1
|
Hu L, Jia H, Zhang J, da Silva-Júnior EF, Liu C, Liu X, Zhan P. Sulfonic acid: key drug design elements with potent, broad-ranging pharmacological activities. Future Med Chem 2023; 15:2029-2032. [PMID: 37929335 DOI: 10.4155/fmc-2023-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Biological & Molecular Chemistry Research Group, Institute of Chemistry & Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC, Simoes Campus, Alagoas, Macei, 57072-970, Brazil
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
- Suzhou Research Institute of Shandong University, Room 607, Building B of NUSP, NO. 388 Ruoshui Road, SIP, Suzhou, Jiangsu, 215123, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| |
Collapse
|
2
|
Churiso G, Husen G, Bulbula D, Abebe L. Immunity Cell Responses to RSV and the Role of Antiviral Inhibitors: A Systematic Review. Infect Drug Resist 2022; 15:7413-7430. [PMID: 36540102 PMCID: PMC9759992 DOI: 10.2147/idr.s387479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Antigen-presenting cells recognize respiratory syncytial virus antigens, and produce cytokines and chemokines that act on immune cells. Dendritic cells play the main role in inflammatory cytokine responses. Similarly, alveolar macrophages produce IFN-β, IFN-α, TNF-α, IL-6, CXCL10, and CCL3, while alternatively activated macrophages differentiate at the late phase, and require IL-13 or IL-4 cytokines. Furthermore, activated NKT cells secrete IL-13 and IL-4 that cause lung epithelial, endothelial and fibroblasts to secrete eotaxin that enhances the recruitment of eosinophil to the lung. CD8+ and CD4+T cells infection by the virus decreases the IFN-γ and IL-2 production. Despite this, both are involved in terminating virus replication. CD8+T cells produce a larger amount of IFN-γ than CD4+T cells, and CD8+T cells activated under type 2 conditions produce IL-4, down regulating CD8 expression, granzyme and IFN-γ production. Antiviral inhibitors inhibit biological functions of viral proteins. Some of them directly target the virus replication machinery and are effective at later stages of infection; while others inhibit F protein dependent fusion and syncytium formation. TMC353121 reduces inflammatory cytokines, TNF-α, IL-6, and IL-1β and chemokines, KC, IP-10, MCP and MIP1-α. EDP-938 inhibits viral nucleoprotein (N), while GRP-156784 blocks the activity of respiratory syncytial virus ribonucleic acid (RNA) polymerase. PC786 inhibits non-structural protein 1 (NS-1) gene, RANTES transcripts, virus-induced CCL5, IL-6, and mucin increase. In general, it is an immune reaction that is blamed for the disease severity and pathogenesis in respiratory syncytial virus infection. Anti-viral inhibitors not only inhibit viral entry and replication, but also may reduce inflammatory cytokines and chemokines. Many respiratory syncytial virus inhibitors are proposed; however, only palivizumab and ribavirin are approved for prophylaxis and treatment, respectively. Hence, this review is focused on immunity cell responses to respiratory syncytial virus and the role of antiviral inhibitors.
Collapse
Affiliation(s)
- Gemechu Churiso
- Department of Medical Laboratory Sciences, Dilla University, Dilla, Ethiopia,Correspondence: Gemechu Churiso, Email
| | - Gose Husen
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Denebo Bulbula
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Lulu Abebe
- Department of Psychiatry, Dilla University, Dilla, Ethiopia
| |
Collapse
|
3
|
Bizzarri BM, Fanelli A, Botta L, Zippilli C, Cesarini S, Saladino R. Dendrimeric Structures in the Synthesis of Fine Chemicals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5318. [PMID: 34576547 PMCID: PMC8471025 DOI: 10.3390/ma14185318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Dendrimers are highly branched structures with a defined shape, dimension, and molecular weight. They consist of three major components: the central core, branches, and terminal groups. In recent years, dendrimers have received great attention in medicinal chemistry, diagnostic field, science of materials, electrochemistry, and catalysis. In addition, they are largely applied for the functionalization of biocompatible semiconductors, in gene transfection processes, as well as in the preparation of nano-devices, including heterogeneous catalysts. Here, we describe recent advances in the design and application of dendrimers in catalytic organic and inorganic processes, sustainable and low environmental impact, photosensitive materials, nano-delivery systems, and antiviral agents' dendrimers.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| | | | | | | | | | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| |
Collapse
|
4
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Noman A, Aqeel M, Khalid N, Hashem M, Alamari S, Zafar S, Qasim M, Irshad MK, Qari SH. Spike glycoproteins: Their significance for corona viruses and receptor binding activities for pathogenesis and viral survival. Microb Pathog 2020; 150:104719. [PMID: 33373693 PMCID: PMC7764473 DOI: 10.1016/j.micpath.2020.104719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The recent outbreak of Covid-19 is posing a severe threat to public health globally. Coronaviruses (CoVs) are the largest known group of positive-sense RNA viruses surviving on an extensive number of natural hosts. CoVs are enveloped and non-segmented viruses with a size between 80 and 120 nm. CoV attachment to the surface receptor and its subsequent entrance into cells is mediated by Spike glycoprotein (S). For enhanced CoV entry and successful pathogenesis of CoV, proteolytic processing and receptor-binding act synergistically for induction of large-scale S conformational changes. The shape, size and orientation of receptor-binding domains in viral attachment proteins are well conserved among viruses of different classes that utilize the same receptor. Therefore, investigations unraveling the distribution of cellular receptors with respect to CoV entry, structural aspects of glycoproteins and related conformational changes are highly significant for understanding virus invasion and infection spread. We present the characteristic features of CoV S-Proteins, their significance for CoVs and related receptor binding activities for pathogenesis and viral survival. We are analyzing the novel role of S-protein of CoVs along with their interactive receptors for improving host immunity and decreasing infection spread. This is hoped that presented information will open new ways in tackling coronavirus, especially for the ongoing epidemic.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Saad Alamari
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Saad Zafar
- District Headquarters Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Ministry of Agricultural and Rural Affairs, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
6
|
Chakraborty J, Banerjee I, Vaishya R, Ghosh S. Bioengineered in Vitro Tissue Models to Study SARS-CoV-2 Pathogenesis and Therapeutic Validation. ACS Biomater Sci Eng 2020; 6:6540-6555. [PMID: 33320635 PMCID: PMC7688047 DOI: 10.1021/acsbiomaterials.0c01226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Given the various viral outbreaks in the 21st century, specifically the present pandemic situation arising from SARS-CoV-2 or the coronavirus, of unknown magnitude, there is an unmet clinical need to develop effective therapeutic and diagnostic strategies to combat this infectious disease worldwide. To develop precise anticoronavirus drugs and prophylactics, tissue engineering and biomaterial research strategies can serve as a suitable alternative to the conventional treatment options. Therefore, in this Review, we have highlighted various tissue engineering-based diagnostic systems for SARS-CoV-2 and suggested how these strategies involving organ-on-a-chip, organoids, 3D bioprinting, and advanced bioreactor models can be employed to develop in vitro human tissue models, for more efficient diagnosis, drug/vaccine development, and focusing on the need for patient-specific therapy. We believe that combining the basics of virology with tissue engineering techniques can help the researchers to understand the molecular mechanism underlying viral infection, which is critical for effective drug design. In addition, it can also serve to be a suitable platform for drug testing and delivery of small molecules that can lead to therapeutic tools in this dreaded pandemic situation. Additionally, we have also discussed the essential biomaterial properties which polarize the immune system, including dendritic cells and macrophages, toward their inflammatory phenotype, which can thus serve as a reference for exhibiting the role of biomaterial in influencing the adaptive immune response involving B and T lymphocytes to foster a regenerative tissue microenvironment. The situation arising from SARS-CoV-2 poses a challenge to scientists from almost all disciplines, and we feel that tissue engineers can thus provide new translational opportunities in this dreadful pandemic situation.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Department of Textile and Fibre Engineering,
Indian Institute of Technology Delhi, New Delhi-110016,
India
| | - Indranil Banerjee
- Department of Biological Sciences, Indian
Institute of Science Education and Research, Mohali (IISER Mohali), Sector
81, S.A.S. Nagar, Mohali-140306, Punjab, India
| | - Raju Vaishya
- Indraprastha Apollo Hospitals
Delhi, Delhi Mathura Road, Sarita Vihar, New Delhi,
India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering,
Indian Institute of Technology Delhi, New Delhi-110016,
India
| |
Collapse
|
7
|
Joshi S, Bawage S, Tiwari P, Kirby D, Perrie Y, Dennis V, Singh SR. Liposomes: a promising carrier for respiratory syncytial virus therapeutics. Expert Opin Drug Deliv 2019; 16:969-980. [DOI: 10.1080/17425247.2019.1652268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sameer Joshi
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Swapnil Bawage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pooja Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Daniel Kirby
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Vida Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
8
|
Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochem Pharmacol 2017; 127:1-12. [DOI: 10.1016/j.bcp.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
|
9
|
Cox R, Plemper RK. Structure-guided design of small-molecule therapeutics against RSV disease. Expert Opin Drug Discov 2016; 11:543-556. [PMID: 27046051 PMCID: PMC5074927 DOI: 10.1517/17460441.2016.1174212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In the United States, respiratory syncytial virus (RSV) is responsible for the majority of infant hospitalizations resulting from viral infections, as well as a leading source of pneumonia and bronchiolitis in young children and the elderly. In the absence of vaccine prophylaxis or an effective antiviral for improved disease management, the development of novel anti-RSV therapeutics is critical. Several advanced drug development campaigns of the past decade have focused on blocking viral infection. These efforts have returned a chemically distinct panel of small-molecule RSV entry inhibitors, but binding sites and molecular mechanism of action appeared to share a common mechanism, resulting in comprehensive cross-resistance and calling for alternative druggable targets such as viral RNA-dependent RNA-polymerase complex. Areas Covered: In this review, the authors discuss the current status of the mechanism of action of RSV entry inhibitors. They also provide the recent structural insight into the organization of the polymerase complex that have revealed novel drug targets sites, and outline a path towards the discovery of next-generation RSV therapeutics. Expert opinion: Considering the tremendous progress experienced in our structural understanding of RSV biology in recent years and encouraging early results of a nucleoside analog inhibitor in clinical trials, there is high prospect that new generations of much needed effective anti-RSV therapeutics will become available for clinical use in the foreseeable future.
Collapse
Affiliation(s)
- Robert Cox
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Av, Atlanta, Georgia 30303-3222 USA
| |
Collapse
|
10
|
Ji D, Ye W, Chen H. Revealing the binding mode between respiratory syncytial virus fusion protein and benzimidazole-based inhibitors. MOLECULAR BIOSYSTEMS 2016; 11:1857-66. [PMID: 25872614 DOI: 10.1039/c5mb00036j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a major respiratory pathogen in newborn infants and young children and can also be a threat to some elderly and high-risk adults with chronic pulmonary disease and the severely immunocompromised. The RSV fusion (RSVF) protein has been an attractive target for vaccine and drug development. Experimental results indicate a series of benzimidazole-based inhibitors which target RSVF protein to inhibit the viral entry of RSV. To reveal the binding mode between these inhibitors and RSVF protein, molecular docking and molecular dynamics simulations were used to investigate the interactions between the inhibitors and the core domain of RSVF protein. MD results suggest that the active molecules have stronger π-π stacking, cation-π, and other interactions than less active inhibitors. The binding free energy between the active inhibitor and RSVF protein is also found to be significantly lower than that of the less active one using MM/GBSA. Then, Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods were used to construct three dimensional quantitative structure-activity (3D-QSAR) models. The cross-validated q(2) values are found to be 0.821 and 0.795 for CoMFA and CoMSIA, respectively. And the non-cross-validated r(2) values are 0.973 and 0.961. Ninety-two test set compounds validated these models. The results suggest that these models are robust with good prediction abilities. Furthermore, these models reveal possible methods to improve the bioactivity of inhibitors.
Collapse
Affiliation(s)
- Dingjue Ji
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | | | | |
Collapse
|
11
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
12
|
Weisshaar M, Cox R, Plemper RK. Blocking Respiratory Syncytial Virus Entry: A Story with Twists. DNA Cell Biol 2015; 34:505-10. [PMID: 25961744 PMCID: PMC4523043 DOI: 10.1089/dna.2015.2896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is responsible for majority of infant hospitalizations due to viral infections. Despite its clinical importance, no vaccine against RSV or effective antiviral therapy is available. Several structural classes of small-molecule RSV entry inhibitor have been described and one compound has advanced to clinical testing. Mutations in either one of two resistance hot spots in the F protein mediate unusual pan-resistance to all of these inhibitor classes. Based on the biochemical characterization of resistant viruses and structural insight into the RSV F trimer, we propose a kinetic escape model as the origin of pan-resistance. Since a resistant RSV remained pathogenic in the mouse model, pan-resistance mutations could emerge rapidly in circulating RSV strains. We evaluate clinical implications and discuss consequences for the design of future RSV drug discovery campaigns.
Collapse
Affiliation(s)
- Marco Weisshaar
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| | - Robert Cox
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University , Atlanta, Georgia
| |
Collapse
|
13
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
14
|
Feng S, Hong D, Wang B, Zheng X, Miao K, Wang L, Yun H, Gao L, Zhao S, Shen HC. Discovery of imidazopyridine derivatives as highly potent respiratory syncytial virus fusion inhibitors. ACS Med Chem Lett 2015; 6:359-62. [PMID: 25941547 DOI: 10.1021/acsmedchemlett.5b00008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/25/2015] [Indexed: 02/03/2023] Open
Abstract
A series of imidazolepyridine derivatives were designed and synthesized according to the established docking studies. The imidazopyridine derivatives were found to have good potency and physical-chemical properties. Several highly potent compounds such as 8ji, 8jl, and 8jm were identified with single nanomolar activities. The most potent compound 8jm showed an IC50 of 3 nM, lower microsome clearance and no CYP inhibition. The profile of 8jm appeared to be superior to BMS433771, and supported further optimization.
Collapse
Affiliation(s)
- Song Feng
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Di Hong
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Baoxia Wang
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Xiufang Zheng
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Kun Miao
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Lisha Wang
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Hongying Yun
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Lu Gao
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Shuhai Zhao
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| | - Hong C. Shen
- Medicinal Chemistry, ‡Molecular Design and Chemical Biology, and §Infectious Diseases, Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Building 5, Lane 720, Cai Lun Road, Shanghai 201203, China
| |
Collapse
|
15
|
Intranasal administration of maleic anhydride-modified human serum albumin for pre-exposure prophylaxis of respiratory syncytial virus infection. Viruses 2015; 7:798-819. [PMID: 25690799 PMCID: PMC4353917 DOI: 10.3390/v7020798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP) of RSV infection in children at high risk. We found that maleic anhydride (ML)-modified human serum albumin (HSA), designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries.
Collapse
|
16
|
Gomez RS, Guisle-Marsollier I, Bohmwald K, Bueno SM, Kalergis AM. Respiratory Syncytial Virus: pathology, therapeutic drugs and prophylaxis. Immunol Lett 2014; 162:237-47. [PMID: 25268876 DOI: 10.1016/j.imlet.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/21/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
Human Respiratory Syncytial Virus (hRSV) is the leading cause of lower respiratory tract diseases, affecting particularly newborns and young children. This virus is able to modulate the immune response, generating a pro-inflammatory environment in the airways that causes obstruction and pulmonary alterations in the infected host. To date, no vaccines are available for human use and the first vaccine that reached clinical trials produced an enhanced hRSV-associated pathology 50 years ago, resulting in the death of two children. Currently, only two therapeutic approaches have been used to treat hRSV infection in high risk children: 1. Palivizumab, a humanized antibody against the F glycoprotein that reduces to half the number of hospitalized cases and 2. Ribavirin, which fails to have a significant therapeutic effect. A major caveat for these approaches is their high economical cost, which highlights the need of new and affordable therapeutic or prophylactic tools to treat or prevents hRSV infection. Accordingly, several efforts are in progress to understand the hRSV-associated pathology and to characterize the immune response elicited by this virus. Currently, preclinical and clinical trials are being conducted to evaluate safety and efficacy of several drugs and vaccines, which have shown promising results. In this article, we discuss the most important advances in the development of drugs and vaccines, which could eventually lead to better strategies to treat or prevent the detrimental inflammation triggered by hRSV infection.
Collapse
Affiliation(s)
- Roberto S Gomez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | | | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
17
|
Adedeji AO, Sarafianos SG. Antiviral drugs specific for coronaviruses in preclinical development. Curr Opin Virol 2014; 8:45-53. [PMID: 24997250 PMCID: PMC4195804 DOI: 10.1016/j.coviro.2014.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/26/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022]
Abstract
Coronaviruses are RNA viruses that cause systemic diseases in humans and animals. There are no approved drugs for the treatment of coronavirus infections. Several SARS-CoV inhibitors, with known mechanisms of action, have been identified. These inhibitors stand as promising leads for coronavirus therapeutics.
Coronaviruses are positive stranded RNA viruses that cause respiratory, enteric and central nervous system diseases in many species, including humans. Until recently, the relatively low burden of disease in humans caused by few of these viruses impeded the development of coronavirus specific therapeutics. However, the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV), and more recently, Middle East respiratory syndrome coronavirus (MERS-CoV), has impelled the development of such drugs. This review focuses on some newly identified SARS-CoV inhibitors, with known mechanisms of action and their potential to inhibit the novel MERS-CoV. The clinical development of optimized versions of such compounds could be beneficial for the treatment and control of SARS-CoV, the current MERS-CoV and other future SARS-like epidemics.
Collapse
Affiliation(s)
- Adeyemi O Adedeji
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| | - Stefan G Sarafianos
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States; Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
18
|
Bird GH, Boyapalle S, Wong T, Opoku-Nsiah K, Bedi R, Crannell WC, Perry AF, Nguyen H, Sampayo V, Devareddy A, Mohapatra S, Mohapatra SS, Walensky LD. Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection. J Clin Invest 2014; 124:2113-24. [PMID: 24743147 DOI: 10.1172/jci71856] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection accounts for approximately 64 million cases of respiratory disease and 200,000 deaths worldwide each year, yet no broadly effective prophylactic or treatment regimen is available. RSV deploys paired, self-associating, heptad repeat domains of its fusion protein, RSV-F, to form a fusogenic 6-helix bundle that enables the virus to penetrate the host cell membrane. Here, we developed hydrocarbon double-stapled RSV fusion peptides that exhibit stabilized α-helical structure and striking proteolytic resistance. Pretreatment with double-stapled RSV peptides that specifically bound to the RSV fusion bundle inhibited infection by both laboratory and clinical RSV isolates in cells and murine infection models. Intranasal delivery of a lead double-stapled RSV peptide effectively prevented viral infection of the nares. A chitosan-based nanoparticle preparation markedly enhanced pulmonary delivery, further preventing progression of RSV infection to the lung. Thus, our results provide a strategy for inhibiting RSV infection by mucosal and endotracheal delivery of double-stapled RSV fusion peptides.
Collapse
|
19
|
Katen SP, Dermody TS. Repurposing staples for viruses: applying peptide design to RSV prophylaxis. J Clin Invest 2014; 124:1889-91. [PMID: 24743141 DOI: 10.1172/jci75797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is responsible for lower respiratory tract infections and annually results in 200,000 deaths worldwide. Despite the burden of RSV-associated disease, treatments and preventative measures are limited. In this issue of JCI, Bird and colleagues describe their work using a peptide stapling technique that allowed synthesis of a stable peptide mimic of a portion of the RSV fusion protein. Pretreatment of cells with the stable peptide effectively blocked virus entry. When introduced into mice prior to RSV exposure, the peptide produced a substantial prophylactic effect. This work provides a new way forward in RSV prevention.
Collapse
|
20
|
Douglas JL. In search of a small-molecule inhibitor for respiratory syncytial virus. Expert Rev Anti Infect Ther 2014; 2:625-39. [PMID: 15482225 DOI: 10.1586/14787210.2.4.625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus has been an ongoing health problem for 50 years. Hospitalization rates due to virus-induced respiratory illness continue to be substantial for infants, small children, the elderly and the immunocompromised. The only currently available treatments are a broad-spectrum antiviral and two immunoprophylactic antibodies, all of which are reserved for high-risk patients. The combination of this limited therapeutic repertoire and the lack of a vaccine clearly demonstrates the need to continue the search for more efficacious and safe agents against respiratory syncytial virus. The following is a review on the current progress of that search.
Collapse
|
21
|
Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J Virol 2013; 87:8017-28. [PMID: 23678171 DOI: 10.1128/jvi.00998-13] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is an infectious and highly contagious disease that is caused by SARS coronavirus (SARS-CoV) and for which there are currently no approved treatments. We report the discovery and characterization of small-molecule inhibitors of SARS-CoV replication that block viral entry by three different mechanisms. The compounds were discovered by screening a chemical library of compounds for blocking of entry of HIV-1 pseudotyped with SARS-CoV surface glycoprotein S (SARS-S) but not that of HIV-1 pseudotyped with vesicular stomatitis virus surface glycoprotein G (VSV-G). Studies on their mechanisms of action revealed that the compounds act by three distinct mechanisms: (i) SSAA09E2 {N-[[4-(4-methylpiperazin-1-yl)phenyl]methyl]-1,2-oxazole-5-carboxamide} acts through a novel mechanism of action, by blocking early interactions of SARS-S with the receptor for SARS-CoV, angiotensin converting enzyme 2 (ACE2); (ii) SSAA09E1 {[(Z)-1-thiophen-2-ylethylideneamino]thiourea} acts later, by blocking cathepsin L, a host protease required for processing of SARS-S during viral entry; and (iii) SSAA09E3 [N-(9,10-dioxo-9,10-dihydroanthracen-2-yl)benzamide] also acts later and does not affect interactions of SARS-S with ACE2 or the enzymatic functions of cathepsin L but prevents fusion of the viral membrane with the host cellular membrane. Our work demonstrates that there are at least three independent strategies for blocking SARS-CoV entry, validates these mechanisms of inhibition, and introduces promising leads for the development of SARS therapeutics.
Collapse
|
22
|
Sun Z, Pan Y, Jiang S, Lu L. Respiratory syncytial virus entry inhibitors targeting the F protein. Viruses 2013; 5:211-25. [PMID: 23325327 PMCID: PMC3564118 DOI: 10.3390/v5010211] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/17/2012] [Accepted: 01/11/2013] [Indexed: 11/16/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the main viral cause of respiratory tract infection in infants as well as some elderly and high-risk adults with chronic pulmonary disease and the severely immunocompromised. So far, no specific anti-RSV therapeutics or effective anti-RSV vaccines have been reported. Only one humanized monoclonal antibody, Palivizumab, has been approved for use in high-risk infants to prevent RSV infection. Ribavirin is the only drug licensed for therapy of RSV infection, but its clinical use is limited by its nonspecific anti-RSV activity, toxic effect, and relatively high cost. Therefore, development of novel effective anti-RSV therapeutics is urgently needed. The RSV envelope glycoprotein F plays an important role in RSV fusion with, and entry into, the host cell and, consequently, serves as an attractive target for developing RSV entry inhibitors. This article reviews advances made in studies of the structure and function of the F protein and the development of RSV entry inhibitors targeting it.
Collapse
Affiliation(s)
- Zhiwu Sun
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China; E-Mails: (Z.S.); (S.J.)
| | - Yanbin Pan
- Aris (Nantong) Pharmaceuticals Co. Ltd., Nantong Economic and Technological Area, Jiangsu Province 226006, China; E-Mail:
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China; E-Mails: (Z.S.); (S.J.)
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China; E-Mails: (Z.S.); (S.J.)
| |
Collapse
|
23
|
Chung DH, Moore BP, Matharu DS, Golden JE, Maddox C, Rasmussen L, Sosa MI, Ananthan S, White EL, Jia F, Jonsson CB, Severson WE. A cell based high-throughput screening approach for the discovery of new inhibitors of respiratory syncytial virus. Virol J 2013; 10:19. [PMID: 23302182 PMCID: PMC3621174 DOI: 10.1186/1743-422x-10-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 12/21/2012] [Indexed: 02/01/2023] Open
Abstract
Background Human respiratory syncytial virus (hRSV) is a highly contagious pathogen and is the most common cause of bronchiolitis and pneumonia for infants and children under one year of age. Worldwide, greater than 33 million children under five years of age are affected by hRSV resulting in three million hospitalizations and 200,000 deaths. However, severe lower respiratory tract disease may occur at any age, especially among the elderly or those with compromised cardiac, pulmonary, or immune systems. There is no vaccine commercially available. Existing therapies for the acute infection are ribavirin and the prophylactic humanized monoclonal antibody (Synagis® from MedImmune) that is limited to use in high risk pediatric patients. Thus, the discovery of new inhibitors for hRSV would be clinically beneficial. Results We have developed and validated a 384-well cell-based, high-throughput assay that measures the cytopathic effect of hRSV (strain Long) in HEp-2 cells using a luminescent-based detection system for signal endpoint (Cell Titer Glo®). The assay is sensitive and robust, with Z factors greater than 0.8, signal to background greater than 35, and signal to noise greater than 24. Utilizing this assay, 313,816 compounds from the Molecular Libraries Small Molecule Repository were screened at 10 μM. We identified 7,583 compounds that showed greater than 22% CPE inhibition in the primary screen. The top 2,500 compounds were selected for confirmation screening and 409 compounds showed at least 50% inhibition of CPE and were considered active. We selected fifty-one compounds, based on potency, selectivity and chemical tractability, for further evaluation in dose response and secondary assays Several compounds had SI50 values greater than 3, while the most active compound displayed an SI50 value of 58.9. Conclusions A robust automated luminescent-based high throughput screen that measures the inhibition of hRSV-induced cytopathic effect in HEp-2 cells for the rapid identification of potential inhibitors from large compound libraries has been developed, optimized and validated. The active compounds identified in the screen represent different classes of molecules, including aryl sulfonylpyrrolidines which have not been previously identified as having anti-hRSV activity.
Collapse
Affiliation(s)
- Dong-Hoon Chung
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Costello HM, Ray WC, Chaiwatpongsakorn S, Peeples ME. Targeting RSV with vaccines and small molecule drugs. Infect Disord Drug Targets 2012; 12:110-28. [PMID: 22335496 DOI: 10.2174/187152612800100143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 01/01/2012] [Indexed: 12/21/2022]
Abstract
Respiratory syncytial virus (RSV) is the most significant cause of pediatric respiratory infections. Palivizumab (Synagis®), a humanized monoclonal antibody, has been used successfully for a number of years to prevent severe RSV disease in at-risk infants. However, despite intense efforts, there is no approved vaccine or small molecule drug for RSV. As an enveloped virus, RSV must fuse its envelope with the host cell membrane, which is accomplished through the actions of the fusion (F) glycoprotein, with attachment help from the G glycoprotein. Because of their integral role in initiation of infection and their accessibility outside the lipid bilayer, these proteins have been popular targets in the discovery and development of antiviral compounds and vaccines against RSV. This review examines advances in the development of antiviral compounds and vaccine candidates.
Collapse
Affiliation(s)
- Heather M Costello
- Center for Vaccines & Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | | |
Collapse
|
25
|
Moore BP, Chung DH, Matharu DS, Golden JE, Maddox C, Rasmussen L, Noah JW, Sosa MI, Ananthan S, Tower NA, White EL, Jia F, Prisinzano TE, Aubé J, Jonsson CB, Severson WE. (S)-N-(2,5-Dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-2-carboxamide as a small molecule inhibitor probe for the study of respiratory syncytial virus infection. J Med Chem 2012; 55:8582-7. [PMID: 23043370 DOI: 10.1021/jm300612z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-throughput, cell-based screen was used to identify chemotypes as inhibitors for human respiratory syncytial virus (hRSV). Optimization of a sulfonylpyrrolidine scaffold resulted in compound 5o that inhibited a virus-induced cytopathic effect in the entry stage of infection (EC₅₀ = 2.3 ± 0.8 μM) with marginal cytotoxicity (CC₅₀ = 30.9 ± 1.1 μM) and reduced viral titer by 100-fold. Compared to ribavirin, sulfonylpyrrolidine 5o demonstrated an improved in vitro potency and selectivity index.
Collapse
Affiliation(s)
- Blake P Moore
- Southern Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lundin A, Bergström T, Bendrioua L, Kann N, Adamiak B, Trybala E. Two novel fusion inhibitors of human respiratory syncytial virus. Antiviral Res 2010; 88:317-24. [PMID: 20965215 DOI: 10.1016/j.antiviral.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/14/2010] [Accepted: 10/11/2010] [Indexed: 12/11/2022]
Abstract
To search for novel drugs against human respiratory syncytial virus (RSV), we have screened a diversity collection of 16,671 compounds for anti-RSV activity in cultures of HEp-2 cells. Two of the hit compounds, i.e., the N-(2-hydroxyethyl)-4-methoxy-N-methyl-3-(6-methyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)benzenesulfonamide (designated as P13) and the 1,4-bis(3-methyl-4-pyridinyl)-1,4-diazepane (designated as C15), reduced the virus infectivity with IC₅₀ values of 0.11 and 0.13μM respectively. The concentration of P13 and C15 that reduced the viability of HEp-2 cells by 50% was 310 and 75μM respectively. Both P13 and C15 exhibited no direct virucidal activity or inhibitory effects on the virus attachment to cells. However, to inhibit formation of RSV-induced syncytial plaques P13 and C15 had to be present during the virus entry into the cells and the cell-to-cell transmission of the virus. The RSV multiplication in HEp-2 cells in the presence of P13 or C15 resulted in rapid selection of viral variants that were ∼1000 times less sensitive to these drugs than original virus. Sequencing of resistant viruses revealed presence of amino acid substitutions in the F protein of RSV, i.e., the D489G for C15-selected, and the T400I and N197T (some clones) for the P13-selected virus variants. In conclusion, we have identified two novel fusion inhibitors of RSV, and the detailed understanding of their mode of antiviral activity including selection for the drug resistant viral variants may help to develop selective and efficient anti-RSV drugs.
Collapse
Affiliation(s)
- Anna Lundin
- Department of Clinical Virology, University of Gothenburg, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Huang K, Incognito L, Cheng X, Ulbrandt ND, Wu H. Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. J Virol 2010; 84:8132-40. [PMID: 20519399 PMCID: PMC2916538 DOI: 10.1128/jvi.02699-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/24/2010] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of virus-induced respiratory disease and hospitalization in infants. Palivizumab, an RSV-neutralizing monoclonal antibody, is used clinically to prevent serious RSV-related respiratory disease in high-risk infants. Motavizumab, an affinity-optimized version of palivizumab, was developed to improve protection against RSV. These antibodies bind RSV F protein, which plays a role in virus attachment and mediates fusion. Determining how these antibodies neutralize RSV is important to help guide development of new antibody drugs against RSV and, potentially, other viruses. This study aims to uncover the mechanism(s) by which palivizumab and motavizumab neutralize RSV. Assays were developed to test the effects of these antibodies at distinct steps during RSV replication. Pretreatment of virus with palivizumab or motavizumab did not inhibit virus attachment or the ability of F protein to interact with the target cell membrane. However, pretreatment of virus with either of these antibodies resulted in the absence of detectable viral transcription. These results show that palivizumab and motavizumab act at a point after F protein initiates interaction with the cell membrane and before virus transcription. Palivizumab and motavizumab also inhibited F protein-mediated cell-to-cell fusion. Therefore, these results strongly suggest that these antibodies block both cell-to-cell and virus-to-cell fusion, since these processes are likely similar. Finally, palivizumab and motavizumab did not reduce viral budding. Based on models developed from numerous studies of viral fusion proteins, our results indicate that these antibodies may prevent conformational changes in F protein required for the fusion process.
Collapse
Affiliation(s)
- Kelly Huang
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Len Incognito
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Xing Cheng
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | | | - Herren Wu
- MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| |
Collapse
|
28
|
Asaftei S, De Clercq E. “Viologen” Dendrimers as Antiviral Agents: The Effect of Charge Number and Distance. J Med Chem 2010; 53:3480-8. [DOI: 10.1021/jm100093p] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Simona Asaftei
- Institute of Chemistry, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
| | - Erik De Clercq
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
29
|
RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother 2009; 53:3952-62. [PMID: 19506055 DOI: 10.1128/aac.00014-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe the design and characterization of a potent human respiratory syncytial virus (RSV) nucleocapsid gene-specific small interfering RNA (siRNA), ALN-RSV01. In in vitro RSV plaque assays, ALN-RSV01 showed a 50% inhibitory concentration of 0.7 nM. Sequence analysis of primary isolates of RSV showed that the siRNA target site was absolutely conserved in 89/95 isolates, and ALN-RSV01 demonstrated activity against all isolates, including those with single-mismatch mutations. In vivo, intranasal dosing of ALN-RSV01 in a BALB/c mouse model resulted in potent antiviral efficacy, with 2.5- to 3.0-log-unit reductions in RSV lung concentrations being achieved when ALN-RSV01 was administered prophylactically or therapeutically in both single-dose and multidose regimens. The specificity of ALN-RSV01 was demonstrated in vivo by using mismatch controls; and the absence of an immune stimulatory mechanism was demonstrated by showing that nonspecific siRNAs that induce alpha interferon and tumor necrosis factor alpha lack antiviral efficacy, while a chemically modified form of ALN-RSV01 lacking measurable immunostimulatory capacity retained full activity in vivo. Furthermore, an RNA interference mechanism of action was demonstrated by the capture of the site-specific cleavage product of the RSV mRNA via rapid amplification of cDNA ends both in vitro and in vivo. These studies lay a solid foundation for the further investigation of ALN-RSV01 as a novel therapeutic antiviral agent for clinical use by humans.
Collapse
|
30
|
Bonfanti JF, Doublet F, Fortin J, Lacrampe J, Guillemont J, Muller P, Queguiner L, Arnoult E, Gevers T, Janssens P, Szel H, Willebrords R, Timmerman P, Wuyts K, Janssens F, Sommen C, Wigerinck P, Andries K. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate, part 1: improving the pharmacokinetic profile using the structure-property relationship. J Med Chem 2007; 50:4572-84. [PMID: 17722899 DOI: 10.1021/jm070143x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported the discovery of substituted benzimidazole fusion inhibitors with nanomolar activity against respiratory syncytial virus (Andries, K.; et al. Antiviral Res. 2003, 60, 209-219). A lead compound of the series was selected for preclinical evaluation. This drug candidate, JNJ-2408068 (formerly R170591, 1), showed long tissue retention times in several species (rat, dog, and monkey), creating cause for concern. We herein describe the optimization program to develop compounds with improved properties in terms of tissue retention. We have identified the aminoethyl-piperidine moiety as being responsible for the long tissue retention time of 1. We have investigated the replacement or the modification of this group, and we suggest that the pKa of this part of the molecules influences both the antiviral activity and the pharmacokinetic profile. We were able to identify new respiratory syncytial virus inhibitors with shorter half-lives in lung tissue.
Collapse
Affiliation(s)
- Jean-François Bonfanti
- Johnson & Johnson Pharmaceutical Research and Development, Medicinal Chemistry Department, Campus de Maigremont BP315, F-27106 Val de Reuil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yin H, Hamilton AD. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 2006; 44:4130-63. [PMID: 15954154 DOI: 10.1002/anie.200461786] [Citation(s) in RCA: 380] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of small-molecule modulators of protein-protein interactions is a formidable goal, albeit one that possesses significant potential for the discovery of novel therapeutics. Despite the daunting challenges, a variety of examples exists for the inhibition of two large protein partners with low-molecular-weight ligands. This review discusses the strategies for targeting protein-protein interactions and the state of the art in the rational design of molecules that mimic the structures and functions of their natural targets.
Collapse
Affiliation(s)
- Hang Yin
- Yale University, New Haven, CT, USA
| | | |
Collapse
|
32
|
Day ND, Branigan PJ, Liu C, Gutshall LL, Luo J, Melero JA, Sarisky RT, Del Vecchio AM. Contribution of cysteine residues in the extracellular domain of the F protein of human respiratory syncytial virus to its function. Virol J 2006; 3:34. [PMID: 16723026 PMCID: PMC1540417 DOI: 10.1186/1743-422x-3-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 05/24/2006] [Indexed: 11/10/2022] Open
Abstract
The mature F protein of all known isolates of human respiratory syncytial virus (HRSV) contains fifteen absolutely conserved cysteine (C) residues that are highly conserved among the F proteins of other pneumoviruses as well as the paramyxoviruses. To explore the contribution of the cysteines in the extracellular domain to the fusion activity of HRSV F protein, each cysteine was changed to serine. Mutation of cysteines 37, 313, 322, 333, 343, 358, 367, 393, 416, and 439 abolished or greatly reduced cell surface expression suggesting these residues are critical for proper protein folding and transport to the cell surface. As expected, the fusion activity of these mutations was greatly reduced or abolished. Mutation of cysteine residues 212, 382, and 422 had little to no effect upon cell surface expression or fusion activity at 32 degrees C, 37 degrees C, or 39.5 degrees C. Mutation of C37 and C69 in the F2 subunit either abolished or reduced cell surface expression by 75% respectively. None of the mutations displayed a temperature sensitive phenotype.
Collapse
Affiliation(s)
- Nicole D Day
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Patrick J Branigan
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Changbao Liu
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Lester L Gutshall
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Jianquan Luo
- Department of Structural Biology, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| | - Robert T Sarisky
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Alfred M Del Vecchio
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| |
Collapse
|
33
|
Abstract
Respiratory syncytial virus (RSV) continues as an emerging infectious disease not only among infants and children, but also for the immune-suppressed, hospitalised and the elderly. To date, ribavirin (Virazole, ICN Pharmaceuticals, Inc.) remains the only therapeutic agent approved for the treatment of RSV. However, its clinical benefits are small and occur only in a fraction of RSV-infected patients. The prophylactic administration of palivizumab (Synagis, MedImmune, Inc.) is problematic and costly and, therefore, only recommended for use in high-risk infants. Clearly, the need for an effective and safe drug remains high. This review discusses several different antisense approaches and compares them with traditional strategies, such as RSV-targeting antibodies and antivirals, as well as developments in vaccine research.
Collapse
Affiliation(s)
- Hagen Cramer
- Ridgeway Biosystems, Inc., 9500 Euclid Avenue, ND-50, Cleveland, OH 44195, USA.
| |
Collapse
|
34
|
Yu KL, Wang XA, Civiello RL, Trehan AK, Pearce BC, Yin Z, Combrink KD, Gulgeze HB, Zhang Y, Kadow KF, Cianci CW, Clarke J, Genovesi EV, Medina I, Lamb L, Wyde PR, Krystal M, Meanwell NA. Respiratory syncytial virus fusion inhibitors. Part 3: Water-soluble benzimidazol-2-one derivatives with antiviral activity in vivo. Bioorg Med Chem Lett 2005; 16:1115-22. [PMID: 16368233 DOI: 10.1016/j.bmcl.2005.11.109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 11/24/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
The introduction of acidic and basic functionality into the side chains of respiratory syncytial virus (RSV) fusion inhibitors was examined in an effort to identify compounds suitable for evaluation in vivo in the cotton rat model of RSV infection following administration as a small particle aerosol. The acidic compounds 2r, 2u, 2v, 2w, 2z, and 2aj demonstrated potent antiviral activity in cell culture and exhibited efficacy in the cotton rat comparable to ribavirin. In a BALB/c mouse model, the oxadiazolone 2aj reduced virus titers following subcutaneous dosing, whilst the ester 2az and amide 2aab exhibited efficacy following oral administration. These results established the potential of this class of RSV fusion inhibitors to interfere with infection in vivo following topical or systemic administration.
Collapse
Affiliation(s)
- Kuo-Long Yu
- Department of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5, Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ni L, Zhao L, Qian Y, Zhu J, Jin Z, Chen YW, Tien P, Gao GF. Design and Characterization of Human Respiratory Syncytial Virus Entry Inhibitors. Antivir Ther 2005. [DOI: 10.1177/135965350501000707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human respiratory syncytial virus (hRSV) is a pathogen of worldwide health concern. The crucial membrane fusion event during viral entry into host cells involves a ‘trimer-of-hairpins’ structure that brings the amino (N)- and carboxy (C)-terminal regions of the viral fusion glycoprotein (F protein) into close proximity. Two heptad repeat regions that are highly conserved in the F protein - HR1 (N-terminal) and HR2 (C-terminal) - have an important role in this process. It has been shown that both HR1-and HR2-based peptides can inhibit viral entry. However, these proteins, and the HR1 peptides in particular, are liable to aggregation. We designed three peptides containing multiple copies of alternating HR1 and HR2 sequences denoted 5-Helix, HR121 and HR212, respectively. The 5-Helix, HR121 and HR212 proteins were functionally analogous to single HR1, HR1 and HR2 sequences, respectively. All three proteins were expressed in soluble form and biophysical analysis showed that they exhibited α-helical secondary structures. The three proteins were potent fusion inhibitors in vitro, at the micromolar scale, with the HR1 analogues being approximately two times more effective than the HR2 analogue. Our results suggest that these rationally designed protein inhibitors could serve as a new class of anti-hRSV agents.
Collapse
Affiliation(s)
- Ling Ni
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | | | - Yuan Qian
- Capital Pediatrics Institute, Beijing, China
| | - Jieqing Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhibo Jin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu Wai Chen
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Po Tien
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Douglas JL, Panis ML, Ho E, Lin KY, Krawczyk SH, Grant DM, Cai R, Swaminathan S, Chen X, Cihlar T. Small molecules VP-14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar mechanisms. Antimicrob Agents Chemother 2005; 49:2460-6. [PMID: 15917547 PMCID: PMC1140497 DOI: 10.1128/aac.49.6.2460-2466.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present data on the mechanism of action of VP-14637 and JNJ-2408068 (formerly R-170591), two small-molecule inhibitors of respiratory syncytial virus (RSV). Both inhibitors exhibited potent antiviral activity with 50% effective concentrations (EC50s) of 1.4 and 2.1 nM, respectively. A similar inhibitory effect was observed in a RSV-mediated cell fusion assay (EC50=5.4 and 0.9 nM, respectively). Several drug-resistant RSV variants were selected in vitro in the presence of each compound. All selected viruses exhibited significant cross-resistance to both inhibitors and contained various single amino acid substitutions in two distinct regions of the viral F protein, the heptad repeat 2 (HR2; mutations D486N, E487D, and F488Y), and the intervening domain between HR1 and HR2 (mutation K399I and T400A). Studies using [3H]VP-14637 revealed a specific binding of the compound to RSV-infected cells that was efficiently inhibited by JNJ-2408068 (50% inhibitory concentration=2.9 nM) but not by the HR2-derived peptide T-118. Further analysis using a transient T7 vaccinia expression system indicated that RSV F protein is sufficient for this interaction. F proteins containing either the VP-14637 or JNJ-2408068 resistance mutations exhibited greatly reduced binding of [3H]VP-14637. Molecular modeling analysis suggests that both molecules may bind into a small hydrophobic cavity in the inner core of F protein, interacting simultaneously with both the HR1 and HR2 domains. Altogether, these data indicate that VP-14637 and JNJ-2408068 interfere with RSV fusion through a mechanism involving a similar interaction with the F protein.
Collapse
|
37
|
Yin H, Hamilton AD. Strategien zur Modulation von Protein-Protein-Wechselwirkungen mit synthetischen Substanzen. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461786] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Nikitenko A, Raifeld Y, Mitsner B, Newman H. Pyrimidine containing RSV fusion inhibitors. Bioorg Med Chem Lett 2005; 15:427-30. [PMID: 15603966 DOI: 10.1016/j.bmcl.2004.10.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/15/2004] [Accepted: 10/21/2004] [Indexed: 11/24/2022]
Abstract
The knowledge of SAR in a series of biphenyl anionic RSV inhibitors has been broadened by synthesis and testing of analogs with pyrimidine linkers. Generally, pyrimidine compounds were much harder to synthesize, and their anti-RSV activity was lower in comparison with triazine analogs.
Collapse
Affiliation(s)
- Antonia Nikitenko
- Chemical and Screening Sciences, Wyeth Research, 401 N. Middletown Rd, Pearl River, NY 10965, USA.
| | | | | | | |
Collapse
|
39
|
Sudo K, Miyazaki Y, Kojima N, Kobayashi M, Suzuki H, Shintani M, Shimizu Y. YM-53403, a unique anti-respiratory syncytial virus agent with a novel mechanism of action. Antiviral Res 2005; 65:125-31. [PMID: 15708639 DOI: 10.1016/j.antiviral.2004.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 12/08/2004] [Indexed: 10/25/2022]
Abstract
We performed a large-scale random screening of an in-house chemical library based on the inhibition of respiratory syncytial virus (RSV)-induced cytopathic effect on HeLa (human cervical carcinoma) cells, and found a novel and specific anti-RSV agent, 6-{4-[(biphenyl-2-ylcarbonyl) amino]benzoyl}-N-cyclopropyl-5,6-dihydro-4H-thieno[3,2-d][1]benzazepine-2-carboxamide (YM-53403). YM-53403 potently inhibited the replication of RSV strains belonging to both A and B subgroups, but not influenza A virus, measles virus, or herpes simplex virus type 1. A plaque reduction assay was used to determine the 50% effective concentration (EC(50)) value for YM-53403. The value, 0.20 microM, was about 100-fold more potent than ribavirin. The result of a time-dependent drug addition test showed that YM-53403 inhibited the life cycle of RSV at around 8h post-infection, suggesting an inhibitory effect on early transcription and/or replication of the RSV genome. Consistent with this result, two YM-53403-resistant viruses have a single point mutation (Y1631H) in the L protein which is a RNA polymerase for both the transcription and replication of the RSV genome. YM-53403 is an attractive compound for the treatment of RSV infection because of its highly potent anti-RSV activity and the new mode of action, which differs from that of currently reported antiviral agents.
Collapse
Affiliation(s)
- Kenji Sudo
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
San-Juan-Vergara H, Peeples ME, Lockey RF, Mohapatra SS. Protein kinase C-alpha activity is required for respiratory syncytial virus fusion to human bronchial epithelial cells. J Virol 2004; 78:13717-26. [PMID: 15564481 PMCID: PMC533893 DOI: 10.1128/jvi.78.24.13717-13726.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.
Collapse
Affiliation(s)
- Homero San-Juan-Vergara
- The Joy McCann Culverhouse Airways Disease Research Center, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
41
|
Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, Zhang H, Luo H, Zhu L, Jiang P, Chen L, Shen Y, Luo M, Zuo G, Hu J, Duan D, Nie Y, Shi X, Wang W, Han Y, Li T, Liu Y, Ding M, Deng H, Xu X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78:11334-9. [PMID: 15452254 PMCID: PMC521800 DOI: 10.1128/jvi.78.20.11334-11339.2004] [Citation(s) in RCA: 319] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the pathogen of SARS, which caused a global panic in 2003. We describe here the screening of Chinese herbal medicine-based, novel small molecules that bind avidly with the surface spike protein of SARS-CoV and thus can interfere with the entry of the virus to its host cells. We achieved this by using a two-step screening method consisting of frontal affinity chromatography-mass spectrometry coupled with a viral infection assay based on a human immunodeficiency virus (HIV)-luc/SARS pseudotyped virus. Two small molecules, tetra-O-galloyl-beta-D-glucose (TGG) and luteolin, were identified, whose anti-SARS-CoV activities were confirmed by using a wild-type SARS-CoV infection system. TGG exhibits prominent anti-SARS-CoV activity with a 50% effective concentration of 4.5 microM and a selective index of 240.0. The two-step screening method described here yielded several small molecules that can be used for developing new classes of anti-SARS-CoV drugs and is potentially useful for the high-throughput screening of drugs inhibiting the entry of HIV, hepatitis C virus, and other insidious viruses into their host cells.
Collapse
Affiliation(s)
- Ling Yi
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, Peoples Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu KL, Zhang Y, Civiello RL, Trehan AK, Pearce BC, Yin Z, Combrink KD, Gulgeze HB, Wang XA, Kadow KF, Cianci CW, Krystal M, Meanwell NA. Respiratory syncytial virus inhibitors. Part 2: Benzimidazol-2-one derivatives. Bioorg Med Chem Lett 2004; 14:1133-7. [PMID: 14980651 DOI: 10.1016/j.bmcl.2003.12.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2003] [Revised: 12/14/2003] [Accepted: 12/18/2003] [Indexed: 11/30/2022]
Abstract
Structure-activity relationships for a series of benzimidazol-2-one-based inhibitors of respiratory syncytial virus are described. These studies focused on structural variation of the benzimidazol-2-one substituent, a vector inaccessible in a series of benzotriazole derivatives on which 2 is based, and revealed a broad tolerance for substituent size and functionality.
Collapse
Affiliation(s)
- Kuo-Long Yu
- Department of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Budge PJ, Li Y, Beeler JA, Graham BS. RhoA-derived peptide dimers share mechanistic properties with other polyanionic inhibitors of respiratory syncytial virus (RSV), including disruption of viral attachment and dependence on RSV G. J Virol 2004; 78:5015-22. [PMID: 15113882 PMCID: PMC400344 DOI: 10.1128/jvi.78.10.5015-5022.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Large polyanionic molecules, such as sulfated polysaccharides (including soluble heparin and dextran sulfate), synthetic polyanionic polymers, and negatively charged proteins, have been shown to broadly inhibit several enveloped viruses. We recently reported the antiviral activity of a peptide derived from amino acids 77 to 95 of a potential binding partner of respiratory syncytial virus F protein (RSV F), the GTPase RhoA. A subsequent study with a truncated peptide (amino acids 80 to 94) revealed that optimal antiviral activity required dimerization via intermolecular disulfide bonds. We report here that the net negative charge of this peptide is also a determining factor for its antiviral activity and that it, like other polyanions, inhibits virus attachment. In a flow cytometry-based binding assay, peptide 80-94, heparin, and dextran sulfate inhibited the attachment of virus to cells at 4 degrees C at the same effective concentrations at which they prevent viral infectivity. Interestingly, time-of-addition experiments revealed that peptide 80-94 and soluble heparin were also able to inhibit the infectivity of a virus that had been prebound to cells at 4 degrees C, as had previously been shown for dextran sulfate, suggesting a potential role for postattachment effects of polyanions on RSV entry. Neutralization experiments with recombinant viruses showed that the antiviral activities of peptide 80-94 and dextran sulfate were diminished in the absence of the RSV attachment glycoprotein (G). Taken together, these data indicate that the antiviral activity of RhoA-derived peptides is functionally similar to that of other polyanions, is dependent on RSV G, and does not specifically relate to a protein-protein interaction between F and RhoA.
Collapse
Affiliation(s)
- Philip J Budge
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
44
|
Andries K, Moeremans M, Gevers T, Willebrords R, Sommen C, Lacrampe J, Janssens F, Wyde PR. Substituted benzimidazoles with nanomolar activity against respiratory syncytial virus. Antiviral Res 2004; 60:209-19. [PMID: 14638397 DOI: 10.1016/j.antiviral.2003.07.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A cell-based assay was used to discover compounds inhibiting respiratory syncytial virus (RSV)-induced fusion in HeLa/M cells. A lead compound was identified and subsequent synthesis of >300 analogues led to the identification of JNJ 2408068 (R170591), a low molecular weight (MW 395) benzimidazole derivative with an EC(50) (0.16 nM) against some lab strains almost 100,000 times better than that of ribavirin (15 microM). Antiviral activity was confirmed for subgroup A and B clinical isolates of human RSV and for a bovine RSV isolate. The compound did not inhibit the growth of representative viruses from other Paramyxovirus genera, i.e. HPIV2 and Mumps Virus (genus Rubulavirus), HPIV3 (genus Respirovirus), Measles virus (genus Morbillivirus) and hMPV. Efficacy in cytopathic effect inhibition assays correlated well with efficacy in virus yield reduction assays. A concentration of 10nM reduced RSV production 1000-fold in multi-cycle experiments, irrespective of the multiplicity of infection. Time of addition studies pointed to a dual mode of action: inhibition of virus-cell fusion early in the infection cycle and inhibition of cell-cell fusion at the end of the replication cycle. Two resistant mutants were raised and shown to have single point mutations in the F-gene (S398L and D486N). JNJ 2408068 was also shown to inhibit the release of proinflammatory cytokines IL-6, IL-8 and Rantes from RSV-infected A549 cells.
Collapse
Affiliation(s)
- Koen Andries
- Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Elliott MB, Tebbey PW, Pryharski KS, Scheuer CA, Laughlin TS, Hancock GE. Inhibition of respiratory syncytial virus infection with the CC chemokine RANTES (CCL5). J Med Virol 2004; 73:300-8. [PMID: 15122808 DOI: 10.1002/jmv.20091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory tract disease in infants, aged adults, and immunosuppressed patients. The only approved medicines for RSV disease are administration of prophylatic antibodies or treatment with a synthetic nucleoside. Both approaches are expensive and the latter is not without risk and of controversial benefit. The present investigation studied whether pharmaceutical or biologic compounds based upon chemokines might be useful in preventing RSV disease. Of interest was RANTES/CCL5, which inhibits infection by HIV strains that use chemokine receptor (CCR)-5 as co-receptor. Herein, we report that prior or simultaneous treatment of HEp-2 cells with recombinant human CCL5 provides dose-dependent inhibition of infection with RSV. Other recombinant chemokines (MIP-1alpha/CCL3, MIP-1beta/CCL4, MCP-2/CCL8, eotaxin/CCL11, MIP-1delta/CCL15, stromal cell derived factor (SDF)-1alpha/CXCL12) were not inhibitory. The data suggested that CCL5 might inhibit infection by blocking fusion (F) protein-epithelial cell interactions. Infections by mutant RSV strains deleted of small hydrophobic and/or attachment proteins and only expressing F protein in the envelope were inhibited by prior treatment with CCL5 or a biologically inactive N-terminally modified met-CCL5. Inhibition was also observed when virus adsorption and treatment with CCL5 were performed at 4 degrees C. Flow cytometry further revealed that epithelial cells were positive for CCR3, but not CCR1 or CCR5. Thus, novel mimetics of CCL5 may be useful prophylatic agents to prevent respiratory tract disease caused by RSV.
Collapse
Affiliation(s)
- Matthew B Elliott
- Department of Immunology Research, Wyeth Vaccines Research, Pearl River, New York 10965, USA
| | | | | | | | | | | |
Collapse
|
46
|
Yu KL, Zhang Y, Civiello RL, Kadow KF, Cianci C, Krystal M, Meanwell NA. Fundamental structure-activity relationships associated with a new structural class of respiratory syncytial virus inhibitor. Bioorg Med Chem Lett 2003; 13:2141-4. [PMID: 12798322 DOI: 10.1016/s0960-894x(03)00383-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Structure-activity relationships surrounding the dialkylamino side chain of a series of benzotriazole-derived inhibitors of respiratory syncytial virus fusion based on the screening lead 1a were examined. The results indicate that the topology of the side chain is important but the terminus element offers considerable latitude to modulate physical properties.
Collapse
Affiliation(s)
- Kuo Long Yu
- Department of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5, Research Parkway, 06492, Wallingford, CT, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Douglas JL, Panis ML, Ho E, Lin KY, Krawczyk SH, Grant DM, Cai R, Swaminathan S, Cihlar T. Inhibition of respiratory syncytial virus fusion by the small molecule VP-14637 via specific interactions with F protein. J Virol 2003; 77:5054-64. [PMID: 12692208 PMCID: PMC153948 DOI: 10.1128/jvi.77.9.5054-5064.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of respiratory tract infections worldwide. Several novel small-molecule inhibitors of RSV have been identified, but they are still in preclinical or early clinical evaluation. One such inhibitor is a recently discovered triphenol-based molecule, VP-14637 (ViroPharma). Initial experiments suggested that VP-14637 acted early and might be an RSV fusion inhibitor. Here we present studies demonstrating that VP-14637 does not block RSV adsorption but inhibits RSV-induced cell-cell fusion and binds specifically to RSV-infected cells with an affinity corresponding to its inhibitory potency. VP-14637 is capable of specifically interacting with the RSV fusion protein expressed by a T7 vaccinia virus system. RSV variants resistant to VP-14637 were selected; they had mutations localized to two distinct regions of the RSV F protein, heptad repeat 2 (HR2) and the intervening domain between heptad repeat 1 (HR1) and HR2. No mutations arose in HR1, suggesting a mechanism other than direct disruption of the heptad repeat interaction. The F proteins containing the resistance mutations exhibited greatly reduced binding of VP-14637. Despite segregating with the membrane fraction following incubation with intact RSV-infected cells, the compound did not bind to membranes isolated from RSV-infected cells. In addition, binding of VP-14637 was substantially compromised at temperatures of < or =22 degrees C. Therefore, we propose that VP-14637 inhibits RSV through a novel mechanism involving an interaction between the compound and a transient conformation of the RSV F protein.
Collapse
|
48
|
Visalli RJ, Fairhurst J, Srinivas S, Hu W, Feld B, DiGrandi M, Curran K, Ross A, Bloom JD, van Zeijl M, Jones TR, O'Connell J, Cohen JI. Identification of small molecule compounds that selectively inhibit varicella-zoster virus replication. J Virol 2003; 77:2349-58. [PMID: 12551972 PMCID: PMC141108 DOI: 10.1128/jvi.77.4.2349-2358.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of nonnucleoside, N-alpha-methylbenzyl-N'-arylthiourea analogs were identified which demonstrated selective activity against varicella-zoster virus (VZV) but were inactive against other human herpesviruses, including herpes simplex virus. Representative compounds had potent activity against VZV early-passage clinical isolates and an acyclovir-resistant isolate. Resistant viruses generated against one inhibitor were also resistant to other compounds in the series, suggesting that this group of related small molecules was acting on the same virus-specific target. Sequencing of the VZV ORF54 gene from two independently derived resistant viruses revealed mutations in ORF54 compared to the parental VZV strain Ellen sequence. Recombinant VZV in which the wild-type ORF54 sequence was replaced with the ORF54 gene from either of the resistant viruses became resistant to the series of inhibitor compounds. Treatment of VZV-infected cells with the inhibitor impaired morphogenesis of capsids. Inhibitor-treated cells lacked DNA-containing dense-core capsids in the nucleus, and only incomplete virions were present on the cell surface. These data suggest that the VZV-specific thiourea inhibitor series block virus replication by interfering with the function of the ORF54 protein and/or other proteins that interact with the ORF54 protein.
Collapse
Affiliation(s)
- Robert J Visalli
- Infectious Diseases Section, Department of Molecular Biology/Virology, Wyeth Vaccines, Pearl River, NY 1096, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Torrence PF, Powell LD. The quest for an efficacious antiviral for respiratory syncytial virus. Antivir Chem Chemother 2002; 13:325-44. [PMID: 12718405 DOI: 10.1177/095632020201300601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Respiratory syncytial virus (RSV) continues as an emerging infectious disease not only among infants and children, but also for the immune-suppressed, hospitalized and the elderly. To date, ribavirin (Virazole) remains the only therapeutic agent approved for the treatment of RSV. The prophylactic administration of palivizumab is problematic and costly. The quest for an efficacious RSV antiviral has produced a greater understanding of the viral fusion process, a new hypothesis for the mechanism of action of ribavirin, and a promising antisense strategy combining the 2'-5' oligoadenylate antisense (2-5A-antisense) approach and RSV genomics.
Collapse
Affiliation(s)
- Paul F Torrence
- Department of Chemistry, Northern Arizona University, Flagstaff, Ariz., USA.
| | | |
Collapse
|
50
|
Razinkov V, Huntley C, Ellestad G, Krishnamurthy G. RSV entry inhibitors block F-protein mediated fusion with model membranes. Antiviral Res 2002; 55:189-200. [PMID: 12076763 DOI: 10.1016/s0166-3542(02)00050-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RSV fusion is mediated by F-protein, a major viral surface glycoprotein. CL-309623, a specific inhibitor of RSV, interacts tightly with F-protein, which results in a hydrophobic environment at the binding site. The binding is selective for F-protein and does not occur with G-protein, a surface glycoprotein that facilitates the binding of RSV to target cells, or with lipid membranes at concentrations in the sub-millimolar range. Using an assay based on the relief of self-quenching of octadecyl rhodamine (R18) incorporated in the RSV envelope, we show that the virus fuses efficiently with large unilamellar vesicles containing cholesterol, in the absence of specific receptor analogs. Fusion of cp-52, a mutant virus lacking the G and SH surface glycoproteins, with vesicles is inhibited by CL-309623 and RFI-641 due to specific interactions of the inhibitor(s) with the fusion protein. Both virus-vesicle and virus-cell fusion are inhibited with equal potency. The formation of the binary complex of CL-309623 with F-protein in its native state, resulting in the inhibition of fusion and entry of virus, is a prerequisite for the observed anti-RSV activity in cell cultures.
Collapse
Affiliation(s)
- Vladimir Razinkov
- Department of Biological Chemistry, Wyeth Research, Pearl River, NY 10965, USA
| | | | | | | |
Collapse
|