1
|
Fortier-Lebel N, Nakajima T. Exploring the Consistent Roles of Motor Areas Across Voluntary Movement and Locomotion. Neuroscientist 2024:10738584241263758. [PMID: 39041460 DOI: 10.1177/10738584241263758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multiple cortical motor areas are critically involved in the voluntary control of discrete movement (e.g., reaching) and gait. Here, we outline experimental findings in nonhuman primates with clinical reports and research in humans that explain characteristic movement control mechanisms in the primary, supplementary, and presupplementary motor areas, as well as in the dorsal premotor area. We then focus on single-neuron activity recorded while monkeys performed motor sequences consisting of multiple discrete movements, and we consider how area-specific control mechanisms may contribute to the performance of complex movements. Following this, we explore the motor areas in cats that we have considered as analogs of those in primates based on similarities in their cortical surface topology, anatomic connections, microstimulation effects, and activity patterns. Emphasizing that discrete movement and gait modification entail similar control mechanisms, we argue that single-neuron activity in each area of the cat during gait modification is compatible with the function ascribed to the activity in the corresponding area in primates, recorded during the performance of discrete movements. The findings that demonstrate the premotor areas' contribution to locomotion, currently unique to the cat model, should offer highly valuable insights into the control mechanisms of locomotion in primates, including humans.
Collapse
Affiliation(s)
- Nicolas Fortier-Lebel
- Département de neurosciences, Département de médecine, Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, Canada
| | - Toshi Nakajima
- Department of Physiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
2
|
Choi JW, Malekmohammadi M, Niketeghad S, Cross KA, Ebadi H, Alijanpourotaghsara A, Aron A, Rutishauser U, Pouratian N. Prefrontal-subthalamic theta signaling mediates delayed responses during conflict processing. Prog Neurobiol 2024; 236:102613. [PMID: 38631480 PMCID: PMC11149786 DOI: 10.1016/j.pneurobio.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.
Collapse
Affiliation(s)
- Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Soroush Niketeghad
- Department of Neurosurgery, University of California, Los Angeles, CA 90095, USA
| | - Katy A Cross
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Hamasa Ebadi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Adam Aron
- Department of Psychology, University of California, San Diego, CA 92093, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, and Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Herrera B, Schall JD, Riera JJ. Agranular frontal cortical microcircuit underlying cognitive control in macaques. Front Neural Circuits 2024; 18:1389110. [PMID: 38601266 PMCID: PMC11005916 DOI: 10.3389/fncir.2024.1389110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.
Collapse
Affiliation(s)
- Beatriz Herrera
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jeffrey D. Schall
- Centre for Vision Research, Centre for Integrative & Applied Neuroscience, Department of Biology and Psychology, York University, Toronto, ON, Canada
| | - Jorge J. Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
4
|
Guo T, Wang X, Wu J, Schwieter WJ, Liu H. Effects of contextualized emotional conflict control on domain-general conflict control: fMRI evidence of neural network reconfiguration. Soc Cogn Affect Neurosci 2024; 19:nsae001. [PMID: 38174430 PMCID: PMC10868129 DOI: 10.1093/scan/nsae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/24/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
Domain-general conflict control refers to the cognitive process in which individuals suppress task-irrelevant information and extract task-relevant information. It supports both effective implementation of cognitive conflict control and emotional conflict control. The present study employed functional magnetic resonance imaging and adopted an emotional valence conflict task and the arrow version of the flanker task to induce contextualized emotional conflicts and cognitive conflicts, respectively. The results from the conjunction analysis showed that the multitasking-related activity in the pre-supplementary motor area, bilateral dorsal premotor cortices, the left posterior intraparietal sulcus (IPS), the left anterior IPS and the right inferior occipital gyrus represents common subprocesses for emotional and cognitive conflict control, either in parallel or in close succession. These brain regions were used as nodes in the domain-general conflict control network. The results from the analyses on the brain network connectivity patterns revealed that emotional conflict control reconfigures the domain-general conflict control network in a connective way as evidenced by different communication and stronger connectivity among the domain-general conflict control network. Together, these findings offer the first empirical-based elaboration on the brain network underpinning emotional conflict control and how it reconfigures the domain-general conflict control network in interactive ways.
Collapse
Affiliation(s)
- Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Xiyuan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Tianjin Normal University, Tianjin 300382, China
| | - W. John Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory/Bilingualism Matters, Wilfrid Laurier University, Waterloo N2L3C5, Canada
- Department of Linguistics and Languages, McMaster University, Hamilton L8S4L8, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| |
Collapse
|
5
|
Cieslik EC, Ullsperger M, Gell M, Eickhoff SB, Langner R. Success versus failure in cognitive control: Meta-analytic evidence from neuroimaging studies on error processing. Neurosci Biobehav Rev 2024; 156:105468. [PMID: 37979735 DOI: 10.1016/j.neubiorev.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
6
|
Herrera B, Sajad A, Errington SP, Schall JD, Riera JJ. Cortical origin of theta error signals. Cereb Cortex 2023; 33:11300-11319. [PMID: 37804250 PMCID: PMC10690871 DOI: 10.1093/cercor/bhad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
A multi-scale approach elucidated the origin of the error-related-negativity (ERN), with its associated theta-rhythm, and the post-error-positivity (Pe) in macaque supplementary eye field (SEF). Using biophysical modeling, synaptic inputs to a subpopulation of layer-3 (L3) and layer-5 (L5) pyramidal cells (PCs) were optimized to reproduce error-related spiking modulation and inter-spike intervals. The intrinsic dynamics of dendrites in L5 but not L3 error PCs generate theta rhythmicity with random phases. Saccades synchronized the phases of the theta-rhythm, which was magnified on errors. Contributions from error PCs to the laminar current source density (CSD) observed in SEF were negligible and could not explain the observed association between error-related spiking modulation in L3 PCs and scalp-EEG. CSD from recorded laminar field potentials in SEF was comprised of multipolar components, with monopoles indicating strong electro-diffusion, dendritic/axonal electrotonic current leakage outside SEF, or violations of the model assumptions. Our results also demonstrate the involvement of secondary cortical regions, in addition to SEF, particularly for the later Pe component. The dipolar component from the observed CSD paralleled the ERN dynamics, while the quadrupolar component paralleled the Pe. These results provide the most advanced explanation to date of the cellular mechanisms generating the ERN.
Collapse
Affiliation(s)
- Beatriz Herrera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | - Amirsaman Sajad
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37203, United States
| | - Steven P Errington
- Department of Psychology, Vanderbilt Vision Research Center, Center for Integrative & Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37203, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Jeffrey D Schall
- Centre for Vision Research, Vision: Science to Applications Program, Departments of Biology and Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| |
Collapse
|
7
|
Pan X, Wang Z. Cortical and subcortical contributions to non-motor inhibitory control: an fMRI study. Cereb Cortex 2023; 33:10909-10917. [PMID: 37724423 DOI: 10.1093/cercor/bhad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Inhibition is a core executive cognitive function. However, the neural correlates of non-motor inhibitory control are not well understood. We investigated this question using functional Magnetic Resonance Imaging (fMRI) and a simple Count Go/NoGo task (n = 23), and further explored the causal relationships between activated brain regions. We found that the Count NoGo task activated a distinct pattern in the subcortical basal ganglia, including bilateral ventral anterior/lateral nucleus of thalamus (VA/VL), globus pallidus/putamen (GP/putamen), and subthalamic nucleus (STN). Stepwise regressions and mediation analyses revealed that activations in these region(s) were modulated differently by only 3 cortical regions i.e. the right inferior frontal gyrus/insula (rIFG/insula), along with left IFG/insula, and anterior cingulate cortex/supplementary motor area (ACC/SMA). The activations of bilateral VA/VL were modulated by both rSTN and rIFG/insula (with rGP/putamen as a mediator) independently, and the activation of rGP/putamen was modulated by ACC/SMA, with rIFG/insula as a mediator. Our findings provide the neural correlates of inhibitory control of counting and causal relationships between them, and strongly suggest that both indirect and hyperdirect pathways of the basal ganglia are involved in the Count NoGo condition.
Collapse
Affiliation(s)
- Xin Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Psychological Counseling Center, Shanghai University, Shanghai, China
| | - Zhaoxin Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| |
Collapse
|
8
|
Xing Z, Guo T, Ren L, Schwieter JW, Liu H. Spatiotemporal evidence uncovers differential neural activity patterns in cognitive and affective conflict control. Behav Brain Res 2023; 451:114522. [PMID: 37268253 DOI: 10.1016/j.bbr.2023.114522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Studies have shown that there are overlapping neural bases for cognitive and affective conflict control, but whether the neural activity patterns caused by the two types of conflict are similar remains to be explored. The present study utilizes electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) to temporally and spatially analyze the differences between cognitive and affective conflict control. We employ a semantic conflict task which includes blocks of cognitive and affective judgements primed by conflicting and non-conflicting contexts. The results showed a typical neural conflict effect in the cognitive judgment blocks as reflected by greater amplitudes of P2, N400, and the late positive potential (LPP), as well as greater activation of the left pre-supplementary motor area (pre-SMA) and the right inferior frontal gyrus (IFG) in the conflict condition relative to the non-conflict condition. These patterns did not emerge in the affective judgments, but instead, showed reversed effects of the LPP and in the left SMA. Taken together, these findings suggest that cognitive and affective conflict control result in different neural activity patterns.
Collapse
Affiliation(s)
- Zehui Xing
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Tingting Guo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Lanlan Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - John W Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters @ Wilfrid Laurier University, Canada; Department of Linguistics and Languages, McMaster University, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 116029 Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China.
| |
Collapse
|
9
|
Zhao S, Yuan R, Gao W, Liu Q, Yuan J. Neural substrates of behavioral inhibitory control during the two-choice oddball task: functional neuroimaging evidence. PSYCHORADIOLOGY 2023; 3:kkad012. [PMID: 38666128 PMCID: PMC10917370 DOI: 10.1093/psyrad/kkad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/20/2023] [Indexed: 04/28/2024]
Abstract
Background Behavioral inhibitory control (BIC) depicts a cognitive function of inhibiting inappropriate dominant responses to meet the context requirement. Despite abundant research into neural substrates of BIC during the go/no-go and stop signal tasks, these tasks were consistently shown hard to isolate neural processes of response inhibition, which is of primary interest, from those of response generation. Therefore, it is necessary to explore neural substrates of BIC using the two-choice oddball (TCO) task, whose design of dual responses is thought to produce an inhibition effect free of the confounds of response generation. Objective The current study aims at depicting neural substrates of performing behavioral inhibitory control in the two-choice oddball task, which designs dual responses to balance response generation. Also, neural substrates of performing BIC during this task are compared with those in the go/no-go task, which designs a motor response in a single condition. Methods The present study integrated go/no-go (GNG) and TCO tasks into a new Three-Choice BIC paradigm, which consists of standard (75%), deviant (12.5%), and no-go (12.5%) conditions simultaneously. Forty-eight college students participated in this experiment, which required them to respond to standard (frequent) and deviant stimuli by pressing different keys, while inhibiting motor response to no-go stimuli. Conjunction analysis and ROI (region of interest) analysis were adopted to identify the unique neural mechanisms that subserve the processes of BIC. Results Both tasks are effective in assessing BIC function, reflected by the significantly lower accuracy of no-go compared to standard condition in GNG, and the significantly lower accuracy and longer reaction time of deviant compared to standard condition in TCO. However, there were no significant differences between deviant and no-go conditions in accuracy. Moreover, functional neuroimaging has demonstrated that the anterior cingulate cortex (ACC) activation was observed for no-go vs. standard contrast in the GNG task, but not in deviant vs. standard contrast in the TCO task, suggesting that ACC involvement is not a necessary component of BIC. Second, ROI analysis of areas that were co-activated in TCO and GNG showed co-activations in the right inferior frontal cortex (triangle and orbital), with the signals in the TCO task significantly higher than those in the GNG task. Conclusions These findings show that the designed responses to both standard and deviant stimuli in the TCO task, compared to the GNG task, produced a more prominent prefrontal inhibitory processing and extinguished an unnecessary component of ACC activation during BIC. This implies that prefrontal involvement, but not that of ACC, is mandatory for the successful performance of inhibiting prepotent behaviors.
Collapse
Affiliation(s)
- Shirui Zhao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Faculté des Sciences Psychologiques et de l’Éducation, Université Libre de Bruxelles (ULB)Brussels 1050, Belgium
| | - Ruosong Yuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Wei Gao
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Qiang Liu
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jiajin Yuan
- The Affect Cognition and Regulation Laboratory (ACRLab), Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision (Sichuan Normal University), Chengdu 610066, China
| |
Collapse
|
10
|
Cieslik EC, Ullsperger M, Gell M, Eickhoff SB, Langner R. Success versus failure in cognitive control: meta-analytic evidence from neuroimaging studies on error processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540136. [PMID: 37214978 PMCID: PMC10197606 DOI: 10.1101/2023.05.10.540136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.
Collapse
Affiliation(s)
- Edna C. Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
11
|
Cognitive Neuroscience of Obsessive-Compulsive Disorder. Psychiatr Clin North Am 2023; 46:53-67. [PMID: 36740355 DOI: 10.1016/j.psc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cognitive neuroscientific research has the ability to yield important insights into the complex neurobiological processes underlying obsessive-compulsive disorder (OCD). This article provides an updated review of neuroimaging studies in seven neurocognitive domains. Findings from the literature are discussed in the context of obsessive-compulsive phenomenology and treatment. Expanding our knowledge of the neural mechanisms involved in OCD could help optimize treatment outcomes and guide the development of novel interventions.
Collapse
|
12
|
Fang L, Andrzejewski JA, Carlson JM. The gray matter morphology associated with the electrophysiological response to errors in individuals with high trait anxiety. Int J Psychophysiol 2023; 184:76-83. [PMID: 36581044 PMCID: PMC10125723 DOI: 10.1016/j.ijpsycho.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Enhanced error monitoring has been associated with higher levels of anxiety. This has been consistently demonstrated in its most reliable electrophysiological index, the error-related negativity (ERN), such that increased ERN is related with elevated anxiety symptomology. However, it is still unclear whether the structural properties of the brain are associated with individual differences in ERN amplitude. Moreover, the relationship between ERN and anxiety has recently been suggested to be moderated by sex, but the degree to which sex moderates the association between brain structure and ERN amplitude is unknown. The present study investigated the association between gray matter volume (GMV) and ERN amplitude in individuals with high trait anxiety (N = 98) as well as the role of sex in moderating this association. The ERN was elicited from a flanker task, whereas structural MRI images were obtained from whole brain structural T1-weighted MRI scans. The results of voxel-based morphometry analyses showed that the relationship between ERN difference scores and GMV was moderated by sex in the dorsal anterior cingulate cortex (dACC). This sex difference was derived from a negative correlation between ERN difference scores and dACC GMV in females and a positive correlation in males. Our findings are in accordance with the critical role of the dACC serving as a neural substrate of error monitoring. It also provides further evidence for sex-specific associations with brain structures related to error monitoring.
Collapse
Affiliation(s)
- Lin Fang
- Department of Psychological Science, Northern Michigan University, Marquette, MI, USA.
| | - Jeremy A Andrzejewski
- Department of Psychological Science, Northern Michigan University, Marquette, MI, USA
| | - Joshua M Carlson
- Department of Psychological Science, Northern Michigan University, Marquette, MI, USA
| |
Collapse
|
13
|
Daniel PL, Bonaiuto JJ, Bestmann S, Aron AR, Little S. High precision magnetoencephalography reveals increased right-inferior frontal gyrus beta power during response conflict. Cortex 2023; 158:127-136. [PMID: 36521374 PMCID: PMC9840697 DOI: 10.1016/j.cortex.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
Flexibility of behavior and the ability to rapidly switch actions is critical for adaptive living in humans. It is well established that the right-inferior frontal gyrus (R-IFG) is recruited during outright action-stopping, relating to increased beta (12-30 Hz) power. It has also been posited that inhibiting incorrect response tendencies and switching is central to motor flexibility. However, it is not known if the commonly reported R-IFG beta signature of response inhibition in action-stopping is also recruited during response conflict, which would suggest overlapping networks for stopping and switching. In the current study, we analyzed high precision magnetoencephalography (hpMEG) data recorded with multiple within subject recording sessions (trials n > 10,000) from 8 subjects during different levels of response conflict. We hypothesized that a R-IFG-triggered network for response inhibition is domain general and therefore also involved in mediating response conflict. We tested whether R-IFG showed increased beta power dependent on the level of response conflict. Using event-related spectral perturbations and linear mixed modeling, we found that R-IFG beta power increased for response conflict trials. The R-IFG beta increase was specific to trials with strong response conflict, and increased R-IFG beta power related to less error. This supports a more generalized role for R-IFG beta, beyond simple stopping behavior towards response switching.
Collapse
Affiliation(s)
- Pria L. Daniel
- Department of Psychology, University of California San Diego, 92093
| | - James J. Bonaiuto
- Institut des Sciences Cognitives, Marc Jeannerod, CNRS UMR5229, 69500,Université Claude Bernard Lyon 1, Université de Lyon, 72501
| | - Sven Bestmann
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Adam R. Aron
- Department of Psychology, University of California San Diego, 92093
| | - Simon Little
- Department of Neurology, University of California San Francisco, CA, USA.
| |
Collapse
|
14
|
Dhami P, Quilty LC, Schwartzmann B, Uher R, Allen TA, Kloiber S, Lam RW, MacQueen G, Frey BN, Milev R, Müller DJ, Rotzinger S, Kennedy SH, Farzan F. Alterations in the neural correlates of affective inhibitory control following cognitive behavioral therapy for depression: A Canadian biomarker integration network for depression (CAN-BIND) study. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
15
|
Kang W, Pineda Hernández S, Wang J, Malvaso A. Instruction-based learning: A review. Neuropsychologia 2022; 166:108142. [PMID: 34999133 DOI: 10.1016/j.neuropsychologia.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Humans are able to learn to implement novel rules from instructions rapidly, which is termed "instruction-based learning" (IBL). This remarkable ability is very important in our daily life in both learning individually or working as a team, and almost every psychology experiment starts with instructing participants. Many recent progresses have been made in IBL research both psychologically and neuroscientifically. In this review, we discuss the role of language in IBL, the importance of the first trial performance in IBL, why IBL should be considered as a goal-directed behavior, intelligence and IBL, cognitive flexibility and IBL, how behaviorally relevant information is processed in the lateral prefrontal cortex (LPFC), how the lateral frontal cortex (LFC) networks work as a functional hierarchy during IBL, and the cortical and subcortical contributions to IBL. Finally, we develop a neural working model for IBL and provide some sensible directions for future research.
Collapse
Affiliation(s)
- Weixi Kang
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| | | | - Junxin Wang
- School of Nursing, Beijing University of Chinese Medicine, China
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Saulnier KG, Allan NP, Judah MR, Koscinski B, Hager NM, Albanese B, Knapp AA, Schmidt NB. Attentional Control Moderates the Relations between Intolerance of Uncertainty and Generalized Anxiety Disorder and Symptoms. COGNITIVE THERAPY AND RESEARCH 2021; 45:1193-1201. [PMID: 34720260 PMCID: PMC8553219 DOI: 10.1007/s10608-021-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intolerance of uncertainty (IU), perceived attentional control (AC), and poor cognitive control abilities are risk factors for anxiety; however, few studies have examined their interactive effects in relation to anxiety. A more complete understanding of interplay between IU, perceived AC, and cognitive control could inform intervention efforts. METHODS The current study examined the direct and interactive effects of IU and AC on anxiety in a sample of 280 community outpatients (M age = 36.01 years, SD = 16.17). Perceived AC was measured using self-report and cognitive control abilities were measured using a Go/No-Go task. RESULTS Findings indicated a significant IU by perceived AC interaction predicting worry and GAD diagnoses. There was a positive relation between IU and worry/GAD diagnoses that was strongest among those with high perceived AC. Perceived AC was unrelated to cognitive control abilities, and cognitive control abilities did not interact significantly with IU. Cognitive control abilities were related to worry symptoms but not to GAD diagnoses. CONCLUSIONS These results indicate that at high levels of perceived AC, individuals with elevated IU report higher levels of worry, potentially due to the conscious use of worry as an emotion regulation strategy. Clinical implications and future directions are discussed.
Collapse
Affiliation(s)
| | | | - Matt R. Judah
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
| | | | - Nathan M. Hager
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
| | - Brian Albanese
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Ashley A. Knapp
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Norman B. Schmidt
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
17
|
Poulton A, Hester R. Transition to substance use disorders: impulsivity for reward and learning from reward. Soc Cogn Affect Neurosci 2021; 15:1182-1191. [PMID: 31848627 PMCID: PMC7657456 DOI: 10.1093/scan/nsz077] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023] Open
Abstract
Substance dependence constitutes a profound societal burden. Although large numbers of individuals use licit or illicit substances, few transition to dependence. The specific factors influencing this transition are not well understood. Substance-dependent individuals tend to be swayed by the immediate rewards of drug taking, but are often insensitive to delayed negative consequences of their behavior. Dependence is consequently associated with impulsivity for reward and atypical learning from feedback. Behavioral impulsivity is indexed using tasks measuring spontaneous decision-making and capacity to control impulses. While evidence indicates drug taking exacerbates behavioral impulsivity for reward, animal and human studies of drug naïve populations demonstrate it might precede any drug-related problems. Research suggests dependent individuals are also more likely to learn from rewarding (relative to punishing) feedback. This may partly explain why substance-dependent individuals fail to modify their behavior in response to negative outcomes. This enhanced learning from reward may constitute a further pre-existing risk factor for substance dependence. Although impulsivity for reward and preferential learning from rewarding feedback are both underpinned by a compromised dopaminergic system, few studies have examined the relationship between these two mechanisms. The interplay of these processes may help enrich understanding of why some individuals transition to substance dependence.
Collapse
Affiliation(s)
- Antoinette Poulton
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville 3010, VIC, Australia
| | - Robert Hester
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
18
|
Neural underpinnings of valence-action interactions triggered by cues and targets in a rewarded approach/avoidance task. Cortex 2021; 141:240-261. [PMID: 34098425 DOI: 10.1016/j.cortex.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/31/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Incentive-valence signals have a large impact on our actions in everyday life. While it is intuitive (and most often beneficial) to approach positive and avoid negative stimuli, these prepotent response tendencies can also be maladaptive, as exemplified by clinical conditions such as overeating or pathological gambling. We have recently shown that targets associated with monetary incentives can trigger such valence-action biases (target condition), and that these are absent when valence and action information are provided by advance cues (cue condition). Here, we explored the neural correlates underlying the absence of the behavioral bias in this condition using fMRI. Specifically, we tested in how far valence and action information are integrated at all in the cue condition (where no behavioral biases are observed), assessing activity at the moment of the cue (mainly preparation) and the target (mainly implementation). The cue-locked data was dominated by main effects of valence with increased activity for incentive versus no-incentive cues in a network including anterior insula, premotor cortex, (mostly ventral) striatum (voxel-wise analysis), and across five predefined regions of interest (ROI analysis). Only one region, the anterior cingulate cortex, featured a valence-action interaction, with increased activity for win-approach compared to no-incentive-approach cues. The target-locked data revealed a different interaction pattern with increased activity in loss-approach as compared to win-approach targets in the cerebellum (voxel-wise) and across all ROIs. For comparison, the uncued target condition (target-locked data only) featured valence and action main effects (incentive > no-incentive targets; approach > avoid targets), but no interactions. The results resonate with the common observations that performance benefits after incentive-valence cues are promoted by increased preparatory control. Moreover, the data provide support for the idea that valence and action information are integrated according to an evolutionary benefit (cue-locked), requiring additional neural resources to implement non-intuitive valence-action mappings (target-locked).
Collapse
|
19
|
Cao H, Cannon TD. Distinct and temporally associated neural mechanisms underlying concurrent, postsuccess, and posterror cognitive controls: Evidence from a stop-signal task. Hum Brain Mapp 2021; 42:2677-2690. [PMID: 33797816 PMCID: PMC8127156 DOI: 10.1002/hbm.25347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 11/06/2022] Open
Abstract
Cognitive control is built upon the interactions of multiple brain regions. It is currently unclear whether the involved regions are temporally separable in relation to different cognitive processes and how these regions are temporally associated in relation to different task performances. Here, using stop-signal task data acquired from 119 healthy participants, we showed that concurrent and poststop cognitive controls were associated with temporally distinct but interrelated neural mechanisms. Specifically, concurrent cognitive control activated regions in the cingulo-opercular network (including the dorsal anterior cingulate cortex [dACC], insula, and thalamus), together with superior temporal gyrus, secondary motor areas, and visual cortex; while regions in the fronto-parietal network (including the lateral prefrontal cortex [lPFC] and inferior parietal lobule) and cerebellum were only activated during poststop cognitive control. The associations of activities between concurrent and poststop regions were dependent on task performance, with the most notable difference in the cerebellum. Importantly, while concurrent and poststop signals were significantly correlated during successful cognitive control, concurrent activations during erroneous trials were only correlated with posterror activations in the fronto-parietal network but not cerebellum. Instead, the cerebellar activation during posterror cognitive control was likely to be driven secondarily by posterror activation in the lPFC. Further, a dynamic causal modeling analysis demonstrated that postsuccess cognitive control was associated with inhibitory connectivity from the lPFC to cerebellum, while excitatory connectivity from the lPFC to cerebellum was present during posterror cognitive control. Overall, these findings suggest dissociable but temporally related neural mechanisms underlying concurrent, postsuccess, and posterror cognitive control processes in healthy individuals.
Collapse
Affiliation(s)
- Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York, USA.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, New York, USA.,Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.,Department of Psychology, Yale University, New Haven, Connecticut, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, Connecticut, USA.,Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Dayan-Riva A, Berger A, Anholt GE. Affordances, response conflict, and enhanced-action tendencies in obsessive-compulsive disorder: an ERP study. Psychol Med 2021; 51:948-963. [PMID: 31907102 DOI: 10.1017/s0033291719003866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by recurrent, intrusive thoughts and/or behaviors. OCD symptoms are often triggered by external stimuli. Therefore, it has been suggested that difficulty inhibiting responses to stimuli associated with strong action tendencies may underlie symptoms. The present electrophysiological study examined whether stimuli evoking a strong automatic response are associated with enhanced action tendencies in OCD participants relative to healthy controls. METHODS The lateralized readiness potential (LRP) and the N2 event-related potential (ERP) components were used as measures of action tendencies and inhibition, respectively. ERPs were recorded while 38 participants diagnosed with OCD and 38 healthy controls performed a variation of the Stroop task using colored arrows. RESULTS The OCD group presented with larger LRP amplitudes than the control group. This effect was found specifically in the incongruent condition. Furthermore, an interaction effect was found between group and congruency such that the OCD group showed a reduced N2 in the incongruent condition compared to the congruent condition, whereas the control group demonstrated the opposite effect. Results support the hypothesis that OCD is characterized by stronger readiness-for-action and impaired inhibitory mechanisms, particularly when the suppression of a dominant response tendency is required. Our results were supported by source localization analyses for the LRP and N2 components. These findings were specific to OCD and not associated with anxiety and depression symptoms. CONCLUSIONS The present results support the notion of stronger habitual behavior and embodiment tendencies in OCD and impaired inhibitory control under conditions of conflict.
Collapse
Affiliation(s)
- Adi Dayan-Riva
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Andrea Berger
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
21
|
Yuan Q, Wu J, Zhang M, Zhang Z, Chen M, Ding G, Lu C, Guo T. Patterns and networks of language control in bilingual language production. Brain Struct Funct 2021; 226:963-977. [PMID: 33502622 DOI: 10.1007/s00429-021-02218-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Many studies have examined the cognitive and neural mechanisms of bilingual language control, but few of them have captured the pattern information of brain activation. However, language control is a functional combination of both cognitive control and language production which demonstrates distinct patterns of neural representations under different language contexts. The first aim of the present study was to explore the brain activation patterns of language control using multivoxel pattern analysis (MVPA). During the experiment, Chinese-English bilinguals were instructed to name pictures in either Chinese or English according to a visually presented cue while being scanned with functional magnetic resonance imaging (fMRI). We found that patterns of neural activity in frontal brain regions including the left dorsolateral prefrontal cortex, left inferior frontal gyrus, left supplementary motor area, anterior cingulate cortex, bilateral precentral gyri, and the left cerebellum reliably discriminated between switch and non-switch conditions. We then modeled causal interactions between these regions by applying effective connectivity analyses based on an extended unified structure equation model (euSEM). The results showed that frontal and fronto-cerebellar connectivity were key components of the language control network. These findings further reveal the engagement of the cognitive control network in bilingual language production.
Collapse
Affiliation(s)
- Qiming Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Junjie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Man Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhaoqi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Mo Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Dubravac M, Roebers CM, Meier B. Different temporal dynamics after conflicts and errors in children and adults. PLoS One 2020; 15:e0238221. [PMID: 32866181 PMCID: PMC7458282 DOI: 10.1371/journal.pone.0238221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022] Open
Abstract
After perceiving cognitive conflicts or errors, children as well as adults adjust their performance in terms of reaction time slowing on subsequent actions, resulting in the so called post-conflict slowing and post-error slowing, respectively. The development of these phenomena has been studied separately and with different methods yielding inconsistent findings. We aimed to assess the temporal dynamics of these two slowing phenomena within a single behavioral task. To do so, 9-13-year-old children and young adults performed a Simon task in which every fifth trial was incongruent and thus induced cognitive conflict and, frequently, also errors. We compared the reaction times on four trials following a conflict or an error. Both age groups slowed down after conflicts and did so even more strongly after errors. Disproportionally high reaction times on the first post-error trial were followed by a steady flattening of the slowing. Generally, children slowed down more than adults. In addition to highlighting the phenomenal and developmental robustness of post-conflict and post-error slowing these findings strongly suggest increasingly efficient performance adjustment through fine-tuning of cognitive control in the course of development.
Collapse
Affiliation(s)
- Mirela Dubravac
- Institute of Psychology, University of Bern, Bern, Switzerland
| | | | - Beat Meier
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Albanese BJ, Macatee RJ, Gallyer AJ, Stanley IH, Joiner TE, Schmidt NB. Impaired Conflict Detection Differentiates Suicide Attempters From Ideating Nonattempters: Evidence From Event-Related Potentials. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:902-912. [DOI: 10.1016/j.bpsc.2019.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
|
24
|
Nestor LJ, Paterson LM, Murphy A, McGonigle J, Orban C, Reed L, Taylor E, Flechais R, Smith D, Bullmore ET, Ersche KD, Suckling J, Elliott R, Deakin B, Rabiner I, Lingford Hughes A, Sahakian BJ, Robbins TW, Nutt DJ. Naltrexone differentially modulates the neural correlates of motor impulse control in abstinent alcohol-dependent and polysubstance-dependent individuals. Eur J Neurosci 2019; 50:2311-2321. [PMID: 30402987 PMCID: PMC6767584 DOI: 10.1111/ejn.14262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Identifying key neural substrates in addiction disorders for targeted drug development remains a major challenge for clinical neuroscience. One emerging target is the opioid system, where substance-dependent populations demonstrate prefrontal opioid dysregulation that predicts impulsivity and relapse. This may suggest that disturbances to the prefrontal opioid system could confer a risk for relapse in addiction due to weakened 'top-down' control over impulsive behaviour. Naltrexone is currently licensed for alcohol dependence and is also used clinically for impulse control disorders. Using a go/no-go (GNG) task, we examined the effects of acute naltrexone on the neural correlates of successful motor impulse control in abstinent alcoholics (AUD), abstinent polysubstance-dependent (poly-SUD) individuals and controls during a randomised double blind placebo controlled fMRI study. In the absence of any differences on GNG task performance, the AUD group showed a significantly greater BOLD response compared to the control group in lateral and medial prefrontal regions during both placebo and naltrexone treatments; effects that were positively correlated with alcohol abstinence. There was also a dissociation in the positive modulating effects of naltrexone in the orbitofrontal cortex (OFC) and anterior insula cortex (AIC) of the AUD and poly-SUD groups respectively. Self-reported trait impulsivity in the poly-SUD group also predicted the effect of naltrexone in the AIC. These results suggest that acute naltrexone differentially amplifies neural responses within two distinct regions of a salience network during successful motor impulse control in abstinent AUD and poly-SUD groups, which are predicted by trait impulsivity in the poly-SUD group.
Collapse
Affiliation(s)
- Liam J. Nestor
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Louise M. Paterson
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
| | - Anna Murphy
- Neuroscience and Psychiatry UnitUniversity of ManchesterManchesterUK
| | - John McGonigle
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
| | - Csaba Orban
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
| | - Laurence Reed
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
| | - Eleanor Taylor
- Neuroscience and Psychiatry UnitUniversity of ManchesterManchesterUK
| | - Remy Flechais
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
| | - Dana Smith
- Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | | | - Karen D. Ersche
- Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - John Suckling
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Rebecca Elliott
- Neuroscience and Psychiatry UnitUniversity of ManchesterManchesterUK
| | - Bill Deakin
- Neuroscience and Psychiatry UnitUniversity of ManchesterManchesterUK
| | - Ilan Rabiner
- ImanovaCentre for Imaging SciencesInvicroLondonUK
| | - Anne Lingford Hughes
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
| | - Barbara J. Sahakian
- Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Trevor W. Robbins
- Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - David J. Nutt
- Neuropsychopharmacology UnitCentre for PsychiatryImperial College LondonLondonUK
| |
Collapse
|
25
|
Wessel JR, Waller DA, Greenlee JD. Non-selective inhibition of inappropriate motor-tendencies during response-conflict by a fronto-subthalamic mechanism. eLife 2019; 8:42959. [PMID: 31063130 PMCID: PMC6533064 DOI: 10.7554/elife.42959] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
To effectively interact with their environment, humans must often select actions from multiple incompatible options. Existing theories propose that during motoric response-conflict, inappropriate motor activity is actively (and perhaps non-selectively) suppressed by an inhibitory fronto-basal ganglia mechanism. We here tested this theory across three experiments. First, using scalp-EEG, we found that both outright action-stopping and response-conflict during action-selection invoke low-frequency activity of a common fronto-central source, whose activity relates to trial-by-trial behavioral indices of inhibition in both tasks. Second, using simultaneous intracranial recordings from the basal ganglia and motor cortex, we found that response-conflict increases the influence of the subthalamic nucleus on M1-representations of incorrect response-tendencies. Finally, using transcranial magnetic stimulation, we found that during the same time period when conflict-related STN-to-M1 communication is increased, cortico-spinal excitability is broadly suppressed. Together, these findings demonstrate that fronto-basal ganglia networks buttress action-selection under response-conflict by rapidly and non-selectively net-inhibiting inappropriate motor tendencies.
Collapse
Affiliation(s)
- Jan R Wessel
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, United States.,Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Darcy A Waller
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
| | - Jeremy Dw Greenlee
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, United States
| |
Collapse
|
26
|
Garic D, Broce I, Graziano P, Mattfeld A, Dick AS. Laterality of the frontal aslant tract (FAT) explains externalizing behaviors through its association with executive function. Dev Sci 2019; 22:e12744. [PMID: 30159951 PMCID: PMC9828516 DOI: 10.1111/desc.12744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/25/2018] [Indexed: 01/12/2023]
Abstract
We investigated the development of a recently identified white matter pathway, the frontal aslant tract (FAT) and its association with executive function and externalizing behaviors in a sample of 129 neurotypical male and female human children ranging in age from 7 months to 19 years. We found that the FAT could be tracked in 92% of those children, and that the pathway showed age-related differences into adulthood. The change in white matter microstructure was very rapid until about 6 years, and then plateaued, only to show age-related increases again after the age of 11 years. In a subset of those children (5-18 years; n = 70), left laterality of the microstructural properties of the FAT was associated with greater attention problems as measured by the Child Behavior Checklist (CBCL). However, this relationship was fully mediated by higher executive dysfunction as measured by the Behavior Rating Inventory of Executive Function (BRIEF). This relationship was specific to the FAT-we found no relationship between laterality of a control pathway, or of the white matter of the brain in general, and attention and executive function. These findings suggest that the degree to which the developing brain favors a right lateralized structural dominance of the FAT is directly associated with executive function and attention. This novel finding provides a new potential structural biomarker to assess attention deficit hyperactivity disorder (ADHD) and associated executive dysfunction during development.
Collapse
Affiliation(s)
- Dea Garic
- Department of Psychology, Florida International University, Miami, FL, 33199
| | - Iris Broce
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143
| | - Paulo Graziano
- Department of Psychology, Florida International University, Miami, FL, 33199
| | - Aaron Mattfeld
- Department of Psychology, Florida International University, Miami, FL, 33199
| | - Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, FL, 33199
| |
Collapse
|
27
|
Sun X, Li L, Mo C, Mo L, Wang R, Ding G. Dissociating the neural substrates for inhibition and shifting in domain-general cognitive control. Eur J Neurosci 2019; 50:1920-1931. [PMID: 30706976 DOI: 10.1111/ejn.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/30/2022]
Abstract
Inhibition and shifting are two key components of domain-general cognitive control. Numerous studies have investigated the neural substrates of both components, but it is still unclear whether the relevant brain regions are specifically involved in one specific component or commonly engaged in both components. Here, we addressed this question by using functional magnetic resonance imaging and a modified saccade paradigm that was effective to disentangle inhibition and shifting in one experiment. The results showed that both the middle frontal gyrus and left parietal lobe were involved in both components but the middle frontal gyrus was more active for the inhibition while the inferior parietal lobe was more active for the shifting processing. The outcome suggests that, although both regions are engaged in inhibition and shifting, each plays a dominant role in one component. These findings provide a further insight into the neural dissociation in inhibition and shifting, as well as a better explanation on the framework of unity and diversity from a neuropsychological viewpoint.
Collapse
Affiliation(s)
- Xun Sun
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Le Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ce Mo
- Peking University - Tsinghua University Joint Center for Life Sciences, Peking University, Beijing, China
| | - Lei Mo
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Ruiming Wang
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
28
|
Zhang Z, Wang Y, Zhang Q, Zhao W, Chen X, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang Y, Li D, Wu H, Dong Q, Chen C, Li J. The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls. Schizophr Res 2019; 204:193-200. [PMID: 30268820 DOI: 10.1016/j.schres.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
CACNA1C gene polymorphism rs2007044 has been reported to be associated with schizophrenia, but its underlying brain mechanism is not clear. First, we conducted an exploratory functional magnetic resonance imaging (fMRI) study using an N-BACK task and a Stroop task in 194 subjects (55 schizophrenia patients and 139 healthy controls). Our whole brain analysis found that the risk allele was associated with reduced activation of the left inferior frontal gyrus (IFG) during the Stroop task (cluster size = 390 voxels, P < 0.05 TFCE-FWE corrected; peak MNI coordinates: x = -57, y = -6, z = 30). We also conducted a functional near-infrared spectroscopy (fNIRS) study using the same Stroop task in an independent sample of 126 healthy controls to validate the fMRI finding. Our repeated-measures ANCOVA on the six channels (20, 27, 33, 34, 40 and 46) within the left IFG also found significant result. The polymorphism rs2007044 showed significant effect on the oxy-Hb data (F = 5.072, P = 0.026) and showed significant interaction effect with channels on the deoxy-Hb data (F = 2.841, P = 0.015). Taken together, results of this study suggested that rs2007044 could affect the activation of the left IFG, which was a possible brain mechanism underlying the association between CACNA1C gene polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Zhifang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Yanyan Wang
- Department of Psychiatry, HePing Hospital of Chang Zhou, Jiangsu 213003, China
| | - Qiumei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China; School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiongying Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Min Chen
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining 272013, Shandong Province, PR China
| | | | - Yutao Xiang
- Beijing Anding Hospital, Beijing 100088, PR China; Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Hongjie Wu
- Shengli Hospital of Shengli Petroleum Administration Bureau, Dongying 257022, Shandong Province, PR China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, United States
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, PR China.
| |
Collapse
|
29
|
Macatee RJ, Albanese BJ, Clancy K, Allan NP, Bernat EM, Cougle JR, Schmidt NB. Distress intolerance modulation of neurophysiological markers of cognitive control during a complex go/no-go task. JOURNAL OF ABNORMAL PSYCHOLOGY 2019; 127:12-29. [PMID: 29369665 DOI: 10.1037/abn0000323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Distress intolerance (DI), a trait-like individual difference reflective of the inability to endure aversive affective states, is relevant to multiple forms of psychopathology, but its relations to theoretically relevant neurobiological systems have received little attention. Altered cognitive control-related neurobiology has been theorized to underlie individual differences in DI, but little empirical work has been conducted. To test this hypothesis, baseline data from a large community sample with elevated high levels of emotional psychopathology and comorbidity was utilized (N = 256). Participants completed a complex go/no-go task while EEG was recorded, and P2, N2, and P3 amplitudes were measured. Based upon prior findings on the relations between these components and response inhibition, a core cognitive control function, we hypothesized that DI would predict reduced no-go N2 and P3 amplitude while controlling for current anxious/depressive symptom severity (i.e., negative affect). Peak amplitudes from the raw data and principal components analysis were used to quantify amplitude of ERP components. Partially consistent with predictions, high DI was independently associated with reduced no-go N2 peak amplitude in the raw ERP data, and was significantly related to a frontal positivity factor in the N2 time window across no-go and go trials. Contrary to predictions, no relations between DI and the P3 were found. Overall, results support the theorized relevance of cognitive control-linked neurobiology to individual differences in tolerance of distress over and above distress severity itself, and suggest specific relations between DI and alterations in early controlled attention/conflict-monitoring but not response inhibition or response inhibition-related sequelae. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | - Kevin Clancy
- Department of Psychology, Florida State University
| | | | - Edward M Bernat
- Department of Psychology, University of Maryland, College Park
| | | | | |
Collapse
|
30
|
Vaccaro AG, Fleming SM. Thinking about thinking: A coordinate-based meta-analysis of neuroimaging studies of metacognitive judgements. Brain Neurosci Adv 2018; 2:2398212818810591. [PMID: 30542659 PMCID: PMC6238228 DOI: 10.1177/2398212818810591] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/28/2018] [Indexed: 11/15/2022] Open
Abstract
Metacognition supports reflection upon and control of other cognitive processes.
Despite metacognition occupying a central role in human psychology, its neural
substrates remain underdetermined, partly due to study-specific differences in
task domain and type of metacognitive judgement under study. It is also unclear
how metacognition relates to other apparently similar abilities that depend on
recursive thought such as theory of mind or mentalising. Now that neuroimaging
studies of metacognition are more prevalent, we have an opportunity to
characterise consistencies in neural substrates identified across different
analysis types and domains. Here we used quantitative activation likelihood
estimation methods to synthesise findings from 47 neuroimaging studies on
metacognition, divided into categories based on the target of metacognitive
evaluation (memory and decision-making), analysis type (judgement-related
activation, confidence-related activation, and predictors of metacognitive
sensitivity), and, for metamemory judgements, temporal focus (prospective and
retrospective). A domain-general network, including medial and lateral
prefrontal cortex, precuneus, and insula was associated with the level of
confidence in self-performance in both decision-making and memory tasks. We
found preferential engagement of right anterior dorsolateral prefrontal cortex
in metadecision experiments and bilateral parahippocampal cortex in metamemory
experiments. Results on metacognitive sensitivity were inconclusive, likely due
to fewer studies reporting this contrast. Finally, by comparing our results to
meta-analyses of mentalising, we obtain evidence for common engagement of the
ventromedial and anterior dorsomedial prefrontal cortex in both metacognition
and mentalising, suggesting that these regions may support second-order
representations for thinking about the thoughts of oneself and others.
Collapse
Affiliation(s)
- Anthony G Vaccaro
- Division of Psychology and Language Sciences, University College London, London, UK.,Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| |
Collapse
|
31
|
Dick AS, Garic D, Graziano P, Tremblay P. The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex 2018; 111:148-163. [PMID: 30481666 DOI: 10.1016/j.cortex.2018.10.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/27/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
In this review, we examine the structural connectivity of a recently-identified fiber pathway, the frontal aslant tract (FAT), and explore its function. We first review structural connectivity studies using tract-tracing methods in non-human primates, and diffusion-weighted imaging and electrostimulation in humans. These studies suggest a monosynaptic connection exists between the lateral inferior frontal gyrus and the pre-supplementary and supplementary motor areas of the medial superior frontal gyrus. This connection is termed the FAT. We then review research on the left FAT's putative role in supporting speech and language function, with particular focus on speech initiation, stuttering and verbal fluency. Next, we review research on the right FAT's putative role supporting executive function, namely inhibitory control and conflict monitoring for action. We summarize the extant body of empirical work by suggesting that the FAT plays a domain general role in the planning, timing, and coordination of sequential motor movements through the resolution of competition among potential motor plans. However, we also propose some domain specialization across the hemispheres. On the left hemisphere, the circuit is proposed to be specialized for speech actions. On the right hemisphere, the circuit is proposed to be specialized for general action control of the organism, especially in the visuo-spatial domain. We close the review with a discussion of the clinical significance of the FAT, and suggestions for further research on the pathway.
Collapse
Affiliation(s)
| | - Dea Garic
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Paulo Graziano
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Pascale Tremblay
- Departement de Readaptation, Université Laval, Quebec City, Quebec, Canada; CERVO Brain Research Center, Quebec City, Canada
| |
Collapse
|
32
|
Ardila A, Bernal B, Rosselli M. Executive Functions Brain System: An Activation Likelihood Estimation Meta-analytic Study. Arch Clin Neuropsychol 2018; 33:379-405. [PMID: 28961762 DOI: 10.1093/arclin/acx066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/01/2017] [Indexed: 01/05/2023] Open
Abstract
Background and objective To characterize commonalities and differences between two executive functions: reasoning and inhibitory control. Methods A total of 5,974 participants in 346 fMRI experiments of inhibition or reasoning were selected. First level analysis consisted of Analysis of Likelihood Estimation (ALE) studies performed in two pooled data groups: (a) brain areas involved in reasoning and (b) brain areas involved in inhibition. Second level analysis consisted of two contrasts: (i) brain areas involved in reasoning but not in inhibition and (ii) brain areas involved in inhibition but not in reasoning. Lateralization Indexes were calculated. Results Four brain areas appear as the most critical: the dorsolateral aspect of the frontal lobes, the superior parietal lobules, the mesial aspect of the premotor area (supplementary motor area), and some subcortical areas, particularly the putamen and the thalamus. ALE contrasts showed significant differentiation of the networks, with the reasoning > inhibition-contrast showing a predominantly leftward participation, and the inhibition > reasoning-contrast, a clear right advantage. Conclusion Executive functions are mediated by sizable brain areas including not only cortical, but also involving subcortical areas in both hemispheres. The strength of activation shows dissociation between the hemispheres for inhibition (rightward) and reasoning (leftward) functions.
Collapse
Affiliation(s)
- Alfredo Ardila
- Department of Communication Sciences and Disorders, Florida International University, Miami, FL, USA
| | - Byron Bernal
- Department of Radiology/Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Monica Rosselli
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| |
Collapse
|
33
|
Neural correlates of correct and failed response inhibition in heavy versus light social drinkers: an fMRI study during a go/no-go task by healthy participants. Brain Imaging Behav 2018; 11:1796-1811. [PMID: 27832450 DOI: 10.1007/s11682-016-9654-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to suppress responses that are inappropriate, as well as the mechanisms monitoring the accuracy of actions in order to compensate for errors, is central to human behavior. Neural alterations that prevent stopping an inaccurate response, combined with a decreased ability of error monitoring, are considered to be prominent features of alcohol abuse. Moreover, (i) alterations of these processes have been reported in heavy social drinkers (i.e. young healthy individuals who do not yet exhibit a state of alcohol dependence); and (ii) through longitudinal studies, these alterations have been shown to underlie subsequent disinhibition that may lead to future alcohol use disorders. In the present functional magnetic resonance imaging study, using a contextual Go/No-Go task, we investigated whether different neural networks subtended correct inhibitions and monitoring mechanisms of failed inhibitory trials in light versus heavy social drinkers. We show that, although successful inhibition did not lead to significant changes, neural networks involved in error monitoring are different in light versus heavy drinkers. Thus, while light drinkers exhibited activations in their right inferior frontal, right middle cingulate and left superior temporal areas; heavy drinkers exhibited activations in their right cerebellum, left caudate nucleus, left superior occipital region, and left amygdala. These data are functionally interpreted as reflecting a "visually-driven emotional strategy" vs. an "executive-based" neural response to errors in heavy and light drinkers, respectively. Such a difference is interpreted as a key-factor that may subtend the transition from a controlled social heavy consumption to a state of clinical alcohol dependence.
Collapse
|
34
|
Hung Y, Gaillard SL, Yarmak P, Arsalidou M. Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Hum Brain Mapp 2018; 39:4065-4082. [PMID: 29923271 DOI: 10.1002/hbm.24232] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions.
Collapse
Affiliation(s)
- Yuwen Hung
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Schuyler L Gaillard
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Pavel Yarmak
- Psychology and Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation.,Department of Psychology, York University, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Weiss AR, Gillies MJ, Philiastides MG, Apps MA, Whittington MA, FitzGerald JJ, Boccard SG, Aziz TZ, Green AL. Dorsal Anterior Cingulate Cortices Differentially Lateralize Prediction Errors and Outcome Valence in a Decision-Making Task. Front Hum Neurosci 2018; 12:203. [PMID: 29872384 PMCID: PMC5972193 DOI: 10.3389/fnhum.2018.00203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is proposed to facilitate learning by signaling mismatches between the expected outcome of decisions and the actual outcomes in the form of prediction errors. The dACC is also proposed to discriminate outcome valence-whether a result has positive (either expected or desirable) or negative (either unexpected or undesirable) value. However, direct electrophysiological recordings from human dACC to validate these separate, but integrated, dimensions have not been previously performed. We hypothesized that local field potentials (LFPs) would reveal changes in the dACC related to prediction error and valence and used the unique opportunity offered by deep brain stimulation (DBS) surgery in the dACC of three human subjects to test this hypothesis. We used a cognitive task that involved the presentation of object pairs, a motor response, and audiovisual feedback to guide future object selection choices. The dACC displayed distinctly lateralized theta frequency (3-8 Hz) event-related potential responses-the left hemisphere dACC signaled outcome valence and prediction errors while the right hemisphere dACC was involved in prediction formation. Multivariate analyses provided evidence that the human dACC response to decision outcomes reflects two spatiotemporally distinct early and late systems that are consistent with both our lateralized electrophysiological results and the involvement of the theta frequency oscillatory activity in dACC cognitive processing. Further findings suggested that dACC does not respond to other phases of action-outcome-feedback tasks such as the motor response which supports the notion that dACC primarily signals information that is crucial for behavioral monitoring and not for motor control.
Collapse
Affiliation(s)
- Alexander R Weiss
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Martin J Gillies
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Marios G Philiastides
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Matthew A Apps
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | | - James J FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Sandra G Boccard
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Cortical Classification with Rhythm Entropy for Error Processing in Cocktail Party Environment Based on Scalp EEG Recording. Sci Rep 2018; 8:6070. [PMID: 29666460 PMCID: PMC5904132 DOI: 10.1038/s41598-018-24535-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
Using single-trial cortical signals calculated by weighted minimum norm solution estimation (WMNE), the present study explored a feature extraction method based on rhythm entropy to classify the scalp electroencephalography (EEG) signals of error response from that of correct response during performing auditory-track tasks in cocktail party environment. The classification rate achieved 89.7% with single-trial (≈700 ms) when using support vector machine(SVM) with the leave-one-out-cross-validation (LOOCV). And high discriminative regions mainly distributed at the medial frontal cortex (MFC), the left supplementary motor area (lSMA) and the right supplementary motor area (rSMA). The mean entropy value for error trials was significantly lower than that for correct trials in the discriminative cortices. By time-varying network analysis, different information flows changed among these discriminative regions with time, i.e. error processing showed a left-bias information flow, and correct processing presented a right-bias information flow. These findings revealed that the rhythm information based on single cortical signals could be well used to describe characteristics of error-related EEG signals and further provided a novel application about auditory attention for brain computer interfaces (BCIs).
Collapse
|
37
|
Electrophysiological indicators of inhibitory control deficits in depression. Biol Psychol 2017; 130:1-10. [DOI: 10.1016/j.biopsycho.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 01/02/2023]
|
38
|
Jackson A, Silk S, Buhidma Y, Shoaib M. Varenicline, the clinically effective smoking cessation agent, restores probabilistic response reversal performance during withdrawal from nicotine. Addict Biol 2017; 22:1316-1328. [PMID: 27440124 DOI: 10.1111/adb.12423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023]
Abstract
There is recognition that cognitive problems can contribute to renewed drug taking in former addicts. Our previous work has indicated that current smokers show reduced performance on a probabilistic reversal learning (PRL) task, relative to former smokers. To further explore PRL performance and its relevance to smoking, in addition to the role of nicotine, we developed a model of nicotine withdrawal-induced deficits in rodents. A second goal was to test varenicline, an α4β2 partial agonist, for its ability to restore any cognitive impairment. Acute effects of nicotine and varenicline on PRL performance in non-dependent animals were minimal and confined to speed of responding. When rats were made dependent on nicotine via osmotic minipumps implanted for 7 days (3.16 mg/kg/day), repeated tests at specified withdrawal time points revealed PRL disruption peaking at 12 and 24 hours following surgical removal of minipumps. Withdrawal was characterized by significant deficits in the number of reversals (P < 0.05), speed of responding (P < 0.01) and increases in omissions (P < 0.05). Nicotine (0.2 mg/kg SC) or varenicline (0.3 and 1.0 mg/kg SC) administered 10-minute prior to PRL test sessions during withdrawal, relieved the performance deficits. At 24-hour withdrawal, nicotine and varenicline (1 mg/kg) prevented decrements in reversals, in addition to ameliorating slower speed of responding. The high dose of varenicline only reduced omissions. These results confirm the role of nicotine in withdrawal-induced disruption of PRL performance and suggest that the model may be useful for investigating efficacy of potential new treatments for smoking cessation.
Collapse
Affiliation(s)
- Anne Jackson
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton East Sussex UK
| | - Sarah Silk
- Institute of Neuroscience, The Medical School; University of Newcastle; Newcastle upon Tyne UK
| | - Yazead Buhidma
- Institute of Neuroscience, The Medical School; University of Newcastle; Newcastle upon Tyne UK
| | - Mohammed Shoaib
- Institute of Neuroscience, The Medical School; University of Newcastle; Newcastle upon Tyne UK
| |
Collapse
|
39
|
On the Globality of Motor Suppression: Unexpected Events and Their Influence on Behavior and Cognition. Neuron 2017; 93:259-280. [PMID: 28103476 DOI: 10.1016/j.neuron.2016.12.013] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023]
Abstract
Unexpected events are part of everyday experience. They come in several varieties-action errors, unexpected action outcomes, and unexpected perceptual events-and they lead to motor slowing and cognitive distraction. While different varieties of unexpected events have been studied largely independently, and many different mechanisms are thought to explain their effects on action and cognition, we suggest a unifying theory. We propose that unexpected events recruit a fronto-basal-ganglia network for stopping. This network includes specific prefrontal cortical nodes and is posited to project to the subthalamic nucleus, with a putative global suppressive effect on basal-ganglia output. We argue that unexpected events interrupt action and impact cognition, partly at least, by recruiting this global suppressive network. This provides a common mechanistic basis for different types of unexpected events; links the literatures on motor inhibition, performance monitoring, attention, and working memory; and is relevant for understanding clinical symptoms of distractibility and mental inflexibility.
Collapse
|
40
|
Hemispheric asymmetries in the transition from action preparation to execution. Neuroimage 2017; 148:390-402. [DOI: 10.1016/j.neuroimage.2017.01.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
|
41
|
McGonigle J, Murphy A, Paterson LM, Reed LJ, Nestor L, Nash J, Elliott R, Ersche KD, Flechais RSA, Newbould R, Orban C, Smith DG, Taylor EM, Waldman AD, Robbins TW, Deakin JFW, Nutt DJ, Lingford-Hughes AR, Suckling J. The ICCAM platform study: An experimental medicine platform for evaluating new drugs for relapse prevention in addiction. Part B: fMRI description. J Psychopharmacol 2017; 31:3-16. [PMID: 27703042 PMCID: PMC5367542 DOI: 10.1177/0269881116668592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction - reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. EXPERIMENTAL DESIGN Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. CONCLUSIONS In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres.
Collapse
Affiliation(s)
- John McGonigle
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, UK
| | - Louise M Paterson
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Laurence J Reed
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Liam Nestor
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jonathan Nash
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Remy SA Flechais
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | | | - Csaba Orban
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Dana G Smith
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Eleanor M Taylor
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, UK
| | - Adam D Waldman
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, London, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - JF William Deakin
- Neuroscience and Psychiatry Unit, Institute of Brain, Behaviour and Mental Health, The University of Manchester, Manchester, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Anne R Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK,Anne Lingford-Hughes, Centre for Neuropsychopharmacology, Imperial College London, Burlington Danes Building, Hammersmith Hospital campus, 160 Du Cane Road, London W12 0NN, UK.
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Fulbourn, UK
| | | |
Collapse
|
42
|
Minzenberg MJ, Lesh T, Niendam T, Yoon JH, Cheng Y, Rhoades RN, Carter CS. Frontal Motor Cortex Activity During Reactive Control Is Associated With Past Suicidal Behavior in Recent-Onset Schizophrenia. CRISIS 2016; 36:363-70. [PMID: 26502787 DOI: 10.1027/0227-5910/a000335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Suicide is prevalent in schizophrenia (SZ), yet the neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in SZ, including those that support reactive control, and PFC changes are observed in postmortem studies of heterogeneous suicide victims. AIMS We tested whether history of suicide attempt is associated with altered frontal motor cortex activity during reactive control processes. METHOD We evaluated 17 patients with recent onset of DSM-IV-TR-defined SZ using the Columbia Suicide Severity Rating Scale and functional magnetic resonance imaging during Stroop task performance. Group-level regression models relating past suicidal behavior to frontal activation controlled for depression, psychosis, and impulsivity. RESULTS Past suicidal behavior was associated with relatively higher activation in the left-hemisphere supplementary motor area (SMA), pre-SMA, premotor cortex, and dorsolateral PFC, all ipsilateral to the active primary motor cortex. CONCLUSION This study provides unique evidence that suicidal behavior in patients with recent-onset SZ directly relates to frontal motor cortex activity during reactive control, in a pattern reciprocal to the relationship with proactive control found previously. Further work should address how frontal-based control functions change with risk over time, and their potential utility as a biomarker for interventions to mitigate suicide risk in SZ.
Collapse
Affiliation(s)
- Michael J Minzenberg
- 1 Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Tyler Lesh
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Tara Niendam
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Jong H Yoon
- 4 Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Yaoan Cheng
- 1 Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Remy N Rhoades
- 4 Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Cameron S Carter
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA.,3 Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
43
|
Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Humans. World Neurosurg 2016; 95:99-107. [DOI: 10.1016/j.wneu.2016.07.072] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/22/2022]
|
44
|
Papadelis C, Arfeller C, Erla S, Nollo G, Cattaneo L, Braun C. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task. Brain Res 2016; 1650:252-266. [DOI: 10.1016/j.brainres.2016.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/29/2022]
|
45
|
Hough CM, Luks TL, Lai K, Vigil O, Guillory S, Nongpiur A, Fekri SM, Kupferman E, Mathalon DH, Mathews CA. Comparison of brain activation patterns during executive function tasks in hoarding disorder and non-hoarding OCD. Psychiatry Res 2016; 255:50-59. [PMID: 27522332 PMCID: PMC5014569 DOI: 10.1016/j.pscychresns.2016.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
We examined differences in regional brain activation during tests of executive function in individuals with Hoarding Disorder (HD), Obsessive Compulsive Disorder (OCD), and healthy controls (HC) using functional magnetic resonance imaging (fMRI). Participants completed computerized versions of the Stroop and Go/No-Go task. We found that during the conflict monitoring and response inhibition condition in the Go/No-Go task, individuals with HD had significantly greater activity than controls in the anterior cingulate cortex (ACC) and right dorsolateral prefrontal cortex (DLPFC). HD also exhibited significantly greater right DLPFC activity than OCD. We also observed significant differences in activity between HD and HC and between HD and OCD in regions (ACC, anterior insula, orbitofrontal cortex, and striatum) involved in evaluating stimulus-response-reward associations, or the personal and task-relevant value of stimuli and behavioral responses to stimuli. These results support the hypothesis that individuals with HD have difficulty deciding on the value or task relevance of stimuli, and may perceive an abnormally high risk of negative feedback for difficult or erroneous cognitive behavior.
Collapse
Affiliation(s)
- Christina M Hough
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Tracy L Luks
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Karen Lai
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Ofilio Vigil
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Sylvia Guillory
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA; Department of Psychiatry, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Arvind Nongpiur
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Department of Psychiatry, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Shillong, Meghalaya, India
| | - Shiva M Fekri
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Eve Kupferman
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA; Department of Psychiatry, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Carol A Mathews
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
46
|
Anderson BA, Folk CL, Courtney SM. Neural mechanisms of goal-contingent task disengagement: Response-irrelevant stimuli activate the default mode network. Cortex 2016; 81:221-30. [PMID: 27253724 PMCID: PMC4958573 DOI: 10.1016/j.cortex.2016.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 02/02/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022]
Abstract
As we experience the world, we must decide not only when and how to act based on input from the environment, but also when to avoid responding in situations where acting could lead to a detrimental outcome. The ability to regulate behavior in this way requires flexible cognitive control, as the same stimulus may call for a response in one context but not in another. In this sense, explicit non-responding can be characterized as an active, goal-directed cognitive process. Little is known about the mechanisms by which a currently active goal state modulates information processing to support the avoidance of undesired responding. In the present study, participants executed or withheld responses to a color target based whether its color matched that of a cue at the beginning of each trial. Behavioral and neural responses to task-irrelevant stimuli appearing as distractors were examined as a function of their relationship to the currently response-relevant color indicated by the cue. We observed a robust pattern in which stimuli possessing the currently response-irrelevant feature activate the default mode network (DMN), which was associated with a behavioral cost on trials in which this stimulus competed with a response-relevant target. Our findings reveal a role for the DMN in goal-directed cognitive control, facilitating active disengagement based on contextually-specific task demands.
Collapse
|
47
|
Post-error adjustments and ADHD symptoms in adults: The effect of laterality and state regulation. Brain Cogn 2016; 108:11-9. [PMID: 27429094 DOI: 10.1016/j.bandc.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/23/2022]
Abstract
Evidence is accumulating that individuals with Attention-Deficit/Hyperactivity Disorder (ADHD) do not adjust their responses after committing errors. Post-error response adjustments are taken to reflect, among others, error monitoring that is essential for learning, flexible behavioural adaptation, and achieving future goals. Many behavioural studies have suggested that atypical lateral brain functions and difficulties in allocating effort to protect performance against stressors (i.e., state regulation) are key factors in ADHD. Whether these factors contribute to the absence of post-error response adjustments in ADHD is unknown. The aim of the present study is to investigate the contribution of the left and right hemispheres and the deficiency in effort allocation to deviant post-error processing in adults with high ADHD symptoms. From a pool of 87 university students, two groups were formed: a group with higher (n=30) and a group with lower (n=26) scores on the ADHD index subscale of the Conners' Adult ADHD Rating Scales. The groups performed a lateralized lexical decision task with a fast and slower stimulus presentation rate. Post-error slowing and post-error response accuracy to stimuli presented in the left and right visual field were measured in each stimulus presentation rate. Results indicated that subjects with the lower ADHD scores slowed down and improved their response accuracy after errors, especially when stimuli were presented in the right visual field at the slower rate. In contrast, subjects with the higher ADHD scores showed no post-error adjustments. Results suggest that during lexical decision performance, impaired error processing in adults with ADHD is associated with affected ability of the left hemisphere to compensate for errors, especially when extra effort allocation is needed to meet task demands.
Collapse
|
48
|
Abstract
Complex behavior requires a flexible system that maintains task performance in the context of specific goals, evaluating behavioral progress, adjusting behavior as needed, and adapting to changing contingencies. Generically referred to as performance monitoring, a key component concerns the identification and correction of differences between an intended and an executed response (i.e., an error). Brain mapping experiments have now identified the temporal and spatial components of a putative error-processing system in the large-scale networks of the human brain. Most of this work has focused on the medial frontal cortex and an associated electrophysiological component known as the error-related negativity (or error negativity). Although the precise role, or roles, of this region still remain unknown, investigations of error processing have identified a cluster of modules in the medial frontal cortex involved in monitoring/maintaining ongoing behavior and motivating task sets. Other regions include bilateral anterior insula/inferior operculum and lateral prefrontal cortex. Recent work has begun to uncover how individual differences might affect the modules recruited for a task, in addition to the identification of associations between pathological states and aberrant error signals, leading to insights about possible mechanisms of neuropsychiatric illness. NEUROSCIENTIST 13(2):160—172, 2007.
Collapse
Affiliation(s)
- Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
49
|
Taylor JE, Ogawa A, Sakagami M. Reward value enhances post-decision error-related activity in the cingulate cortex. Neurosci Res 2016; 107:38-46. [DOI: 10.1016/j.neures.2015.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
|
50
|
Rohr CS, Villringer A, Solms‐Baruth C, van der Meer E, Margulies DS, Okon‐Singer H. The neural networks of subjectively evaluated emotional conflicts. Hum Brain Mapp 2016; 37:2234-46. [PMID: 26991156 PMCID: PMC6867502 DOI: 10.1002/hbm.23169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/10/2023] Open
Abstract
Previous work on the neural underpinnings of emotional conflict processing has largely focused on designs that instruct participants to ignore a distracter which conflicts with a target. In contrast, this study investigated the noninstructed experience and evaluation of an emotional conflict, where positive or negative cues can be subjectively prioritized. To this end, healthy participants freely watched short film scenes that evoked emotional conflicts while their BOLD responses were measured. Participants' individual ratings of conflict and valence perception during the film scenes were collected immediately afterwards, and the individual ratings were regressed against the BOLD data. Our analyses revealed that (a) amygdala and medial prefrontal cortex were significantly involved in prioritizing positive or negative cues, but not in subjective evaluations of conflict per se, and (b) superior temporal sulcus (STS) and inferior parietal lobule (IPL), which have been implicated in social cognition and emotion control, were involved in both prioritizing positive or negative cues and subjectively evaluating conflict, and may thus constitute "hubs" or "switches" in emotional conflict processing. Psychophysiological interaction (PPI) analyses further revealed stronger functional connectivity between IPL and ventral prefrontal-medial parietal areas in prioritizing negative cues, and stronger connectivity between STS and dorsal-rostral prefrontal-medial parietal areas in prioritizing positive cues. In sum, our results suggest that IPL and STS are important in the subjective evaluation of complex conflicts and influence valence prioritization via prefrontal and parietal control centers. Hum Brain Mapp 37:2234-2246, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christiane S. Rohr
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Mind‐Brain InstituteBerlin School of Mind and BrainCharité and Humboldt University of BerlinBerlinGermany
- Department of PsychologyHumboldt University of BerlinBerlinGermany
| | - Arno Villringer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Mind‐Brain InstituteBerlin School of Mind and BrainCharité and Humboldt University of BerlinBerlinGermany
| | - Carolina Solms‐Baruth
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Mind‐Brain InstituteBerlin School of Mind and BrainCharité and Humboldt University of BerlinBerlinGermany
| | | | - Daniel S. Margulies
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Mind‐Brain InstituteBerlin School of Mind and BrainCharité and Humboldt University of BerlinBerlinGermany
- Max Planck Research Group for Neuroanatomy and ConnectivityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Hadas Okon‐Singer
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Mind‐Brain InstituteBerlin School of Mind and BrainCharité and Humboldt University of BerlinBerlinGermany
- Department of PsychologyUniversity of HaifaHaifaIsrael
| |
Collapse
|