1
|
Humińska-Lisowska K. Dopamine in Sports: A Narrative Review on the Genetic and Epigenetic Factors Shaping Personality and Athletic Performance. Int J Mol Sci 2024; 25:11602. [PMID: 39519153 PMCID: PMC11546834 DOI: 10.3390/ijms252111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review examines the relationship between dopamine-related genetic polymorphisms, personality traits, and athletic success. Advances in sports genetics have identified specific single nucleotide polymorphisms (SNPs) in dopamine-related genes linked to personality traits crucial for athletic performance, such as motivation, cognitive function, and emotional resilience. This review clarifies how genetic variations can influence athletic predisposition through dopaminergic pathways and environmental interactions. Key findings reveal associations between specific SNPs and enhanced performance in various sports. For example, polymorphisms such as COMT Val158Met rs4680 and BDNF Val66Met rs6265 are associated with traits that could benefit performance, such as increased focus, stress resilience and conscientiousness, especially in martial arts. DRD3 rs167771 is associated with higher agreeableness, benefiting teamwork in sports like football. This synthesis underscores the multidimensional role of genetics in shaping athletic ability and advocates for integrating genetic profiling into personalized training to optimize performance and well-being. However, research gaps remain, including the need for standardized training protocols and exploring gene-environment interactions in diverse populations. Future studies should focus on how genetic and epigenetic factors can inform tailored interventions to enhance both physical and psychological aspects of athletic performance. By bridging genetics, personality psychology, and exercise science, this review paves the way for innovative training and performance optimization strategies.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| |
Collapse
|
2
|
Walser M, Karlsson L, Motalleb R, Isgaard J, Kuhn HG, Svensson J, Åberg ND. Running in mice increases the expression of brain hemoglobin-related genes interacting with the GH/IGF-1 system. Sci Rep 2024; 14:25464. [PMID: 39462081 PMCID: PMC11513053 DOI: 10.1038/s41598-024-77489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
The beneficial effects of exercise are partly mediated via local or systemic functions of the insulin-like growth factor-1 (IGF-1) system. As IGF-1 increases local brain hemoglobin beta (Hbb) transcripts, we hypothesized that exercise could have similar effects. Mice were single-housed with free access to running wheels for seven days. After sacrifice and saline perfusion, the expression of 13 genes was quantified using real-time quantitative polymerase chain reaction (RT-qPCR) in three brain regions: the prefrontal cortex, motor cortex, and hippocampus. In addition, plasma insulin, glucose, homeostatic model assessment of IR (HOMA-IR), C-peptide, and IGF-1 were investigated. We show that hemoglobin-related transcripts (Hbb and 5'-aminolevulinate synthase 2 [Alas2]) increased 46-63% in the running group, while IGF-1-related genes [Igf1 / growth hormone receptor (Ghr)] decreased slightly (7%). There were also moderate to large correlations between Hbb- and IGF-1-related genes in the running group but not in the sedentary group. HOMA-IR, plasma glucose, and insulin changed marginally and non-significantly, but there was a trend toward an increase in plasma-IGF-1 in the running group. In conclusion, seven days of running increased Hbb-related transcripts in three brain regions. Hbb-related transcripts correlated with components of the brain IGF-1 system only in the running group.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Department of Clinical Chemistry, Sahlgrenska University Hospital, Laboratory of Experimental Endocrinology, Bruna Stråket 16, 413 45 , Gothenburg, Sweden.
| | - Lars Karlsson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jörgen Isgaard
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johan Svensson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Specialist Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - N David Åberg
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Acute Medicine and Geriatrics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Stepanichev MY, Onufriev MV, Moiseeva YV, Nedogreeva OA, Novikova MR, Kostryukov PA, Lazareva NA, Manolova AO, Mamedova DI, Ovchinnikova VO, Kastberger B, Winter S, Gulyaeva NV. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines 2024; 12:2261. [PMID: 39457574 PMCID: PMC11503999 DOI: 10.3390/biomedicines12102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation stress in aging SHRs on their cognitive functions and response to acute stress, as well as the influence of the chronic oral intake of N-Pep-Zn, the Zn derivative of N-PEP-12. METHODS Nine-month-old SHRs were subjected to social isolation for 3 months (SHRiso group), and one group received N-pep-Zn orally (SHRisoP, 1.5 mg/100 g BW). SHRs housed in groups served as the control (SHRsoc). The behavioral study included the following tests: sucrose preference, open field, elevated plus maze, three-chamber sociability and social novelty and spatial learning and memory in a Barnes maze. Levels of corticosterone, glucose and proinflammatory cytokines in blood plasma as well as salivary amylase activity were measured. Restraint (60 min) was used to test acute stress response. RESULTS Isolation negatively affected the SHRs learning and memory in the Barnes maze, while the treatment of isolated rats with N-Pep-Zn improved their long-term memory and working memory impairments, making the SHRisoP comparable to the SHRsoc group. Acute stress induced a decrease in the relative thymus weight in the SHRiso group (but not SHRsoc), whereas treatment with N-Pep-Zn prevented thymus involution. N-pep-Zn mitigated the increment in blood cortisol and glucose levels induced by acute stress. CONCLUSIONS N-pep-Zn enhanced the adaptive capabilities towards chronic (isolation) and acute (immobilization) stress in aged SHRs and prevented cognitive disturbances induced by chronic isolation, probably affecting the hypothalamo-pituitary-adrenal, sympathetic, and immune systems.
Collapse
Affiliation(s)
- Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Margarita R. Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anna O. Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Diana I. Mamedova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Victoria O. Ovchinnikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Stefan Winter
- Ever Pharma, Oberburgau 3, 4866 Unterach am Attersee, Austria
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| |
Collapse
|
4
|
Guan J, Sun Y, Fan Y, Liang J, Liu C, Yu H, Liu J. Effects and neural mechanisms of different physical activity on major depressive disorder based on cerebral multimodality monitoring: a narrative review. Front Hum Neurosci 2024; 18:1406670. [PMID: 39188405 PMCID: PMC11345241 DOI: 10.3389/fnhum.2024.1406670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 08/28/2024] Open
Abstract
Major depressive disorder (MDD) is currently the most common psychiatric disorder in the world. It characterized by a high incidence of disease with the symptoms like depressed mood, slowed thinking, and reduced cognitive function. Without timely intervention, there is a 20-30% risk of conversion to treatment-resistant depression (TRD) and a high burden for the patient, family and society. Numerous studies have shown that physical activity (PA) is a non-pharmacological treatment that can significantly improve the mental status of patients with MDD and has positive effects on cognitive function, sleep status, and brain plasticity. However, the physiological and psychological effects of different types of PA on individuals vary, and the dosage profile of PA in improving symptoms in patients with MDD has not been elucidated. In most current studies of MDD, PA can be categorized as continuous endurance training (ECT), explosive interval training (EIT), resistance strength training (RST), and mind-body training (MBT), and the effects on patients' depressive symptoms, cognitive function, and sleep varied. Therefore, the present study was based on a narrative review and included a large number of existing studies to investigate the characteristics and differences in the effects of different PA interventions on MDD. The study also investigated the characteristics and differences of different PA interventions in MDD, and explained the neural mechanisms through the results of multimodal brain function monitoring, including the intracranial environment and brain structure. It aims to provide exercise prescription and theoretical reference for future research in neuroscience and clinical intervention in MDD.
Collapse
Affiliation(s)
- Jian Guan
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yan Sun
- Department of Sports, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yiming Fan
- College of P.E and Sports, Beijing Normal University, Beijing, China
| | - Jiaxin Liang
- Department of Physical Education, Kunming University of Science and Technology Oxbridge College, Kunming, China
| | - Chuang Liu
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Haohan Yu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jingmin Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Dissinger A, Rimoldi S, Terova G, Kwasek K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS One 2024; 19:e0307967. [PMID: 39058733 PMCID: PMC11280532 DOI: 10.1371/journal.pone.0307967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Many organisms exhibit social behaviors and are part of some scheme of social structure. Zebrafish are highly social, shoaling fish and therefore, social isolation may have notable impacts on their physiology and behavior. The objective of this study was to evaluate the effects of social isolation on feed intake, monoaminergic system related gene expression, and intestinal health of juvenile zebrafish fed a high-inclusion soybean meal based diet. At 20 days post-fertilization zebrafish were randomly assigned to chronic isolation (1 fish per 1.5 L tank) or social housing (6 fish per 9 L tank) with 18 tanks per treatment group (n = 18). Dividers were placed between all tanks to prevent visual cues between fish. Zebrafish were fed a commercial fishmeal based diet until 35 days post-fertilization and then fed the experimental high-inclusion soybean meal based diet until 50 days post-fertilization. At the end of the experiment (51 days post-fertilization), the mean total length, weight, and weight gain were not significantly different between treatment groups. Feed intake and feed conversion ratio were significantly higher in chronic isolation fish than in social housing fish. Expression of monoaminergic and appetite-related genes were not significantly different between groups. The chronic isolation group showed higher expression of the inflammatory gene il-1b, however, average intestinal villi width was significantly smaller and average length-to-width ratio was significantly higher in chronic isolation fish, suggesting morphological signs of inflammation were not present at the time of sampling. These results indicate that chronic isolation positively affects feed intake of juvenile zebrafish and suggest that isolation may be useful in promoting feed intake of less-palatable diets such as those based on soybean meal.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
6
|
Peris-Ramos HC, Míguez MC, Rodriguez-Besteiro S, David-Fernandez S, Clemente-Suárez VJ. Gender-Based Differences in Psychological, Nutritional, Physical Activity, and Oral Health Factors Associated with Stress in Teachers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:385. [PMID: 38673298 PMCID: PMC11050169 DOI: 10.3390/ijerph21040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The aim of this study was to analyze gender differences in stress-related factors among active teachers. A cross-sectional study was conducted to examine gender disparities in psychological, nutritional, physical activity, and oral health factors and how these habits correlate with stress and burnout in their work environment. The sample comprised 1037 teachers from Spain, Colombia, and Chile, consisting of 40.1% men and 59.9% women, with an average age of 41 years and teaching experience of 11.8 ± 9.2 and 12.2 ± 8.7 years, respectively. They were evaluated using a compilation of questionnaires with the objective of analyzing gender differences in habits that are associated with stress levels in teachers. The findings revealed that men had significantly higher levels of depersonalization and personal accomplishment, whereas women exhibited higher levels of perceived stress and conscientiousness. Regarding nutritional habits, results were more positive for women, and men exhibited healthier functional habits by engaging in more weekly sports. Regarding oral health habits, women had better oral hygiene practices, brushing their teeth more frequently. However, women showed a higher tendency to smoke than their male counterparts. We conclude that there are notable gender differences that can provide insights for developing strategies to enhance the overall well-being of teachers.
Collapse
Affiliation(s)
- Helia Carmen Peris-Ramos
- Clinical Odontology Department, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - María Carreira Míguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.C.M.); (S.R.-B.)
| | - Stephanie Rodriguez-Besteiro
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.C.M.); (S.R.-B.)
| | - Susana David-Fernandez
- Clinical Odontology Department, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (M.C.M.); (S.R.-B.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
7
|
Gan Y, Dong Y, Dai S, Shi H, Li X, Wang F, Fu Y, Dong Y. The different cell-specific mechanisms of voluntary exercise and forced exercise in the nucleus accumbens. Neuropharmacology 2023; 240:109714. [PMID: 37690678 DOI: 10.1016/j.neuropharm.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Physical inactivity is a global epidemic. People who take the initiative to exercise will feel pleasure during the exercise process and stick with it for a long time, while people who passively ask for exercise will feel pain and cannot stick with it. However, the neural mechanisms underlying voluntary and forced exercise remain unclear. Here, we report that voluntary running increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSC) but decreased membrane excitability in D1R-MSNs, whereas D2R-MSNs did not change in mEPSC and membrane excitability. Forced running increased the frequency of mEPSC and membrane excitability in D2R-MSNs, but D1R-MSNs did not change, which may be the mechanism by which forced exercise has a non-rewarding effect. These findings provide new insights into how voluntary and forced exercise mediate reward and non-reward effects.
Collapse
Affiliation(s)
- Yixia Gan
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yigang Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Shanghua Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Haifeng Shi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Xinyi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Fanglin Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yi Dong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China; College of Physical Education and Health, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
9
|
Stojanovic M, Schindler SE, Morris JC, Head D. Effect of exercise engagement and cardiovascular risk on neuronal injury. Alzheimers Dement 2023; 19:4454-4462. [PMID: 37534906 PMCID: PMC10592382 DOI: 10.1002/alz.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Neuronal health as a potential underlying mechanism of the beneficial effects of exercise has been understudied in humans. Furthermore, there has been limited consideration of potential moderators (e.g., cardiovascular health) on the effects of exercise. METHODS Clinically normal middle-aged and older adults completed a validated questionnaire about exercise engagement over a 10-year period (n = 75; age 63 ± 8 years). A composite estimate of neuronal injury was formulated that included cerebrospinal fluid-based measures of visinin-like protein-1, neurogranin, synaptosomal-associated protein 25, and neurofilament light chain. Cardiovascular risk was estimated using the Framingham Risk Score. RESULTS Cross-sectional analyses showed that greater exercise engagement was associated with less neuronal injury in the group with lower cardiovascular risk (p = 0.008), but not the group with higher cardiovascular risk (p = 0.209). DISCUSSION Cardiovascular risk is an important moderator to consider when examining the effects of exercise on cognitive and neural health, and may be relevant to personalized exercise recommendations. HIGHLIGHTS We examined the association between exercise engagement and neuronal injury. Vascular risk moderated the association between exercise and neuronal injury. Cardiovascular risk may be relevant to personalized exercise recommendations.
Collapse
Affiliation(s)
- Marta Stojanovic
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Suzanne E. Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
| | - John C. Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
| | - Denise Head
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63105
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|
10
|
Jung D, Kwak DW, Kim M, Lee WW. A Role of β2-Adrenoreceptor Agonists Related to the Development of Parkinson's Disease. Neurol India 2023; 71:710-715. [PMID: 37635503 DOI: 10.4103/0028-3886.383852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background Several studies have suggested the potential protective role of β2-adrenoreceptor agonist (β2AR-agonist) on the development of Parkinson's disease (PD). However, those could not reflect a different epidemiologic background in eastern countries. We explored β2AR-agonist's effect on PD development by controlling for smoking. Materials and Methods We used the Korean national sample cohort data (from 2002 to 2013) containing 1,025,340 participants (2.2% of the whole population). The subjects over 60 years were included. PD was defined based on the ICD-10 code, which should be diagnosed by neurologists. Atypical Parkinsonisms or ataxic disorders were excluded. We made Set 1 (from 2003 to 2007) and Set 2 (from 2003 to 2008) based on the exposure period for the sensitivity analysis. We observed whether PD had developed during the follow-up periods in each subset. Results The PD (Set 1, n = 742; Set 2, n = 699) and non-PD group (Set 1, n = 57,645; Set 2, n = 66,586) were collected. Old age, Medicaid, and asthma were risk factors, whereas smoking was a significant protective factor for PD development. The proportion of β2AR-agonist use was significantly higher in the PD group than in the non-PD group (Set 1, 3.6% vs. 2.4%; Set 2, 4.1% vs. 2.6%). β2AR-agonist use still was a risk factor in developing PD from the multiple logistic regression analysis. Conclusions β2-AR-agonist looked like a risk factor rather than a protective factor for PD development. Well-controlled studies reflecting various epidemiologic backgrounds are required to confirm the role of β2AR-agonist.
Collapse
Affiliation(s)
- Dain Jung
- Advanced Institute of Finance and Economics, Liaoning University, Liaoning, China
| | - Do Won Kwak
- Graduate School of International Studies, Korea University, Seoul, South Korea
| | - Minki Kim
- College of Business, Korea Advanced Institute of Science and Technology, Seoul, South Korea
| | - Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul; Department of Neurology, Eulji University College of Medicine, Daejeon, South Korea
| |
Collapse
|
11
|
Physical activity for cognitive health promotion: An overview of the underlying neurobiological mechanisms. Ageing Res Rev 2023; 86:101868. [PMID: 36736379 DOI: 10.1016/j.arr.2023.101868] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Physical activity is one of the modifiable factors of cognitive decline and dementia with the strongest evidence. Although many influential reviews have illustrated the neurobiological mechanisms of the cognitive benefits of physical activity, none of them have linked the neurobiological mechanisms to normal exercise physiology to help the readers gain a more advanced, comprehensive understanding of the phenomenon. In this review, we address this issue and provide a synthesis of the literature by focusing on five most studied neurobiological mechanisms. We show that the body's adaptations to enhance exercise performance also benefit the brain and contribute to improved cognition. Specifically, these adaptations include, 1), the release of growth factors that are essential for the development and growth of neurons and for neurogenesis and angiogenesis, 2), the production of lactate that provides energy to the brain and is involved in the synthesis of glutamate and the maintenance of long-term potentiation, 3), the release of anti-inflammatory cytokines that reduce neuroinflammation, 4), the increase in mitochondrial biogenesis and antioxidant enzyme activity that reduce oxidative stress, and 5), the release of neurotransmitters such as dopamine and 5-HT that regulate neurogenesis and modulate cognition. We also discussed several issues relevant for prescribing physical activity, including what intensity and mode of physical activity brings the most cognitive benefits, based on their influence on the above five neurobiological mechanisms. We hope this review helps readers gain a general understanding of the state-of-the-art knowledge on the neurobiological mechanisms of the cognitive benefits of physical activity and guide them in designing new studies to further advance the field.
Collapse
|
12
|
Sato K, Ochi A, Watanabe K, Yamada K. Effects of dance video game training on cognitive functions of community-dwelling older adults with mild cognitive impairment. Aging Clin Exp Res 2023; 35:987-994. [PMID: 36869197 DOI: 10.1007/s40520-023-02374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Some patients with minor cognitive impairment can revert to normal cognition if intervention is implemented early. Dance video games as multi-task training have shown beneficial effects on cognitive and physical functions in older adults. AIMS This study aimed to elucidate the effects of dance video game training on cognitive functions and prefrontal cortex activity in older adults with and without mild cognitive impairment. METHODS A single-arm trial was used for this study. The participants were divided based on the Japanese version of Montreal Cognitive Assessment scores into the mild cognitive impairment (n = 10) and normal cognitive function (n = 11) groups. Dance video game training was performed 60 min/day, 1 day/week, for a total of 12 weeks. Neuropsychological assessments, prefrontal cortex activity using functional near-infrared spectroscopy, and step performance of dance video game were recorded at pre- and post-intervention. RESULTS Dance video game training significantly improved the Japanese version of Montreal Cognitive Assessment score (p < 0.05), and tendency toward improvement was observed in the trail making test in the mild cognitive impairment group. The dorsolateral prefrontal cortex activity in the Stroop color word test was significantly increased in the mild cognitive impairment group (p < 0.05) after dance video game training. CONCLUSIONS Dance video game training improved cognitive function and increased prefrontal cortex activity in the mild cognitive impairment group.
Collapse
Affiliation(s)
- Katsunari Sato
- Department of Rehabilitation, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Akira Ochi
- Faculty of Care and Rehabilitation, Seijoh University, 2-172 Fukinodai, Toukai, Aichi, 476-8588, Japan.,Graduate School of Health Care Studies, Seijoh University, 2-172 Fukinodai, Toukai, Aichi, 476-8588, Japan
| | - Kazuko Watanabe
- Wakayama Professional University of Rehabilitation, 3-1 Minatohonmachi, Wakayama, Wakayama, 640-8222, Japan
| | - Kazumasa Yamada
- Faculty of Care and Rehabilitation, Seijoh University, 2-172 Fukinodai, Toukai, Aichi, 476-8588, Japan.,Graduate School of Health Care Studies, Seijoh University, 2-172 Fukinodai, Toukai, Aichi, 476-8588, Japan
| |
Collapse
|
13
|
Bhadra J, Sridhar N, Fajrial AK, Hammond N, Xue D, Ding X. Acoustic streaming enabled moderate swimming exercise reduces neurodegeneration in C. elegans. SCIENCE ADVANCES 2023; 9:eadf5056. [PMID: 36812319 PMCID: PMC9946341 DOI: 10.1126/sciadv.adf5056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Regular physical exercise has been shown to delay and alleviate neurodegenerative diseases. Yet, optimum physical exercise conditions that provide neuronal protection and exercise-related factors remain poorly understood. Here, we create an Acoustic Gym on a chip through the surface acoustic wave (SAW) microfluidic technology to precisely control the duration and intensity of swimming exercise of model organisms. We find that precisely dosed swimming exercise enabled by acoustic streaming decreases neuronal loss in two different neurodegenerative disease models of Caenorhabditis elegans, a Parkinson's disease model and a tauopathy model. These findings highlight the importance of optimum exercise conditions for effective neuronal protection, a key characteristic of healthy aging in the elderly population. This SAW device also paves avenues for screening for compounds that can enhance or replace the beneficial effects of exercise and for identifying drug targets for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Joyita Bhadra
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Nakul Sridhar
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Apresio Kefin Fajrial
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Nia Hammond
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Xiaoyun Ding
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Shahidani S, Jokar Z, Alaei H, Reisi P. Effects of treadmill exercise and chronic stress on anxiety-like behavior, neuronal activity, and oxidative stress in basolateral amygdala in morphine-treated rats. Synapse 2023; 77:e22256. [PMID: 36200789 DOI: 10.1002/syn.22256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
The basolateral amygdala (BLA), which is sensitive to stress, is necessary for reward-seeking behavior and addiction. Regular exercise can produce various positive effects by affecting the BLA. Therefore, we aimed to investigate the effects of chronic stress and treadmill running (TR) on anxiety-like behavior, neuronal activity, lipid peroxidation (measured by malondialdehyde (MDA) levels, a marker for oxidative stress), and total thiol in BLA, in morphine-treated rats. Male Wistar rats were restricted in restraint stress and/or ran on the treadmill and treated with morphine (5 mg/kg) for 21 days. Anxiety-like behavior was evaluated using an elevated plus maze (EPM) and open field tests (OFTs), on day 22. On day 23, neuronal activity in BLA was assessed via single-unit recording. Finally, MDA and total thiol were assessed in BLA. Our results showed that chronic administration of morphine (5 mg/kg) did not affect anxiety-like behavior. However, the morphine-treated rats, subjected to chronic stress and exercise, showed fewer anxiety-like behaviors. Morphine increased BLA's MDA levels but it was prevented by TR. Glutamatergic and GABAergic basal neuronal activities were low in morphine-treated rats but after acute morphine application, there was a significant decrease in GABAergic neuronal activities in the morphine-exercise-stress (Mor-Exe-St) group. The results of this study showed that in morphine-treated rats, stress and exercise or their combination could have either co-directional or opposite effects to the chronic effects of morphine. These results indicate the existence of common pathways similar to endogenous opioids.
Collapse
Affiliation(s)
- Somayeh Shahidani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Jokar
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Patterson CG, Joslin E, Gil AB, Spigle W, Nemet T, Chahine L, Christiansen CL, Melanson E, Kohrt WM, Mancini M, Josbeno D, Balfany K, Griffith G, Dunlap MK, Lamotte G, Suttman E, Larson D, Branson C, McKee KE, Goelz L, Poon C, Tilley B, Kang UJ, Tansey MG, Luthra N, Tanner CM, Haus JM, Fantuzzi G, McFarland NR, Gonzalez-Latapi P, Foroud T, Motl R, Schwarzschild MA, Simuni T, Marek K, Naito A, Lungu C, Corcos DM. Study in Parkinson's disease of exercise phase 3 (SPARX3): study protocol for a randomized controlled trial. Trials 2022; 23:855. [PMID: 36203214 PMCID: PMC9535216 DOI: 10.1186/s13063-022-06703-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To date, no medication has slowed the progression of Parkinson's disease (PD). Preclinical, epidemiological, and experimental data on humans all support many benefits of endurance exercise among persons with PD. The key question is whether there is a definitive additional benefit of exercising at high intensity, in terms of slowing disease progression, beyond the well-documented benefit of endurance training on a treadmill for fitness, gait, and functional mobility. This study will determine the efficacy of high-intensity endurance exercise as first-line therapy for persons diagnosed with PD within 3 years, and untreated with symptomatic therapy at baseline. METHODS This is a multicenter, randomized, evaluator-blinded study of endurance exercise training. The exercise intervention will be delivered by treadmill at 2 doses over 18 months: moderate intensity (4 days/week for 30 min per session at 60-65% maximum heart rate) and high intensity (4 days/week for 30 min per session at 80-85% maximum heart rate). We will randomize 370 participants and follow them at multiple time points for 24 months. The primary outcome is the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (Part III) with the primary analysis assessing the change in MDS-UPDRS motor score (Part III) over 12 months, or until initiation of symptomatic antiparkinsonian treatment if before 12 months. Secondary outcomes are striatal dopamine transporter binding, 6-min walk distance, number of daily steps, cognitive function, physical fitness, quality of life, time to initiate dopaminergic medication, circulating levels of C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF). Tertiary outcomes are walking stride length and turning velocity. DISCUSSION SPARX3 is a Phase 3 clinical trial designed to determine the efficacy of high-intensity, endurance treadmill exercise to slow the progression of PD as measured by the MDS-UPDRS motor score. Establishing whether high-intensity endurance treadmill exercise can slow the progression of PD would mark a significant breakthrough in treating PD. It would have a meaningful impact on the quality of life of people with PD, their caregivers and public health. TRIAL REGISTRATION ClinicalTrials.gov NCT04284436 . Registered on February 25, 2020.
Collapse
Affiliation(s)
- Charity G. Patterson
- Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Elizabeth Joslin
- Department of Physical Therapy and Human Science, Northwestern University, Feinberg School of Medicine, Suite 1100, 645 North Michigan Avenue, Chicago, IL 60305 USA
| | - Alexandra B. Gil
- Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Wendy Spigle
- Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Todd Nemet
- Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Lana Chahine
- Department of Neurology, University of Pittsburgh, School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Cory L. Christiansen
- Department of Physical Medicine & Rehabilitation, University of Colorado, School of Medicine, Aurora, CO 80217 USA
| | - Ed Melanson
- Division of Endocrinology, Metabolism and Diabetes, and Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- Eastern Colorado VA Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, CO USA
| | - Wendy M. Kohrt
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
- Eastern Colorado Geriatric Research, Education, and Clinical Center, Rocky Mountain Regional VAMC, Aurora, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Road, Portland, OR 97219 USA
| | - Deborah Josbeno
- Department of Physical Therapy, University of Pittsburgh, School of Health and Rehabilitation Sciences, 100 Technology Drive, Suite 500, Pittsburgh, PA 15219 USA
| | - Katherine Balfany
- Department of Physical Medicine & Rehabilitation, University of Colorado, School of Medicine, Aurora, CO 80217 USA
| | - Garett Griffith
- Department of Physical Therapy and Human Science, Northwestern University, Feinberg School of Medicine, Suite 1100, 645 North Michigan Avenue, Chicago, IL 60305 USA
| | - Mac Kenzie Dunlap
- Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guillaume Lamotte
- Movement Disorders Division, Department of Neurology, University of Utah, 175 Medical Dr N, Salt Lake City, UT 84132 USA
| | - Erin Suttman
- Department of Physical Therapy & Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84115 USA
| | - Danielle Larson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Chantale Branson
- Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310 USA
| | - Kathleen E. McKee
- Neurosciences Clinical Program, Intermountain Healthcare, 5171 S Cottonwood Street, Suite 810, Murray, UT 84107 USA
| | - Li Goelz
- Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, 919 W Taylor Street, Chicago, IL 60612 USA
| | - Cynthia Poon
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Barbara Tilley
- Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, 1200 Pressler Street E835, Houston, TX 77030 USA
| | - Un Jung Kang
- NYU Langone Health, NYU Grossman School of Medicine, 435 E 30th Street, Science Building 1305, New York, NY 10016 USA
| | - Malú Gámez Tansey
- Department of Neuroscience and Neurology, Normal Fixel Institute for Neurological Diseases and College of Medicine, University of Florida, 4911 Newell Road, Gainesville, FL 32610 USA
| | - Nijee Luthra
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, 1651 4th Street, San Francisco, CA 94158 USA
| | - Caroline M. Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, 1651 4th Street, San Francisco, CA 94158 USA
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109 USA
| | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, 919 W Taylor Street, Chicago, IL 60612 USA
| | - Nikolaus R. McFarland
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32608 USA
| | - Paulina Gonzalez-Latapi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W. 10th Street, Indianapolis, IN 46220 USA
| | - Robert Motl
- Department of Kinesiology and Nutrition, UIC College of Applied Health Sciences, 919 W Taylor Street, Chicago, IL 60612 USA
| | - Michael A. Schwarzschild
- Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Rm 3002, 114 16th Street, Boston, MA 02129 USA
| | - Tanya Simuni
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Suite 115, 710 N Lake Shore Drive, Chicago, IL 60611 USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, 60 Temple St, New Haven, CT 06510 USA
| | - Anna Naito
- Parkinson’s Foundation 200 SE 1st Street Suite 800, Miami, FL 33131 USA
| | - Codrin Lungu
- National Institute of Neurological Disorders and Stroke, NIH, 6001 Executive Blvd, #2188, Rockville, MD 20852 USA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Science, Northwestern University, Feinberg School of Medicine, Suite 1100, 645 North Michigan Avenue, Chicago, IL 60305 USA
| |
Collapse
|
16
|
Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-Rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022; 13:783251. [PMID: 35492581 PMCID: PMC9048028 DOI: 10.3389/fphys.2022.783251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by plaque formation and neuroinflammation. The plaques can present in various locations, causing a variety of clinical symptoms in patients with MS. Coronavirus disease-2019 (COVID-19) is also associated with systemic inflammation and a cytokine storm which can cause plaque formation in several areas of the brain. These concurring events could exacerbate the disease burden of MS. We review the neuro-invasive properties of SARS-CoV-2 and the possible pathways for the entry of the virus into the central nervous system (CNS). Complications due to this viral infection are similar to those occurring in patients with MS. Conditions related to MS which make patients more susceptible to viral infection include inflammatory status, blood-brain barrier (BBB) permeability, function of CNS cells, and plaque formation. There are also psychoneurological and mood disorders associated with both MS and COVID-19 infections. Finally, we discuss the effects of exercise on peripheral and central inflammation, BBB integrity, glia and neural cells, and remyelination. We conclude that moderate exercise training prior or after infection with SARS-CoV-2 can produce health benefits in patients with MS patients, including reduced mortality and improved physical and mental health of patients with MS.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, India
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Silvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Quinta de Prados, Edifício Ciências de Desporto, Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, i3S, Porto, Portugal
| | | | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, Rennes, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
17
|
Ma J, Wu J, Li H, Wang J, Han J, Zhang R. Association Between Essential Metal Elements and the Risk of Autism in Chinese Han Population. Biol Trace Elem Res 2022; 200:505-515. [PMID: 33797704 DOI: 10.1007/s12011-021-02690-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022]
Abstract
Essential metal elements (EMEs) have essential roles in neurological development and maintenance of human homeostasis. We performed a case-control study to explore association between the risk of autism spectrum disorder (ASD) and the 11 EMEs [Calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), manganese (Mn), selenium (Se), cobalt (Co), Molybdenum (Mo), copper (Cu), zinc (Zn), and iron (Fe)] in serum. Ninety-two autistic subjects (cases) and age-sex-matched healthy subjects (controls = 91) from Beijing, China were recruited. In addition, totally 109 mothers of recruited children participated in this study. ICP-AES and ICP-MS were applied to determine the concentration of 11 EMEs in serum. The concentrations of Ca, K, and Mg were significantly higher in the cases than in the controls (OR [95% CI]: 1.031 [1.006-1.058] for Ca; 1.081 [1.046-1.118] for K; 1.161 [1.012-1.331] for Mg), while the concentrations of Zn and Cu were significantly lower (0.997 [0.995-0.999] for Cu; 0.996 [0.992-1.000] for Zn). Clear dose-response relationships between EMEs concentrations and the risk of ASD, as well as the correlation between EME concentrations and the severity of ASD were observed for most of the above EMEs. Six and seven specific correlated pairs between mothers and children were found in the cases and controls separately. The overall profiles of the EMEs were changed in the cases as compared to the controls. This study suggested that the higher levels of Ca, K, and Mg and lower levels of Zn and Cu may be associated with an elevated risk of ASD.
Collapse
Affiliation(s)
- Jiahui Ma
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Jing Wu
- Peking University Medical and Health Analysis Center, Peking University, Beijing, 100191, People's Republic of China
| | - Haibin Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Jingyu Wang
- School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Jisheng Han
- Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, People's Republic of China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People's Republic of China.
- Autism Research Center of Peking University Health Science Center, Beijing, 100191, People's Republic of China.
| |
Collapse
|
18
|
Babaei P, Azari HB. Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Front Hum Neurosci 2022; 15:771553. [PMID: 35153701 PMCID: PMC8829997 DOI: 10.3389/fnhum.2021.771553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean lifespan by maintaining general body health and improving the cardiovascular and nervous systems function. Among different exercise training protocols, aerobic exercise has been reported to prevent the progression of memory decline, provided adequate exertion level, duration, and frequency. Mechanisms underlying exercise training effects on memory performance have not been understood yet. Convergent evidence suggest several direct and indirect mechanisms at molecular and supramolecular levels. The supramolecular level includes improvement in blood circulation, synaptic plasticity and neurogenesis which are under controls of complex molecular signaling of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among these various factors, irisin/BDNF signaling seems to be one of the important mediators of crosstalk between contracted skeletal muscles and the brain during exercise training. This review provides an affordable and effective method to improve cognitive function in old ages, particularly those who are most vulnerable to neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Helya Bolouki Azari
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
The Effect of Physical Exercise on Cognitive Impairment in Neurodegenerative Disease: From Pathophysiology to Clinical and Rehabilitative Aspects. Int J Mol Sci 2021; 22:ijms222111632. [PMID: 34769062 PMCID: PMC8583932 DOI: 10.3390/ijms222111632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a group of pathologies that cause severe disability due to motor and cognitive limitations. In particular, cognitive impairment is a growing health and socioeconomic problem which is still difficult to deal with today. As there are no pharmacologically effective treatments for cognitive deficits, scientific interest is growing regarding the possible impacts of healthy lifestyles on them. In this context, physical activity is gaining more and more evidence as a primary prevention intervention, a nonpharmacological therapy and a rehabilitation tool for improving cognitive functions in neurodegenerative diseases. In this descriptive overview we highlight the neurobiological effects of physical exercise, which is able to promote neuroplasticity and neuroprotection by acting at the cytokine and hormonal level, and the consequent positive clinical effects on patients suffering from cognitive impairment.
Collapse
|
20
|
Zmijewski P, Leońska-Duniec A, Stuła A, Sawczuk M. Evaluation of the Association of COMT Rs4680 Polymorphism with Swimmers' Competitive Performance. Genes (Basel) 2021; 12:1641. [PMID: 34681035 PMCID: PMC8535192 DOI: 10.3390/genes12101641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Swimmers' competitive performance is a result of complicated interactions between physiological, biochemical, physical and psychological factors, all of which are strongly affected by water. Recently, great attention has been paid to the role of genetic factors such as the catechol-O-methyltransferase gene (COMT) influencing motivation, emotions, stress tolerance, self-control, sleep regulation, pain processing and perception, addictive behaviour and neurodegeneration, which may underlie differences in achieving remarkable results in sports competition. Thus, this study was performed to investigate the association between the COMT Val158Met (rs4680) polymorphism and athletic performance in Caucasian swimmers. A total of 225 swimmers (171 short distance (SDS) and 54 long distance swimmers (LDS)) of national or international competitive standard and 379 unrelated sedentary controls were genotyped using real-time polymerase chain reaction (real-time PCR). We found no significant differences in genotypic or allelic distributions between (1) male and female athletes; (2) SDS and LDS; (3) all athletes and sedentary controls (under codominant, dominant, recessive, and overdominant genetic models). No association was found between the COMT rs4680 polymorphism and elite swimming athlete status of the studied population. However, more replication studies are needed.
Collapse
Affiliation(s)
- Piotr Zmijewski
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-809 Warsaw, Poland
| | - Agata Leońska-Duniec
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Aleksander Stuła
- Department of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland;
| |
Collapse
|
21
|
Chromiec PA, Urbaś ZK, Jacko M, Kaczor JJ. The Proper Diet and Regular Physical Activity Slow Down the Development of Parkinson Disease. Aging Dis 2021; 12:1605-1623. [PMID: 34631210 PMCID: PMC8460298 DOI: 10.14336/ad.2021.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
From year to year, we know more about neurodegeneration and Parkinson’s disease (PD). A positive influence of various types of physical activity is more often described in the context of neuroprotection and prevention as well as the form of rehabilitation in Parkinson’s patients. Moreover, when we look at supplementation, clinical nutrition and dietetics, we will see that balancing consumed products and supplementing the vitamins or minerals is necessary. Considering the biochemical pathways in skeletal muscle, we may see that many researchers desire to identify molecular mediators that have an impact through exercise and balanced diet on human health or development of the neurodegenerative disease. Therefore, it is mandatory to study the potential mechanism(s) related to diet and factors resulted from physical activity as molecular mediators, which play a therapeutic role in PD. This review summarizes the available literature on mechanisms and specific pathways involved in diet-exercise relationship and discusses how therapy, including appropriate exercises and diet that influence molecular mediators, may significantly slow down the progress of neurodegenerative processes. We suggest that a proper diet combined with physical activity will be a good solution for psycho-muscle BALANCE not only in PD but also in other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Zofia Kinga Urbaś
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Martyna Jacko
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Jan Jacek Kaczor
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| |
Collapse
|
22
|
Gender Differences in Attention Adaptation after an 8-Week FIFA 11 + for Kids Training Program in Elementary School Children. CHILDREN-BASEL 2021; 8:children8090822. [PMID: 34572254 PMCID: PMC8472359 DOI: 10.3390/children8090822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
School-based exercise intervention is recognized as an optimal tool for enhancing attentional performance in healthy school children. However, gender differences in the training adaptation regarding attentional capacities have not been elucidated clearly in the current literature. This study aimed to investigate the effects of an 8-week Fédération Internationale de Football Association (FIFA) 11+ for Kids training program on attentional performance in schoolboys and girls. Based on a quasi-experimental design, fifty-two children registered in year five of elementary school were assigned into the following groups: training boys (n = 13), training girls (n = 13), control boys (n = 13), and control girls (n = 13). The training groups undertook an 8-week FIFA 11+ Kids intervention with a training frequency of five times per week, whereas the control groups were deprived of any exercise during the study period. All the participants maintained their regular physical activity and weekly physical education (PE) lessons (two 50-min lessons per week of school curriculum) during the training period. The Chinese version of the Attention Scale for Elementary School Children (ASESC) test was used for attentional assessment at the baseline and one week after the interventional period. The Kruskal–Wallis H test was used for between-group comparison, whereas the Wilcoxon signed-rank test was used for within-group comparison. Significant differences in total scale, focused attention, selective attention, and alternating attention were found in group comparisons (p < 0.001). Furthermore, the training children significantly increased their values in relation to total scale, focused attention, sustained attention, and selective attention (p < 0.05). Only training girls significantly improved their divided attention after the training period (p < 0.001, MD = −0.77, ES = −0.12). In conclusion, the FIFA 11+ for Kids is an effective school-based exercise intervention for attentional improvement in school children. The schoolgirls demonstrated a positive outcome regarding divided attention after the interventional period.
Collapse
|
23
|
Cavalcante BRR, Improta-Caria AC, Melo VHD, De Sousa RAL. Exercise-linked consequences on epilepsy. Epilepsy Behav 2021; 121:108079. [PMID: 34058490 DOI: 10.1016/j.yebeh.2021.108079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Epilepsy is a brain disorder that leads to seizures and neurobiological, cognitive, psychological, and social consequences. Physical inactivity can contribute to worse epilepsy pathophysiology. Here, we review how physical exercise affects epilepsy physiopathology. METHODS An extensive literature search was performed and the mechanisms of physical exercise on epilepsy were discussed. The search was conducted in Scopus and PubMed. Articles with relevant information were included. Only studies written in English were considered. RESULTS The regular practice of physical exercise can be beneficial for individuals with neurodegenerative diseases, such as epilepsy by decreasing the production of pro-inflammatory and stress biomarkers, increasing socialization, and reducing the incidence of epileptic seizures. Physical exercise is also capable of reducing the symptoms of depression and anxiety in epilepsy. Physical exercise can also improve cognitive function in epilepsy. The regular practice of physical exercise enhances the levels of brain-derived neuro factor (BDNF) in the hippocampi, induces neurogenesis, inhibits oxidative stress and reactive gliosis, avoids cognitive impairment, and stimulates the production of dopamine in the epileptic brain. CONCLUSION Physical exercise is an excellent non-pharmacological tool that can be used in the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| | | | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleyś Jequitinhonha and Mucuri, Minas Gerais, Brazil; Neuroscience and Exercise Study Group (Grupo de Estudos em Neurociências e Exercício - GENE), UFVJM, Diamantina, MG, Brazil.
| |
Collapse
|
24
|
Brooks SJ, Parks SM, Stamoulis C. Widespread Positive Direct and Indirect Effects of Regular Physical Activity on the Developing Functional Connectome in Early Adolescence. Cereb Cortex 2021; 31:4840-4852. [PMID: 33987673 DOI: 10.1093/cercor/bhab126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Adolescence is a period of profound but incompletely understood changes in the brain's neural circuitry (the connectome), which is vulnerable to risk factors such as unhealthy weight, but may be protected by positive factors such as regular physical activity. In 5955 children (median age = 120 months; 50.86% females) from the Adolescent Brain Cognitive Development (ABCD) cohort, we investigated direct and indirect (through impact on body mass index [BMI]) effects of physical activity on resting-state networks, the backbone of the functional connectome that ubiquitously affects cognitive function. We estimated significant positive effects of regular physical activity on network connectivity, efficiency, robustness and stability (P ≤ 0.01), and on local topologies of attention, somatomotor, frontoparietal, limbic, and default-mode networks (P < 0.05), which support extensive processes, from memory and executive control to emotional processing. In contrast, we estimated widespread negative BMI effects in the same network properties and brain regions (P < 0.05). Additional mediation analyses suggested that physical activity could also modulate network topologies leading to better control of food intake, appetite and satiety, and ultimately lower BMI. Thus, regular physical activity may have extensive positive effects on the development of the functional connectome, and may be critical for improving the detrimental effects of unhealthy weight on cognitive health.
Collapse
Affiliation(s)
- Skylar J Brooks
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA 02115, USA
| | - Sean M Parks
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA 02115, USA
| | - Catherine Stamoulis
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Ramis MR, Sarubbo F, Moranta D, Tejada S, Lladó J, Miralles A, Esteban S. Neurochemical and Cognitive Beneficial Effects of Moderate Physical Activity and Catechin in Aged Rats. Antioxidants (Basel) 2021; 10:antiox10040621. [PMID: 33921628 PMCID: PMC8072822 DOI: 10.3390/antiox10040621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
A healthy aging process is a requirement for good life quality. A relationship between physical activity, the consumption of antioxidants and brain health has been stablished via the activation of pathways that reduce the harmful effects of oxidative stress, by inducing enzymes such as SIRT1, which is a protector of brain function. We analyzed the cognitive and neurochemical effects of applying physical exercise in elderly rats, alone or in combination with the antioxidant catechin. Several tests of spatial and episodic memory and motor coordination were evaluated. In addition, brain monoaminergic neurotransmitters and SIRT1 protein levels were assessed in the brains of the same rats. The results show that physical activity by itself improved age-related memory and learning deficits, correlating with the restoration of brain monoaminergic neurotransmitters and SIRT1 protein levels in the hippocampus. The administration of the antioxidant catechin along with the exercise program enhanced further the monoaminergic pathways, but not the other parameters studied. These results agree with previous reports revealing a neuroprotective effect of physical activity, probably based on its ability to improve the redox status of the brain, demonstrating that exercise at an advanced age, combined with the consumption of antioxidants, could produce favorable effects in terms of brain health.
Collapse
Affiliation(s)
- Margarita R. Ramis
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Fiorella Sarubbo
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Research Unit, University Hospital Son Llàtzer, Crta. Manacor Km 4, 07198 Palma, Spain
| | - David Moranta
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- CIBERON (Physiopathology of Obesity and Nutrition), 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Jerònia Lladó
- Department of Biology and University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma, Spain;
| | - Antoni Miralles
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Susana Esteban
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Correspondence: ; Tel.: +34-971-173-145
| |
Collapse
|
26
|
Arfuso F, Giannetto C, Giudice E, Fazio F, Panzera M, Piccione G. Peripheral Modulators of the Central Fatigue Development and Their Relationship with Athletic Performance in Jumper Horses. Animals (Basel) 2021; 11:743. [PMID: 33800520 PMCID: PMC8002136 DOI: 10.3390/ani11030743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/23/2022] Open
Abstract
The current study aimed to investigate whether peripheral modulators of serotoninergic function and neurohumoral factors' changes in athletic horses during an official jumping competition, and to evaluate their relationship with the physical performance of competing horses. From 7 Italian Saddle mares (6-9 years; mean body weight 440 ± 15 kg), performing the same standardized warm-up and jumping course during an official class, heart rate (HR) was monitored throughout the competition. Rectal temperature (RT) measurement, blood lactate and glucose concentration, serum tryptophan, leucine, valine, the tryptophan/branched-chain amino-acids ratio (Try/BCAAs), dopamine, prolactin, and non-esterified fatty acids (NEFAs) were assessed before the exercise event (T0), at the end of the competition stage (5 min ± 10 s following the cessation of the exercise, TPOST5), and 30 min after the end of competition (TPOST30). Highest HR values were recorded during the course and at the outbound (p < 0.0001); blood lactate concentration and RT increased after exercise with respect to the rest condition (p < 0.0001). Lower leucine and valine levels (p < 0.01), and higher tryptophan, Try/BCAAs ratio, and NEFAs values were found at TPOST5 and TPOST30 with respect to T0 (p < 0.0001). A higher prolactin concentration was found at TPOST5 and TPOST30 compared to T0 (p < 0.0001), whereas dopamine showed decreased values after exercise compared to rest (p < 0.0001). Statistically significant correlations among the peripheral indices of serotoninergic function, neurohumoral factors, and athletic performance parameters were found throughout the monitoring period. The findings provide indirect evidence that the serotoninergic system may be involved in fatigue during jumper exercise under a stressful situation, such as competition, in which, in addition to physical effort, athletic horses exhibit more passive behavior.
Collapse
Affiliation(s)
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy; (F.A.); (E.G.); (F.F.); (M.P.); (G.P.)
| | | | | | | | | |
Collapse
|
27
|
Duysens J, Nonnekes J. Parkinson's Kinesia Paradoxa Is Not a Paradox. Mov Disord 2021; 36:1115-1118. [PMID: 33656203 DOI: 10.1002/mds.28550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jacques Duysens
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group KU Leuven, Leuven, Belgium
| | - Jorik Nonnekes
- Department of Rehabilitation, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands.,Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Gender Differences in Stress- and Burnout-Related Factors of University Professors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6687358. [PMID: 33426061 PMCID: PMC7772043 DOI: 10.1155/2020/6687358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to analyse the gender differences in stress-related factors of university professors. A cross-sectional study was carried out, where gender differences in psychological, nutrition, physical activity, and oral health stress-related factors were analysed in 470 Spanish university professors (58.7% male and 41.3% female, 42.1 ± 9.2 years) through a compendium of questionnaires. The results showed how females presented significantly (p ≤ 0.05) higher scores than males in perceived stress (females: 22.15 ± 4.40 vs. males: 19.69 ± 3.61), emotional exhaustion (females: 20.86 ± 9.51 vs. males: 16.44 ± 9.12), and neuroticism (females: 5.53 ± 1.97 vs. males: 4.77 ± 1.96). These results may be related to higher probabilities to suffer the burnout syndrome, showing possible physical symptoms of this psychological disorder such as dry mouth and gastritis or heartburn. We concluded that female professors presented higher burnout perceived stress, emotional exhaustion, and neuroticism levels than males. Females also presented higher dry mouth, gastritis, and heartburn than males. Female professors showed healthier nutritional habits than males, presenting higher consumption of milk products and fruit per day, a higher number of meals, and less eating between hours and fried food consumption. Nevertheless, females consumed fewer water glasses and practised less weekly sport than male professors.
Collapse
|
29
|
Redondo-Flórez L, Fernández-Lucas J, Clemente-Suárez VJ. Cultural Differences in Stress-Related Psychological, Nutrition, Physical Activity and Oral Health Factors of Professors. Nutrients 2020; 12:nu12123644. [PMID: 33260820 PMCID: PMC7760793 DOI: 10.3390/nu12123644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/26/2022] Open
Abstract
With the aim to explore cultural differences in stress-related psychological, nutrition, physical activity, and oral health factors between Spanish and Latin American professors, we analysed stress-related factors in 598 professors (39.9% male, 60.1% female, 41.3 ± 9.8 years) by a collection of questionnaires, which involved psychological, nutritional, physical activity and oral health items. Results showed how Spanish professors presented significantly (p ≤ 0.05) higher scores than Latin American professors in perceived stress (Spanish: 21.40 ± 4.32 vs. Latin American: 20.36 ± 4.31), teaching stress (Spanish: 6.59 ± 2.28 vs. Latin American: 6.00 ± 2.99) and neuroticism (Spanish: 5.40 ± 2.10 vs. Latin American: 4.58 ± 1.72). Spanish professors also showed healthier nutritional and physical activity habits than their Latin American counterparts, presenting higher consumption of milk products and a higher numbers of meals per day, greater weekly meat and fish consumption and higher weekly resistance training, as well as less eating between hours and snacking consumption. Nevertheless, Spanish professors brushed their teeth less and showed a higher smoking habit than Latin American professors. We concluded that there were cultural differences between Spanish and Latin American professors. In the present research, Spanish professors showed significantly higher burnout levels, teaching stress, perceived stress, and neuroticism than Latin American professors, and several differences were also found around health behaviours. These differences in perceived stress, teaching stress and burnout syndrome may be due to the habituation process of Latin American professors, and probably are associated with a higher stressful and demanding socio-cultural context.
Collapse
Affiliation(s)
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
- Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Barranquilla 080002, Colombia
| | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Correspondence: ; Tel./Fax: +34-911-413-585
| |
Collapse
|
30
|
Kanthack TFD, Guillot A, Clémençon M, Debarnot U, Di Rienzo F. Effect of Physical Fatigue Elicited by Continuous and Intermittent Exercise on Motor Imagery Ability. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2020; 91:525-538. [PMID: 32023175 DOI: 10.1080/02701367.2019.1691709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Purpose: The ability to perform motor imagery (MI) might be impaired by the physical fatigue elicited during training. Interestingly, there is also theoretical support for a more limited influence of fatigue in the existing literature. Method: We evaluated MI ability before and after two exercise protocols: (i) a continuous exercise of 20 min performed on a cycle ergometer at 80% of the secondary ventilatory threshold (Continuous exercise), and (ii) an intermittent exercise of 20 min involving sprints at maximal intensity performed with regular intervals (Intermittent exercise). MI ability evaluations were performed using validated behavioral (mental chronometry) and psychometric (subjective reports) methods. MI ability evaluations included mental rehearsal of a motor sequence which involved the main effectors of the exercise protocols (walking), and mental rehearsal of a motor task which did not involve the main somatic effectors of the exercise protocols (pointing movements with the upper limbs). Results: Mental chronometry showed that MI ability was degraded only after Intermittent exercise, while self-report measures of MI vividness revealed that MI ability was primarily impaired during MI of the walking task. Conclusions: Present results suggest that Intermittent exercise engaging anaerobic processes of energy expenditure, but not Continuous exercise engaging aerobic processes of energy expenditure, impaired MI ability. Findings are discussed in relation to the internal models theory of motor simulation, specifically changes in current state of the motor system under the fatigued state-affecting motor predictions. Present findings may contribute to successful applications of MI training in sports and rehabilitation.
Collapse
Affiliation(s)
| | - Aymeric Guillot
- Université de Lyon, Université Claude Bernard Lyon 1
- Institut Universitaire de France
| | - Michel Clémençon
- Université de Lyon, Université Claude Bernard Lyon 1
- Normandie Université, Université de Rouen
| | | | | |
Collapse
|
31
|
Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21165895. [PMID: 32824367 PMCID: PMC7460620 DOI: 10.3390/ijms21165895] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022] Open
Abstract
Physical exercise (PE) improves physical performance, mental status, general health, and well-being. It does so by affecting many mechanisms at the cellular and molecular level. PE is beneficial for people suffering from neuro-degenerative diseases because it improves the production of neurotrophic factors, neurotransmitters, and hormones. PE promotes neuronal survival and neuroplasticity and also optimizes neuroendocrine and physiological responses to psychosocial and physical stress. PE sensitizes the parasympathetic nervous system (PNS), Autonomic Nervous System (ANS) and central nervous system (CNS) by promoting many processes such as synaptic plasticity, neurogenesis, angiogenesis, and autophagy. Overall, it carries out many protective and preventive activities such as improvements in memory, cognition, sleep and mood; growth of new blood vessels in nervous system; and the reduction of stress, anxiety, neuro-inflammation, and insulin resistance. In the present work, the protective effects of PE were overviewed. Suitable examples from the current research work in this context are also given in the article.
Collapse
Affiliation(s)
- B. Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Nancy Maurya
- Department of Botany, Government Science College, Pandhurna, Chhindwara, Madhya Pradesh 480334, India;
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
- Department of Physical Therapy Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-D.L.); (V.B.K.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +886-4-2332-3456 (ext. 6352 or 6353) (V.B.K.); Fax: 886-4-22065051 (S.-D.L.); +886-4-23305834 (V.B.K.)
| | - V. Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-D.L.); (V.B.K.); Tel.: +886-4-22053366 (ext. 7300) (S.-D.L.); +886-4-2332-3456 (ext. 6352 or 6353) (V.B.K.); Fax: 886-4-22065051 (S.-D.L.); +886-4-23305834 (V.B.K.)
| |
Collapse
|
32
|
Association between Serum Essential Metal Elements and the Risk of Schizophrenia in China. Sci Rep 2020; 10:10875. [PMID: 32620780 PMCID: PMC7335092 DOI: 10.1038/s41598-020-66496-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/19/2020] [Indexed: 01/02/2023] Open
Abstract
Numerous essential metal elements (EMEs) are necessary to maintain the proper function of human body. In this case-control study, we investigated the associations of 11 EMEs [Calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), manganese (Mn), selenium (Se), cobalt (Co), Molybdenum (Mo), copper (Cu), zinc (Zn), and iron (Fe)] in serum with the risk of schizophrenia. We recruited first-episode and drug-naïve schizophrenic patients (cases = 99) and age-sex-matched normal subjects (controls = 99) from Tangshan, Hebei Province, China. The 11 EMEs in serum from cases and controls were quantified by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. We observed that a higher level of Mn (OR = 2.390; 95%CI: 1.504–3.796) and lower levels of Ca (OR = 0.939; 95%CI: 0.890–0.990), Mg (OR = 0.806; 95%CI: 0.669–0.972), Na (OR = 0.995; 95%CI: 0.993–0.998), and Se (OR = 0.954; 95%CI: 0.937–0.972) were associated with an elevated risk of schizophrenia. Dose–response relationships between serum EME concentrations and the risk of schizophrenia were observed in most of the schizophrenia-associated EMEs. Moreover, the serum concentrations of these schizophrenia-associated EMEs in patients were correlated with the severity of their clinical symptoms. Significant correlations were found between EMEs and biomarkers associated with schizophrenia related to metabolic and oxidative stress. This study suggested that the concentration and profile of EMEs were different between schizophrenic patients and normal controls and revealed potential metabolisms associated with EMEs and schizophrenia, suggesting EMEs might act as biomarkers of schizophrenia to improve the current situation of diagnosis and treatment.
Collapse
|
33
|
Aerobic Exercise and Healthy Nutrition as Neuroprotective Agents for Brain Health in Patients with Parkinson's Disease: A Critical Review of the Literature. Antioxidants (Basel) 2020; 9:antiox9050380. [PMID: 32380715 PMCID: PMC7278852 DOI: 10.3390/antiox9050380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor and nonmotor features that have an influence on patients’ quality of life at different levels. To date, some evidences have arisen on the effectiveness of physical trainings and nutrients intake in ameliorating functional and cognitive outcomes in PD patients. Physical activity is effective in improving both motor and nonmotor features and recent epidemiological investigations have revealed the pivotal role that dietary patterns may play in reducing the risk of PD highlighting the pathogenesis of the neurodegeneration. Specifically, aerobic exercise shows beneficial effects in improving motor functions and executive control in PD patients, as well as proper nutrition may help in improving neuroprotective agents counteracting neurodegeneration and allows patients to better interact with the medication. Our narrative review critically focused on aerobic exercise and nutrition in PD in order to point out the best prescriptions for brain health of affected patients. Implications for a therapeutic plan and rehabilitation for these patients are also discussed.
Collapse
|
34
|
Swanson R, Robinson KM. Geriatric Rehabilitation: Gait in the Elderly, Fall Prevention and Parkinson Disease. Med Clin North Am 2020; 104:327-343. [PMID: 32035572 DOI: 10.1016/j.mcna.2019.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aging-associated anatomic and physiologic decline begins during the fourth decade of life and progresses over the ensuing decades sometimes to a state of frailty, with the decline amplified when there is deconditioning. Aging-related gait and balance disorders leading to an increased risk of falling can be compensated for with the use of exercise interventions, durable medical equipment, and environmental modifications. Caregiver training is an essential component of geriatric rehabilitation.
Collapse
Affiliation(s)
- Randel Swanson
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3800 Woodland Avenue, Philadelphia, PA 19104, USA
| | - Keith M Robinson
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3800 Woodland Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Stevens A, Stanton R, Rebar AL. Helping People With Parkinson Disease Build Exercise Self-Efficacy. Phys Ther 2020; 100:205-208. [PMID: 31665447 DOI: 10.1093/ptj/pzz160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/14/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Amy Stevens
- School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Robert Stanton
- School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Amanda L Rebar
- School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
36
|
Vieira de Moraes Filho A, Chaves SN, Martins WR, Tolentino GP, de Cássia Pereira Pinto Homem R, Landim de Farias G, Fischer BL, Oliveira JA, Pereira SKA, Vidal SE, Mota MR, Moreno Lima R, Jacó de Oliveira R. Progressive Resistance Training Improves Bradykinesia, Motor Symptoms and Functional Performance in Patients with Parkinson's Disease. Clin Interv Aging 2020; 15:87-95. [PMID: 32158202 PMCID: PMC6986410 DOI: 10.2147/cia.s231359] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Bradykinesia and muscle weaknesses are common symptoms of Parkinson’s Disease (PD) and are associated with impaired functional performance, increased risk of falls, and reduced quality of life. Recent studies have pointed to progressive resistance training (PRT) as an effective method to control and reduce these symptoms, increasing possibilities to treat the disease. However, few studies have focused on assessing the PRT effects in the short-term. Therefore, the present study aimed to assess the short-term PRT effects on people with PD, in order to offer new parameters for a better understanding of its effects, so as an adequation and PRT use as a complementary therapy. Patients and Methods Forty individuals diagnosed with PD from stage 1 to 3 on the Hoehn and Yahr scale took part on the study and were allocated into 2 groups; Training Group (TG) performed a 9-week RT program twice a week, and the Control Group (CG) attended disease lectures. Bradykinesia UPDRS subscale (BSS), knee extensors isokinetic strength, Ten Meters Walk Test (TMW), Timed Up&Go Test (TUG) and 30-Second Chair Stand (T30) were measured before and after the intervention period. Statistical significance was set at p ≤ 0.05. Results Significant time was noted by the group interaction for all functional tests (TUG, T30, and TWM; all p < 0.01) and BSS (p < 0.01). Post hoc analyses revealed that these differences were driven by significant improvements in these dependent variables (all p < 0.01) while the CG remained unchanged (all p > 0.05). Moreover, TUG, T30, TWM, and BSS were significantly different between TG and CG in the post-training assessments (all p < 0.01). Isokinetic muscle strength was slightly increased in the TG (2.4%) and decreased in the CG (−2.2%), but statistical analyses did not reach significance for interaction but only a trend (p = 0.12). Conclusion The results indicate that 9 weeks of PRT reduces bradykinesia and improves functional performance in patients with mild to moderate PD. These findings reinforce this mode of exercise as an important component of public health promotion programs for PD.
Collapse
Affiliation(s)
| | - Sandro Nobre Chaves
- College of Physical Education, University of Brasilia, Brasilia, Brazil.,Integrated Colleges IESGO, Formosa, Goias, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Ricardo Jacó de Oliveira
- College of Health Sciences, University of Brasilia, Brasilia, Brazil.,College of Physical Education, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
37
|
Marchesi G, Albanese GA, Ferrazzoli D, George S, Ricci S, Tatti E, Di Rocco A, Quartarone A, Frazzitta G, Ghilardi MF. Effects of rTMS and intensive rehabilitation in Parkinson's Disease on learning and retention. IEEE Int Conf Rehabil Robot 2020; 2019:1260-1265. [PMID: 31374802 DOI: 10.1109/icorr.2019.8779471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Movement is accompanied by modulation of oscillatory activity in different ranges over the sensorimotor areas. This increase is more evident in normal subjects and less in patients with Parkinson's Disease (PD), a disorder associated with deficits in the formation of new motor skills. Here, we investigated whether such EEG changes improved in a group of PD patients, after two different treatments and whether this relates to performance. Subjects underwent either a session of 5 Hz repetitive Transcranial Magnetic Stimulation (rTMS) over the right posterior parietal cortex or a 4-week Multidisciplinary Intensive Rehabilitation Treatment (MIRT). We used a reaching task with visuo-motor adaptation to a rotated display in incremental 10° steps up to 60°. Retention of the learned rotation was tested before and after either intervention over two consecutive days. High-density EEG was recorded throughout the testing. We found that patients adapted their movements to the rotated display similarly to controls, although retention was poorer. Both rTMS and MIRT lead to improvement in retention of the learned rotation. Mean beta modulation levels changed significantly after MIRT and not after rTMS. These results suggest that rTMS produced local improvement reflected in enhanced short-term skill retention; on the other hand, MIRT determined changes across the contralateral sensorimotor area, reflected in beta EEG changes.
Collapse
|
38
|
Robles-Murguia M, Rao D, Finkelstein D, Xu B, Fan Y, Demontis F. Muscle-derived Dpp regulates feeding initiation via endocrine modulation of brain dopamine biosynthesis. Genes Dev 2020; 34:37-52. [PMID: 31831628 PMCID: PMC6938663 DOI: 10.1101/gad.329110.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022]
Abstract
In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila, we found that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation, whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.
Collapse
Affiliation(s)
- Maricela Robles-Murguia
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Deepti Rao
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
39
|
Maternal Deprivation Induces Memory Deficits That Are Reduced by One Aerobic Exercise Shot Performed after the Learning Session. Neural Plast 2019; 2019:3608502. [PMID: 31827496 PMCID: PMC6881746 DOI: 10.1155/2019/3608502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
During the neonatal period, the brain is susceptible to external influences. Exposure to stressful events during this phase of life influences brain development and impacts adult life. In animals, the maternal deprivation (MD) model is effective in mimicking stress in the early stages of development. In contrast, physical exercise seems to be able to prevent deficits in memory consolidation. Although the effects of chronic exercise in cognition are already well established, little is known about the effects of acute aerobic exercise. Here, male Wistar rats divided into deprived (MD) and nondeprived (NMD) rats were submitted to the object recognition (OR) memory test. Immediately after OR training, some of the rats were submitted to a single aerobic exercise session for 30 minutes. Memory consolidation and persistence were evaluated by retention tests performed 24 h and 7, 14, and 21 days after OR training. We show that a single physical exercise session is able to modulate learning by promoting memory consolidation and persistence in rats with cognitive deficits induced by MD. Hippocampal dopamine levels, measured by HPLC, were not altered after OR training in rats that performed and in rats that did not perform an exercise session; on the other hand, while OR training promoted increase of hippocampal norepinephrine in NMD rats, the MD rats did not present this increase, regardless of the practice or not of exercise.
Collapse
|
40
|
Jonasson LS, Nyberg L, Axelsson J, Kramer AF, Riklund K, Boraxbekk CJ. Higher striatal D2-receptor availability in aerobically fit older adults but non-selective intervention effects after aerobic versus resistance training. Neuroimage 2019; 202:116044. [PMID: 31352122 DOI: 10.1016/j.neuroimage.2019.116044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022] Open
Abstract
There is much evidence that dopamine is vital for cognitive functioning in aging. Here we tested the hypothesis that aerobic exercise and fitness influence dopaminergic neurotransmission in the striatum, and in turn performance on offline working-memory updating tasks. Dopaminergic neurotransmission was measured by positron emission tomography (PET) and the non-displacable binding potential (BPND) of [11C]raclopride, i.e. dopamine (DA) D2-receptor (D2R) availability. Fifty-four sedentary older adults underwent a six-months exercise intervention, performing either aerobic exercise or stretching, toning, and resistance active control training. At baseline, higher aerobic fitness levels (VO2peak) were associated with higher BPND in the striatum, providing evidence of a link between an objective measure of aerobic fitness and D2R in older adults. BPND decreased substantially over the intervention in both groups but the intervention effects were non-selective with respect to exercise group. The decrease was several times larger than any previously estimated annual decline in D2R, potentially due to increased endogenous DA. Working-memory was unrelated to D2R both at baseline and following the intervention. To conclude, we provide partial evidence for a link between physical exercise and DA. Utilizing a PET protocol able to disentangle both D2R and DA levels could shed further light on whether, and how, aerobic exercise impacts the dopaminergic system in older adults.
Collapse
Affiliation(s)
- Lars S Jonasson
- Department of Integrative Medical Biology, Physiology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Lars Nyberg
- Department of Integrative Medical Biology, Physiology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Arthur F Kramer
- Departments of Psychology and Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA.
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Center for Demographic and Aging Research, Umeå University, Umeå, Sweden; Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark.
| |
Collapse
|
41
|
Cammisuli DM, Cammisuli SM, Fusi J, Franzoni F, Pruneti C. Parkinson's Disease-Mild Cognitive Impairment (PD-MCI): A Useful Summary of Update Knowledge. Front Aging Neurosci 2019; 11:303. [PMID: 31780918 PMCID: PMC6856711 DOI: 10.3389/fnagi.2019.00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
Mild cognitive impairment (MCI) is a common feature in Parkinson's Disease (PD), even at the time of diagnosis. Some levels of heterogeneity in nature and severity of cognitive impairment and risk of conversion to Parkinson's Disease Dementia (PDD) exist. This brief overview summarized the current understanding of MCI in PD, by considering the following major points: historical development of the clinical entity, evaluation, epidemiology, predictors and outcomes, neuroimaging findings, pathophysiology, treatment, and pharmacological and non-pharmacological intervention. MCI in PD represents a concept in evolution and plays a pivotal role in advancing our understanding of the disease mechanisms, with the ultimate goal of building effective strategies to prevent conversion into PDD. Challenges for future research are also discussed.
Collapse
Affiliation(s)
- Davide Maria Cammisuli
- Laboratories of Clinical Psychology, Clinical Psychophysiology and Clinical Neuropsychology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | | | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Pruneti
- Laboratories of Clinical Psychology, Clinical Psychophysiology and Clinical Neuropsychology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
42
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One 2019; 14:e0224207. [PMID: 31644554 PMCID: PMC6808427 DOI: 10.1371/journal.pone.0224207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Physical exercise has a neuromodulatory effect on the central nervous system (CNS) partially by modifying expression of neuropeptides produced and secreted by neurons and glial cells, among which the best examined are brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Because both neurotrophins can cross the brain-blood barrier (BBB), their blood levels indirectly reflect their production in the CNS. Moreover, both neuropeptides are involved in modulation of dopaminergic and serotoninergic system function. Because limited information is available on the effects of exercise to volition exhaustion and acute hypoxia on CNS, BDNF and GDNF formation, the aims of the present study were to verify whether 1) acute exercise to exhaustion in addition to neurons also activates glial cells and 2) additional exposure to acute normobaric moderate hypoxia affects their function. In this feasibility study we measured blood concentrations of BDNF, GDNF, and neuropeptides considered as biomarkers of brain damage (bFGF, NGF, S100B, GFAP) in seven sedentary healthy young men who performed a graded exercise test to volitional exhaustion on a cycle ergometer under normoxic (N) and hypoxic conditions: 2,000 m (H2; FiO2 = 16.6%) and 3,000 m altitude (H3; FiO2 = 14.7%). In all conditions serum concentrations of both BDNF and GDNF increased immediately after cessation of exercise (p<0.01). There was no effect of condition or interaction (condition x time of measurement) and exercise on any of the brain damage biomarkers: bFGF, NGF, S100B, GFAP. Moreover, in N (0<0.01) and H3 (p<0.05) exercise caused elevated serum 5-HT concentration. The results suggest that a graded effort to volitional exhaustion in normoxia, as well as hypoxia, simultaneously activates both neurons and astrocytes. Considering that s100B, GFAP, bFGF, and NGF (produced mainly by astrocytes) are markers of brain damage, it can be assumed that a maximum effort in both conditions is safe for the CNS.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, Warsaw, Poland
- Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
43
|
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019; 10:genes10090720. [PMID: 31533339 PMCID: PMC6770965 DOI: 10.3390/genes10090720] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Physical activity (PA) has been central in the life of our species for most of its history, and thus shaped our physiology during evolution. However, only recently the health consequences of a sedentary lifestyle, and of highly energetic diets, are becoming clear. It has been also acknowledged that lifestyle and diet can induce epigenetic modifications which modify chromatin structure and gene expression, thus causing even heritable metabolic outcomes. Many studies have shown that PA can reverse at least some of the unwanted effects of sedentary lifestyle, and can also contribute in delaying brain aging and degenerative pathologies such as Alzheimer’s Disease, diabetes, and multiple sclerosis. Most importantly, PA improves cognitive processes and memory, has analgesic and antidepressant effects, and even induces a sense of wellbeing, giving strength to the ancient principle of “mens sana in corpore sano” (i.e., a sound mind in a sound body). In this review we will discuss the potential mechanisms underlying the effects of PA on brain health, focusing on hormones, neurotrophins, and neurotransmitters, the release of which is modulated by PA, as well as on the intra- and extra-cellular pathways that regulate the expression of some of the genes involved.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
44
|
Yang S, Chu S, Gao Y, Ai Q, Liu Y, Li X, Chen N. A Narrative Review of Cancer-Related Fatigue (CRF) and Its Possible Pathogenesis. Cells 2019; 8:cells8070738. [PMID: 31323874 PMCID: PMC6679212 DOI: 10.3390/cells8070738] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Many cancer patients suffer from severe fatigue when treated with chemotherapy or radiotherapy; however, the etiology and pathogenesis of this kind of fatigue remains unknown. Fatigue is associated with cancer itself, as well as adjuvant therapies and can persist for a long time. Cancer patients present a high degree of fatigue, which dramatically affects the quality of their everyday life. There are various clinical research studies and reviews that aimed to explore the mechanisms of cancer-related fatigue (CRF). However, there are certain limitations in these studies: For example, some studies have only blood biochemical texts without histopathological examination, and there has been insufficient systemic evaluation of the dynamic changes in relevant indexes. Thus, we present this narrative review to summarize previous studies on CRF and explore promising research directions. Plenty of evidence suggests a possible association between CRF and physiological dysfunction, including skeletal muscular and mitochondrial dysfunction, peripheral immune activation and inflammation dysfunction, as well as central nervous system (CNS) disorder. Mitochondrial DNA (mtDNA), mitochondrial structure, oxidative pressure, and some active factors such as ATP play significant roles that lead to the induction of CRF. Meanwhile, several pro-inflammatory and anti-inflammatory cytokines in the peripheral system, even in the CNS, significantly contribute to the occurrence of CRF. Moreover, CNS function disorders, such as neuropeptide, neurotransmitter, and hypothalamic-pituitary-adrenal (HPA) axis dysfunction, tend to amplify the sense of fatigue in cancer patients through various signaling pathways. There have been few accurate animal models established to further explore the molecular mechanisms of CRF due to different types of cancer, adjuvant therapy schedules, living environments, and physical status. It is imperative to develop appropriate animal models that can mimic human CRF and to explore additional mechanisms using histopathological and biochemical methods. Therefore, the main purpose of this review is to analyze the possible pathogenesis of CRF and recommend future research that will clarify CRF pathogenesis and facilitate the formulation of new treatment options.
Collapse
Affiliation(s)
- Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shifeng Chu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qidi Ai
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Naihong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
45
|
Wassouf Z, Schulze-Hentrich JM. Alpha-synuclein at the nexus of genes and environment: the impact of environmental enrichment and stress on brain health and disease. J Neurochem 2019; 150:591-604. [PMID: 31165472 PMCID: PMC6771760 DOI: 10.1111/jnc.14787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Accumulation of alpha‐synuclein protein aggregates is the hallmark neuropathologic feature of synucleinopathies such as Parkinson’s disease. Rare point mutations and multiplications in SNCA, the gene encoding alpha‐synuclein, as well as other genetic alterations are linked to familial Parkinson’s disease cases with high penetrance and hence constitute major genetic risk factors for Parkinson’s disease. However, the preponderance of cases seems sporadic, most likely based on a complex interplay between genetic predispositions, aging processes and environmental influences. Deciphering the impact of these environmental factors and their interactions with the individual genetic background in humans is challenging and often requires large cohorts, complicated study designs, and longitudinal set‐ups. In contrast, rodent models offer an ideal system to study the influence of individual environmental aspects under controlled genetic background and standardized conditions. In this review, we highlight findings from studies examining effects of environmental enrichment mimicking stimulation of the brain by its physical and social surroundings as well as of environmental stressors on brain health in the context of Parkinson’s disease. We discuss possible internal molecular transducers of such environmental cues in Parkinson’s disease rodent models and emphasize their potential in developing novel avenues to much‐needed therapies for this still incurable disease. ![]()
This article is part of the Special Issue “Synuclein”
Collapse
Affiliation(s)
- Zinah Wassouf
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
46
|
Lai JH, Chen KY, Wu JCC, Olson L, Brené S, Huang CZ, Chen YH, Kang SJ, Ma KH, Hoffer BJ, Hsieh TH, Chiang YH. Voluntary exercise delays progressive deterioration of markers of metabolism and behavior in a mouse model of Parkinson's disease. Brain Res 2019; 1720:146301. [PMID: 31226324 DOI: 10.1016/j.brainres.2019.146301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Although a good deal is known about the genetics and pathophysiology of Parkinson's disease (PD), and information is emerging about its cause, there are no pharmacological treatments shown to have a significant, sustained capacity to prevent or attenuate the ongoing neurodegenerative processes. However, there is accumulating clinical results to suggest that physical exercise is such a treatment, and studies of animal models of the dopamine (DA) deficiency associated with the motor symptoms of PD further support this hypothesis. Exercise is a non-pharmacological, economically practical, and sustainable intervention with little or no risk and with significant additional health benefits. In this study, we investigated the long-term effects of voluntary exercise on motor behavior and brain biochemistry in the transgenic MitoPark mouse PD model with progressive degeneration of the DA systems caused by DAT-driven deletion of the mitochondrial transcription factor TFAM in DA neurons. We found that voluntary exercise markedly improved behavioral function, including overall motor activity, narrow beam walking, and rotarod performance. There was also improvement of biochemical markers of nigrostriatal DA input. This was manifested by increased levels of DA measured by HPLC, and of the DA membrane transporter measured by PET. Moreover, exercise increased oxygen consumption and, by inference, ATP production via oxidative phosphorylation. Thus, exercise augmented aerobic mitochondrial oxidative metabolism vs glycolysis in the nigrostriatal system. We conclude that there are clear-cut physiological mechanisms for beneficial effects of exercise in PD.
Collapse
Affiliation(s)
- Jing-Huei Lai
- Core Laboratory of Neuroscience, Office of R&D, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yun Chen
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - John Chung-Che Wu
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Stefan Brené
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chi-Zong Huang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Chen
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuo-Jhen Kang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Tsung-Hsun Hsieh
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Hsiao Chiang
- Core Laboratory of Neuroscience, Office of R&D, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
47
|
Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations. J Clin Med 2019; 8:jcm8060841. [PMID: 31212854 PMCID: PMC6617109 DOI: 10.3390/jcm8060841] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a complex symptomatology, and core symptoms as well as functional impairment often persist into adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional treatment most often includes pharmacotherapy with central nervous stimulants, but the number of non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive effects on several aspects of cognitive functions in the general child population. Here we review existing evidence that exercise affects cognitive functions in children with and without ADHD and present likely neurophysiological mechanisms of action. We find well-described associations between physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial effects following acute aerobic exercise on executive functions in children with ADHD. Despite large heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC) children, and our extracted effect sizes from long-term interventions suggest consistent positive effects in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise can improve cognitive performance intimately linked to ADHD presentations in children with and without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously provide recommendations for parameters of exercise.
Collapse
|
48
|
Téglás T, Németh Z, Koller Á, Van der Zee EA, Luiten PGM, Nyakas C. Effects of Long-Term Moderate Intensity Exercise on Cognitive Behaviors and Cholinergic Forebrain in the Aging Rat. Neuroscience 2019; 411:65-75. [PMID: 31146009 DOI: 10.1016/j.neuroscience.2019.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
Physical exercise is now generally considered as a strategy to maintain cognitive abilities and to prevent age-related cognitive decline. In the present study, Wistar rats were subjected to moderate intensity treadmill exercise for 6 months prior to sacrifice at 12-, 24- and 32-month of age. This chronic physical intervention was tested on motility in the Open field (OF). Cognitive functions were measured in the Morris water maze (MWM) for spatial learning and in the Novel object recognition (NOR) tests. Since learning and memory are closely associated with cholinergic forebrain function ChAT fiber density after exercise training was assessed in hippocampus, and motor- and somatosensory cortical areas. Furthermore, quantification of ChAT-positive fiber aberrations as a neuropathological marker was also carried out in these brain areas. Our results show that in OF chronic exercise maintained horizontal locomotor activity in all age groups. Rearing activity, MWM and notably NOR performance were improved only in the 32-months old animals. Regarding cholinergic neuronal innervation, apart from a general age-related decline, exercise increased ChAT fiber density in the hippocampus CA1 area and in the motor cortex notably in the 32-months group. Massive ChAT fiber aberrations in all investigated areas which developed in senescence were clearly attenuated by exercise. The results suggest that moderate intensity chronic exercise in the rat is especially beneficial in advanced age. In conclusion, chronic exercise attenuates the age-related decline in cognitive and motor behaviors as well as age-related cholinergic fiber reduction, reduces malformations of cholinergic forebrain innervation.
Collapse
Affiliation(s)
- Tímea Téglás
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Zoltán Németh
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Ákos Koller
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Eddy A Van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Paul G M Luiten
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Csaba Nyakas
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary; Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
49
|
Basheer M, Pradeep Kumar K, Sreekumaran E, Ramakrishna T. A study of serum magnesium, calcium and phosphorus level, and cognition in the elderly population of South India. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M.P. Basheer
- MES Medical College, Kerala, India
- Department of Life Sciences, University of Calicut, Kerala, India
- Orotta School of Medicine, Asmara, Eritrea
| | | | - E. Sreekumaran
- Department of Life Sciences, University of Calicut, Kerala, India
| | - T. Ramakrishna
- Department of Life Sciences, University of Calicut, Kerala, India
| |
Collapse
|
50
|
Rabelo PCR, Cordeiro LMS, Aquino NSS, Fonseca BBB, Coimbra CC, Wanner SP, Szawka RE, Soares DD. Rats with higher intrinsic exercise capacities exhibit greater preoptic dopamine levels and greater mechanical and thermoregulatory efficiencies while running. J Appl Physiol (1985) 2019; 126:393-402. [DOI: 10.1152/japplphysiol.00092.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated whether intrinsic exercise capacity affects the changes in thermoregulation, metabolism and central dopamine (DA) induced by treadmill running. Male Wistar rats were subjected to three incremental exercises and ranked as low-performance (LP), standard-performance (SP), and high-performance (HP) rats. In the first experiment, abdominal (TABD) and tail (TTAIL) temperatures were registered in these rats during submaximal exercise (SE) at 60% of maximal speed. Immediately after SE, rats were decapitated and concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the preoptic area (POA). In the second experiment, oxygen consumption was measured and mechanical efficiency (ME) was calculated in these rats during an incremental exercise. HP rats ran for longer periods and were fatigued with higher TABD values, with no difference in TTAIL. Nevertheless, thermoregulatory efficiency was higher in HP rats, compared with other groups. DA and DOPAC concentrations in the POA were increased by SE, with higher levels in HP compared with LP and SP rats. V̇o2 also differed between groups, with HP rats displaying a lower consumption throughout the incremental exercise but a higher V̇o2 at fatigue. ME, in turn, was consistently higher in HP than in LP and SP rats. Thus, our results show that HP rats have greater TABD values at fatigue, which seem to be related to a higher dopaminergic activity in the POA. Moreover, HP rats exhibited a greater thermoregulatory efficiency during exercise, which can be attributed to a lower V̇o2, but not to changes in tail heat loss mechanisms. NEW & NOTEWORTHY Our findings reveal that rats with higher intrinsic exercise capacities have greater thermoregulatory efficiencies and increased dopaminergic activity in the preoptic area, a key brain area in thermoregulatory control, while exercising. Moreover, higher intrinsic exercise capacities are associated with decreased oxygen consumption for a given exercise intensity, which indicates greater mechanical efficiencies. Collectively, these findings help to advance our knowledge of why some rats of a given strain can exercise for longer periods than others.
Collapse
Affiliation(s)
- Patrícia C. R. Rabelo
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia M. S. Cordeiro
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunometabolismo, Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nayara S. S. Aquino
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno B. B. Fonseca
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C. Coimbra
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel P. Wanner
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael E. Szawka
- Laboratório de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danusa D. Soares
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|