1
|
Ding N, Yu W, Mo J, Rehman F, Kasahara T, Guo J. Does exposure timing of macrolide antibiotics affect the development of river periphyton? Insights into the structure and function. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107070. [PMID: 39217791 DOI: 10.1016/j.aquatox.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Discharged sewage is the dominant source of urban river pollution. Macrolide antibiotics have emerged as prominent contaminants, which are frequently detected in sewage and rivers and pose a threat to aquatic microbial community. As a typical primary producer, periphyton is crucial for maintaining the biodiversity and functions of aquatic ecosystem. However, effects of antibiotic exposure time as well as the recovery process of periphyton remain undetermined. In the present study, five exposure scenarios of two typical macrolides, erythromycin (ERY) and roxithromycin (ROX) were investigated at 50 µg/L, dose to evaluate their potential detrimental effects on the structure and function of periphyton and the subsequent recovery process in 14 days. Results revealed that the composition of periphytic community returned to normal over the recovery period, except for a few sensitive species. The antibiotics-caused significant photodamage to photosystem II, leading to continuous inhibition of the photosynthetic capacity of periphyton. Furthermore, no significant difference in carbon metabolism capacity was observed after direct antibiotic exposure, while the amine carbon utilization capacity of periphyton remarkably increased during the recovery process. These results indicated that periphyton community was capable of coping with the periodic exposure of antibiotic pollutants and recovering on its own. However, the ecological functions of periphyton can be permanently disturbed due to macrolide exposure. Overall, this study sheds light on the influence of macrolide exposure on the development, structure and function of the periphytic microbial community in rivers.
Collapse
Affiliation(s)
- Ning Ding
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Wenqian Yu
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Tamao Kasahara
- Faculty of Agriculture, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka 811-2415, Japan
| | - Jiahua Guo
- Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Ren H, Lu Y, Tang Y, Ren P, Tang H, Chen Q, Kuang P, Huang R, Zhu W, Chen K. Photosynthetic Responses of Racomitrium japonicum L. to Strontium Stress Evaluated through Chlorophyll a Fluorescence OJIP Transient Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:591. [PMID: 38475441 DOI: 10.3390/plants13050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Nuclides pollution and its biological effects are of great concern, especially for bryophytes during their terrestrial adaptation. Understanding PSII activity and electron transport response is vital for comprehending moss abiotic stress reactions. However, little is known about the photosynthetic performance of moss under nuclide treatment. Therefore, this study aimed to evaluate the chlorophyll fluorescence of Racomitrium japonicum L. The moss was subjected to Sr2+ solutions at concentrations of 5, 50, and 500 mg/L to evaluate chlorophyll a fluorescence using the OJIP test. Moderate and high Sr2+ stress led to inner cell membrane dissolution and reduced chlorophyll content, indicating impaired light energy absorption. At 5 mg/L Sr2+, fluorescence kinetics showed increased light energy capture, energy dissipation, and total photosynthetic driving force, thus stimulating transient photosynthetic activity of PSII and improving PSI reduction. Linear electron transfer and PSII stability significantly decreased under moderate and high Sr2+ stress, indicating potential photosynthetic center damage. Cyclic electron transfer (CEF) alleviated photosynthetic stress at 5 mg/L Sr2+. Thus, low Sr2+ levels stimulated CEF, adjusting energy flux and partitioning to protect the photosynthetic apparatus. Nevertheless, significant damage occurred due to inefficient protection under high Sr2+ stress.
Collapse
Affiliation(s)
- Hui Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Yunmei Lu
- College of Biological Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba 623000, China
| | - Qunlong Chen
- Administration Bureau of Jiuzhaigou National Nature Reserve, Jiuzhaigou 623402, China
| | - Peigang Kuang
- Administration Bureau of Jiuzhaigou National Nature Reserve, Jiuzhaigou 623402, China
| | - Renhua Huang
- College of Biological Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Singh H, Kumar D, Soni V. Impact of mercury on photosynthetic performance of Lemna minor: a chlorophyll fluorescence analysis. Sci Rep 2023; 13:12181. [PMID: 37500693 PMCID: PMC10374571 DOI: 10.1038/s41598-023-39297-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
The purpose of this study was to evaluate the effectiveness of chlorophyll fluorescence analysis in detecting the effects of mercury (Hg) treatment in duckweed species Lemna minor. The results showed that Hg treatment (ranging from 0.0 to 0.4 µM) significantly impacted the plant's photosynthetic ability, with a decrease in variable chlorophyll fluorescence, energy fluxes, density of reaction centers, and performance index. Complete inhibition of electron transport was observed in plants treated with high Hg concentrations, and the quantum yield of primary photochemistry and the ratio of dissipated energy to absorption both decreased with increasing Hg concentrations. Performance Index (PI) was significantly affected by the Hg concentrations, reaching zero in plants treated with the highest Hg concentration. Overall, JIP analysis was found to be an effective tool for detecting deleterious effects of Hg in plants.
Collapse
Affiliation(s)
- Hanwant Singh
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
4
|
Sorce C, Bellini E, Bacchi F, Sanità di Toppi L. Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc. PLANTS (BASEL, SWITZERLAND) 2023; 12:2776. [PMID: 37570930 PMCID: PMC10420882 DOI: 10.3390/plants12152776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Metal micronutrients are essential for plant nutrition, but their toxicity threshold is low. In-depth studies on the response of light-dependent reactions of photosynthesis to metal micronutrients are needed, and the analysis of chlorophyll a fluorescence transients is a suitable technique. The liverwort Marchantia polymorpha L., a model organism also used in biomonitoring, allowed us to accurately study the effects of metal micronutrients in vivo, particularly the early responses. Gametophytes were treated with copper (Cu), iron (Fe) or zinc (Zn) for up to 120 h. Copper showed the strongest effects, negatively affecting almost the entire light phase of photosynthesis. Iron was detrimental to the flux of energy around photosystem II (PSII), while the acceptor side of PSI was unaltered. The impact of Fe was milder than that of Cu and in both cases the structures of the photosynthetic apparatus that resisted the treatments were still able to operate efficiently. The susceptibility of M. polymorpha to Zn was low: although the metal affected a large part of the electron transport chain, its effects were modest and short-lived. Our results may provide a contribution towards achieving a more comprehensive understanding of response mechanisms to metals and their evolution in plants, and may be useful for supporting the development of biomonitoring techniques.
Collapse
Affiliation(s)
- Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Erika Bellini
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy
| | - Florinda Bacchi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| | - Luigi Sanità di Toppi
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy; (C.S.)
| |
Collapse
|
5
|
Oliveira GC, Broetto SG, Pereira OJ, Penha JDS, Lopes NGM, Silva DM. Effects of different levels of metal exposure and precipitation regimes on chlorophyll a fluorescence parameters in a coastal Brazilian restinga species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Huang B, Cui J, Chen X, Huang Y, Xu C, Xie E. Mechanism of the allelopathic effect of macroalgae Gracilaria bailiniae on Nitzschia closterium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113767. [PMID: 35714486 DOI: 10.1016/j.ecoenv.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of the seaweed industry in China, the scale and production of its commercial seaweed are ranked among the most significant worldwide. Consequently, the control of algal blooms, especially fouling diatoms, during macroalgae industrialisation is an important issue. Many diatom bloom studies have focused on physical and chemical controls, with limited economic and eco-friendly biological controls reported. In our study, Gracilaria bailiniae fresh thalli and aqueous extract profoundly suppressed Nitzschia closterium growth (50% inhibition concentration of the fourth day (IC50-4 day) was 0.667 × 10-3 g·mL-1 and 3.889 × 10-3 g·mL-1, respectively). The cellular morphology changes of N. closterium exposed to the G. bailiniae aqueous extract were severe atrophies and plasmolysis and dissolution of endocellular structures. To explore more potential allelochemicals to control N. closterium, the intracellular compounds of G. bailiniae were detected and screened. Three organic acids (citrate, hydroxyethanesulfonic acid (HA) and taurine) had allelopathic potential against N. closterium. Our results showed that citrate and HA markedly suppressed N. closterium (IC50-4 day: 1.035 mM and 1.151 mM, respectively); however, taurine poorly suppressed N. closterium (IC50-4 day: 2.500 mM). Therefore, HA is one of the main allelopathic compounds in G. bailiniae. Further, the allelopathic mechanism of HA against the N. closterium photosynthetic system broke its photosynthetic apparatus (oxygen-evolving complex, reaction centres, the effective antenna size and the donor side of photosystem II) and hindered electron transport. The experimental results provide a new and eco-friendly strategy to control diatom blooms.
Collapse
Affiliation(s)
- Bowen Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianjun Cui
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xinyi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongjian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cong Xu
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Enyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
7
|
Chen Q, Sun D, Fang T, Zhu B, Liu W, He X, Sun X, Duan S. In vitro allelopathic effects of compounds from Cerbera manghas L. on three Dinophyta species responsible for harmful common red tides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142253. [PMID: 33254874 DOI: 10.1016/j.scitotenv.2020.142253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 05/18/2023]
Abstract
Allelopathy is regarded as an economic and eco-friendly approach for the control of harmful algal blooms (HABs) because allelochemicals degrade easily and cause less pollution than traditional algicides. We first surveyed the inhibitory effect of the traditional medicinal plant Cerbera manghas L. on the notorious dinoflagellates Alexandrium tamarense, Scrippsiella trochoidea, and Karenia mikimotoi. Then, we identified and quantified the potential algicidal compounds by UPLC-MS and determined their activity. The aqueous extract inhibited algae with EC50-120 h at 0.986, 1.567 and 1.827 g L-1 for A. tamarense, S. trochoidea, and K. mikimotoi, respectively. Three potential allelochemicals were quantified in the stock solution: quinic acid (QA) (28.81 mg L-1), protocatechuic acid (PA) (53.91 mg L-1), and phloridzin (PD) (26.17 mg L-1). Our results illustrated that 1) QA did not have an inhibitory effect, 2) PA had medium toxicity to algae (EC50-120h: 0.22, 0.28, and 0.35 mM for A. tamarense, S. trochoidea, and K. mikimotoi), and 3) PD had low toxicity (EC50-120h > 0.66 mM). These findings suggested that PA might be the main allelopathic compound in the aqueous extract of the studied algae. In addition, PA could have a negative effect on the photosynthesis of S. trochoidea by impeding the reduction of quinone electrons and destroying electron transfer in PSII. In summary, this was the first study to quantify allelochemicals in C. manghas fruit. Moreover, C. manghas and protocatechuic have the potential to be algicides to control and mitigate the HABs caused by dinoflagellates.
Collapse
Affiliation(s)
- Qi Chen
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Dong Sun
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524000, China
| | - Ting Fang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- School of Life Science and Engineering, State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010, China
| | - Weijie Liu
- South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Xingyu He
- University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xian Sun
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, P.R. China.
| | - Shunshan Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Expósito N, Carafa R, Kumar V, Sierra J, Schuhmacher M, Papiol GG. Performance of Chlorella Vulgaris Exposed to Heavy Metal Mixtures: Linking Measured Endpoints and Mechanisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1037. [PMID: 33503904 PMCID: PMC7908404 DOI: 10.3390/ijerph18031037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Microalgae growth inhibition assays are candidates for referent ecotoxicology as a fundamental part of the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Chlorella vulgaris exposed to heavy metals following standardized growth and photosynthesis inhibition assays was assessed in two different scenarios: (1) dilutions of single heavy metals and (2) an artificial mixture of heavy metals at similar levels as those found in natural rivers. Chemical speciation of heavy metals was estimated with Visual MINTEQ software; free heavy metal ion concentrations were used as input data, together with microalgae growth and photosynthesis inhibition, to compare different effects and explain possible toxicity mechanisms. The final goal was to assess the suitability of the ecotoxicological test based on the growth and photosynthesis inhibition of microalgae cultures, supported by mathematic models for regulatory and decision-making purposes. The C. vulgaris algae growth inhibition test was more sensitive for As, Zn, and Pb exposure whereas the photosynthesis inhibition test was more sensitive for Cu and Ni exposure. The effects on growth and photosynthesis were not related. C. vulgaris evidenced the formation of mucilaginous aggregations at lower copper concentrations. We found that the toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical compounds (as nutrient loads) and biological interactions play an important role in the final toxicity. Predictive mixture effect models tend to overestimate the effects of metal mixtures in C. vulgaris for both growth and photosynthesis inhibition tests. Growth and photosynthesis inhibition tests give complementary information, and both are a fast, cheap, and sensitive alternative to animal testing. More research is needed to solve the challenge of complex pollutant mixtures as they are present in natural environments, where microalgae-based assays can be suitable monitoring tools for pollution management and regulatory purposes.
Collapse
Affiliation(s)
- Nora Expósito
- Environmental Engineering Laboratory, Chemical Engineering Department, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain; (N.E.); (R.C.); (M.S.); (G.G.P.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Vir-gili University, Sant Llorenç 21, 43201 Reus, Spain;
| | - Roberta Carafa
- Environmental Engineering Laboratory, Chemical Engineering Department, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain; (N.E.); (R.C.); (M.S.); (G.G.P.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Vir-gili University, Sant Llorenç 21, 43201 Reus, Spain;
| | - Vikas Kumar
- Environmental Engineering Laboratory, Chemical Engineering Department, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain; (N.E.); (R.C.); (M.S.); (G.G.P.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Vir-gili University, Sant Llorenç 21, 43201 Reus, Spain;
| | - Jordi Sierra
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Vir-gili University, Sant Llorenç 21, 43201 Reus, Spain;
- Faculty of Pharmacy, Barcelona University, Avda Joan XXIII s/n, 08028 Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Chemical Engineering Department, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain; (N.E.); (R.C.); (M.S.); (G.G.P.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Vir-gili University, Sant Llorenç 21, 43201 Reus, Spain;
| | - Gemma Giménez Papiol
- Environmental Engineering Laboratory, Chemical Engineering Department, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain; (N.E.); (R.C.); (M.S.); (G.G.P.)
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Rovira i Vir-gili University, Sant Llorenç 21, 43201 Reus, Spain;
| |
Collapse
|
9
|
Liu J, Zhang H, Yan L, Kerr PG, Zhang S, Wu Y. Electron transport, light energy conversion and proteomic responses of periphyton in photosynthesis under exposure to AgNPs. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123809. [PMID: 33113741 DOI: 10.1016/j.jhazmat.2020.123809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 05/09/2023]
Abstract
Silver nanoparticles (AgNPs) including a mix of intact nanoparticle-Ag and 'free' Ag+ pose high risks to benthic photoautotrophs, but the photosynthetic responses of benthic microbial aggregates to AgNPs still remain largely unknown. Here, periphyton and Nostoc were used to elucidate the photosynthetic responses of benthic algae community to intact nanoparticle-Ag and Ag+. During exposure, both intact nanoparticle-Ag and Ag+ imposed negative effects on photosynthesis of benthic algae, but via different pathways. Specifically, Ag+ had stronger effects on damaging the oxygen-evolving complex (OEC) and thylakoid membrane than intact nanoparticle-Ag. Ag+ also suppressed electron transfer from QA to QB, and impaired phycobilisome. Intact nanoparticle-Ag inhibited the expression of PsbD and PsbL in PSII, but prompted the ROS scavenging capacity. In response to the stress of AgNPs, the benthic algae increased light energy absorption to maintain the electron transport efficiency, and up-regulated PSI reaction center protein (PsaA) to compensate the degraded PSII. These results reveal how intact nanoparticle-Ag and Ag+ influence electron transport, energy conversion and protein expression in the photosynthesis of periphyton, and provide deep insights into the responses of benthic photoautotrophs to different components of AgNPs.
Collapse
Affiliation(s)
- Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang, 443605, China.
| | - Huijie Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; College of Agricultural Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Boorooma St., Wagga Wagga, NSW, 2678, Australia
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang, 443605, China.
| |
Collapse
|
10
|
Wang X, Zhu X, Chen X, Lv B, Wang X, Wang D. Phenanthrene and pyrene disturbed the growth of Microcystis aeruginosa as co-cultured with Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45957-45964. [PMID: 33067791 DOI: 10.1007/s11356-020-10979-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Significant levels of polycyclic aromatic hydrocarbons (PAHs) were detected in lakes. The competition between algae would be disturbed by PAHs resulted in variations of algal growth. For controlling the cyanobacterial blooms, it is important to understand this disturbed competition between Microcystis aeruginosa and other algae. A 6-day cultivation experiment was designed to investigate the responses of M. aeruginosa to PAHs in presence of green algae. A popular green alga Chlorella pyrenoidosa was used as a representative of green algae, and phenanthrene and pyrene were selected as representatives of PAHs. The results showed that M. aeruginosa outcompeted C. pyrenoidosa under PAH contamination, and PAHs and M. aeruginosa significantly inhibited the survival of C. pyrenoidosa. PAHs disturbed the growth of algae by influencing photosynthetic pigments and phycobiliproteins, and the different alteration of Fv/Fm ratios implied that shifted algal community composition would be induced by PAHs. The Fv/Fm of the two algal mixture and individual C. pyrenoidosa was significantly negatively correlated with phenanthrene levels. However, there were no significant correlations between the Fv/Fm of M. aeruginosa and the exposure levels of phenanthrene or pyrene. Remarkably, the Fv/Fm significantly increased in M. aeruginosa at 0.15 mg L-1 pyrene, suggesting that PSII resistance to pyrene was enhanced in M. aeruginosa. Our results pointed out an increasing frequency and intensity of cyanobacterial blooms could be induced by PAHs in contaminated waters.
Collapse
Affiliation(s)
- Xiucui Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Environmental Science and Engineering, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Xuezhu Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Xuemei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Baitao Lv
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xue Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Danqin Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
11
|
Lin W, Su F, Lin M, Jin M, Li Y, Ding K, Chen Q, Qian Q, Sun X. Effect of microplastics PAN polymer and/or Cu 2+ pollution on the growth of Chlorella pyrenoidosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114985. [PMID: 32563949 DOI: 10.1016/j.envpol.2020.114985] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Polyacrylonitrile polymer (PAN), a common representative textile material and a microplastic, has significant influence on phytoplankton algae, especially with co-exposure with other pollutants, e.g. Cu2+. In the present study, we carried out experiments to reveal the population size variation trends of Chlorella pyrenoidosa over time (during a whole growth cycle of 6 days) under PAN and/or Cu2+. The levels of pigments (chlorophyll a, b, total chlorophyll and carotenoids), chlorophyll a fluorescence parameters, and other physiological and biochemical indices, containing total protein measurements of H2O2, catalase (CAT), and malondialdehyde (MDA) under different treatment groups were measured to explain the physio-ecological mechanism of the effect of PAN and/or Cu2+ on the growth of C. pyrenoidosa. The results showed that PAN, Cu2+ and the combination of PAN and Cu2+ inhibited the growth of C. pyrenoidosa. Chlorophyll a and b decreased significantly with increasing levels of pollutants (PAN and/or Cu2+); however, the carotenoid levels increased with increasing levels of pollutants (PAN and/or Cu2+) for the first three cultivation days. The oxygen-evolving complexes (OECs) of C. pyrenoidosa had been damaged under Cu2+ pollution. The results also showed that CAT activity, MDA content and H2O2 activity of C. pyrenoidosa increased with increasing levels of pollutants (PAN and/or Cu2+); however, total protein content decreased with increasing levels of pollutants (PAN and/or Cu2+) at the first cultivation day. These results indicate that pollutants (PAN and/or Cu2+) are harmful to the growth of the C. pyrenoidosa population and negatively affect the levels and function of the pigments in C. pyrenoidosa by decreasing chlorophyll a and b levels, increasing carotenoid levels, and increasing antioxidant enzyme activity.
Collapse
Affiliation(s)
- Wei Lin
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian Province, 350007, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, Fujian Province, 350300, China
| | - Fang Su
- Institute of Ocean Research, Fujian Polytechnic Normal Univeristy, Fuqing, Fujian Province, 350300, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, Fujian Province, 350300, China
| | - Maozi Lin
- Institute of Ocean Research, Fujian Polytechnic Normal Univeristy, Fuqing, Fujian Province, 350300, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, Fujian Province, 350300, China.
| | - Meifang Jin
- Institute of Ocean Research, Fujian Polytechnic Normal Univeristy, Fuqing, Fujian Province, 350300, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, Fujian Province, 350300, China
| | - Yuanheng Li
- Institute of Ocean Research, Fujian Polytechnic Normal Univeristy, Fuqing, Fujian Province, 350300, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, Fujian Province, 350300, China
| | - Kewu Ding
- Institute of Ocean Research, Fujian Polytechnic Normal Univeristy, Fuqing, Fujian Province, 350300, China; Fujian Provincial Key Lab of Coastal Basin Environment (Fujian Polytechnic Normal Univeristy), Fuqing, Fujian Province, 350300, China
| | - Qinhua Chen
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian Province, 350007, China.
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian Province, 350007, China
| | - Xiaoli Sun
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian Province, 350007, China
| |
Collapse
|
12
|
Karitonas R, Jurkonienė S, Sadauskas K, Vaičiūnienė J, Manusadžianas L. Modifying effects of leaf litter extracts from invasive versus native tree species on copper-induced responses in Lemna minor. PeerJ 2020; 8:e9444. [PMID: 32704445 PMCID: PMC7350913 DOI: 10.7717/peerj.9444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Invasive plant species tend to migrate from their native habitats under favourable climatic conditions; therefore, trophic and other relationships in ecosystems are changing. To investigate the effect of natural organic matter derived from native Alnus glutinosa tree species and from invasive in Lithuania Acer negundo tree species on copper toxicity in Lemna minor, we analysed the dynamics of Cu binding in aqueous leaf litter extracts (LLE) and plant accumulation, morphophysiological parameters, and antioxidative response. The results revealed that A. glutinosa LLE contained polyphenols (49 mg pyrogallol acid equivalent (PAE)/g DM) and tannins (7.5 mg PAE/g DM), while A. negundo LLE contained only polyphenols (23 mg PAE/g DM). The ability of LLE to bind Cu increased rapidly over 1.5-3 h to 61% and 49% of the total Cu concentration (6.0 ± 0.9 mg/L), respectively for A. glutinosa (AG) and A. negundo (AN), then remained relatively stable until 48 h. At the same time, L. minor accumulated 384, 241 or 188 µg Cu/g FW when plants were exposed to Cu (100 µM CuSO4), Cu with 100 mg/L dissolved organic carbon (DOC) from either AG LLE or AN LLE, accordingly. Catalase (CAT) and guaiacol peroxidase (POD) played a dominant role in hydrogen peroxide scavenging when plants were exposed to Cu and 10 or 100 mg/L DOCAG mixtures in both the first (up to 6h) and the second (6-48 h) response phases. Due to functioning of oxidative stress enzymes, the levels of the lipid peroxidation product malondialdehyde (MDA) reduced in concentration-dependent manner, compared to Cu treatment. When combining Cu and DOCAN treatments, the most sensitive enzymes were POD, ascorbate peroxidase and glutathione reductase. Their activities collectively with CAT were sufficient to reduce MDA levels to Cu-induced in the initial, but not the second response phase. These data suggest that leaf litter extracts of different phenolic compositions elicited different antioxidant response profiles resulting in different reductions of Cu stress, thus effecting L. minor frond and root development observed after seven days. The complex data from this study may be useful in modelling the response of the aquatic ecosystem to a changing environment.
Collapse
Affiliation(s)
| | | | - Kazys Sadauskas
- Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | - Jūratė Vaičiūnienė
- Institute of Chemistry, Centre for Physical Sciences and Technology, Vilnius, Lithuania
| | | |
Collapse
|
13
|
Morpho-Anatomical and Physiological Responses Can Predict the Ideal Period for the Transplantation of Hydroponic Seedlings of Hymenaea courbaril, a Neotropical Fruit Tree. PLANTS 2020; 9:plants9060721. [PMID: 32517189 PMCID: PMC7355613 DOI: 10.3390/plants9060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
Hydroponics is an excellent alternative approach for the production of seedlings, given the growing demand for fruiting trees for the reforestation or recuperation of degraded natural landscapes. In most cases, however, little is known about the optimal period for the maintenance of the seedling in the hydroponic system. Given this, we decided to investigate the hypothesis that morpho-anatomical and physiological alterations can be used to predict the optimal timing for the transplantation of the seedlings to the soil substrate, thereby guaranteeing the most cost-effective application of the hydroponic system. We selected Hymenaea courbaril L., an important Neotropical fruit tree, as the model for this study. We cultivated H. courbaril seedlings in a static hydroponic system and evaluated morpho-anatomical, physiological, and growth parameters over the course of seedling development (30, 60, 90, 120, 150, and 180 days after transplantation; DAT). We observed an interesting relationship between the increase in the density (SD) and conductance (gsw) of the stomata up to 120 DAT, which reflected higher rates of photosynthesis (A), but also a reduced efficiency in the use of water. In the subsequent intervals, the SD of the plants and the diameter of the radicular xylemic vessels elements (RVE) decreased, in an attempt to increase the efficiency of the use of this resource. We also observed an increase in the thickness of the palisade parenchyma (PP) prior to 120 DAT, which did not reflect a general increase in the thickness of the mesophyll, indicating an adjustment in the thickness of the spongiform parenchyma (SP). We also observed a progressive increase in photosynthetic efficiency up to 120 DAT, based on parameters such as the absorption flux energy per active reaction center (ABS/RC) and the photosynthetic performance index (PIABS), but after this period these indices decreased progressively. However, as the PIABS is an indicator of the plant’s tolerance, its decline was associated with an increase in the dissipation of energy (DI0/RC), which indicates that, after 120 DAT, the plant pots may become a stress factor that limit the growth of H. courbaril seedlings. The results of the present study indicate conclusively that a 120-day period is the optimum for the maintenance of the H. courbaril seedlings in the hydroponic system, and also confirm the hypothesis that the morpho-anatomical and physiological responses observed in the plants can be used to predict the ideal period for the transplantation of the seedlings, contributing to a reduction in production time of the hydroponic system.
Collapse
|
14
|
Charalampous N, Grammatikopoulos G, Kourmentza C, Kornaros M, Dailianis S. Effects of Burkholderia thailandensis rhamnolipids on the unicellular algae Dunaliella tertiolecta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109413. [PMID: 31284121 DOI: 10.1016/j.ecoenv.2019.109413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The effects of rhamnolipids (RLs) produced and further purified from Burkholderia thailandensis, on the unicellular microalgae Dunaliella tertiolecta were investigated, in terms of RLs ability to affect algal growth, photosynthetic apparatus structure and energy flux, round and through photosystems II and I. Specifically, 24-48 h RLs-treated algae (RLs at concentrations ranged from 5 to 50 mg L-1) showed significantly decreased levels of growth rate, while increased levels of Chl a and b were obtained only in 72-96 h RLs-treated algae. Similarly, although no changes were obtained in the Chl a/b ratio and almost all chlorophyll fluorescence parameters over time, yields of electron transport (ϕR0, ϕE0) and respective performance index (PItotal) were negatively affected at 72 and 96 h. Based on those findings, it seems that the inhibitory effect of RLs on the algae growth rate after 24 and 48 h and the gradual attenuation of the phenomenon (after 72 h of exposure), may indicate the initial response of the organism, as well as algae ability to overcome, since RLs showed no effects on algae photosynthetic ability. Those findings reveal for the first time that RLs from Burkholderia thailandensis are not harmful for Dunaliella tertiolecta. However, further studies with the use of more aquatic species could be essential for assessing the RLs-mediated effects on aquatic biota.
Collapse
Affiliation(s)
- Nikolina Charalampous
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Giorgos Grammatikopoulos
- Laboratory of Plant Physiology, Section of Plant Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Constantina Kourmentza
- Department of Food & Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, RG6 6AP, Reading, UK
| | - Michael Kornaros
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, Karatheodori 1 Str., GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece.
| |
Collapse
|
15
|
Luo H, Xiang Y, He D, Li Y, Zhao Y, Wang S, Pan X. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:1-9. [PMID: 31075575 DOI: 10.1016/j.scitotenv.2019.04.401] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 05/22/2023]
Abstract
Chemical additives leaching from microplastics and their effects on physiology of microalgae are of environmental significance. So far, these issues remain unclear. Here, the leaching behavior of fluorescent additives from polyurethane sponge microplastics in simulated (acidic, saline, and basic water) and natural waters (river, lake, wetland, and sea water) was investigated. Release amount of additives increased with increasing solution pH and leaching time. The maximum release amount was reached at the leaching time of 12-24 h and the 3,3'-diaminobenzidine-like substances were identified in the leachate. The leached concentrations of fluorescent additives in simulated and natural waters followed the order of basic water > saline water > seawater > West Lake > River > Wetland. Effects of leachate and microplastics on growth and photosynthesis of Chlorella vulgaris were further evaluated. The maximum quantum efficiency of photosystem II (Fv/Fm) decreased with increasing leachate concentrations. Only high content (1.6 g L-1) of microplastics exerted significant inhibitory influence on cell photosynthesis when microalgae were exposed to microplastics alone. Retention of algal cells inside the porous sponge microplastics did not change their photosynthetic efficiency. These findings indicate that leaching process of additives from microplastics depends mainly on water environments and the leached chemicals may pose ecological risks to aquatic organisms.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuo Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Ali A, Phull AR, Zia M, Shah AMA, Malik RN, ul-Haq I. Phytotoxicity of River Chenab sediments: In vitro morphological and biochemical response of Brassica napus L. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.enmm.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Singh A, Prasad SM. A lucrative technique to reduce Ni toxicity in Raphanus sativus plant by phosphate amendment: Special reference to plant metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:81-89. [PMID: 25982734 DOI: 10.1016/j.ecoenv.2015.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Nickel (Ni) contamination is one of the serious environmental problems. It creates hazard in soil environment and also in crop quality. In the present study, response of Raphanus sativus (radish) to Ni (50mgkg(-1) soil) under different concentrations (100, 200, 500 and 1000 DAPmgkg(-1) soil) of phosphate as soil amendment was investigated after 40 days of growth. Ni-treated plants without amendment showed reduction in their growth as a result of appreciable decrease in the photosynthetic activity. Under this treatment, Ni accumulation significantly enhanced lipid peroxidation and level of oxidants showing oxidative stress and it was also associated with decrease in the activities of antioxidative enzymes except super oxide dismutase (SOD). Application of phosphate in Ni contaminated soil resulted into significant improvement in plant growth. Under phosphate amendment, the status of oxidative biomarkers: SOR, TBARS and H2O2 were under control by the higher activity of antioxidants: APX, CAT, POD, GST and DHAR compared to Ni contaminated soil without amendment. Principal component analysis (PCA) was performed to show the significant changes in biochemical traits under control and phosphate amendment. The values of PS II transient kinetics: Phi-E0, Psi-0 and PIABS increased and values of energy fluxes: ABC/RC, Tro/RC, Eto/RC and Dio/RC decreased in plants grown in Ni contaminated soil under phosphate amendment as compared to without amendment. Among all doses of phosphate amendment soil amended at 500mg DAPkg(-)(1) soil the yield of plant was the highest and Ni accumulation was the lowest. As compared to plants grown in Ni treated soil without amendment the yield of plant at 500mg DAPkg(-1) soil showed about 70% increment and the reduction in Ni accumulation was 63% in shoot and 64% in root. Because of these beneficial effects this technique can be easily applied at metal contaminated agricultural fields to reduce food chain contamination and to improve food quality.
Collapse
Affiliation(s)
- Anita Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
18
|
Hernández-Zamora M, Perales-Vela HV, Flores-Ortíz CM, Cañizares-Villanueva RO. Physiological and biochemical responses of Chlorella vulgaris to Congo red. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:72-77. [PMID: 25042247 DOI: 10.1016/j.ecoenv.2014.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments.
Collapse
Affiliation(s)
- Miriam Hernández-Zamora
- Laboratorio de Biotecnología de Microalgas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, C.P. 07360 México DF, México.
| | - Hugo Virgilio Perales-Vela
- Laboratorio de Bioquímica, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Av. de los Barrios #1, Estado de México, México.
| | - César Mateo Flores-Ortíz
- Laboratorio de Biogeoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Av. de los Barrios #1, Estado de México, México.
| | - Rosa Olivia Cañizares-Villanueva
- Laboratorio de Biotecnología de Microalgas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, C.P. 07360 México DF, México.
| |
Collapse
|
19
|
Kumar KS, Dahms HU, Lee JS, Kim HC, Lee WC, Shin KH. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:51-71. [PMID: 24632123 DOI: 10.1016/j.ecoenv.2014.01.042] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 05/22/2023]
Abstract
Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides).
Collapse
Affiliation(s)
- K Suresh Kumar
- Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Hans-Uwe Dahms
- Green Life Science Department, College of Convergence, Sangmyung University, 7 Hongij-dong, Jongno-gu, Seoul 110-743, Republic of Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Hyung Chul Kim
- Marine Environment Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Won Chan Lee
- Marine Environment Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea.
| |
Collapse
|
20
|
Perreault F, Samadani M, Dewez D. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 2013; 8:374-82. [PMID: 23521766 DOI: 10.3109/17435390.2013.789936] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Copper oxide nanoparticles (CuO NPs) are used as a biocide in paints, textiles and plastics. Their application may lead to the contamination of aquatic ecosystems, where potential environmental effects remain to be determined. Toxic effects may be related to interactions of NPs with cellular systems or to particles' solubilisation releasing metal ions. In this report, we evaluated CuO NPs and soluble copper effects on photosynthesis of the aquatic macrophyte Lemna gibba L to determine the role of particle solubility in NPs toxicity. When L. gibba plants were exposed 48 h to CuO NPs or soluble copper, inhibition of photosynthetic activity was found, indicated by the inactivation of Photosystem II reaction centers, a decrease in electron transport and an increase of thermal energy dissipation. Toxicity of CuO NPs was mainly driven by copper ions released from particles. However, the bioaccumulation of CuO NPs in plant was shown, indicating the need to evaluate organisms of higher trophic level.
Collapse
Affiliation(s)
- François Perreault
- Department of Chemistry, University of Quebec in Montreal , Montreal, Quebec , Canada
| | | | | |
Collapse
|
21
|
Lelong A, Jolley DF, Soudant P, Hégaret H. Impact of copper exposure on Pseudo-nitzschia spp. physiology and domoic acid production. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:37-47. [PMID: 22516673 DOI: 10.1016/j.aquatox.2012.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
Microalgae have differing sensitivities to copper toxicity. Some species within the genus Pseudo-nitzschia produce domoic acid (DA), a phycotoxin that has been hypothesised to chelate Cu and ameliorate Cu toxicity to the cells. To better characterise the effect of Cu on Pseudo-nitzschia, a toxic strain of P. multiseries and a non-toxic strain of P. delicatissima were exposed to Cu(II) for 96 h (50 μg l(-1) for P. delicatissima and 50, 100 and 150 μg l(-1) for P. multiseries). Physiological measurements were performed daily on Pseudo-nitzschia cells using fluorescent probes and flow cytometry to determine the cell density, lipid concentration, chlorophyll autofluorescence, esterase activity, percentage of dead algal cells, and number of living and dead bacteria. Photosynthetic efficiency and O(2) consumption and production of cells were also measured using pulse amplitude modulated fluorometry and SDR Oxygen Sensor dish. The DA content was measured using ELISA kits. After 48 h of Cu exposure, P. delicatissima mortality increased dramatically whereas P. multiseries survival was unchanged (in comparison to control cells). Cellular esterase activity, chlorophyll autofluorescence, and lipid content significantly increased upon Cu exposure in comparison to control cells (24h for P. delicatissima, up to 96 h for P. multiseries). Bacterial concentrations in P. multiseries decreased significantly when exposed to Cu, whereas bacterial concentrations were similar between control and exposed populations of P. delicatissima. DA concentrations in P. multiseries were not modified by Cu exposure. Addition of DA to non-toxic P. delicatissima did not enhance cells survival; hence, extracellular DA does not protect Pseudo-nitzschia spp. against copper toxicity. Results suggested that cells of P. delicatissima are much more sensitive to Cu than P. multiseries. This difference is probably not related to the ability of P. multiseries to produce DA but could be explained by species differences in copper sensitivity, or a difference of bacterial community between the algal species.
Collapse
Affiliation(s)
- Aurélie Lelong
- Laboratoire des sciences de l'environnement marin (LEMAR), UMR6539, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Dianne F Jolley
- School of Chemistry, University of Wollongong, NSW 2522, Australia.
| | - Philippe Soudant
- Laboratoire des sciences de l'environnement marin (LEMAR), UMR6539, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Hélène Hégaret
- Laboratoire des sciences de l'environnement marin (LEMAR), UMR6539, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280 Plouzané, France.
| |
Collapse
|
22
|
Kong Q, Zhu L, Shen X. Effect of nutrient conditions on the toxicity of naphthalene to Chlorella pyrenoidosa. J Environ Sci (China) 2011; 23:307-314. [PMID: 21517006 DOI: 10.1016/s1001-0742(10)60407-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The toxicity of naphthalene to a freshwater microalga, Chlorella pyrenoidosa, and the subsequent recovery of algae from the damage were investigated under two nutrient conditions, either enriched with nitrogen (N) and phosphorus (P), or starved of N and P. Results showed that C. pyrenoidosa was more sensitive to naphthalene under N,P-enriched condition, and the inhibitory rate generally increased at first and then decreased gradually with the evaporation of naphthalene under both nutrient conditions. Enriched N, P reduced the inhibitory rate at initial naphthalene concentration of 5 and 10 mg/L, but enhanced it at 100 mg/L, at which more severe ultrastructure damages were found than those under N,P-starved condition. Observed damages included partly or totally disappearance of nucleolus, nuclear, and plasma membranes. According to the chlorophyll content and cell density measurements, C. pyrenoidosa could recover from naphthalene damage with initial concentrations < 50 mg/L in 7 days under both nutrient conditions, while they could not recover if the initial concentration of naphthalene was at 100 mg/L. Under the N,P-starved condition, the inability of C. pyrenoidosa to recover from the naphthalene damage was consistent with the results of high inhibitory rate, low value of specific growth rate (SGR, 0.05 day(-1)), and the severe destruction of cell structure. However, under the N,P-enriched conditions, the observed lower inhibitory rate, higher value of SGR (0.55 day(-1)), and the intact cell structure of most cells suggested that algae could potentially recover from the naphthalene damage.
Collapse
Affiliation(s)
- Qingxia Kong
- Department of Environmental Science, Zhejiang University, Hangzhou 310028, China
| | | | | |
Collapse
|