fluorescence artifact. We further show that R6A-1 has significant sequence similarity to the guanine nucleotide exchange factor peptide KB-752 that binds to switch II of Galpha(i1). We use competitive binding analysis to show that R6A-1 also binds to switch II of Galpha subunits.
Collapse
Affiliation(s)
- Francis S Willard
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA.
| | | |
Collapse
|
46
|
McCudden CR, Willard FS, Kimple RJ, Johnston CA, Hains MD, Jones MB, Siderovski DP. G alpha selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:254-64. [PMID: 15946753 DOI: 10.1016/j.bbamcr.2005.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/02/2005] [Revised: 04/28/2005] [Accepted: 05/02/2005] [Indexed: 11/28/2022]
Abstract
GPSM2 (G-protein signalling modulator 2; also known as LGN or mammalian Pins) is a protein that regulates mitotic spindle organization and cell division. GPSM2 contains seven tetratricopeptide repeats (TPR) and four Galpha(i/o)-Loco (GoLoco) motifs. GPSM2 has guanine nucleotide dissociation inhibitor (GDI) activity towards both Galpha(o)- and Galpha(i)-subunits; however, a systematic analysis of its individual GoLoco motifs has not been described. We analyzed each of the four individual GoLoco motifs from GPSM2, assessing their relative binding affinities and GDI potencies for Galpha(i1), Galpha(i2), and Galpha(i3) and Galpha(o). Each of the four GPSM2 GoLoco motifs (36-43 amino acids in length) was expressed in bacteria as a GST-fusion protein and purified to homogeneity. The binding of each of the four GST-GoLoco motifs to Galpha(i1)-, Galpha(o)-, and Galpha(s)-subunits was assessed by surface plasmon resonance; all of the motifs bound Galpha(i1), but exhibited low affinity towards Galpha(o). GDI activity was assessed by a fluorescence-based nucleotide-binding assay, revealing that all four GoLoco motifs are functional as GDIs for Galpha(i1), Galpha(i2), and Galpha(i3). Consistent with our binding studies, the GDI activity of GPSM2 GoLoco motifs on Galpha(o) was significantly lower than that toward Galpha(i1), suggesting that the in vivo targets of GPSM2 are most likely to be Galpha(i)-subunits.
Collapse
Affiliation(s)
- Christopher R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, The University of North Carolina, CB#7365, Mary Ellen Jones Building, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Harashima T, Heitman J. Galpha subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 2005; 16:4557-71. [PMID: 16030250 PMCID: PMC1237064 DOI: 10.1091/mbc.e05-05-0403] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/11/2022] Open
Abstract
All eukaryotic cells sense extracellular stimuli and activate intracellular signaling cascades via G protein-coupled receptors (GPCR) and associated heterotrimeric G proteins. The Saccharomyces cerevisiae GPCR Gpr1 and associated Galpha subunit Gpa2 sense extracellular carbon sources (including glucose) to govern filamentous growth. In contrast to conventional Galpha subunits, Gpa2 forms an atypical G protein complex with the kelch repeat Gbeta mimic proteins Gpb1 and Gpb2. Gpb1/2 negatively regulate cAMP signaling by inhibiting Gpa2 and an as yet unidentified target. Here we show that Gpa2 requires lipid modifications of its N-terminus for membrane localization but association with the Gpr1 receptor or Gpb1/2 subunits is dispensable for membrane targeting. Instead, Gpa2 promotes membrane localization of its associated Gbeta mimic subunit Gpb2. We also show that the Gpa2 N-terminus binds both to Gpb2 and to the C-terminal tail of the Gpr1 receptor and that Gpb1/2 binding interferes with Gpr1 receptor coupling to Gpa2. Our studies invoke novel mechanisms involving GPCR-G protein modules that may be conserved in multicellular eukaryotes.
Collapse
Affiliation(s)
- Toshiaki Harashima
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
48
|
De Waard M, Hering J, Weiss N, Feltz A. How do G proteins directly control neuronal Ca2+ channel function? Trends Pharmacol Sci 2005; 26:427-36. [PMID: 16009433 DOI: 10.1016/j.tips.2005.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2004] [Revised: 05/03/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Ca2+ entry into neuronal cells is modulated by the activation of numerous G-protein-coupled receptors (GPCRs). Much effort has been invested in studying direct G-protein-mediated inhibition of voltage-dependent CaV2 Ca2+ channels. This inhibition occurs through a series of convergent modifications in the biophysical properties of the channels. An integrated view of the structural organization of the Gbetagamma-dimer binding-site pocket within the channel is emerging. In this review, we discuss how variable geometry of the Gbetagamma binding pocket can yield distinct sets of channel inhibition. In addition, we propose specific mechanisms for the regulation of the channel by G proteins that take into account the regulatory input of each Gbetagamma binding element.
Collapse
Affiliation(s)
- Michel De Waard
- Laboratoire Canaux Calciques, Fonctions et Pathologies, Inserm U607, CEA, DRDC, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France.
| | | | | | | |
Collapse
|
49
|
Andreeva AV, Kutuzov MA, Vaiskunaite R, Profirovic J, Meigs TE, Predescu S, Malik AB, Voyno-Yasenetskaya T. G alpha12 interaction with alphaSNAP induces VE-cadherin localization at endothelial junctions and regulates barrier function. J Biol Chem 2005; 280:30376-83. [PMID: 15980433 DOI: 10.1074/jbc.m502844200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of heterotrimeric G proteins in the regulation of adherens junction function is unclear. We identified alphaSNAP as an interactive partner of G alpha12 using yeast two-hybrid screening. Glutathione S-transferase pull-down assays showed the selective interaction of alphaSNAP with G alpha12 in COS-7 as well as in human umbilical vein endothelial cells. Using domain swapping experiments, we demonstrated that the N-terminal region of G alpha12 (1-37 amino acids) was necessary and sufficient for its interaction with alphaSNAP. G alpha13 with its N-terminal extension replaced by that of G alpha12 acquired the ability to bind to alphaSNAP, whereas G alpha12 with its N terminus replaced by that of G alpha13 lost this ability. Using four point mutants of alphaSNAP, which alter its ability to bind to the SNARE complex, we determined that the convex rather than the concave surface of alphaSNAP was involved in its interaction with G alpha12. Co-transfection of human umbilical vein endothelial cells with G alpha12 and alphaSNAP stabilized VE-cadherin at the plasma membrane, whereas down-regulation of alphaSNAP with siRNA resulted in the loss of VE-cadherin from the cell surface and, when used in conjunction with G alpha12 overexpression, decreased endothelial barrier function. Our results demonstrate a direct link between the alpha subunit of G12 and alphaSNAP, an essential component of the membrane fusion machinery, and implicate a role for this interaction in regulating the membrane localization of VE-cadherin and endothelial barrier function.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Galpha.GDP/Gbetagamma heterotrimers to promote GDP release and GTP binding, resulting in liberation of Galpha from Gbetagamma. Galpha.GTP and Gbetagamma target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Galpha and heterotrimer reformation - a cycle accelerated by 'regulators of G-protein signaling' (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) beta is activated by Galpha(q) and Gbetagamma, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Galpha nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.
Collapse
Affiliation(s)
- C R McCudden
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA.
| | | | | | | | | |
Collapse
|