1
|
Sakai T, Hattori S, Ogata A, Yamada T, Abe J, Ikenuma H, Ichise M, Suzuki M, Ito K, Kato T, Kimura Y. Noradrenaline transporter PET reflects neurotoxin-induced noradrenaline level decrease in the rat hippocampus. EJNMMI Res 2023; 13:82. [PMID: 37713137 PMCID: PMC10504202 DOI: 10.1186/s13550-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The neuropathological changes of early Alzheimer's disease (AD) include neurodegenerative loss of noradrenaline neurons in the locus coeruleus with decreasing noradrenaline availability in their projection areas such as the hippocampus. This diminishing noradrenaline availability is thought to play an important role pathophysiologically in the development of cognitive impairment in AD, because noradrenaline is not only essential for maintaining cognitive functions such as memory, learning and attention, but also its anti-inflammatory action, where its lack is known to accelerate the progression of AD in the mouse model. Therefore, the availability of in vivo biomarkers of the integrity of noradrenaline neurons may be beneficial for furthering our understanding of the role played by the noradrenaline system in the progressive cognitive dysfunction seen in AD patients. In this study, we investigated if PET imaging of noradrenaline transporters can predict the level of noradrenaline in the brain. Our hypothesis was PET measured noradrenaline transporter densities could predict the level of noradrenaline concentrations in the rat hippocampus after lesioning of noradrenaline neurons in this region. RESULTS We chemically lesioned the hippocampus of rats (n = 15) by administering a neurotoxin, DSP-4, in order to selectively damage axonal terminals of noradrenergic neurons. These rats then underwent PET imaging of noradrenaline transporters using [11C]MRB ((S,S)-[11C]Methylreboxetine). To validate our hypothesis, postmortem studies of brain homogenates of these rats were performed to measure both noradrenaline transporter and noradrenaline concentrations. [11C]MRB PET showed decreased noradrenaline transporter densities in a DSP-4 dose-dependent manner in the hippocampus of these rats. In turn, these PET measured noradrenaline transporter densities correlated very well with in vitro measured noradrenaline concentrations as well as in vitro transporter densities. CONCLUSIONS [11C]MRB PET may be used as an in vivo biomarker of noradrenaline concentrations in the hippocampus of the neurodegenerating brain. Further studies appear warranted to extend its applicability to AD studies.
Collapse
Affiliation(s)
- Takayuki Sakai
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Saori Hattori
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science (GUMS), Kani, Japan
| | - Takashi Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Masaaki Suzuki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, Research Institute, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
2
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
McKay JL, Nye J, Goldstein FC, Sommerfeld B, Smith Y, Weinshenker D, Factor SA. Levodopa responsive freezing of gait is associated with reduced norepinephrine transporter binding in Parkinson's disease. Neurobiol Dis 2023; 179:106048. [PMID: 36813207 DOI: 10.1016/j.nbd.2023.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a major cause of falling in Parkinson's disease (PD) and can be responsive or unresponsive to levodopa. Pathophysiology is poorly understood. OBJECTIVE To examine the link between noradrenergic systems, the development of FOG in PD and its responsiveness to levodopa. METHODS We examined norepinephrine transporter (NET) binding via brain positron emission tomography (PET) to evaluate changes in NET density associated with FOG using the high affinity selective NET antagonist radioligand [11C]MeNER (2S,3S)(2-[α-(2-methoxyphenoxy)benzyl]morpholine) in 52 parkinsonian patients. We used a rigorous levodopa challenge paradigm to characterize PD patients as non-freezing (NO-FOG, N = 16), levodopa responsive freezing (OFF-FOG, N = 10), and levodopa-unresponsive freezing (ONOFF-FOG, N = 21), and also included a non-PD FOG group, primary progressive freezing of gait (PP-FOG, N = 5). RESULTS Linear mixed models identified significant reductions in whole brain NET binding in the OFF-FOG group compared to the NO-FOG group (-16.8%, P = 0.021) and regionally in the frontal lobe, left and right thalamus, temporal lobe, and locus coeruleus, with the strongest effect in right thalamus (P = 0.038). Additional regions examined in a post hoc secondary analysis including the left and right amygdalae confirmed the contrast between OFF-FOG and NO-FOG (P = 0.003). A linear regression analysis identified an association between reduced NET binding in the right thalamus and more severe New FOG Questionnaire (N-FOG-Q) score only in the OFF-FOG group (P = 0.022). CONCLUSION This is the first study to examine brain noradrenergic innervation using NET-PET in PD patients with and without FOG. Based on the normal regional distribution of noradrenergic innervation and pathological studies in the thalamus of PD patients, the implications of our findings suggest that noradrenergic limbic pathways may play a key role in OFF-FOG in PD. This finding could have implications for clinical subtyping of FOG as well as development of therapies.
Collapse
Affiliation(s)
- J Lucas McKay
- Jean & Paul Amos Parkinson's Disease & Movement Disorders Program, Department of Neurology, Emory University, Atlanta, GA 30329, USA; Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA 30332, USA
| | - Jonathan Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Felicia C Goldstein
- Neuropsychology Program, Department of Neurology, Emory University, Atlanta, GA 30329, USA
| | - Barbara Sommerfeld
- Jean & Paul Amos Parkinson's Disease & Movement Disorders Program, Department of Neurology, Emory University, Atlanta, GA 30329, USA
| | - Yoland Smith
- Jean & Paul Amos Parkinson's Disease & Movement Disorders Program, Department of Neurology, Emory University, Atlanta, GA 30329, USA; Emory National Primate Center, Emory University, Atlanta, GA 30329, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Stewart A Factor
- Jean & Paul Amos Parkinson's Disease & Movement Disorders Program, Department of Neurology, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
4
|
Doppler CEJ, Kinnerup MB, Brune C, Farrher E, Betts M, Fedorova TD, Schaldemose JL, Knudsen K, Ismail R, Seger AD, Hansen AK, Stær K, Fink GR, Brooks DJ, Nahimi A, Borghammer P, Sommerauer M. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson's disease. Brain 2021; 144:2732-2744. [PMID: 34196700 DOI: 10.1093/brain/awab236] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/06/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Parkinson's disease patients showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: p < 0.0001, p < 0.001; probabilistic map: p < 0.05), specifically on the clinically-defined most affected side (p < 0.05), and reduced locus coeruleus volume (p < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach-rostral: p = 0.48, middle: p < 0.0001, and caudal: p < 0.05; probabilistic map-rostral: p = 0.90, middle: p < 0.01, and caudal: p < 0.05). The noradrenaline transporter density was lower in Parkinson's disease patients in all examined regions (group effect p < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect p < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research toward potential novel treatment approaches.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Martin B Kinnerup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Corinna Brune
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Matthew Betts
- German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Jeppe L Schaldemose
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Aline D Seger
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Kristian Stær
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.,Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | - Adjmal Nahimi
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Michael Sommerauer
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany.,Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| |
Collapse
|
5
|
Ghosh KK, Padmanabhan P, Yang CT, Mishra S, Halldin C, Gulyás B. Dealing with PET radiometabolites. EJNMMI Res 2020; 10:109. [PMID: 32997213 PMCID: PMC7770856 DOI: 10.1186/s13550-020-00692-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Abstract Positron emission tomography (PET) offers the study of biochemical,
physiological, and pharmacological functions at a cellular and molecular level.
The performance of a PET study mostly depends on the used radiotracer of
interest. However, the development of a novel PET tracer is very difficult, as
it is required to fulfill a lot of important criteria. PET radiotracers usually
encounter different chemical modifications including redox reaction, hydrolysis,
decarboxylation, and various conjugation processes within living organisms. Due
to this biotransformation, different chemical entities are produced, and the
amount of the parent radiotracer is declined. Consequently, the signal measured
by the PET scanner indicates the entire amount of radioactivity deposited in the
tissue; however, it does not offer any indication about the chemical disposition
of the parent radiotracer itself. From a radiopharmaceutical perspective, it is
necessary to quantify the parent radiotracer’s fraction present in the tissue.
Hence, the identification of radiometabolites of the radiotracers is vital for
PET imaging. There are mainly two reasons for the chemical identification of PET
radiometabolites: firstly, to determine the amount of parent radiotracers in
plasma, and secondly, to rule out (if a radiometabolite enters the brain) or
correct any radiometabolite accumulation in peripheral tissue. Besides,
radiometabolite formations of the tracer might be of concern for the PET study,
as the radiometabolic products may display considerably contrasting distribution
patterns inside the body when compared with the radiotracer itself. Therefore,
necessary information is needed about these biochemical transformations to
understand the distribution of radioactivity throughout the body. Various
published review articles on PET radiometabolites mainly focus on the sample
preparation techniques and recently available technology to improve the
radiometabolite analysis process. This article essentially summarizes the
chemical and structural identity of the radiometabolites of various radiotracers
including [11C]PBB3,
[11C]flumazenil,
[18F]FEPE2I, [11C]PBR28,
[11C]MADAM, and
(+)[18F]flubatine. Besides, the importance of
radiometabolite analysis in PET imaging is also briefly summarized. Moreover,
this review also highlights how a slight chemical modification could reduce the
formation of radiometabolites, which could interfere with the results of PET
imaging. Graphical abstract ![]()
Collapse
Affiliation(s)
- Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Chang-Tong Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Christer Halldin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore. .,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
6
|
Arakawa R, Takano A, Halldin C. PET technology for drug development in psychiatry. Neuropsychopharmacol Rep 2020; 40:114-121. [PMID: 32463584 PMCID: PMC7722687 DOI: 10.1002/npr2.12084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is a non‐invasive imaging method to measure the molecule in vivo. PET imaging can evaluate the central nervous system drugs as target engagement in the human brain. For antipsychotic drugs, adequate dopamine D2 receptor occupancy (“therapeutic window”) is reported to be from 65%‐70% to 80% to achieve the antipsychotic effect without extrapyramidal symptoms. For antidepressants, the clinical threshold of serotonin transporter (5‐HTT) occupancy is reported to be 70%‐80% although the relation between the side effect and 5‐HTT occupancy has not yet been established. Evaluation of norepinephrine transporter (NET) occupancy for antidepressant is ongoing as adequate PET radioligands for NET were developed recently. Measurement of the target occupancy has been a key element to evaluate the in vivo target engagement of the drugs. In order to evaluate new drug targets for disease conditions such as negative symptoms/cognitive impairment of schizophrenia and treatment‐resistant depression, new PET radioligands need to be developed concurrently with the drug development. PET imaging can evaluate the central nervous system drugs as target engagement in the human brain. The uptake of [11C]raclopride for dopamine D2 receptors decreased from (A) baseline to (B) antipsychotic administration conditions.![]()
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Akihiro Takano
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Takeda Development Center Japan, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Christer Halldin
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
7
|
Wen F, Liu S, Nie D, Tang X, Tang C, Zhang Z, Sun A, Gao S, Jiang S, Tang G. Synthesis and biodistribution of novel dansyl derivative 11C-DSB. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Molecular Imaging of the Noradrenergic System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:251-274. [DOI: 10.1016/bs.irn.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Sommerauer M, Fedorova TD, Hansen AK, Knudsen K, Otto M, Jeppesen J, Frederiksen Y, Blicher JU, Geday J, Nahimi A, Damholdt MF, Brooks DJ, Borghammer P. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 2017; 141:496-504. [DOI: 10.1093/brain/awx348] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
|
10
|
Shahzad D, Faisal M, Rauf A, Huang JH. Synthetic Story of a Blockbuster Drug: Reboxetine, a Potent Selective Norepinephrine Reuptake Inhibitor. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Danish Shahzad
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Muhammad Faisal
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ameema Rauf
- Department
of Chemistry, University of Wah, Wah Cantt, Pakistan
| | - Jian-hua Huang
- School
of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
11
|
Nahimi A, Sommerauer M, Kinnerup MB, Østergaard K, Wintherdahl M, Jacobsen J, Schacht A, Johnsen B, Damholdt MF, Borghammer P, Gjedde A. Noradrenergic Deficits in Parkinson Disease Imaged with 11C-MeNER. J Nucl Med 2017; 59:659-664. [DOI: 10.2967/jnumed.117.190975] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/18/2017] [Indexed: 01/08/2023] Open
|
12
|
Stehouwer JS, Goodman MM. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine. PET Clin 2016; 4:101-28. [PMID: 20216936 DOI: 10.1016/j.cpet.2009.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary.
Collapse
|
13
|
Adhikarla V, Zeng F, Votaw JR, Goodman MM, Nye JA. Compartmental modeling of [(11)C]MENET binding to the norepinephrine transporter in the healthy human brain. Nucl Med Biol 2016; 43:318-23. [PMID: 27150035 DOI: 10.1016/j.nucmedbio.2016.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Dysregulation of the noradrenergic system has been implicated in a number of neurological conditions such as Parkinson's and Alzheimer's. [(11)C]MENET is a novel PET radiotracer with high affinity and selectivity for the norepinephrine transporter. The applicability of different kinetic models on [(11)C]MENET PET image quantification in healthy population is evaluated. METHODS Six healthy volunteers (mean age: 54years) were recruited for the study, five of whom underwent arterial sampling for measurement of the input function. Ninety minute dynamic PET scans were obtained on a high resolution research tomograph with 15mCi of [(11)C]MENET injected at the scan start time. Regions of interest were delineated on the PET scan aided by the corresponding MRI image for anatomical guidance. Distribution volumes and their ratios (DVRs) with respect to the occipital reference tissue were calculated using the full arterial model (FAM), the simplified reference tissue model (SRTM) and the multilinear reference tissue model (MRTM2). RESULTS Among the FAMs, the single-tissue model was found to be statistically superior to the two-tissue model. [(11)C]MENET focal uptake was observed in the NET-rich regions of the brainstem and subcortical regions including the thalamus, locus cereleus and the raphe nuclei. Highest DVRs were observed in the locus cereleus (mean±standard deviation: 1.39±0.25) and red nucleus (1.35±0.25). DVRs of the thalamus were in good agreement between FAM (1.26±0.13), SRTM (1.23±0.15) and MRTM2 (1.21±0.14). Comparing the FAM to the SRTM and MRTM2, DVRs were underestimated in the thalamus by 3 and 4% on average, respectively. CONCLUSION The single-tissue compartmental model was sufficient in describing the [(11)C]MENET kinetics in the healthy human brain. SRTM and MRTM2 present themselves as attractive options for estimating NET DVR using an occipital reference region.
Collapse
Affiliation(s)
- Vikram Adhikarla
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA.
| | - Fanxing Zeng
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - John R Votaw
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Cross AJ, Widzowski D, Maciag C, Zacco A, Hudzik T, Liu J, Nyberg S, Wood MW. Quetiapine and its metabolite norquetiapine: translation from in vitro pharmacology to in vivo efficacy in rodent models. Br J Pharmacol 2015; 173:155-66. [PMID: 26436896 DOI: 10.1111/bph.13346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 09/03/2015] [Accepted: 09/24/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Quetiapine has a range of clinical activity distinct from other atypical antipsychotic drugs, demonstrating efficacy as monotherapy in bipolar depression, major depressive disorder and generalized anxiety disorder. The neuropharmacological mechanisms underlying this clinical profile are not completely understood; however, the major active metabolite, norquetiapine, has been shown to have a distinct in vitro pharmacological profile consistent with a broad therapeutic range and may contribute to the clinical profile of quetiapine. EXPERIMENTAL APPROACH We evaluated quetiapine and norquetiapine, using in vitro binding and functional assays of targets known to be associated with antidepressant and anxiolytic drug actions and compared these activities with a representative range of established antipsychotics and antidepressants. To determine how the in vitro pharmacological properties translate into in vivo activity, we used preclinical animal models with translational relevance to established antidepressant-like and anxiolytic-like drug action. KEY RESULTS Norquetiapine had equivalent activity to established antidepressants at the noradrenaline transporter (NET), while quetiapine was inactive. Norquetiapine was active in the mouse forced swimming and rat learned helplessness tests. In in vivo receptor occupancy studies, norquetiapine had significant occupancy at NET at behaviourally relevant doses. Both quetiapine and norquetiapine were agonists at 5-HT1A receptors, and the anxiolytic-like activity of norquetiapine in rat punished responding was blocked by the 5-HT1A antagonist, WAY100635. CONCLUSIONS AND IMPLICATIONS Quetiapine and norquetiapine have multiple in vitro pharmacological actions, and results from preclinical studies suggest that activity at NET and 5-HT1A receptors contributes to the antidepressant and anxiolytic effects in patients treated with quetiapine.
Collapse
Affiliation(s)
- A J Cross
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - D Widzowski
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - C Maciag
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - A Zacco
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - T Hudzik
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| | - J Liu
- AstraZeneca R&D, Shanghai, China
| | - S Nyberg
- AstraZeneca R&D, Södertälje, Sweden
| | - M W Wood
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, USA
| |
Collapse
|
15
|
Methods to Increase the Metabolic Stability of (18)F-Radiotracers. Molecules 2015; 20:16186-220. [PMID: 26404227 PMCID: PMC6332123 DOI: 10.3390/molecules200916186] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of 18F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [18F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.
Collapse
|
16
|
Vase KH, Peters D, Nielsen EØ, Alstrup AKO, Bender D. [11C]NS8880, a promising PET radiotracer targeting the norepinephrine transporter. Nucl Med Biol 2014; 41:758-64. [PMID: 25127515 DOI: 10.1016/j.nucmedbio.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Positron emission tomography (PET) imaging of the norepinephrine transporter (NET) is still hindered by the availability of useful PET imaging probes. The present study describes the radiosynthesis and pre-clinical evaluation of a new compound, exo-3-(6-methoxypyridin-2-yloxy)-8-H-8-azabicyclo[3.2.1]octane (NS8880), targeting NET. NS8880 has an in vitro binding profile comparable to desipramine and is structurally not related to reboxetine. METHODS Labeling of NS8880 with [(11)C] was achieved by a non-conventional technique: substitution of pyridinyl fluorine with [(11)C]methanolate in a Boc-protected precursor. The isolated [(11)C]NS8880 was evaluated pre-clinically both in a pig model (PET scanning) and in a rat model (μPET scanning) and compared to (S,S)-[(11)C]-O-methylreboxetine ([(11)C]MeNER). RESULTS The radiolabeling technique yielded [(11)C]NS8880 in low (<10%) but still useful yields with high purity. The PET in vivo evaluation in pig and rat revealed a rapid brain uptake of [(11)C]NS8880 and fast obtaining of equilibrium. Highest binding was observed in thalamic and hypothalamic regions. Pretreatment with desipramine efficiently reduced binding of [(11)C]NS8880. CONCLUSION Based on the pre-clinical results obtained so far [(11)C]NS8880 displays promising properties for PET imaging of NET.
Collapse
Affiliation(s)
- Karina H Vase
- PET Center, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | - Dan Peters
- DanPET AB, Rosenstigen 7, SE-216 19 Malmö, Sweden
| | | | - Aage K O Alstrup
- PET Center, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Dirk Bender
- PET Center, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Fairclough M, Prenant C, Brown G, McMahon A, Lowe J, Jones A. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module. J Labelled Comp Radiopharm 2014; 57:388-96. [PMID: 24692062 DOI: 10.1002/jlcr.3194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/23/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022]
Abstract
[6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro.
Collapse
Affiliation(s)
- Michael Fairclough
- Wolfson Molecular Imaging Centre, The University of Manchester, 27 Palatine Road, Manchester, M20 3LJ, UK
| | | | | | | | | | | |
Collapse
|
18
|
Tavares AAS, Jobson NK, Dewar D, Sutherland A, Pimlott SL, Batis J, Barret O, Seibyl J, Tamagnan G. Iodine-123 labeled reboxetine analogues for imaging of noradrenaline transporter in brain using single photon emission computed tomography. Synapse 2012; 66:923-30. [PMID: 22807144 DOI: 10.1002/syn.21585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/07/2022]
Abstract
Preliminary investigation of the radioiodinated (S,S)-reboxetine analogue, (123) I-INER, in baboons showed this tracer to have promise for imaging the noradrenaline transporter (NAT) using single photon emission computed tomography (SPECT). More recently, the radioiodinated (R,S)-stereoisomer of (123) I-INER, (123) I-NKJ64, has been synthesized and preliminary evaluation in rats has been reported. This article reports the brain distribution and pharmacokinetic properties of (123) I-NKJ64 in baboons and compares results with (123) I-INER data in the same species. SPECT studies were conducted in two ovariectomized adult female baboons using two different protocols: (1) bolus of (123) I-INER or (123) I-NKJ64; and (2) bolus plus constant infusion of (123) I-NKJ64 with reboxetine (2.0 mg/kg) administration at equilibrium. Following bolus injection, both radiotracers rapidly and avidly entered the baboon brain. The regional brain accumulation of (123) I-NKJ64 did not match the known distribution of NAT in baboon brain, contrasting with previous results obtained in rats. Conversely, the regional distribution of (123) I-INER was consistent with known distribution of NAT in baboon brain. No displacement of (123) I-NKJ64 was observed following administration of reboxetine. This contrasts with previous data obtained for (123) I-INER, where 60% of specific binding was displaced by a lower dose of reboxetine. These data suggest that (123) I-NKJ64 may lack affinity and selectivity for NAT in baboon brain and (123) I-INER is the most promising iodinated reboxetine analogue developed to date for in vivo imaging of NAT in brain using SPECT. This study highlights the importance of species differences during radiotracer development and the stereochemical configuration of analogues of reboxetine in vivo.
Collapse
Affiliation(s)
- Adriana Alexandre S Tavares
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Landau AM, Doudet DJ, Jakobsen S. Amphetamine challenge decreases yohimbine binding to α2 adrenoceptors in Landrace pig brain. Psychopharmacology (Berl) 2012; 222:155-63. [PMID: 22227612 DOI: 10.1007/s00213-011-2632-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/21/2011] [Indexed: 11/29/2022]
Abstract
RATIONALE The noradrenaline (NA) system is implicated in neurodegenerative and psychiatric disorders; however, our understanding is impaired by the lack of well-validated radioligands to assess NA function and release. Yohimbine, an α2 adrenoceptor antagonist, has recently been developed as a carbon-11 [11C]-labeled radioligand for positron emission tomography (PET) imaging studies. OBJECTIVES Here we explore the hypothesis that yohimbine can be used as an in vivo tracer of NA receptor binding and release during amphetamine challenges in Landrace pigs. METHODS Pigs underwent baseline PET scans with [11C]yohimbine and were then challenged with 10 mg/kg d-amphetamine 20 min prior to a second [11C]yohimbine scan. Using the Logan analysis model, volumes of distribution were calculated from fits of the kinetic data 25-90 min post-yohimbine injection. RESULTS Amphetamine decreased [11C]yohimbine volume of distribution in the brain regions under investigation, including the thalamus, caudate nucleus, and cortical regions. CONCLUSION These data suggest that the binding of [11C]yohimbine to α2 adrenoceptors may be displaceable by increases in synaptic concentrations of the endogenous ligand, NA, and possibly dopamine, suggesting the possibility that [11C]yohimbine may be used as a surrogate marker of NA release in vivo.
Collapse
Affiliation(s)
- Anne M Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Norrebrogade 44, Building 10G, Aarhus C 8000, Denmark
| | | | | |
Collapse
|
20
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 613] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gallezot JD, Weinzimmer D, Nabulsi N, Lin SF, Fowles K, Sandiego C, McCarthy TJ, Maguire RP, Carson RE, Ding YS. Evaluation of [(11)C]MRB for assessment of occupancy of norepinephrine transporters: Studies with atomoxetine in non-human primates. Neuroimage 2010; 56:268-79. [PMID: 20869448 DOI: 10.1016/j.neuroimage.2010.09.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/16/2010] [Indexed: 12/15/2022] Open
Abstract
[(11)C]MRB is one of the most promising radioligands used to measure brain norepinephrine transporters (NET) with positron emission tomography (PET). The objective of this study was to evaluate the suitability of [(11)C]MRB for drug occupancy studies of NET using atomoxetine (ATX), a NET uptake inhibitor used in the treatment of depression and attention-deficit hyperactivity disorder (ADHD). A second goal of the study was identification of a suitable reference region. Ten PET studies were performed in three anesthetized rhesus monkeys following an infusion of ATX or placebo. [(11)C]MRB arterial input functions and ATX plasma levels were also measured. A dose-dependent reduction of [(11)C]MRB volume of distribution was observed after correction for [(11)C]MRB plasma free fraction. ATX IC(50) was estimated to be 31 ± 10ng/mL plasma. This corresponds to an effective dose (ED(50)) of 0.13mg/kg, which is much lower than the therapeutic dose of ATX in ADHD (1.0-1.5mg/kg). [(11)C]MRB binding potential BP(ND) in the thalamus was estimated to be 1.8 ± 0.3. Defining a reference region for a NET radiotracer is challenging due to the widespread and relatively uniform distribution of NET in the brain. Three regions were evaluated for use as reference region: caudate, putamen and occipital cortex. Caudate was found to be the most suitable for preclinical drug occupancy studies in rhesus monkeys. The IC(50) estimate obtained using MRTM2 BP(ND) without arterial blood sampling was 21 ± 3ng/mL (using caudate as the reference region). This study demonstrated that [(11)C]MRB is suitable for drug occupancy studies of NET.
Collapse
|
22
|
Nguyen VL, Pichika R, Bhakta PH, Kant R, Mukherjee J. (R)-N-Methyl-3-(3'-[F]fluoropropyl)phenoxy)-3-phenylpropanamine (F-MFP3) as a potential PET imaging agent for norepinephrine transporter. J Labelled Comp Radiopharm 2010; 53:172-177. [PMID: 20495670 DOI: 10.1002/jlcr.1744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A decline of norepinephrine transporter (NET) level is associated with several psychiatric and neurological disorders. Therefore positron emission tomography (PET) imaging agents are greatly desired to study the NET pathway. We have developed a C-fluoropropyl analog of nisoxetine: (R)-N-methyl-3-(3'-[(18)F]fluoropropyl)phenoxy)-3-phenylpropanamine ((18)F-MFP3) as a new potential PET radiotracer for NET with the advantage of the longer half-life of fluorine-18 (110 min compared with carbon-11 (20 min). Synthesis of (R)-N-methyl-3-(3'-fluoropropyl)phenoxy)-3-phenylpropanamine (MFP3) was achieved in five steps starting from (S)-N-methyl-3-ol-3-phenylpropanamine in approx. 3-5% overall yields. In vitro binding affinity of nisoxetine and MFP3 in rat brain homogenates labeled with (3)H-nisoxetine gave Ki values of 8.02 nM and 23 nM, respectively. For radiosynthesis of (18)F-MFP3, fluorine-18 was incorporated into a tosylate precursor, followed by the deprotection of the N-BOC-protected amine group with a 15% decay corrected yield in 2.5 h. Reverse-phase chromatographic purification provided (18)F-MFP3 in specific activities of >2000 Ci/mmol. Fluorine-18 labeled (18)F-MFP3 has been produced in modest radiochemical yields and in high specific activities. Evaluation of (18)F-MFP3 in animal imaging studies is in progress in order to validate this new fluorine-18 radiotracer for PET imaging of NET.
Collapse
Affiliation(s)
- Vivien L Nguyen
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
23
|
Takano A, Gulyás B, Varrone A, Halldin C. Comparative evaluations of norepinephrine transporter radioligands with reference tissue models in rhesus monkeys: (S,S)-[18F]FMeNER-D2 and (S,S)-[11C]MeNER. Eur J Nucl Med Mol Imaging 2009; 36:1885-91. [DOI: 10.1007/s00259-009-1194-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
24
|
Takano A, Gulyás B, Varrone A, Maguire RP, Halldin C. Saturated norepinephrine transporter occupancy by atomoxetine relevant to clinical doses: a rhesus monkey study with (S,S)-[(18)F]FMeNER-D (2). Eur J Nucl Med Mol Imaging 2009; 36:1308-14. [PMID: 19300997 DOI: 10.1007/s00259-009-1118-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/02/2009] [Indexed: 11/27/2022]
Abstract
PURPOSE In a previous PET study on norepinephrine transporter (NET) occupancy in the nonhuman primate brain, the relationship between NET occupancy and atomoxetine plasma concentration, and occupancies among different brain regions, were not demonstrated adequately. It may therefore be difficult to translate the results to the clinical situations. In the present study, the detailed change of NET occupancy was investigated among a wider range of doses in a more advanced manner. METHODS Two rhesus monkeys were examined using a high-resolution PET system with (S,S)-[(18)F]FMeNER-D(2) under baseline conditions and after steady-state infusion of different doses of atomoxetine (0.003 to 0.12 mg/kg per hour). NET occupancy of the thalamus, brainstem and anterior cingulate cortex was calculated using BP(ND) obtained with the simplified reference tissue model. RESULTS NET occupancy increased regionally and uniformly as the plasma concentration of atomoxetine increased. The estimated Kd value (the amount to occupy 50% of NET) in the thalamus was 16 ng/ml. CONCLUSION The results indicate that clinical doses of atomoxetine would occupy NET almost completely.
Collapse
Affiliation(s)
- Akihiro Takano
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, S-171 76, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Zeng F, Mun J, Jarkas N, Stehouwer JS, Voll RJ, Tamagnan GD, Howell L, Votaw JR, Kilts CD, Nemeroff CB, Goodman MM. Synthesis, radiosynthesis, and biological evaluation of carbon-11 and fluorine-18 labeled reboxetine analogues: potential positron emission tomography radioligands for in vivo imaging of the norepinephrine transporter. J Med Chem 2009; 52:62-73. [PMID: 19067522 DOI: 10.1021/jm800817h] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reboxetine analogues with methyl and fluoroalkyl substituents at position 2 of the phenoxy ring 1-4 were synthesized. In vitro competition binding with [(3)H]nisoxetine demonstrated that 1-4 have a high affinity for the norepinephrine transporter (NET) with K(i)'s = 1.02, 3.14, 3.68, and 0.30 nM, respectively. MicroPET imaging in rhesus monkeys showed that the relative regional distribution of [(11)C]1 and [(11)C]4 is consistent with distribution of the NET in the brain, while [(18)F]2 and [(18)F]3 showed only slight regional differentiation in brain uptake. Especially, the highest ratios of uptake of [(11)C]1 in NET-rich regions to that in caudate were obtained at 1.30-1.45 at 45 min and remained relatively constant over 85 min. Pretreatment of the monkey with the selective NET inhibitor, desipramine, decreased the specific binding for both [(11)C]1 and [(11)C]4. PET imaging in awake monkeys suggested that anesthesia influenced the binding potential of [(11)C]1 and [(11)C]4 at the NET.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Radiology, Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Schou M, Zoghbi SS, Shetty HU, Shchukin E, Liow JS, Hong J, Andrée BA, Gulyás B, Farde L, Innis RB, Pike VW, Halldin C. Investigation of the metabolites of (S,S)-[(11)C]MeNER in humans, monkeys and rats. Mol Imaging Biol 2008; 11:23-30. [PMID: 18800204 DOI: 10.1007/s11307-008-0175-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/20/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION (S,S)-[(11)C]MeNER ((S,S)-2-(alpha-(2-[(11)C]methoxyphenoxy)benzyl)morpholine) is a positron emission tomography (PET) radioligand recently applied in clinical studies of norepinephrine transporters (NETs) in the human brain in vivo. In view of further assessment of the suitability of (S,S)-[(11)C]MeNER as a NET radioligand, its metabolism and the identity of the in vivo radiometabolites of (S,S)-[(11)C]MeNER are of great interest. MATERIALS AND METHODS Thus, PET studies were used to measure brain dynamics of (S,S)-[(11)C]MeNER, and plasma reverse-phase radiochromatographic analysis was performed to monitor and quantify its rate of metabolism. Eighteen healthy human volunteers, five cynomolgus monkeys, and five rats were studied. RESULTS AND DISCUSSION In human subjects, the plasma radioactivity representing (S,S)-[(11)C]MeNER decreased from 88 +/- 5% at 4 min after injection to 82 +/- 7% at 40 min, while a polar radiometabolite increased from 3 +/- 3% to 16 +/- 7% at the same time-points, respectively. A more lipophilic radiometabolite than (S,S)-[(11)C]MeNER decreased from 9 +/- 5% at 4 min to 1 +/- 2% at 40 min. In monkeys, plasma radioactivity representing (S,S)-[(11)C]MeNER decreased from 97 +/- 2% at 4 min to 74 +/- 7% at 45 min, with a polar fraction as the major radiometabolite. A more lipophilic radiometabolite than (S,S)-[(11)C]MeNER, constituted 3 +/- 2% of radioactivity at 4 min and was not detectable later on. In rats, 17 +/- 4% of plasma radioactivity was parent radioligand at 30 min with the remainder comprising mainly a polar radiometabolite. (S,S)-[(11)C]MeNER in rat brain and urine at 30 min after injection were 90% and 4%, respectively. On a brain regional level, parent radioligand ranged from 87.5 +/- 3.9% (57.2 +/- 14.2% SUV [standard uptake values, %injected radioactivity per mL multiplied with animal weight (in g)]; cerebellum) to 92.9 +/- 1.8% (36.1 +/- 4.7% SUV; striatum), with differential distribution of the radiometabolite in the cerebellum (6.7 +/- 0.3% SUV) and the striatum (2.5 +/- 0.3% SUV). Liquid chromatography-mass spectrometry analysis of rat urine identified a hydroxylation product of the methoxyphenoxy ring of (S,S)-MeNER as the main metabolite. In the brain, the corresponding main metabolite was the product from O-de-methylation of (S,S)-MeNER. PET measurements were performed in rats as well as in wild-type and P-gp-knock-out mice. In rats, the brain peak level of radioactivity was found to be very low (65%SUV). In mice, there was only a small difference in peak brain accumulation between P-gp knock-out and wild-type mice (145 vs. 125%SUV) with the following rank order of regional brain radioactivity: cerebellum x thalamus > cortical regions > striatum. CONCLUSION It can be concluded that radiometabolites of (S,S)-[(11)C]MeNER are of minor importance in rat and monkey brain imaging. The presence of a transient lipophilic radiometabolite in peripheral human plasma may induce complications with brain imaging, but its kinetics appear favorable in relation to the slow kinetics of (S,S)-[(11)C]MeNER in humans.
Collapse
Affiliation(s)
- Magnus Schou
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takano A, Varrone A, Gulyás B, Karlsson P, Tauscher J, Halldin C. Mapping of the norepinephrine transporter in the human brain using PET with (S,S)-[18F]FMeNER-D2. Neuroimage 2008; 42:474-82. [DOI: 10.1016/j.neuroimage.2008.05.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/12/2008] [Accepted: 05/15/2008] [Indexed: 12/15/2022] Open
|
29
|
Dalley JW, Fryer TD, Aigbirhio FI, Brichard L, Richards HK, Hong YT, Baron JC, Everitt BJ, Robbins TW. Modelling human drug abuse and addiction with dedicated small animal positron emission tomography. Neuropharmacology 2008; 56 Suppl 1:9-17. [PMID: 18614184 DOI: 10.1016/j.neuropharm.2008.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/16/2008] [Accepted: 05/24/2008] [Indexed: 11/19/2022]
Abstract
Drug addiction is a chronically relapsing brain disorder, which causes substantial harm to the addicted individual and society as a whole. Despite considerable research we still do not understand why some people appear particularly disposed to drug abuse and addiction, nor do we understand how frequently co-morbid brain disorders such as depression and attention-deficit hyperactivity disorder (ADHD) contribute causally to the emergence of addiction-like behaviour. In recent years positron emission tomography (PET) has come of age as a translational neuroimaging technique in the study of drug addiction, ADHD and other psychopathological states in humans. PET provides unparalleled quantitative assessment of the spatial distribution of radiolabelled molecules in the brain and because it is non-invasive permits longitudinal assessment of physiological parameters such as binding potential in the same subject over extended periods of time. However, whilst there are a burgeoning number of human PET experiments in ADHD and drug addiction there is presently a paucity of PET imaging studies in animals despite enormous advances in our understanding of the neurobiology of these disorders based on sophisticated animal models. This article highlights recent examples of successful cross-species convergence of findings from PET studies in the context of drug addiction and ADHD and identifies how small animal PET can more effectively be used to model complex psychiatric disorders involving at their core impaired behavioural self-control.
Collapse
Affiliation(s)
- Jeffrey W Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lakshmi B, Kung MP, Lieberman B, Zhao J, Waterhouse R, Kung HF. (R)-N-Methyl-3-(3-(125)I-pyridin-2-yloxy)-3-phenylpropan-1-amine: a novel probe for norepinephrine transporters. Nucl Med Biol 2007; 35:43-52. [PMID: 18158942 DOI: 10.1016/j.nucmedbio.2007.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 08/30/2007] [Indexed: 11/19/2022]
Abstract
Alterations in serotonin and norepinephrine neuronal functions have been observed in patients with major depression. Several antidepressants bind to both serotonin transporters and norepinephrine transporters (NET). The ability to image NET in the human brain would be a useful step toward understanding how alterations in NET relate to disease. In this study, we report the synthesis and characterization of a new series of derivatives of iodonisoxetine, a known radioiodinated probe. The most promising, (R)-N-methyl-3-(3-iodopyridin-2-yloxy)-3-phenylpropylamine (PYINXT), displayed a high and saturable binding to NET, with a K(d) value of 0.53+/-0.03 nM. Biodistribution studies of (R)-N-methyl-3-(3-(125)I-pyridin-2-yloxy)-3-phenylpropan-1-amine in rats showed moderate initial brain uptake (0.54% dose/organ at 2 min) with a relatively fast washout from the brain (0.16% dose/organ at 2 h) as compared to [(125)I]INXT. The hypothalamus (a NET-rich region)-to-striatum (a region devoid of NET) ratio was found to be 2.14 at 4 h after intravenous injection. Preliminary results suggest that this improved iodinated ligand, when labeled with (123)I, may be useful for mapping NET-binding sites with single photon emission computed tomography in the living human brain.
Collapse
Affiliation(s)
- Balagopal Lakshmi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Biodistribution and radiation dosimetry of the norepinephrine transporter radioligand (S,S)-[18F]FMeNER-D2: a human whole-body PET study. Eur J Nucl Med Mol Imaging 2007; 35:630-6. [DOI: 10.1007/s00259-007-0622-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
|
32
|
Zeng F, Jarkas N, Stehouwer JS, Voll RJ, Owens MJ, Kilts CD, Nemeroff CB, Goodman MM. Synthesis, in vitro characterization, and radiolabeling of reboxetine analogs as potential PET radioligands for imaging the norepinephrine transporter. Bioorg Med Chem 2007; 16:783-93. [PMID: 17983754 DOI: 10.1016/j.bmc.2007.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/02/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Six new (S,S)-enantiomers of reboxetine derivatives were synthesized and their binding affinities were determined via competition binding assays in cells expressing the human norepinephrine transporter (NET), serotonin transporter (SERT) or dopamine transporter (DAT). All six compounds prepared exhibit high affinity for the NET (K(i)<or=2nM) and selectivity versus the SERT and DAT. Radiolabeling methods were also developed to prepare these ligands in moderate to high radiochemical yield with high radiochemical purity via O- or S-methylation with [(11)C]CH(3)I, or O-alkylation with [(18)F]fluoroethyl brosylate or [(18)F]fluoropropyl brosylate, and their logP(7.4) was measured. These new C-11- and F-18-labeled tracers will be utilized in comparative microPET studies to evaluate their potential as PET radioligands for imaging brain NET in nonhuman primates.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Takano A, Gulyás B, Varrone A, Karlsson P, Schou M, Airaksinen AJ, Vandenhende F, Tauscher J, Halldin C. Imaging the norepinephrine transporter with positron emission tomography: initial human studies with (S,S)-[18F]FMeNER-D2. Eur J Nucl Med Mol Imaging 2007; 35:153-7. [PMID: 17909794 DOI: 10.1007/s00259-007-0598-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Accepted: 08/02/2007] [Indexed: 11/29/2022]
Abstract
INTRODUCTION (S,S)-[(18)F]FMeNER-D(2) is a recently developed positron emission tomography (PET) ligand for in vivo quantification of norepinephrine transporter. A monkey occupancy study with the radioligand indicated that (S,S)-[(18)F]FMeNER-D(2) can be useful for quantitative PET analysis. In this preliminary study, regional distributions in the living human brain were evaluated. MATERIALS AND METHODS Brain PET measurements were performed for a total of 255 min after the injection of 188.3 +/- 5.7 MBq of (S,S)-[(18)F]FMeNER-D(2) in four healthy male subjects. Regions of interests were drawn on the thalamus and the caudate in the coregistered MRI/PET images. RESULTS (S,S)-[(18)F]FMeNER-D(2) displayed good brain penetration and selective retention in regions rich in norepinephrine reuptake sites. The transient peak equilibrium was reached during the PET measurements. The ratios of radioactivity uptake in the thalamus to that in the caudate were 1.50 +/- 0.06 for the time period of 90-255 min. CONCLUSION The present preliminary investigation indicates that (S,S)-[(18)F]FMeNER-D(2) has suitable characteristics for probing the norepinephrine reuptake system with PET in the human brain.
Collapse
Affiliation(s)
- Akihiro Takano
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Smith DF, Jakobsen S. Stereoselective neuroimaging in vivo. Eur Neuropsychopharmacol 2007; 17:507-22. [PMID: 17368004 DOI: 10.1016/j.euroneuro.2007.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 01/17/2007] [Accepted: 02/06/2007] [Indexed: 01/08/2023]
Abstract
Stereoselectivity is a basic property of many neuronal processes due to the spatial features of molecules involved in neurotransmission. Today, neuroimaging procedures are available for studying stereoselectivity in the living brain. Mirror-image radiotracers are the molecular tools that are used, together with single photon emission tomography (SPECT) and positron emission tomography (PET), for studying stereoselective neuronal mechanisms. This review presents the findings obtained in those studies of cholinergic, noradrenergic, dopaminergic, serotonergic, glutamatergic, opioid, cannabinoid, and second messenger neurotransmission.
Collapse
Affiliation(s)
- Donald F Smith
- Center for Psychiatric Research, Psychiatric Hospital of Aarhus University, 8240 Risskov, Denmark.
| | | |
Collapse
|
35
|
Logan J, Wang GJ, Telang F, Fowler JS, Alexoff D, Zabroski J, Jayne M, Hubbard B, King P, Carter P, Shea C, Xu Y, Muench L, Schlyer D, Learned-Coughlin S, Cosson V, Volkow ND, Ding YS. Imaging the norepinephrine transporter in humans with (S,S)-[11C]O-methyl reboxetine and PET: problems and progress. Nucl Med Biol 2007; 34:667-79. [PMID: 17707807 DOI: 10.1016/j.nucmedbio.2007.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/03/2007] [Accepted: 03/27/2007] [Indexed: 11/22/2022]
Abstract
UNLABELLED Results from human studies with the PET radiotracer (S,S)-[(11)C]O-methyl reboxetine ([(11)C](S,S)-MRB), a ligand targeting the norepinephrine transporter (NET), are reported. Quantification methods were determined from test/retest studies, and sensitivity to pharmacological blockade was tested with different doses of atomoxetine (ATX), a drug that binds to the NET with high affinity (K(i)=2-5 nM). METHODS Twenty-four male subjects were divided into different groups for serial 90-min PET studies with [(11)C](S,S)-MRB to assess reproducibility and the effect of blocking with different doses of ATX (25, 50 and 100 mg, po). Region-of-interest uptake data and arterial plasma input were analyzed for the distribution volume (DV). Images were normalized to a template, and average parametric images for each group were formed. RESULTS [(11)C](S,S)-MRB uptake was highest in the thalamus (THL) and the midbrain (MBR) [containing the locus coeruleus (LC)] and lowest for the caudate nucleus (CDT). The CDT, a region with low NET, showed the smallest change on ATX treatment and was used as a reference region for the DV ratio (DVR). The baseline average DVR was 1.48 for both the THL and MBR with lower values for other regions [cerebellum (CB), 1.09; cingulate gyrus (CNG) 1.07]. However, more accurate information about relative densities came from the blocking studies. MBR exhibited greater blocking than THL, indicating a transporter density approximately 40% greater than THL. No relationship was found between DVR change and plasma ATX level. Although the higher dose tended to induce a greater decrease than the lower dose for MBR (average decrease for 25 mg=24+/-7%; 100 mg=31+/-11%), these differences were not significant. The different blocking between MBR (average decrease=28+/-10%) and THL (average decrease=17+/-10%) given the same baseline DVR indicates that the CDT is not a good measure for non-NET binding in both regions. Threshold analysis of the difference between the average baseline DV image and the average blocked image showed the expected NET distribution with the MBR (LC) and hypothalamus>THL>CNG and CB, as well as a significant change in the supplementary motor area. DVR reproducibility for the different brain regions was approximately 10%, but intersubject variability was large. CONCLUSIONS The highest density of NETs was found in the MBR where the LC is located, followed by THL, whereas the lowest density was found in basal ganglia (lowest in CDT), consistent with the regional localization of NETs in the nonhuman primate brain. While all three doses of ATX were found to block most regions, no significant differences between doses were found for any region, although the average percent change across subjects of the MBR did correlate with ATX dose. The lack of a dose effect could reflect a low signal-to-noise ratio coupled with the possibility that a sufficient number of transporters were blocked at the lowest dose and further differences could not be detected. However, since the lowest (25 mg) dose is less than the therapeutic doses used in children for the treatment of attention-deficit/hyperactivity disorder ( approximately 1.0 mg/kg/day), this would suggest that there may be additional targets for ATX's therapeutic actions.
Collapse
Affiliation(s)
- Jean Logan
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zeng F, Stehouwer JS, Jarkas N, Voll RJ, Williams L, Camp VM, Votaw JR, Owens MJ, Kilts CD, Nemeroff CB, Goodman MM. Synthesis and biological evaluation of 2β,3α-(substituted phenyl)nortropanes as potential norepinephrine transporter imaging agents. Bioorg Med Chem Lett 2007; 17:3044-7. [PMID: 17446069 DOI: 10.1016/j.bmcl.2007.03.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
A series of 2beta,3alpha-(substituted phenyl)nortropanes was synthesized and evaluated in vitro for human monoamine transporters. All compounds studied in this series exhibited nanomolar potency for the norepinephrine transporter (NET). Radiolabeling and nonhuman primate microPET brain imaging studies were performed with the most promising compound, [(11)C]1, to determine its utility as a NET imaging agent. Despite high in vitro affinity for the human NET, the high uptake of [(11)C]1 in the caudate and putamen excludes its use as an in vivo PET imaging agent for the NET.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Radiology, Division of Radiological Sciences, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schou M, Pike VW, Sóvágó J, Gulyás B, Gallagher PT, Dobson DR, Walter MW, Rudyk H, Farde L, Halldin C. Synthesis of 11C-labelled (R)-OHDMI and CFMME and their evaluation as candidate radioligands for imaging central norepinephrine transporters with PET. Bioorg Med Chem 2007; 15:616-25. [PMID: 17123820 DOI: 10.1016/j.bmc.2006.10.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/23/2006] [Accepted: 10/31/2006] [Indexed: 12/24/2022]
Abstract
(R)-1-(10,11-Dihydro-dibenzo[b,f]azepin-5-yl)-3-methylamino-propan-2-ol ((R)-OHDMI) and (S,S)-1-cyclopentyl-2-(5-fluoro-2-methoxy-phenyl)-1-morpholin-2-yl-ethanol (CFMME) were synthesized and found to be potent inhibitors of norepinephrine reuptake. Each was labelled efficiently in its methyl group with carbon-11 (t(1/2)=20.4 min) as a prospective radioligand for imaging brain norepinephrine transporters (NET) with positron emission tomography (PET). The uptake and distribution of radioactivity in brain following intravenous injection of each radioligand into cynomolgus monkey was examined in vivo with PET. After injection of (R)-[(11)C]OHDMI, the maximal whole brain uptake of radioactivity was very low (1.1% of injected dose; I.D.). For occipital cortex, thalamus, lower brainstem, mesencephalon and cerebellum, radioactivity ratios to striatum at 93 min after radioligand injection were 1.35, 1.35, 1.2, 1.2 and 1.0, respectively. After injection of [(11)C]CFMME, radioactivity readily entered brain (3.5% I.D.). Ratios of radioactivity to cerebellum at 93 min for thalamus, occipital cortex, region of locus coeruleus, mesencephalon and striatum were 1.35, 1.3, 1.3, 1.2 and 1.2, respectively. Radioactive metabolites in plasma were measured by radio-HPLC. (R)-[(11)C]OHDMI represented 75% of plasma radioactivity at 4 min after injection and 6% at 30 min. After injection of [(11)C]CFMME, 84% of the radioactivity in plasma represented parent at 4 min and 20% at 30 min. Since the two new hydroxylated radioligands provide only modest regional differentiation in brain uptake and form potentially troublesome lipophilic radioactive metabolites, they are concluded to be inferior to existing radioligands, such as (S,S)-[(11)C]MeNER, (S,S)-[(18)F]FMeNER-D(2) and (S,S)-[(18)F]FRB-D(4), for the study of brain NETs with PET in vivo.
Collapse
Affiliation(s)
- Magnus Schou
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Severance AJ, Milak MS, Kumar JSD, Prabhakaran J, Majo VJ, Simpson NR, Van Heertum RL, Arango V, Mann JJ, Parsey RV. In vivo assessment of [11C]MRB as a prospective PET ligand for imaging the norepinephrine transporter. Eur J Nucl Med Mol Imaging 2006; 34:688-693. [PMID: 17180600 DOI: 10.1007/s00259-006-0312-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 10/12/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE Antagonism of norepinephrine reuptake is now an important pharmacological strategy in the treatment of anxiety and depressive disorders, and many antidepressants have substantial potential occupancy of the norepinephrine transporter (NET) at recommended dosages. Despite the importance of understanding this transporter's role in psychiatric disease and treatment, a suitable radioligand for studying NET has been slow to emerge. (S,S)-Methylreboxetine (MRB) is among the more promising ligands recently adapted for positron emission tomography (PET), and the present study aimed to evaluate its potential for use in higher primates. METHODS Affinities for various brain targets were determined in vitro. PET studies were conducted in baboon under both test-retest and blocking conditions using 1 mg/kg nisoxetine. RESULTS MRB has sixfold higher affinity for NET than the serotonin transporter, and negligible affinity for other sites. PET studies in baboons showed little regional heterogeneity in binding and were minimally affected by pretreatment with the NET antagonist nisoxetine. CONCLUSION Despite improvement over previous ligands for imaging NET in vivo, the low signal to noise ratio indicates [(11)C]MRB lacks sensitivity and reliability as a PET radiotracer in humans.
Collapse
Affiliation(s)
- Alin J Severance
- Division of Brain Imaging, Department of Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box #42, New York, NY, 10032, USA
| | - Matthew S Milak
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Brain Imaging, Department of Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box #42, New York, NY, 10032, USA
| | - J S Dileep Kumar
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Brain Imaging, Department of Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box #42, New York, NY, 10032, USA
| | - Jaya Prabhakaran
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Vattoly J Majo
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Norman R Simpson
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Ronald L Van Heertum
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Victoria Arango
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Brain Imaging, Department of Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box #42, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Brain Imaging, Department of Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box #42, New York, NY, 10032, USA
| | - Ramin V Parsey
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA.
- Division of Brain Imaging, Department of Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, P.O. Box #42, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Tamagnan GD, Brenner E, Alagille D, Staley JK, Haile C, Koren A, Early M, Baldwin RM, Tarazi FI, Baldessarini RJ, Jarkas N, Goodman MM, Seibyl JP. Development of SPECT imaging agents for the norepinephrine transporters: [123I]INER. Bioorg Med Chem Lett 2006; 17:533-7. [PMID: 17095215 PMCID: PMC1806685 DOI: 10.1016/j.bmcl.2006.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/16/2022]
Abstract
A series of reboxetine analogs was synthesized and evaluated for in vitro binding as racemic mixtures. The best candidate (INER) was synthesized as the optically pure (S,S) enantiomer, labeled with iodine-123 and its in vivo binding determined by SPECT imaging in baboons. The in vivo specificity, selectivity, and kinetics of [123I]INER make it a promising agent for imaging NET in vivo by noninvasive SPECT imaging.
Collapse
|
40
|
Seneca N, Gulyás B, Varrone A, Schou M, Airaksinen A, Tauscher J, Vandenhende F, Kielbasa W, Farde L, Innis RB, Halldin C. Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S,S)-[18F]FMeNER-D2. Psychopharmacology (Berl) 2006; 188:119-27. [PMID: 16896954 DOI: 10.1007/s00213-006-0483-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 06/16/2006] [Indexed: 12/23/2022]
Abstract
RATIONALE Atomoxetine is a potent and selective norepinephrine transporter (NET) reuptake inhibitor acting as a nonstimulant for the treatment of attention-deficit/hyperactivity disorder (ADHD). Previous positron emission tomography (PET) studies had failed to demonstrate the feasibility of measuring a dose-dependent and saturable NET occupancy in human brain using [11C]MeNER. OBJECTIVES To determine if atomoxetine occupies NET in a dose-dependent fashion using (S,S)-[18F]FMeNER-D2 in nonhuman primate brain. METHODS A total of eight PET measurements were performed in two cynomolgus monkeys. Each monkey was examined four times with PET: under baseline conditions and after steady-state infusion with 0.03, 0.06, or 0.12 mg/kg/h of atomoxetine. A prolonged intravenous (i.v.) infusion design was developed rather than an i.v. bolus to better mimic an oral absorption profile and to reach plasma steady state. RESULTS During baseline conditions, (S,S)-[18F]FMeNER-D2 uptake was highest in the locus coeruleus, thalamus, mesencephalon, and the cingulate gyrus, whereas the radioactivity in the caudate was low. Peak equilibrium measurements were achieved using (S,S)-[18F]FMeNER-D2 in contrast to the previously reported data for [11C]MeNER. After administration of atomoxetine, a dose-dependent occupancy from 38 to 82% was observed for various brain regions known to contain high densities of NET. CONCLUSIONS This is the first in vivo PET study to successfully demonstrate the ability to measure a dose-dependent change in NET occupancy in brain using (S,S)-[18F]FMeNER-D2. Furthermore, an asymptotic relationship between N-desmethylatomoxetine plasma concentration and NET occupancy was established. In total, these data encourage further PET studies using (S,S)-[18F]FMeNER-D2 in humans.
Collapse
Affiliation(s)
- Nicholas Seneca
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Karolinska Hospital, S-17176, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Madras BK, Xie Z, Lin Z, Jassen A, Panas H, Lynch L, Johnson R, Livni E, Spencer TJ, Bonab AA, Miller GM, Fischman AJ. Modafinil Occupies Dopamine and Norepinephrine Transporters in Vivo and Modulates the Transporters and Trace Amine Activity in Vitro. J Pharmacol Exp Ther 2006; 319:561-9. [PMID: 16885432 DOI: 10.1124/jpet.106.106583] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-[(Diphenylmethyl) sulfinyl]acetamide (modafinil), prescribed principally to treat narcolepsy, is undergoing assessment for other neuropsychiatric disorders and medical conditions. The neurochemical substrates of modafinil are unresolved. We postulated that modafinil enhances wakefulness by modulating dopamine (DAT), norepinephrine (NET), or serotonin (SERT) transporter activities. In vivo, we determined DAT and NET occupancy by modafinil by positron emission tomography imaging; in vitro, we determined modafinil activity at the DAT, NET, SERT, and rhesus monkey trace amine receptor 1 (TA1). In rhesus monkey, modafinil occupancy of striatal DAT was detected by [(11)C]2beta-carbomethoxy-3beta-4-(fluorophenyl)tropane and of thalamic NET by [(11)C](S,S)-2-(alpha-(2-methoxyphenoxy)-benzyl)morpholine. In vitro, modafinil effects in DAT-human embryonic kidney (HEK), NET-HEK, and SERT-HEK cells were investigated alone or combined with the TA1 receptor. Modafinil (i.v.) occupied striatal DAT sites (5 mg/kg: 35 +/- 12%, n = 4; 8 mg/kg: 54 +/- 3%, n = 3). In thalamus, modafinil occupied NET sites (5 mg/kg: 16 +/- 7.8%, n = 6; 8 mg/kg: 44 +/- 12%; n = 2). In vitro, modafinil inhibited [(3)H]dopamine (IC(50) = 6.4 microM), [(3)H]norepinephrine (IC(50) = 35.6 microM), and [(3)H]serotonin (IC(50) > 500 microM) transport via the human DAT, NET, and SERT. Modafinil did not activate the TA1 receptor in TA1-HEK cells, but it augmented a monoamine transporter-dependent enhancement of phenethylamine activation of TA1 in TA1-DAT and TA1-NET cells, but not in TA1-SERT cells. The present data provide compelling evidence that modafinil occupies the DAT and NET in living brain of rhesus monkeys and raise the possibility that modafinil affects wakefulness by interacting with catecholamine transporters in brain.
Collapse
Affiliation(s)
- Bertha K Madras
- Department of Psychiatry, Harvard Medical School, New England Primate Research Center, 1 Pine Hill Dr., Southborough, MA 01772-9102, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Musachio JL, Hong J, Ichise M, Seneca N, Brown AK, Liow JS, Halldin C, Innis RB, Pike VW, He R, Zhou J, Kozikowski AP. Development of new brain imaging agents based upon nocaine-modafinil hybrid monoamine transporter inhibitors. Bioorg Med Chem Lett 2006; 16:3101-4. [PMID: 16621532 DOI: 10.1016/j.bmcl.2006.03.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 03/21/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
11C-labeled (+)-trans-2-[[(3R,4S)-4-(4-chlorophenyl)-1-methylpiperidin-3-yl]methylsulfanyl]ethanol ([11C]5) and (+)-trans-2-[[(3R,4S)-4-(4-chlorophenyl)-1-methylpiperidin-3-yl]methylsulfanyl]-1-(piperidin-1-yl)ethanone ([11C]6) were synthesized and evaluated as new imaging agents for the norepinephrine transporter (NET). [11C]5 and [11C]6 display high affinity for the NET in vitro (Ki = 0.94 and 0.68 nM, respectively) and significant selectivity over the dopamine (DAT) and serotonin transporters (SERT). Because of their high affinity and favorable transporter selectivities we speculated that these ligands might serve as useful PET agents for imaging NET in vivo. Contrary to our expectations, both of these ligands provided brain images that were more typical of those shown by agents binding to the DAT.
Collapse
Affiliation(s)
- John L Musachio
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346, 10 Center Drive, Bethesda, MD 20892-1003, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ding YS, Fowler J. New-generation radiotracers for nAChR and NET. Nucl Med Biol 2006; 32:707-18. [PMID: 16243646 DOI: 10.1016/j.nucmedbio.2005.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/29/2005] [Accepted: 04/30/2005] [Indexed: 01/10/2023]
Abstract
Advances in radiotracer chemistry and instrumentation have merged to make positron emission tomography (PET) a powerful tool in the biomedical sciences. Positron emission tomography has found increased application in the study of drugs affecting the brain and whole body, including the measurement of drug pharmacokinetics (using a positron-emitter-labeled drug) and drug pharmacodynamics (using a labeled tracer). Thus, radiotracers are major scientific tools enabling investigations of molecular phenomena, which are at the heart of understanding human disease and developing effective treatments; however, there is evidently a bottleneck in translating basic research to clinical practice. In the meantime, the poor ability to predict the in vivo behavior of chemical compounds based on their log P's and affinities emphasizes the need for more knowledge in this area. In this article, we focus on the development and translation of radiotracers for PET studies of the nicotinic acetylcholine receptor (nAChR) and the norepinephrine transporter (NET), two molecular systems that urgently need such an important tool to better understand their functional significance in the living human brain.
Collapse
Affiliation(s)
- Yu-Shin Ding
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | |
Collapse
|
44
|
Kanegawa N, Kiyono Y, Kimura H, Sugita T, Kajiyama S, Kawashima H, Ueda M, Kuge Y, Saji H. Synthesis and evaluation of radioiodinated (S,S)-2-(α-(2-iodophenoxy)benzyl)morpholine for imaging brain norepinephrine transporter. Eur J Nucl Med Mol Imaging 2006; 33:639-47. [PMID: 16523308 DOI: 10.1007/s00259-005-0017-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/28/2005] [Indexed: 10/24/2022]
Abstract
PURPOSE Abnormality of the brain norepinephrine transporter (NET) has been reported in several psychiatric and neuronal disorders. Since NET is an important target for the diagnosis of these diseases, the development of radiopharmaceuticals for imaging of brain NET has been eagerly awaited. In this study, we synthesized (S,S)-2-(alpha-(2-iodophenoxy)benzyl)morpholine [(S,S)-IPBM], a derivative of reboxetine iodinated at position 2 of the phenoxy ring, and evaluated its potential as a radiopharmaceutical for imaging brain NET using SPECT. METHODS (S,S)-(123/125)I-IPBM was synthesized in a halogen exchange reaction. The affinity and selectivity of (S,S)-IPBM for NET was measured by assaying the displacement of (3)H-nisoxetine and (S,S)-(125)I-IPBM from the binding site in rat brain membrane, respectively. The biodistribution of (S,S)-(125)I-IPBM was also determined in rats. Furthermore, SPECT studies with (S,S)-(123)I-IPBM were carried out in the common marmoset. RESULTS (S,S)-(125)I-IPBM was prepared with high radiochemical yields (65%) and high radiochemical purity (>98%). (S,S)-IPBM showed high affinity and selectivity for NET in the binding assay experiments. In biodistribution experiments, (S,S)-(125)I-IPBM showed rapid uptake in the brain, and the regional cerebral distribution was consistent with the density of NET. The administration of nisoxetine, a selective NET-binding agent, decreased the accumulation of (S,S)-(125)I-IPBM in the brain, but the administration of selective serotonin transporter and dopamine transporter binding agents caused no significant changes in the accumulation. Moreover, (S,S)-(123)I-IPBM allowed brain NET imaging in the common marmoset with SPECT. CONCLUSION These results suggest that (S,S)-(123)I-IPBM is a potential SPECT radiopharmaceutical for imaging brain NET.
Collapse
Affiliation(s)
- Naoki Kanegawa
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schou M, Pike VW, Varrone A, Gulyás B, Farde L, Halldin C. Synthesis and PET evaluation of (R)-[S-methyl-11C]thionisoxetine, a candidate radioligand for imaging brain norepinephrine transporters. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.1128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Logan J, Ding YS, Lin KS, Pareto D, Fowler J, Biegon A. Modeling and analysis of PET studies with norepinephrine transporter ligands: the search for a reference region. Nucl Med Biol 2005; 32:531-42. [PMID: 15982584 DOI: 10.1016/j.nucmedbio.2005.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 11/24/2022]
Abstract
UNLABELLED The development of positron emission tomography (PET) ligands for the norepinephrine transporter (NET) has been slow compared to the development of radiotracers for others systems, such as the dopamine (DAT) or the serotonin transporters (SERT). The main reason for this appears to be the high nonspecific (non-NET) binding exhibited by many of these tracers, which makes the identification of a reference region difficult. With other PET ligands the use of a reference region increases the reproducibility of the outcome measure in test/retest studies. The focus of this work is to identify a suitable reference region or means of normalizing data for the NET ligands investigated. METHODS We have analyzed the results of PET studies in the baboon brain with labeled reboxetine derivatives (S,S)-[(11)C]O-methyl reboxetine (SS-MRB), (S,S)-[(18)F]fluororeboxetine (SS-FRB) as well as O-[(11)C]nisoxetine and N-[(11)C]nisoxetine (NIS), and, for comparison, the less active (R,R) enantiomers (RR-MRB, RR-FRB) in terms of the distribution volume (DV) using measured arterial input functions. RESULTS (1) For a given subject, a large variation in DV for successive baseline studies was observed in regions with both high and low NET density. (2) The occipital cortex and the basal ganglia were found to be the regions with the smallest change between baseline (SS-MRB) and pretreatment with cocaine, and were therefore used as a composite reference region for calculation of a distribution volume ratio (DVR). (3) The variability [as measured by the coefficient of variation (CV) = standard deviation/mean] in the distribution volume ratio (DVR) of thalamus (to reference region) was considerably reduced over that of the DV using this composite reference region. (4) Pretreatment with nisoxetine (1.0 mg/kg 10 min prior to tracer) in one study produced (in decreasing order) reductions in thalamus, cerebellum, cingulate and frontal cortex consistent with known NET densities. (5) [(11)C]Nisoxetine had a higher background non-NET binding (DV) than the other tracers reported here with basal ganglia (a non-NET region) higher than thalamus. CONCLUSIONS The reboxetine derivatives show a lot of promise as tracers for human PET studies of the norepinephrine system. We have identified a strategy for normalizing DVs to a reference region with the understanding that the DVR for these tracers may not be related to the binding potential in the same way as, for example, for the dopamine tracers, since the non-NET binding may differ between the target and nontarget regions. From our baboon studies the average DVR for thalamus (n = 18) for SS-MRB is 1.8; however, the lower limit is most likely less than 1 due to this difference in non-NET binding.
Collapse
Affiliation(s)
- Jean Logan
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Schou M, Sóvágó J, Pike VW, Gulyás B, Bøgesø KP, Farde L, Halldin C. Synthesis and Positron Emission Tomography Evaluation of Three Norepinephrine Transporter Radioligands: [C-11]Desipramine, [C-11]Talopram and [C-11]Talsupram. Mol Imaging Biol 2005; 8:1-8. [PMID: 16322935 DOI: 10.1007/s11307-005-0027-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Desipramine (DMI), talopram and talsupram, three of the most potent norepinephrine transporter (NET) inhibitors reported to date, were radiolabeled in high yields and at high specific radioactivity (58-75 GBq/micromol) by the methylation of nor-precursors with [C-11]methyl triflate. The regional brain distribution of each radioligand following intravenous injection into cynomolgus monkey was examined in vivo with positron emission tomography (PET). For all three radioligands, the regional brain distribution of radioactivity was slightly heterogeneous, with higher uptake of radioactivity in the mesencephalon, thalamus and lower brainstem than in striatum. The rank order of maximal brain radioactivity (as percentage of injected dose) was [C-11]DMI (2.7%) > [C-11]talsupram (1.3%) > [C-11]talopram (0.7%). The appearance of radioactive metabolites in plasma was similar for each radioligand (75-85% of radioactivity in plasma at 45 min). These metabolites were all more polar than their parent radioligand. The data show that these radioligands are inferior to existing radioligands for the study of brain NET with PET in vivo.
Collapse
Affiliation(s)
- Magnus Schou
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
48
|
Lin KS, Ding YS, Kim SW, Kil KE. Synthesis, enantiomeric resolution, F-18 labeling and biodistribution of reboxetine analogs: promising radioligands for imaging the norepinephrine transporter with positron emission tomography. Nucl Med Biol 2005; 32:415-22. [PMID: 15878511 DOI: 10.1016/j.nucmedbio.2005.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 01/06/2023]
Abstract
Racemic and enantiomerically pure ((S,S) and (R,R)) 2-[alpha-(2-(2-[(18)F]fluoroethoxy)phenoxy)benzyl]morpholine ([(18)F]FRB) and its tetradeuterated form [(18)F]FRB-D(4), analogs of the highly selective norepinephrine reuptake inhibitor reboxetine (2-[alpha-(2-ethoxyphenoxy)benzyl]morpholine, RB), have been synthesized for studies of norepinephrine transporter (NET) system with positron emission tomography (PET). The [(18)F]fluorinated precursor, (S,S)/(R,R)-N-tert-butyloxycarbonyl-2-[alpha-(2-hydroxyphenoxy)benzyl]morpholine ((S,S)/(R,R)-N-Boc-desethylRB), was prepared by the N-protection of (S,S)/(R,R)-2-[alpha-(2-hydroxyphenoxy)benzyl]morpholine ((S,S)/(R,R)-desethylRB) with a tert-butyloxycarbonyl (Boc) group followed by enantiomeric resolution with chiral HPLC to provide both (S,S) and (R,R) enantiomers with >99% enantiomeric purity. These compounds were then used for radiosynthesis to prepare enantiomerically pure [(18)F]FRB and [(18)F]FRB-D(4) via the following three-step procedure: (1) formation of 1-bromo-2-[(18)F]fluoroethane ([(18)F]BFE or [(18)F]BFE-D(4)) by nucleophilic displacement of 2-bromoethyl triflate (or D(4) analog) with no-carrier added [(18)F]F(-) in THF; (2) reaction of [(18)F]BFE (or [(18)F]BFE-D(4)) with N-Boc-desethylRB in DMF in the presence of excess base; and (3) deprotection with trifluoroacetic acid. The racemates, (S,S) and (R,R) enantiomers of [(18)F]FRB and [(18)F]FRB-D(4) were obtained in 11-27% (decay corrected to the end of bombardment, EOB) in 120-min synthesis time with a radiochemical purity of >98% and specific activities of 21-48 GBq/micromol (EOB). The results of the whole-body biodistribution studies with (S,S)-[(18)F]FRB-D(4) were similar to those with (S,S)-[(18)F]FRB but showed relatively faster blood clearance and no significant in vivo defluorination. Positron emission tomography studies in baboon brain also showed that (S,S)-[(18)F]FRB-D(4) may be a potentially useful ligand for imaging NET with PET.
Collapse
Affiliation(s)
- Kuo-Shyan Lin
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | |
Collapse
|
49
|
Schou M, Halldin C, Pike VW, Mozley PD, Dobson D, Innis RB, Farde L, Hall H. Post-mortem human brain autoradiography of the norepinephrine transporter using (S,S)-[18F]FMeNER-D2. Eur Neuropsychopharmacol 2005; 15:517-20. [PMID: 16139169 DOI: 10.1016/j.euroneuro.2005.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Revised: 01/07/2005] [Accepted: 01/11/2005] [Indexed: 10/25/2022]
Abstract
The binding of the norepinephrine transporter radioligand, (S,S)-[18F]FMeNER-D2, to human brain post-mortem was examined in vitro by whole hemisphere autoradiography. The rank order for the density of labelling was: locus coeruleus>>cortex approximately cerebellum approximately thalamus>caudate approximately putamen. The NET-selectivity of binding was confirmed by co-incubation with desipramine. The dual NET/SERT inhibitor duloxetine also inhibited specific binding, whereas PE2I or citalopram had no evident effect.
Collapse
Affiliation(s)
- Magnus Schou
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bieck PR, Potter WZ. BIOMARKERS IN PSYCHOTROPIC DRUG DEVELOPMENT: Integration of Data across Multiple Domains. Annu Rev Pharmacol Toxicol 2005; 45:227-46. [PMID: 15822176 DOI: 10.1146/annurev.pharmtox.45.120403.095758] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the current status of biomarkers and/or approaches critical to assessing novel neuroscience targets with an emphasis on new paradigms and challenges in this field of research. The importance of biomarker data integration for psychotropic drug development is illustrated with examples for clinically used medications and investigational drugs. The question remains how to verify access to the brain. Early imaging studies including micro-PET can help to overcome this. However, in case of delayed tracer development or because of no feasible application of brain imaging effects of the molecule, using CSF as a matrix could fill this gap. Proteomic research using CSF will hopefully have a major impact on the development of treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Peter R Bieck
- Eli Lilly & Company, Neuroscience Therapeutic Area, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | |
Collapse
|