1
|
Liu Y, Xia Y, Zhang W. Structural Lipidomics Enabled by Isomer-Resolved Tandem Mass Spectrometry. Anal Chem 2025; 97:4275-4286. [PMID: 39960352 DOI: 10.1021/acs.analchem.4c06680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Younis IY, Sedeek MS, Essa AF, Elgamal AM, Eltanany BM, Goda ZM, Pont L, Benavente F, Mohsen E. Exploring geographic variations in quinoa grains: Unveiling anti-Alzheimer activity via GC-MS, LC-QTOF-MS/MS, molecular networking, and chemometric analysis. Food Chem 2025; 465:141918. [PMID: 39541691 DOI: 10.1016/j.foodchem.2024.141918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Quinoa is an ancient Andean crop with a significant interest due to its nutritional and health benefits. This work provides a comprehensive metabolite profiling of five commercially available quinoa grains from diverse geographical origins. GC-MS analysis of primary metabolites identified sugars, sugar derivatives, and lipids as the predominant classes. LC-QTOF-MS/MS metabolomics and molecular networking facilitated the identification of 151 secondary metabolites, including 20 flavonoids, 14 saponins, and 20 lipids, which were reported for the first time in quinoa. In the AChE inhibition assay, USA white quinoa exhibited the highest activity. Chemometric analyses indicated that flavonoids and saponins were crucial for distinguishing quinoa grains. Notably, flavonoid glycosides and saponins were positively correlated with AChE inhibition. This study represents the first MS-based metabolomics investigation using molecular networking and chemometrics to explore the metabolome heterogeneity of commercial quinoa grains, underscoring their potential as a promising natural source for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Inas Y Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mohamed S Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacognosy Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, Egypt
| | - Ahmed F Essa
- Chemistry of Natural Compounds Department, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt; Pharmacognosy Department, Faculty of Pharmacy, Merit University, Sohag, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 ElBohouth St., Dokki, Cairo 12622, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Zeinab M Goda
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain; Serra Húnter Program, Generalitat de Catalunya, Barcelona 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona 08028, Spain.
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ventura G, Bianco M, Losito I, Cataldi TRI, Calvano CD. Complete Polar Lipid Profile of Kefir Beverage by Hydrophilic Interaction Liquid Chromatography with HRMS and Tandem Mass Spectrometry. Int J Mol Sci 2025; 26:1120. [PMID: 39940887 PMCID: PMC11818909 DOI: 10.3390/ijms26031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Kefir, a fermented milk product produced using kefir grains, is a symbiotic consortium of bacteria and yeasts responsible for driving the fermentation process. In this study, an in-depth analysis of kefir's lipid profile was conducted, with a focus on its phospholipid (PL) content, employing liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Nearly 300 distinct polar lipids were identified through hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization (ESI) and Fourier-transform orbital-trap MS and linear ion-trap tandem MS/MS. The identified lipids included phosphatidylcholines (PCs), lyso-phosphatidylcholines (LPCs), phosphatidylethanolamines (PEs) and lyso-phosphatidylethanolamines (LPEs), phosphatidylserines (PSs), phosphatidylglycerols (PGs), and phosphatidylinositols (PIs). The presence of lysyl-phosphatidylglycerols (LyPGs) was identified as a key finding, marking a lipid class characteristic of Gram-positive bacterial membranes. This discovery highlights the role of viable bacteria in kefir and underscores its probiotic potential. The structural details of minor glycolipids (GLs) and glycosphingolipids (GSLs) were further elucidated, enriching the understanding of kefir's lipid complexity. Fatty acyl (FA) composition was characterized using reversed-phase LC coupled with tandem MS. A mild epoxidation reaction with meta-chloroperoxybenzoic acid (m-CPBA) was performed to pinpoint double-bond positions in FAs. The dominant fatty acids were identified as C18:3, C18:2, C18:1, C18:0 (stearic acid), C16:0 (palmitic acid), and significant levels of C14:0 (myristic acid). Additionally, two isomers of FA 18:1 were distinguished: ∆9-cis (oleic acid) and ∆11-trans (vaccenic acid). These isomers were identified using diagnostic ion pairs, retention times, and accurate m/z values. This study provides an unprecedented level of detail on the lipid profile of kefir, shedding light on its complex composition and potential nutritional benefits.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (G.V.); (M.B.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (G.V.); (M.B.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (G.V.); (M.B.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (G.V.); (M.B.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Cosima D. Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (G.V.); (M.B.); (I.L.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
4
|
Barnette D, Inselman AL, Kaldhone P, Lee GS, Davis K, Sarkar S, Malhi P, Fisher JE, Hanig JP, Beger RD, Jones EE. The incorporation of MALDI mass spectrometry imaging in studies to identify markers of toxicity following in utero opioid exposures in mouse fetuses. FRONTIERS IN TOXICOLOGY 2024; 6:1452974. [PMID: 39691158 PMCID: PMC11651024 DOI: 10.3389/ftox.2024.1452974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction In 2015, the FDA released a Drug Safety Communication regarding a possible link between opioid exposure during early pregnancy and an increased risk of fetal neural tube defects (NTDs). At the time, the indications for opioid use during pregnancy were not changed due to incomplete maternal toxicity data and limitations in human and animal studies. To assess these knowledge gaps, largescale animal studies are ongoing; however, state-of-the-art technologies have emerged as promising tools to assess otherwise non-standard endpoints. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a dynamic approach capable of generating 2D ion images to visualize the distribution of an analyte of interest across a tissue section. Methods Given the importance of lipid metabolism and neurotransmitters in the developing central nervous system, this study incorporates MALDI MSI to assess lipid distributions across mouse gestational day (GD) 18 fetuses, with and without observable NTDs following maternal exposure on GD 8 to morphine (400 mg/kg BW) or the NTD positive control valproic acid (VPA) (500 mg/kg BW). Results Analysis of whole-body mouse fetuses revealed differential lipid distributions localized mainly in the brain and spinal cord, which included several phosphatidylcholine (PC) species such as PCs 34:1, 34:0, and 36:2 localized to the cortex or hippocampus and lyso PC 16:0 across all brain regions. Overall, differential lipids increased in with maternal morphine and VPA exposure. Neurotransmitter distributions across the brain using FMP-10 derivatizing agent were also assessed, revealing morphine-specific changes. Discussion The observed differential glycerophospholipid distributions in relation to treatment and NTD development in mouse fetuses provide potential targets for further investigation of molecular mechanisms of opioid-related developmental effects. Overall, these findings support the feasibility of incorporating MALDI MSI to assess non-standard endpoints of opioid exposure during gestation.
Collapse
Affiliation(s)
- Dustyn Barnette
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Amy L. Inselman
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Pravin Kaldhone
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Grace S. Lee
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Kelly Davis
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - Sumit Sarkar
- National Center for Toxicological Research (FDA), Division of Neurotoxicology, Jefferson, AR, United States
| | - Pritpal Malhi
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - J. Edward Fisher
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research (CDER), Division of Pharmacology Toxicology for Neuroscience, Silver Spring, MD, United States
| | - Richard D. Beger
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - E. Ellen Jones
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| |
Collapse
|
5
|
Zhang X, Chen Q, Wu L, Zhang W, Zhao X. Radical-directed dissociation mass spectrometry for differentiation and relative quantitation of isomeric ether-linked phosphatidylcholines. Anal Chim Acta 2024; 1331:343337. [PMID: 39532421 DOI: 10.1016/j.aca.2024.343337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ether-linked phosphatidylcholines (PCs) include both plasmanyl and plasmenyl PCs, which contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. Profiling and quantifying ether PCs with accurate structural information is challenging because of the common presence of isomeric and isobaric species in a lipidome. RESULTS In the present study, radical directed dissociation (RDD) from collision-induced dissociation (CID) of the bicarbonate anion adduct of ether PCs has been investigated to differentiate and relatively quantify ether PCs. Alkyl- and alkenyl- PCs give diagnostic characteristic fragment patterns that enable their confident identification and isomer differentiation. Additionally, the sn-position specific product ions have proven effective for relative quantitation among isomers in ether PCs and their isobaric PC species. Using this methodology, we successfully identified a total of 30 PC-O species, 21 PC-P species at the chain composition level, and 22 species of isobaric PC at the sn-position level in the human plasma lipid extract. The quantitative analysis revealed that ether PCs with a 20:4 fatty acyl chain are relatively more abundant in human plasma. Finally, the profile of ether PCs in type 2 diabetic (T2D) groups compared to normal control groups revealed a significant decrease in PC-O 18:1/20:5. We also found it is the PC species containing a 17-carbon fatty acyl chain, rather than their isobaric ether PCs, that shows a decreasing trend in the T2D groups. SIGNIFICANCE ether-linked PCs are firstly investigated by RDD mass spectrometry.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, 442008, Shiyan, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, 100084, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China.
| |
Collapse
|
6
|
Costa J, Gabrielli M, Altabe SG, Uttaro AD. The presence of plasmenyl ether lipids in Capsaspora owczarzaki suggests a premetazoan origin of plasmalogen biosynthesis in animals. Heliyon 2024; 10:e32807. [PMID: 38975177 PMCID: PMC11225845 DOI: 10.1016/j.heliyon.2024.e32807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether bond, rather than an ester bond, at sn-1 position. These lipids were described in anaerobic bacteria, myxobacteria, animals and some protists, but not in plants or fungi. Anaerobic and aerobic organisms synthesize plasmalogens differently. The aerobic pathway requires oxygen in the last step, which is catalyzed by PEDS1. CarF and TMEM189 were recently identified as the PEDS1 from myxobacteria and mammals, which could be of valuable use in exploring the distribution of this pathway in eukaryotes. We show the presence of plasmalogens in Capsaspora owczarzaki, one of the closest unicellular relatives of animals. This is the first report of plasmalogens in non-metazoan opisthokontas. Analysis of its genome revealed the presence of enzymes of the aerobic pathway. In a broad BLAST search, we found PEDS1 homologs in Opisthokonta and some genera of Amoebozoa and Excavata, consistent with the restricted distribution of plasmalogens reported in eukaryotes. Within Opisthokonta, PEDS1 is limited to Filasterea (Capsaspora and Pigoraptor), Metazoa and a small group of fungi comprising three genera of ascomycetes. A phylogenetic analysis of PEDS1 traced the acquisition of plasmalogen synthesis in animals to a filasterean ancestor and suggested independent acquisition events for Amoebozoa, Excavata and Ascomycetes.
Collapse
Affiliation(s)
| | | | - Silvia G. Altabe
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Antonio D. Uttaro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
7
|
Adamson SE, Adak S, Petersen MC, Higgins D, Spears LD, Zhang RM, Cedeno A, McKee A, Kumar A, Singh S, Hsu FF, McGill JB, Semenkovich CF. Decreased sarcoplasmic reticulum phospholipids in human skeletal muscle are associated with metabolic syndrome. J Lipid Res 2024; 65:100519. [PMID: 38354857 PMCID: PMC10937315 DOI: 10.1016/j.jlr.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Metabolic syndrome affects more than one in three adults and is associated with increased risk of diabetes, cardiovascular disease, and all-cause mortality. Muscle insulin resistance is a major contributor to the development of the metabolic syndrome. Studies in mice have linked skeletal muscle sarcoplasmic reticulum (SR) phospholipid composition to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase activity and insulin sensitivity. To determine if the presence of metabolic syndrome alters specific phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in human SR, we compared SR phospholipid composition in skeletal muscle from sedentary subjects with metabolic syndrome and sedentary control subjects without metabolic syndrome. Both total PC and total PE were significantly decreased in skeletal muscle SR of sedentary metabolic syndrome patients compared with sedentary controls, particularly in female participants, but there was no difference in the PC:PE ratio between groups. Total SR PC levels, but not total SR PE levels or PC:PE ratio, were significantly negatively correlated with BMI, waist circumference, total fat, visceral adipose tissue, triglycerides, fasting insulin, and homeostatic model assessment for insulin resistance. These findings are consistent with the existence of a relationship between skeletal muscle SR PC content and insulin resistance in humans.
Collapse
Affiliation(s)
- Samantha E Adamson
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Max C Petersen
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Dustin Higgins
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Larry D Spears
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Rong Mei Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Andrea Cedeno
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Alexis McKee
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Aswathi Kumar
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Sudhir Singh
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Janet B McGill
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA; Department of Cell Biology & Physiology, Washington University, St Louis, MO, USA.
| |
Collapse
|
8
|
Torreno VPM, Molino RJEJ, Junio HA, Yu ET. Comprehensive metabolomics of Philippine Stichopus cf. horrens reveals diverse classes of valuable small molecules for biomedical applications. PLoS One 2023; 18:e0294535. [PMID: 38055702 PMCID: PMC10699614 DOI: 10.1371/journal.pone.0294535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Stichopus cf. horrens is an economically important sea cucumber species in Southeast Asia due to their presumed nutritional and medicinal benefits. However, compared to other sea cucumbers such as Apostichopus japonicus, there are no biochemical studies on which compounds contribute to the purported bioactivities of S. cf. horrens. To address this, a high-throughput characterization of the global metabolite profile of the species was performed through LC-MS/MS experiments and utilizing open-access platforms such as GNPS, XCMS, and metaboAnalyst. Bioinformatics-based molecular networking and chemometrics revealed the abundance of phospholipids such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and phosphatidylserines (PSs) in the crude samples. Body wall extracts were observed to have higher levels of structural, diacylated PCs, while the viscera have higher relative abundance of single-tail PCs and PEs that could be involved in digestion via nutrient absorption and transport for sea cucumbers. PEs and sphingolipids could also be implicated in the ecological response and morphological transformations of S. cf. horrens in the presence of predatory and other environmental stress. Interestingly, terpenoid glycosides and saponins with reported anti-cancer benefits were significantly localized in the body wall. The sulfated alkanes and sterols present in S. cf. horrens bear similarity to known kairomones and other signaling molecules. All in all, the results provide a baseline metabolomic profile of S. cf. horrens that may further be used for comparative and exploratory studies and suggest the untapped potential of S. cf. horrens as a source of bioactive molecules.
Collapse
Affiliation(s)
| | | | - Hiyas A. Junio
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City, Philippines
| | - Eizadora T. Yu
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
9
|
Sengupta A, Edwards ME, Yan X. Dual Metal Electrolysis in Theta Capillary for Lipid Analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 494:117137. [PMID: 38911479 PMCID: PMC11192522 DOI: 10.1016/j.ijms.2023.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Increasing studies associating glycerophospholipids with various pathological conditions highlight the need for their thorough characterization. However, the intricate composition of the lipidome due to the presence of lipid isomers poses significant challenges to structural lipidomics. This study uses the anodic corrosion of two metals in a single theta nESI emitter as a tool to simultaneously characterize lipids at multiple isomer levels. Anodic corrosion of cobalt and copper in the positive ion mode generates the metal-adducted lipid complexes, [M+Co]2+ and [M+Cu]+, respectively. Optimization of parameters such as the distances of the electrodes from the nESI tip allowed the achievement of the formation of one metal-adducted lipid product at a time. Collision-induced dissociation (CID) of [M+Co]2+ results in preferential loss of the fatty acyl (FA) chain at the sn-2 position, thus generating singly charged sn-specific fragment ions. Whereas, multistage fragmentation of [M+Cu]+ via CID generated a C=C bond position-specific characteristic ion pattern induced by the π-Cu+ interaction. The feasibility of the method was tested on PC lipid extract from egg yolk to identify lipids on multiple isomer levels. Thus, the application of dual metal anodic corrosion allows lipid isomer identification with reduced sample preparation time, no signal suppression by counter anions, low sample consumption, and no need for an extra apparatus.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Madison E. Edwards
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
10
|
Guerra G, Segrado F, Pasanisi P, Bruno E, Lopez S, Raspagliesi F, Bianchi M, Venturelli E. Circulating choline and phosphocholine measurement by a hydrophilic interaction liquid chromatography-tandem mass spectrometry. Heliyon 2023; 9:e21921. [PMID: 38027764 PMCID: PMC10665723 DOI: 10.1016/j.heliyon.2023.e21921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Given the growing interest in studying the role of choline and phosphocholine in the development and progression of tumor pathology, in this study we describe the development and validation of a fast and robust method for the simultaneous analysis of choline and phosphocholine in human plasma. Methods Choline and phosphocholine quantification in human plasma was obtained using a hydrophilic interaction liquid chromatography-tandem mass spectrometry technique. Assay performance parameters were evaluated using EMA guidelines. Results Calibration curve ranged from 0.60 to 38.40 μmol/L (R2 = 0.999) and 0.08-5.43 μmol/L (R2 = 0.998) for choline and phosphocholine, respectively. The Limit Of Detection of the method was 0.06 μmol/L for choline and 0.04 μmol/L for phosphocholine. The coefficient of variation range for intra-assay precision is 2.2-4.1 % (choline) and 3.2-15 % (phosphocholine), and the inter-assay precision range is < 1-6.5 % (choline) and 6.2-20 % (phosphocholine). The accuracy of the method was below the ±20 % benchmarks at all the metabolites concentration levels. In-house plasma pool of apparently healthy adults was tested, and a mean concentration of 15.97 μmol/L for Choline and 0.34 μmol/L for Phosphocholine was quantified. Conclusions The developed method shows good reliability in quantifying Choline and Phosphocholine in human plasma for clinical purposes.
Collapse
Affiliation(s)
- Giulia Guerra
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Segrado
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eleonora Bruno
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Lopez
- Unit of Oncological Gynecology, Department of Oncologycal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Unit of Oncological Gynecology, Department of Oncologycal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Bianchi
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Venturelli
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
11
|
Yan T, Liang Z, Prentice BM. Imaging and Structural Characterization of Phosphatidylcholine Isomers from Rat Brain Tissue Using Sequential Collision-Induced Dissociation/Electron-Induced Dissociation. Anal Chem 2023; 95:15707-15715. [PMID: 37818979 PMCID: PMC10639000 DOI: 10.1021/acs.analchem.3c03077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) sn-isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of sn-isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates sn-specific fragment ions allowing for the assignment of the sn-positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of sn-isomers at every pixel. The localized relative abundances of sn-isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
12
|
Brandsma J, Schofield JPR, Yang X, Strazzeri F, Barber C, Goss VM, Koster G, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Shaw DE, Chung KF, Singer F, Fleming LJ, Adcock IM, Pandis I, Bansal AT, Corfield J, Sousa AR, Sterk PJ, Sánchez-García RJ, Skipp PJ, Postle AD, Djukanović R. Stratification of asthma by lipidomic profiling of induced sputum supernatant. J Allergy Clin Immunol 2023; 152:117-125. [PMID: 36918039 DOI: 10.1016/j.jaci.2023.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.
Collapse
Affiliation(s)
- Joost Brandsma
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom.
| | - James P R Schofield
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom; Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Xian Yang
- Data Science Institute, Imperial College, London, United Kingdom
| | - Fabio Strazzeri
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Victoria M Goss
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Grielof Koster
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy; National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marek Sanak
- Department of Medicine, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominick E Shaw
- National Institute for Health Research Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Florian Singer
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, United Kingdom
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, United Kingdom
| | | | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, London, United Kingdom
| | - Peter J Sterk
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ratko Djukanović
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| |
Collapse
|
13
|
Zhang J, Yang S, Wang J, Xu Y, Zhao H, Lei J, Zhou Y, Chen Y, Wu L, Li Y. Equivalent carbon number based targeted odd chain fatty acyl lipidomics reveals triacylglycerol profiling in clinical colon cancer. J Lipid Res 2023:100393. [PMID: 37257561 PMCID: PMC10331287 DOI: 10.1016/j.jlr.2023.100393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Odd chain fatty acids (OCFAs) present in very low level at nearly 1% of total fatty acids in human plasma and thus their functions were usually ignored. Recent epidemiological studies have shown that OCFAs are inversely associated with a variety of disease risks. However, the contribution of OCFAs incorporated into complex lipids remains elusive. Here, we developed a targeted odd chain fatty acyl containing lipidomics method based on equivalent carbon number and retention time prediction. The method displayed good reproducibility and robustness as shown by peak width at half height within 0.7 min and coefficient of variation (CV) under 20%. A total number of 776 lipid species with odd chain fatty acyl residues could be detected in the electrospray ionization (ESI) mode of reverse phase liquid chromatography-mass spectrometry, of which 309 lipids were further validated using multiple MRM transitiions. Using this method, we quantified odd chain fatty acyl containing lipidome in tissues from 12 colon cancer patients, revealing the remodeling of triacylglycerol (TAG). The dynamics of odd chain fatty acyl lipids were further consolidated by the association with genomic and proteomic feature of altered catabolism of branched chain amino acids and TAG endogenous synthesis in colon cancer. This lipidomics approach will be applicable for screening of dysregulated odd chain fatty acyl lipids, which enriches and improves the methods for diagnosis and prognosis evaluation of cancer using lipidomics.
Collapse
Affiliation(s)
- Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Shuai Yang
- Department of Pathology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jingchun Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
14
|
Shenault DM, McLuckey SA, Franklin ET. Localization of cyclopropyl groups and alkenes within glycerophospholipids using gas-phase ion/ion chemistry. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4913. [PMID: 36916143 PMCID: PMC10014902 DOI: 10.1002/jms.4913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Shotgun lipid analysis using electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a common approach for the identification and characterization of glycerophohspholipids GPs. ESI-MS/MS, with the aid of collision-induced dissociation (CID), enables the characterization of GP species at the headgroup and fatty acyl sum compositional levels. However, important structural features that are often present, such as carbon-carbon double bond(s) and cyclopropane ring(s), can be difficult to determine. Here, we report the use of gas-phase charge inversion reactions that, in combination with CID, allow for more detailed structural elucidation of GPs. CID of a singly deprotonated GP, [GP - H]- , generates FA anions, [FA - H]- . The fatty acid anions can then react with doubly charged cationic magnesium tris-phenanthroline complex, [Mg(Phen)3 ]2+ , to form charge inverted complex cations of the form [FA - H + MgPhen2 ]+ . CID of the complex generates product ion spectral patterns that allow for the identification of carbon-carbon double bond position(s) as well as the sites of cyclopropyl position(s) in unsaturated lipids. This approach to determining both double bond and cyclopropane positions is demonstrated with GPs for the first time using standards and is applied to lipids extracted from Escherichia coli.
Collapse
Affiliation(s)
- De’Shovon M. Shenault
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Elissia T. Franklin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| |
Collapse
|
15
|
Yan T, Born MEN, Prentice BM. Structural Elucidation and Relative Quantification of Sodium- and Potassium-Cationized Phosphatidylcholine Regioisomers Directly from Tissue Using Electron Induced Dissociation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 485:116998. [PMID: 37601139 PMCID: PMC10438893 DOI: 10.1016/j.ijms.2022.116998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Comprehensive structural characterization of phosphatidylcholines (PCs) is essential to understanding their biological functions and roles in metabolism. Electron induced dissociation (EID) of protonated PCs directly generated from biological tissues has previously been shown to provide in-depth structural information on the lipid headgroup, regiosiomerism of fatty acyl tails and double bond positions. Although phosphatidylcholine ions formed via alkali metal cationization (i.e., [M + Na]+ and [M + K]+) are commonly generated during matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry experiments, the gas-phase ion chemistry behavior of EID on sodium- and potassium-cationized phosphatidylcholine ion types has not been studied for ions generated directly from tissue. Herein, we demonstrate EID on [M + Na]+ and [M + K]+ ion types in a MALDI imaging mass spectrometry workflow for lipid structural characterization. Briefly, near-complete structural information can be obtained upon EID of sodium- and potassium-cationized PCs, including diagnostic fragmentation of the lipid headgroup as well as identification of fatty acyl chain positions and double bond position. EID of cationized lipids generates sn-specific glycerol backbone cleavages as well as a favorable combined loss of sn-2 fatty acid with choline over sn-1, allowing for facile differentiation and relative quantification of PC regioisomers. Moreover, relative quantification of sn-positional isomers from biological tissue reveals that the relative percentages of sodium- and potassium-cationized sn-positional isomers varies significantly in different regions of rat brain tissue.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
16
|
Díaz C, González-Olmedo C. Untargeted Metabolomics by Liquid Chromatography-Mass Spectrometry in Biomedical Research. Methods Mol Biol 2023; 2571:57-69. [PMID: 36152150 DOI: 10.1007/978-1-0716-2699-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolomics, alone or in combination with other omics sciences, has shown great relevance in a large number of investigations in different branches of biomedicine, often providing novel discoveries and helping to expand the knowledge. Metabolomics analyses are carried out using different techniques, but in this chapter, we focus on liquid chromatography coupled to high-resolution mass spectrometry. The designated methodology consists of an untargeted approach for the analysis of plasma samples. The use of this method, with a reverse-phase column and electrospray ionization in positive mode, covers the detection of a broad range of metabolites, mainly of nonpolar and of intermediate polarity. This chapter also reviews the mass fragmentation spectra for the identification of bile acids, acylcarnitines, and glycerophospholipids.
Collapse
Affiliation(s)
- Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Andalucía, Spain.
| | | |
Collapse
|
17
|
Randolph CE, Beveridge CH, Iyer S, Blanksby SJ, McLuckey SA, Chopra G. Identification of Monomethyl Branched-Chain Lipids by a Combination of Liquid Chromatography Tandem Mass Spectrometry and Charge-Switching Chemistries. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2156-2164. [PMID: 36218280 PMCID: PMC10173259 DOI: 10.1021/jasms.2c00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids─a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso-branched- from straight-chain and iso-branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. The application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Connor H. Beveridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility and the School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
- Department of Computer Science (by courtesy), Purdue Institutes of Drug Discovery and Integrative Neuroscience, Purdue Center for Cancer Research, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
18
|
Lillja J, Lanekoff I. Quantitative determination of sn-positional phospholipid isomers in MS n using silver cationization. Anal Bioanal Chem 2022; 414:7473-7482. [PMID: 35731255 PMCID: PMC9482905 DOI: 10.1007/s00216-022-04173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Glycerophospholipids are one of the fundamental building blocks for life. The acyl chain connectivity to the glycerol backbone constitutes different sn-positional isomers, which have great diversity and importance for biological function. However, to fully realize their impact on function, analytical techniques that can identify and quantify sn-positional isomers in chemically complex biological samples are needed. Here, we utilize silver ion cationization in combination with tandem mass spectrometry (MSn) to identify sn-positional isomers of phosphatidylcholine (PC) species. In particular, a labile carbocation is generated through a neutral loss (NL) of AgH, the dissociation of which provides diagnostic product ions that correspond to acyl chains at the sn-1 or sn-2 position. The method is comparable to currently available methods, has a sensitivity in the nM-µM range, and is compatible with quantitative imaging using mass spectrometry in MS4. The results reveal a large difference in isomer concentrations and the ion images show that the sn-positional isomers PC 18:1_18:0 are homogeneously distributed, whereas PC 18:1_16:0 and PC 20:1_16:0 show distinct localizations to sub-hippocampal structures.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden.
| |
Collapse
|
19
|
Blevins MS, Shields SWJ, Cui W, Fallatah W, Moser AB, Braverman NE, Brodbelt JS. Structural Characterization and Quantitation of Ether-Linked Glycerophospholipids in Peroxisome Biogenesis Disorder Tissue by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:12621-12629. [PMID: 36070546 PMCID: PMC9631334 DOI: 10.1021/acs.analchem.2c01274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological impact of ether glycerophospholipids (GP) in peroxisomal disorders and other diseases makes them significant targets as biomarkers for diagnostic assays or deciphering pathology of the disorders. Ether lipids include both plasmanyl and plasmenyl lipids, which each contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. This linkage, in contrast to traditional diacyl GPs, precludes their detailed characterization by mass spectrometry via traditional collisional-based MS/MS techniques. Additionally, the isomeric nature of plasmanyl and plasmenyl pairs of ether lipids introduces a further level of complexity that impedes analysis of these species. Here, we utilize 213 nm ultraviolet photodissociation mass spectrometry (UVPD-MS) for detailed characterization of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) plasmenyl and plasmanyl lipids in mouse brain tissue. 213 nm UVPD-MS enables the successful differentiation of these four ether lipid subtypes for the first time. We couple this UVPD-MS methodology to reversed-phase liquid chromatography (RPLC) for characterization and relative quantitation of ether lipids from normal and diseased (Pex7 deficiency modeling the peroxisome biogenesis disorder, RCDP) mouse brain tissue, highlighting the ability to pinpoint specific structural features of ether lipids that are important for monitoring aberrant lipid metabolism in peroxisomal disorders.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Wedad Fallatah
- Department of Medical Genetics, King Abdul-Aziz University, Jeddah, 21423, Saudi Arabia
| | - Ann B Moser
- Kennedy Krieger Institute, Baltimore, Maryland 21205, United States
- School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Kirschbaum C, Greis K, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Cryogenic infrared spectroscopy provides mechanistic insight into the fragmentation of phospholipid silver adducts. Anal Bioanal Chem 2022; 414:5275-5285. [PMID: 35147717 PMCID: PMC9242943 DOI: 10.1007/s00216-022-03927-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Tandem mass spectrometry is arguably the most important analytical tool for structure elucidation of lipids and other metabolites. By fragmenting intact lipid ions, valuable structural information such as the lipid class and fatty acyl composition are readily obtainable. The information content of a fragment spectrum can often be increased by the addition of metal cations. In particular, the use of silver ions is deeply rooted in the history of lipidomics due to their propensity to coordinate both electron-rich heteroatoms and C = C bonds in aliphatic chains. Not surprisingly, coordination of silver ions was found to enable the distinction of sn-isomers in glycerolipids by inducing reproducible intensity differences in the fragment spectra, which could, however, not be rationalized. Here, we investigate the fragmentation behaviors of silver-adducted sn- and double bond glycerophospholipid isomers by probing fragment structures using cryogenic gas-phase infrared (IR) spectroscopy. Our results confirm that neutral headgroup loss from silver-adducted glycerophospholipids leads to dioxolane-type fragments generated by intramolecular cyclization. By combining high-resolution IR spectroscopy and computational modelling of silver-adducted fragments, we offer qualitative explanations for different fragmentation behaviors of glycerophospholipid isomers. Overall, the results demonstrate that gas-phase IR spectroscopy of fragment ions can significantly contribute to our understanding of lipid dissociation mechanisms and the influence of coordinating cations.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195, Berlin, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195, Berlin, Germany.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany.
| |
Collapse
|
21
|
Watanabe A, Hama K, Watanabe K, Fujiwara Y, Yokoyama K, Murata S, Takita R. Controlled Tetradeuteration of Straight‐Chain Fatty Acids: Synthesis, Application, and Insight into the Metabolism of Oxidized Linoleic Acid. Angew Chem Int Ed Engl 2022; 61:e202202779. [PMID: 35411582 PMCID: PMC9324819 DOI: 10.1002/anie.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ayako Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kotaro Hama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
- Advanced Comprehensive Research Organization (ACRO) Teikyo University Japan
| | - Kohei Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yuko Fujiwara
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Shigeo Murata
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
22
|
Yufen W, Xinru L, Jian X, Huolele, Zhihua J, Yu C, Mingyong L, Haobing Z. Metabolome alterations in Clonorchis sinensis after treatment with tribendimidine and praziquante in vivo. Acta Trop 2022; 230:106330. [PMID: 35090859 DOI: 10.1016/j.actatropica.2022.106330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/25/2022]
Abstract
Tribendimidine (TBD) is a broad-spectrum anthelmintic drug that is also significantly effective in treating clonorchiasis. In this study, the altered metabolomes of Clonorchis sinensis (C. sinensis) in rats after TBD administration were quantified by using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) to explore the possible active sites of TBD against clonorchiasis through altered metabolites and metabolic pathway analysis, and the results are expected to provide a target for the future design of anti-Clonorchis sinensis drugs. The worm burden reduction rate and scanning electron microscopy demonstrated that praziquantel (PZQ, positive control drug) and TBD had significant effects on C. sinensis in rats after treatment at a single dose of 200 mg/kg for 24 h. For the MS-based metabolomic analysis, a total of 173 standard metabolites (126 amino acids, 10 phospholipids and 37 fatty acids) were utilized as a reference metabolite database for metabolome identification. In total, 32 amino acids, 71 phospholipids and 27 fatty acids were detected in the C. sinensis of each group. Among these metabolites, 10 amino acids were significantly decreased in both drug-treated groups. Four lysophosphatidyl cholines (LPCs), six lysophosphatidyl ethanolamines (LPEs) and one phosphatidyl inositol (PI) were significantly increased after treatment with TBD. There were no significant changes in fatty acids among the control group and the two drug-treated groups. The results indicated that TBD administration caused a decrease in amino acids involved in the metabolic pathways of energy consumption and an increase in lysophospholipids, which are the hydrolysis products of phospholipase2 (PLA2) in the phospholipid metabolic pathways. The increased lysophospholipid content can destroy the cell membrane, increase membrane permeability, and even cause exposure to internal antigens that can be attacked by host antibodies. Perhaps the destroyed membrane, the exposed internal antigens and the consumed energy are the cause of the damage and death of C. sinensis after TBD administration. This is an interesting problem that can be examined in future research.
Collapse
|
23
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
24
|
Watanabe A, Hama K, Watanabe K, Fujiwara Y, Yokoyama K, Murata S, Takita R. Controlled Tetradeuteration of Straight‐Chain Fatty Acids: Synthesis, Application, and Insight into the Metabolism of Oxidized Linoleic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayako Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kotaro Hama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
- Advanced Comprehensive Research Organization (ACRO) Teikyo University Japan
| | - Kohei Watanabe
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yuko Fujiwara
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Sciences Teikyo University 2-11-1 Kaga, Itabashi-ku Tokyo 173-8605 Japan
| | - Shigeo Murata
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- One-stop Sharing Facility Center for Future Drug Discoveries Graduate School of Pharmaceutical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
25
|
Zhang B, Wang Y, Zhou BW, Cheng J, Xu Q, Zhang L, Sun TQ, Zhang J, Guo YL. Chloramine-T-Enabled Mass Spectrometric Analysis of C═C Isomers of Unsaturated Fatty Acids and Phosphatidylcholines in Human Thyroids. Anal Chem 2022; 94:6216-6224. [PMID: 35420783 DOI: 10.1021/acs.analchem.1c05607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Specific locations of carbon-carbon double bonds (C═C) in lipids often play an essential role in biological processes, and there has been a booming development in C═C composition analysis by mass spectrometry. However, a universal derivatization and fragmentation pattern for the annotation of C═C positions in lipids is still challenging and attractive. To expand this field in lipidomics, a flexible and convenient N-tosylaziridination method was developed, with high derivatization efficiency, sensitivity, and specificity. The derivatization was very fast (15 s), and C═C numbers as well as locations could be pinpointed specifically in tandem mass spectra. By qualitative and quantitative studies of paratumor and tumor thyroid tissues of human beings, the total content of unsaturated fatty acids was suggested to be increased in tumor tissues, and good correlations in and between lysophosphatidylcholines and phosphatidylcholines were revealed by Spearman analysis. Further studies of C═C isomers showed that n-6/n-3 ratios were closely associated with human thyroid tumorigenesis, and high ratios of n-6/n-3 isomers seemed to suffer a high risk of carcinogenesis. Other isomers were not very representative; however, C═C in n-9/n-7 could also be significant for oncology research. Generally, it is supposed that both total amounts and C═C isomer ratios were related to cancer, and N-tosylaziridine derivatization could provide an alternative strategy for the C═C isomer study of disease models.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Bo-Wen Zhou
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Cheng
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qi Xu
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tuan-Qi Sun
- Department of Head and Neck Surgery, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dongan Road, Shanghai 200032, China
| | - Jing Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yin-Long Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
26
|
Matsuyama R, Okada Y, Shimma S. Metabolite alteration analysis of acetaminophen-induced liver injury using a mass microscope. Anal Bioanal Chem 2022; 414:3709-3718. [PMID: 35305118 DOI: 10.1007/s00216-022-04017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/01/2022]
Abstract
Acetaminophen (APAP)-induced liver injury (APAP-ILI), which occurs during APAP overdose, has been extensively studied. The production of N-acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP, primarily contributes to liver injury. However, the mechanism underlying APAP-ILI has not been fully characterized. For further clarification, it is important to consider drug localization and endogenous substances in the injured liver. Herein, we show the localization of NAPQI metabolites and the injury site-specific changes in endogenous substances in the rat liver following APAP overdose using a mass microscope. Our results of on-tissue derivatization matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) showed that the glutathione metabolite of APAP, a detoxified metabolite of NAPQI, localized in the damaged central vein region in the rat liver following APAP administration. Moreover, in the conventional MALDI-MSI, the intensities of some phospholipids, phosphocreatine, and ceramides decreased or increased in the damaged regions compared with those in non-damaged regions. Phosphocreatine was localized in the damaged cells, whereas its related mitochondrial creatine kinase was localized in the non-damaged cells. These results are expected to contribute to further elucidation of the mechanisms underlying APAP-ILI. Our findings illustrate the localization of NAPQI-related metabolites and endogenous molecules associated with APAP-ILI, which may be related to apoptosis or metabolic adaptation ultimately protecting the cells. As MALDI-MSI can analyze and differentiate regions with tissue damage, it is a valuable tool for analyzing the mechanism underlying drug-induced liver injury to identify novel biomarkers.
Collapse
Affiliation(s)
- Ryo Matsuyama
- Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Yuki Okada
- Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Shimadzu Analytical Innovation Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
Identification of glycerophospholipids using self-built recognition software based on positive and negative ion high-resolution mass spectrometric fragmentation experiments. Talanta 2022; 238:123006. [PMID: 34857339 DOI: 10.1016/j.talanta.2021.123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Glycerophospholipids (GPs) have a wide variety and complex structure, which makes their identification challenging. Our software affords a novel tool for the automated identification of non-target GPs in biological mixtures. Here, we explored the multi-stage fragmentation processes of GPs in positive and negative ion modes, and then constructed multi-stage fragment ion databases. This database includes 8214 simulated GP molecules from a random combination of fatty acids corresponding to 42,439 self-built predicted multi-stage fragment ions in positive ion mode and 31,487 self-built predicted multi-stage fragment ions in negative ion mode (MS ≤ 3). The automatic GP identification (AGPI) software can screen out GP candidates utilizing the MS1 accurate mass. The isomers of fatty acid chains and the phosphoryl head group can be distinguished using the MS2 and MS3 fragment spectra in positive-ion and negative-ion modes. All of the selected 45 GP standards were putatively identified using AGPI software; however, there were false positives because the software cannot distinguish positional isomers of fatty acids. Therefore, the AGPI software could be applied to identify GPs in samples, such as cancer cells; we successfully identified 41 GPs in cancer cells.
Collapse
|
28
|
Kirkwood KI, Christopher MW, Burgess JL, Littau SR, Foster K, Richey K, Pratt BS, Shulman N, Tamura K, MacCoss MJ, MacLean BX, Baker ES. Development and Application of Multidimensional Lipid Libraries to Investigate Lipidomic Dysregulation Related to Smoke Inhalation Injury Severity. J Proteome Res 2022; 21:232-242. [PMID: 34874736 PMCID: PMC8741653 DOI: 10.1021/acs.jproteome.1c00820] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The implication of lipid dysregulation in diseases, toxic exposure outcomes, and inflammation has brought great interest to lipidomic studies. However, lipids have proven to be analytically challenging due to their highly isomeric nature and vast concentration ranges in biological matrices. Therefore, multidimensional techniques such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation, and mass spectrometry (LC-IMS-CID-MS) have been implemented to separate lipid isomers as well as provide structural information and increased identification confidence. These data sets are however extremely large and complex, resulting in challenges for data processing and annotation. Here, we have overcome these challenges by developing sample-specific multidimensional lipid libraries using the freely available software Skyline. Specifically, the human plasma library developed for this work contains over 500 unique lipids and is combined with adapted Skyline functions such as indexed retention time (iRT) for retention time prediction and IMS drift time filtering for enhanced selectivity. For comparison with other studies, this database was used to annotate LC-IMS-CID-MS data from a NIST SRM 1950 extract. The same workflow was then utilized to assess plasma and bronchoalveolar lavage fluid (BALF) samples from patients with varying degrees of smoke inhalation injury to identify lipid-based patient prognostic and diagnostic markers.
Collapse
Affiliation(s)
- Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael W Christopher
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85721, United States
| | - Sally R Littau
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Foster
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Karen Richey
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Brian S Pratt
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Nicholas Shulman
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Kaipo Tamura
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Michael J MacCoss
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Brendan X MacLean
- Arizona Burn Center, Valleywise Health, Phoenix, Arizona 85008, United States
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
29
|
Hu C, Luo W, Xu J, Han X. RECOGNITION AND AVOIDANCE OF ION SOURCE-GENERATED ARTIFACTS IN LIPIDOMICS ANALYSIS. MASS SPECTROMETRY REVIEWS 2022; 41:15-31. [PMID: 32997818 PMCID: PMC8287896 DOI: 10.1002/mas.21659] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 05/04/2023]
Abstract
Lipid research is attracting more and more attention as various key roles and novel biological functions of lipids have been demonstrated and discovered in the organism. Mass spectrometry (MS)-based lipidomics approaches are the most powerful and effective tools for analysis of cellular lipidomes with very high sensitivity and specificity. However, the artifacts generated from in-source fragmentation are always present in all kinds of ion sources, even soft ionization techniques (i.e., electrospray ionization and matrix-assisted laser desorption/ionization [MALDI]). These artifacts can cause many problems for lipidomics, especially when the fragment ions correspond to/are isomeric species of other endogenous lipid species in complex biological samples. These commonly observed artifacts could lead to misannotation, false identification, and consequently, incorrect attribution of phenotypes, and will have negative impact on any MS-based lipidomics research including but not limited to biomarker discovery, drug development, etc. Liquid chromatography-MS, shotgun lipidomics, and MALDI-MS imaging are three representative lipidomics approaches in which ion source-generated artifacts are all manifested and are comprehensively summarized in this article. The strategies on how to avoid/reduce the artifacts of in-source fragmentation on lipidomics analysis are also discussed in detail. We believe that with the recognition and avoidance of ion source-generated artifacts, MS-based lipidomics approaches will provide better accuracy on comprehensive analysis of biological samples and will make greater contribution to the research on metabolism and translational/precision medicine (collectively termed functional lipidomics). © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Wenqing Luo
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003 China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| |
Collapse
|
30
|
Becher S, Berden G, Martens J, Oomens J, Heiles S. IRMPD Spectroscopy of [PC (4:0/4:0) + M] + (M = H, Na, K) and Corresponding CID Fragment Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2874-2884. [PMID: 34723538 DOI: 10.1021/jasms.1c00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycerophospholipids (GPs) are highly abundant in eukaryotic cells and take part in numerous fundamental physiological processes such as molecular signaling. The GP composition of samples is often analyzed using mass spectrometry (MS), but identification of some structural features, for example, differentiation of stereospecific numbering (sn) isomers by well-established tandem MS (MS2) methods, is challenging. In particular, the formation of 1,3-dioxolane over 1,3-dioxane intermediates proposed to be responsible for the sn-selectivity of these tandem MS strategies has not been validated by spectroscopic methods. In this work, we present infrared multiple photon dissociation (IRMPD) spectra of phosphatidylcholine (PC) ions [PC 4:0/4:0 + H/Na/K]+ and [PC 4:0/4:0 + Na/K - 183]+ fragments generated by electrospray ionization (ESI)-MS and collision-induced dissociation (CID), respectively. IRMPD spectra of protonated, sodiated, and potassiated PC 4:0/4:0 differ in the phosphate- and ester-related bands, which are increasingly shifted to lower wavenumbers with higher adduct masses. Comparison of calculated and experimental IR spectra indicates the presence of multiple, two and one isomer(s) for [PC 4:0/4:0 + H]+, [PC 4:0/4:0 + Na]+, and [PC 4:0/4:0 + K]+, respectively. Isomers exhibiting pronounced sn-1 ester-ion interactions are computationally predicted to be energetically preferred for all species and are in line with experimental results. IRMPD spectra of [PC 4:0/4:0 + Na/K - 183]+ are presented and shed the first light on the fragment ion structures, rationalizing MS-based lipidomics strategies that aim to characterize the sn-isomerism of GPs.
Collapse
Affiliation(s)
- Simon Becher
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
31
|
Berthias F, Poad BLJ, Thurman HA, Bowman AP, Blanksby SJ, Shvartsburg AA. Disentangling Lipid Isomers by High-Resolution Differential Ion Mobility Spectrometry/Ozone-Induced Dissociation of Metalated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2827-2836. [PMID: 34751570 DOI: 10.1021/jasms.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preponderance and functional importance of isomeric biomolecules have become topical in biochemistry. Therefore, one must distinguish and identify all such forms across compound classes, over a wide dynamic range as minor species often have critical activities. With all the power of modern mass spectrometry for compositional assignments by accurate mass, the identical precursor and often fragment ion masses render this task a steep challenge. This is recognized in proteomics and epigenetics, where proteoforms are disentangled and characterized employing novel separations and non-ergodic dissociation mechanisms. This issue is equally pertinent to lipidomics, where the lack of isomeric depth has thwarted the deciphering of functional networks. Here we introduce a new platform, where the isomeric lipids separated by high-resolution differential ion mobility spectrometry (FAIMS) are identified using ozone-induced dissociation (OzID). Cationization by metals (here K+, Ag+, and especially Cu+) broadly improves the FAIMS resolution of isomers with alternative C═C double bond (DB) positions or stereochemistry, presumably via metal attaching to the DB and reshaping the ion around it. However, the OzID yield diminishes for Ag+ and vanishes for Cu+ adducts. Argentination still strikes the best compromise between efficient separation and diagnostic fragmentation for optimal FAIMS/OzID performance.
Collapse
Affiliation(s)
- Francis Berthias
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hayden A Thurman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Andrew P Bowman
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
32
|
Liu Z, Rochfort S. Regio-distribution and double bond locations of unsaturated fatty acids in phospholipids of bovine milk. Food Chem 2021; 373:131515. [PMID: 34772567 DOI: 10.1016/j.foodchem.2021.131515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022]
Abstract
Hundreds of phospholipid (PL) species with defined fatty acid (FA) composition have been identified previously in bovine milk using liquid chromatography tandem mass spectrometry (LC-MS/MS). Paterno-Buchi photochemical reaction coupled with LC-MS/MS was applied in this study to further unravel the regio-distribution and double bond (DB) locations of FAs. Using SPE-purified PLs and 2-acetylpyridine as the photochemical derivatization reagent, we were able to reveal the non-specific regio-distribution of unsaturated FAs and the widespread occurrence of regioisomers in milk PLs. Although Δ9 and Δ9,12 were found to be the predominant DB location(s) for C18:1 and C18:2 respectively, other DB positional isomers such as C18:1Δ11, C18:1Δ12 and C18:1Δ13 and C18:2Δ9,11 were widely detected in PL structures, implying that the minor isomers of C18:1 and C18:2 equally participate in the synthesis of PLs. Our study provides novel information on the fine structure of milk PLs and further underlines the complexity of milk lipid composition.
Collapse
Affiliation(s)
- Zhiqian Liu
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia.
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
33
|
Ma X, Zhang W, Li Z, Xia Y, Ouyang Z. Enabling High Structural Specificity to Lipidomics by Coupling Photochemical Derivatization with Tandem Mass Spectrometry. Acc Chem Res 2021; 54:3873-3882. [PMID: 34570464 DOI: 10.1021/acs.accounts.1c00419] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipids have pivotal roles in many biological processes, including energy storage, signal transduction, and plasma membrane formation. A disruption of lipid homeostasis is found to be associated with a range of diseases, such as cardiovascular diseases, diabetes, and cancer. Fundamental lipid biology and disease diagnostics can benefit from monitoring lipid changes in cells, tissues, organs, or the whole biological system. Therefore, it is important to develop lipid analysis tools to achieve comprehensive lipid characterization and quantitation. Over the past two decades, mass spectrometry (MS) has become the method of choice for qualitative and quantitative analyses of lipids, owing to its high sensitivity, multiplexed analysis, and soft ionization features. With the rapid development and adoption of ultrahigh-resolution MS, isobaric lipids can now be routinely resolved. By contrast, the structural characterization and quantitation of isomeric lipids remain an analytical challenge. Although some lipid C═C location or sn-isomers can be resolved by chromatography, ion mobility, or selective ionization approaches, a detailed structural characterization on the lipidome-wide level needs to be achieved.Over the past six years, we have successfully combined the Paternò-Büchi (PB) reaction, which is a UV-promoted photocycloaddition reaction specific to the C═C, with tandem MS (MS/MS) to locate the C═C in lipids and quantify lipid C═C location isomers. The PB reactions have analytical advantages such as a simple experimental setup, rapid lipid C═C derivatization, and highly specific C═C cleavage during PB-MS/MS to produce abundant diagnostic ions. More importantly, without a need of isomer separation or a comparison to authentic standards, PB-MS/MS can be directly applied to identify and quantify a mixture of lipid C═C location isomers, often coexisting with molar ratios sensitive to the biological state of the system. The PB-MS/MS method is compatible with conventional shotgun lipidomics employing a nanoelectrospray ionization or a large-sale lipid structural analysis via liquid chromatography (LC) coupled to any mass spectrometer with tandem MS capability. The PB-MS/MS method is highly versatile, as a variety of PB reagents can be tailored to a broad range of applications. Besides UV-promoted PB reactions, visible-light PB reactions have also been developed to offer more flexibility for a lipid analysis. By using selected PB reagents, the sn-positions of fatty acyls can be resolved together with C═C locations in phospholipids. This method has been used in lipidomic analyses of tissue, blood, and plasma from animal models and clinical samples, demonstrating the potential of using lipid C═C or sn-location isomer ratios for phenotyping and disease diagnostics. Lipid isomer-resolving MS imagings of tissues and single-cell lipid analysis have also been demonstrated by a proper implementation of PB-MS/MS.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zishuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Köfeler HC, Ahrends R, Baker ES, Ekroos K, Han X, Hoffmann N, Holčapek M, Wenk MR, Liebisch G. Recommendations for good practice in MS-based lipidomics. J Lipid Res 2021; 62:100138. [PMID: 34662536 PMCID: PMC8585648 DOI: 10.1016/j.jlr.2021.100138] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
In the last 2 decades, lipidomics has become one of the fastest expanding scientific disciplines in biomedical research. With an increasing number of new research groups to the field, it is even more important to design guidelines for assuring high standards of data quality. The Lipidomics Standards Initiative is a community-based endeavor for the coordination of development of these best practice guidelines in lipidomics and is embedded within the International Lipidomics Society. It is the intention of this review to highlight the most quality-relevant aspects of the lipidomics workflow, including preanalytics, sample preparation, MS, and lipid species identification and quantitation. Furthermore, this review just does not only highlights examples of best practice but also sheds light on strengths, drawbacks, and pitfalls in the lipidomic analysis workflow. While this review is neither designed to be a step-by-step protocol by itself nor dedicated to a specific application of lipidomics, it should nevertheless provide the interested reader with links and original publications to obtain a comprehensive overview concerning the state-of-the-art practices in the field.
Collapse
Affiliation(s)
- Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria.
| | - Robert Ahrends
- Department for Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland
| | - Xianlin Han
- Barshop Inst Longev & Aging Studies, Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX, USA
| | - Nils Hoffmann
- Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
35
|
Fabritius M, Yang B. Direct infusion and ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry analysis of phospholipid regioisomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9151. [PMID: 34169571 DOI: 10.1002/rcm.9151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Phospholipids are important components of cell membranes that are linked to several beneficial health effects such as increasing plasma HDL cholesterol levels, improving cognitive abilities and inhibiting growth of colon cancer. The role of phospholipid (PL) regioisomers in all these health effects is, however, largely not studied due to lack of analytical methods. METHODS Electrospray ionization mass spectrometry in negative mode produces structurally informative fragment ions resulting from differential dissociation of fatty acids (FAs) from the sn-1 and sn-2 positions, primarily high-abundance [RCOO]- ions. The fragment ion ratios obtained with different ratios of regiopure phospholipid reference compounds were used to construct calibration curves, which allow determination of regioisomeric ratios of an unknown sample. The method was developed using both direct infusion mass spectrometry (MS) and ultra-high-performance liquid chromatography and hydrophilic interaction liquid chromatography mass spectrometry (UHPLC-HILIC-MS). RESULTS The produced calibration curves have high coefficients of determination (R2 >0.98) and the fragment ion ratios in replicate analyses were very consistent. A test mixture containing 60/40% ratios of all available regioisomer pairs was analyzed to test and validate the functionality of the calibration curves. The results were accurate and reproducible. However, regioisomeric quantification of certain chromatographically overlapping compounds is restricted by the relatively wide window in precursor ion selection of the MS instrument used. CONCLUSIONS This method establishes a framework for analysis of phospholipid regioisomers. Specific regioisomers can be quantified using the existing data, and method development will continue with improving chromatographic separation and exploring the fragmentation patterns and efficiencies of different PL classes and FA combinations, ultimately to refine this method for routine analysis of natural fats and oils.
Collapse
Affiliation(s)
- Mikael Fabritius
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Kirschbaum C, Greis K, Polewski L, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy. J Am Chem Soc 2021; 143:14827-14834. [PMID: 34473927 PMCID: PMC8447261 DOI: 10.1021/jacs.1c06944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Mass spectrometry
is routinely employed for structure elucidation
of molecules. Structural information can be retrieved from intact
molecular ions by fragmentation; however, the interpretation of fragment
spectra is often hampered by poor understanding of the underlying
dissociation mechanisms. For example, neutral headgroup loss from
protonated glycerolipids has been postulated to proceed via an intramolecular
ring closure but the mechanism and resulting ring size have never
been experimentally confirmed. Here we use cryogenic gas-phase infrared
(IR) spectroscopy in combination with computational chemistry to unravel
the structures of fragment ions and thereby shed light on elusive
dissociation mechanisms. Using the example of glycerolipid fragmentation,
we study the formation of protonated five-membered dioxolane and six-membered
dioxane rings and show that dioxolane rings are predominant throughout
different glycerolipid classes and fragmentation channels. For comparison,
pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl
derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently
interrogated using IR spectroscopy. Furthermore, the cyclic structure
of an intermediate fragment occurring in the phosphatidylcholine fragmentation
pathway was spectroscopically confirmed. Overall, the results contribute
substantially to the understanding of glycerolipid fragmentation and
showcase the value of vibrational ion spectroscopy to mechanistically
elucidate crucial fragmentation pathways in lipidomics.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Lukasz Polewski
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | | | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| |
Collapse
|
37
|
Kato S, Shimizu N, Ogura Y, Otoki Y, Ito J, Sakaino M, Sano T, Kuwahara S, Takekoshi S, Imagi J, Nakagawa K. Structural Analysis of Lipid Hydroperoxides Using Mass Spectrometry with Alkali Metals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2399-2409. [PMID: 34382801 DOI: 10.1021/jasms.1c00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation is involved in various biological phenomena (e.g., oxylipin generation and oxidative stress). Of oxidized lipid structures, the hydroperoxyl group position of lipid hydroperoxides (LOOHs) is a critical factor in determining their biological roles. Despite such interest, current methods to determine hydroperoxyl group positions possess some drawbacks such as selectivity. While we previously reported mass spectrometric methods using Na+ for the highly selective determination of hydroperoxyl group positions, nothing was known except for the fact that sodiated LOOHs (mainly linoleate) provide specific fragment ions. Thus, this study was aimed to investigate the effects of different alkali metals on the fragmentation of LOOHs, assuming its further application to analysis of other complex LOOHs. From the analysis of PC 16:0/18:2;OOH (phosphatidylcholine) and FA 18:2;OOH (fatty acid), we found that fragmentation pathways and ion intensities largely depend on the binding position and type of alkali metals (i.e., Li+, Hock fragmentation; Na+ and K+, α-cleavage (Na+ > K+); Rb+ and Cs+, no fragmentation). Furthermore, we proved that this method can be applied to determine the hydroperoxyl group position of esterified lipids (e.g., phospholipids and cholesterol esters) as well as polyunsaturated fatty acids (PUFAs) including n-3, n-6, and n-9 FA. We anticipate that the insights described in this study provide additional unique insights to conventional lipid oxidation research.
Collapse
Affiliation(s)
- Shunji Kato
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Yusuke Ogura
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Masayoshi Sakaino
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Takashi Sano
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Shigefumi Kuwahara
- Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Susumu Takekoshi
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Jun Imagi
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food Design Center, J-Oil Mills, Inc., Yokohama, Kanagawa 230-0053, Japan
| | - Kiyotaka Nakagawa
- J-Oil Mills Innovation Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
| |
Collapse
|
38
|
Characterization of the Uncommon Lipid Families in Corynebacterium glutamicum by Mass Spectrometry. Methods Mol Biol 2021. [PMID: 33954950 DOI: 10.1007/978-1-0716-1410-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
This book chapter provides readers the step-by-step instruction for cell growth, lipid isolation, and lipid analysis to obtain the lipidome of Corynebacterium glutamicum (C. glutamicum) in the genus Corynebacterium, a biotechnologically important bacterium. We separate the lipid families by preparative HPLC with an analytical C-8 column, followed by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high-resolution mass measurement to define the structures of cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), α-D-mannopyranosyl-(1 → 4)-α-D-glucuronyl diacylglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), and acyl trehalose monomycolate (acyl-TMM) whose structures have been previously mis-assigned or not defined by mass spectrometric means. We also define the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in the cell wall. The similarity of the lipidome to that in the Mycobacterium genera is consistent with the notion that Corynebacterium and Mycobacterium are gram-positive bacteria belonging to the suborder Corynebacterineae.
Collapse
|
39
|
Flor S, Sosa Alderete L, Dobrecky C, Tripodi V, Agostini E, Lucangioli S. LC-ESI-MS/MS Method for the Profiling of Glycerophospholipids and its Application to the Analysis of Tobacco Hairy Roots as Early Indicators of Phenol Pollution. Chromatographia 2021. [DOI: 10.1007/s10337-021-04034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Dimovska Nilsson K, Karagianni A, Kaya I, Henricsson M, Fletcher JS. (CO 2) n+, (H 2O) n+, and (H 2O) n+ (CO 2) gas cluster ion beam secondary ion mass spectrometry: analysis of lipid extracts, cells, and Alzheimer's model mouse brain tissue. Anal Bioanal Chem 2021; 413:4181-4194. [PMID: 33974088 PMCID: PMC8222020 DOI: 10.1007/s00216-021-03372-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/07/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
This work assesses the potential of new water cluster-based ion beams for improving the capabilities of secondary ion mass spectrometry (SIMS) for in situ lipidomics. The effect of water clusters was compared to carbon dioxide clusters, along with the effect of using pure water clusters compared to mixed water and carbon dioxide clusters. A signal increase was found when using pure water clusters. However, when analyzing cells, a more substantial signal increase was found in positive ion mode when the water clusters also contained carbon dioxide, suggesting that additional reactions are in play. The effects of using a water primary ion beam on a more complex sample were investigated by analyzing brain tissue from an Alzheimer’s disease transgenic mouse model. The results indicate that the ToF-SIMS results are approaching those from MALDI as ToF-SIMS was able to image lyso-phosphocholine (LPC) lipids, a lipid class that for a long time has eluded detection during SIMS analyses. Gangliosides, sulfatides, and cholesterol were also imaged. ![]()
Collapse
Affiliation(s)
- Kelly Dimovska Nilsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Anthi Karagianni
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Ibrahim Kaya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 413 45, Mölndal, Sweden
- Medical Mass Spectrometry Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, 751 05, Uppsala, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
41
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
42
|
Bouza M, Li Y, Wang AC, Wang ZL, Fernández FM. Triboelectric Nanogenerator Ion Mobility-Mass Spectrometry for In-Depth Lipid Annotation. Anal Chem 2021; 93:5468-5475. [PMID: 33720699 PMCID: PMC8292975 DOI: 10.1021/acs.analchem.0c05145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and sn-chain position of lipids in a high-throughput manner. Herein, we report on the ability to structurally characterize lipids using large-area triboelectric nanogenerators (TENG) coupled with time-aligned parallel (TAP) fragmentation IM-MS analysis. Gas-phase lipid epoxidation during TENG ionization, coupled to mobility-resolved MS3 via TAP IM-MS, enabled the acquisition of detailed information on the presence and position of lipid C═C double bonds, the fatty acyl sn-chain position and composition, and the cis/trans geometrical C═C isomerism. The proposed methodology proved useful for the shotgun lipidomics analysis of lipid extracts from biological samples, enabling the detailed annotation of numerous lipid isobars.
Collapse
Affiliation(s)
- Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia C Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Zhao X, Xia Y. Characterization of Fatty Acyl Modifications in Phosphatidylcholines and Lysophosphatidylcholines via Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:560-568. [PMID: 33444004 DOI: 10.1021/jasms.0c00407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phosphatidylcholines (PCs) are the major structural components of the plasma membrane of mammalian cells, while lysophosphatidylcholines (LPCs) are critical intermediates in lipid remodeling. Conventional tandem mass spectrometric (MSn) methods via collision-induced dissociation (CID) are blind to intrachain modifications such as the location of the carbon-carbon double bond (C═C) and methyl branching point. In this study, we demonstrate that almost complete structural information can be inferred from a single MS2 CID spectrum of the bicarbonate anion adducts of PC or LPC ([M + HCO3]-), including the identity of the headgroup, composition of fatty acyl chains, their sn-positions, the location of C═C, and the point of methyl branching in fatty acyls. We have integrated this MS2 CID method onto liquid chromatography for the analysis LPCs in human plasma, revealing the existence of multiple sn-isomers, branched chain isomers, and C═C location isomers of LPC.
Collapse
Affiliation(s)
- Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Zayed MA, Jin X, Yang C, Belaygorod L, Engel C, Desai K, Harroun N, Saffaf O, Patterson BW, Hsu FF, Semenkovich CF. CEPT1-Mediated Phospholipogenesis Regulates Endothelial Cell Function and Ischemia-Induced Angiogenesis Through PPARα. Diabetes 2021; 70:549-561. [PMID: 33214136 PMCID: PMC7881870 DOI: 10.2337/db20-0635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022]
Abstract
De novo phospholipogenesis, mediated by choline-ethanolamine phosphotransferase 1 (CEPT1), is essential for phospholipid activation of transcription factors such as peroxisome proliferator-activated receptor α (PPARα) in the liver. Fenofibrate, a PPARα agonist and lipid-lowering agent, decreases amputation incidence in patients with diabetes. Because we previously observed that CEPT1 is elevated in carotid plaque of patients with diabetes, we evaluated the role of CEPT1 in peripheral arteries and PPARα phosphorylation (Ser12). CEPT1 was found to be elevated in diseased lower-extremity arterial intima of individuals with peripheral arterial disease and diabetes. To evaluate the role of Cept1 in the endothelium, we engineered a conditional endothelial cell (EC)-specific deletion of Cept1 via induced VE-cadherin-CreERT2-mediated recombination (Cept1Lp/LpCre +). Cept1Lp/LpCre + ECs demonstrated decreased proliferation, migration, and tubule formation, and Cept1Lp/LpCre + mice had reduced perfusion and angiogenesis in ischemic hind limbs. Peripheral ischemic recovery and PPARα signaling were further compromised by streptozotocin-induced diabetes and ameliorated by feeding fenofibrate. Cept1 endoribonuclease-prepared siRNA decreased PPARα phosphorylation in ECs, which was rescued with fenofibrate but not PC16:0/18:1. Unlike Cept1Lp/LpCre + mice, Cept1Lp/LpCre + Ppara -/- mice did not demonstrate hind-paw perfusion recovery after feeding fenofibrate. Therefore, we demonstrate that CEPT1 is essential for EC function and tissue recovery after ischemia and that fenofibrate rescues CEPT1-mediated activation of PPARα.
Collapse
Affiliation(s)
- Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
- VA St. Louis Health Care System, St. Louis, MO
| | - Xiaohua Jin
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Chao Yang
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Larisa Belaygorod
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Kshitij Desai
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Nikolai Harroun
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Omar Saffaf
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Bruce W Patterson
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
45
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
46
|
Buenger EW, Reid GE. Shedding light on isomeric FAHFA lipid structures using 213 nm ultraviolet photodissociation mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:311-323. [PMID: 32957827 DOI: 10.1177/1469066720960341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) are a recently discovered class of biological active lipids with anti-diabetic and anti-inflammatory functions. Given that structure and function are intimately related, we report here the use of direct infusion multi-stage hybrid tandem mass spectrometry involving sequential Collisional Activated Dissociation (CAD) and 213 nm UltraViolet PhotoDissociation (UVPD), as a novel technique for the unambiguous denovo identification and detailed structural characterisation of FAHFA lipid ions, including determination of the esterified fatty acid identity, the hydroxy fatty acid identity and position of esterification, and localization of the site(s) of endogenous unsaturations, without need for chromatographic separation or authentic reference standards. The utility of this approach is demonstrated for the identification of individual FAHFA lipids introduced to the mass spectrometer in positive ionization mode as their lithiated adducts, as well as from mixtures containing isomeric FAHFA species with differing esterification sites, including those that are not resolved by current liquid chromatography methods.
Collapse
Affiliation(s)
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
47
|
Řezanka T, Řezanka M, Mezricky D, Vítová M. Lipidomic analysis of diatoms cultivated with silica nanoparticles. PHYTOCHEMISTRY 2020; 177:112452. [PMID: 32773085 DOI: 10.1016/j.phytochem.2020.112452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Polar lipids from the diatoms Diadesmis gallica and Navicula atomus were separated and their structures were determined using high resolution tandem MS HILIC-LC/ESI. This method allowed us to identify 34 classes of lipids, each containing dozens of molecular species, including regioisomers. The largest differences were found in two sulfur-containing lipids, sulfoquinovosyldiacylglycerol and phosphatidylsulfocholine caused probably by the remodeling of lipid species. These diatoms have been found to use several mechanisms to resolve growth in extreme environments, i.e. silica starvation. The presence of insoluble nano-SiO2 leads to the replacement of cellular phospholipids with sulfolipids. Regioisomer ratios also vary depending on the concentration of nano-SiO2 in the culture medium, i.e. the biosynthesis of polar lipids via the prokaryotic (plastidial) and/or eukaryotic (explastidial) pathways. Complex analyses of polar lipids using high resolution HILIC-LC/ESI-tandem, as used for diatoms, can also be used for other photosynthetic microorganisms.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Michal Řezanka
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Dana Mezricky
- Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, Piaristengasse1, 3500, Krems, Austria
| | - Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81, Třeboň, Czech Republic
| |
Collapse
|
48
|
Klein DR, Blevins MS, Macias LA, Douglass MV, Trent MS, Brodbelt JS. Localization of Double Bonds in Bacterial Glycerophospholipids Using 193 nm Ultraviolet Photodissociation in the Negative Mode. Anal Chem 2020; 92:5986-5993. [PMID: 32212719 PMCID: PMC7385702 DOI: 10.1021/acs.analchem.0c00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The need for detailed structural characterization of glycerophospholipids (GPLs) for many types of biologically motivated applications has led to the development of novel mass spectrometry-based methodologies that utilize alternative ion activation methods. Ultraviolet photodissociation (UVPD) has shown great utility for localizing sites of unsaturation within acyl chains and to date has predominantly been used for positive mode analysis of GPLs. In the present work, UVPD is used to localize sites of unsaturation in GPL anions. Similar to UVPD mass spectra of GPL cations, UVPD of deprotonated or formate-adducted GPLs yields diagnostic fragment ions spaced 24 Da apart. This method was integrated into a liquid chromatography workflow and used to evaluate profiles of sites of unsaturation of lipids in Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). When assigning sites of unsaturation, E. coli was found to contain all unsaturation elements at the same position relative to the terminal methyl carbon of the acyl chain; the first carbon participating in a site of unsaturation was consistently seven carbons along the acyl chain when counting carbons from the terminal methyl carbon. GPLs from A. baumannii exhibited more variability in locations of unsaturation. For GPLs containing sites of unsaturation in both acyl chains, an MS3 method was devised to assign sites to specific acyl chains.
Collapse
Affiliation(s)
- Dustin R Klein
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Martin V Douglass
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, Georgia 30602, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
49
|
Qin Y, Zhou R, Jin J, Xie J, Liu H, Cai P, Shu J, Zhao Y, Huang L, Zhang S. UPLC-ESI-Q-TOF-MS/MS analysis of anticancer fractions from Ophiocordyceps xuefengensis and Ophiocordyceps sinensis. Biomed Chromatogr 2020; 34:e4841. [PMID: 32267545 DOI: 10.1002/bmc.4841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 01/30/2023]
Abstract
Ophiocordyceps xuefengensis (O. xuefengensis), a new species of caterpillar fungus, has been identified as the sister taxon of Ophiocordyceps sinensis (O. sinensis). The aims of the present study are to evaluate the anticancer activity and to qualitatively analyze the potential bioactive chemical constituents of O. xuefengensis and O. sinensis, comparatively. An MTT assay was used to evaluate the in vitro anticancer activities of different fractions from O. xuefengensis and O. sinensis. The results show that ethyl acetate fractions of O. xuefengensis and O. sinensis have significant in vitro anticancer activity. These two bioactive fractions were analyzed by ultra-performance liquid chromatography-electrospray ionization with quadrupole-time of flight tandem mass spectrometry technology. A total of 82 compounds and 101 compounds were identified or tentatively characterized in the bioactive fractions of O. xuefengensis and O. sinensis, respectively. Among these compounds, 68 existed in both O. xuefengensis and O. sinensis. A total of 67 compounds were reported in O. xuefengensis and 8 compounds were reported in caterpillar fungus for the first time. This is the first detailed comparative analysis of the in vitro anticancer activity and chemical ingredients between O. xuefengensis and O. sinensis. The application of this work will provide reliable fundamental pharmacological substances for the use of O. xuefengensis by Yao people.
Collapse
Affiliation(s)
- You Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Rongrong Zhou
- Changchun University of Chinese Medicine, Changchun, China
| | - Jian Jin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Hao Liu
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Ping Cai
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China.,2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha, China
| | - Jun Shu
- Hunan University of Chinese Medicine, Changsha, China
| | - Yahui Zhao
- Hunan Xinhengtang Traditional Chinese Medicine Technology Co., LTD, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing, China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China.,2011 Collaboration and Innovation Center for Digital Chinese Medicine in Hunan, Changsha, China
| |
Collapse
|
50
|
Nielsen IØ, Vidas Olsen A, Dicroce-Giacobini J, Papaleo E, Andersen KK, Jäättelä M, Maeda K, Bilgin M. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:894-907. [PMID: 32129994 DOI: 10.1021/jasms.9b00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shotgun lipidomics is a powerful tool that enables simultaneous and fast quantification of diverse lipid classes through mass spectrometry based analyses of directly infused crude lipid extracts. We present here a shotgun lipidomics platform established to quantify 38 lipid classes belonging to four lipid categories present in mammalian samples and show the fine-tuning and comprehensive evaluation of its experimental parameters and performance. We first determined for all the targeted lipid classes the collision energy levels optimal for the recording of their lipid class- and species-specific fragment ions and fine-tuned the energy levels applied in the platform. We then performed a series of titrations to define the boundaries of linear signal response for the targeted lipid classes, and demonstrated that the dynamic quantification range spanned more than 3 orders of magnitude and reached sub picomole levels for 35 lipid classes. The platform identified 273, 261, and 287 lipid species in brain, plasma, and cultured fibroblast samples, respectively, at the respective optimal working sample amounts. The platform properly quantified the majority of these identified lipid species, while lipid species measured to be below the limit of quantification were efficiently removed from the data sets by the use of statistical analyses of data reproducibility or a cutoff threshold. Finally, we demonstrated that a series of parameters of cell culture conditions influence lipidomics outcomes, including confluency, medium supplements, and use of transfection reagents. The present study provides a guideline for setting up and using a simple and efficient platform for quantitatively exploring the mammalian lipidome.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - André Vidas Olsen
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Jano Dicroce-Giacobini
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Klaus Kaae Andersen
- Unit for Statistics and Epidemiology, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Marja Jäättelä
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Kenji Maeda
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| | - Mesut Bilgin
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark
| |
Collapse
|