1
|
Sardag I, Duvenci ZS, Belkaya S, Timucin E. Computational modeling of the anti-inflammatory complexes of IL37. J Mol Graph Model 2025; 136:108952. [PMID: 39854883 DOI: 10.1016/j.jmgm.2025.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Interleukin (IL) 37 is an anti-inflammatory cytokine belonging to the IL1 protein family. Owing to its pivotal role in modulating immune responses, elucidating the IL37 complex structures holds substantial therapeutic promise for various autoimmune disorders and cancers. However, none of the structures of IL37 complexes have been experimentally characterized. This computational study aims to address this gap through molecular modeling and classical molecular dynamics simulations. We modeled all protein-protein complexes of IL37 using a range of methods from homology modeling to AlphaFold2 multimer predictions. Models that successfully recapitulated experimental features underwent further analysis through molecular dynamics simulations. As positive controls, binary and ternary complexes of IL18 from PDB were included for comparison. Several key findings emerged from the comparative analysis of IL37 and IL18 complexes. IL37 complexes exhibited higher mobility than the IL18 complexes. Simulations of the IL37-IL18Rα complex revealed altered receptor conformations capable of accommodating a dimeric IL37, with the N-terminal loop of IL37 contributing significantly to complex mobility. Additionally, the glycosyl chain on N297 of IL18Rα, which contours one edge of the cytokine binding surface, acted as a steric block against the N-terminal loop of IL37. Further, investigations into interactions between IL37 and IL18BP suggested that a binding mode homologous to IL18 was unstable for IL37, indicating an alternative binding mechanism. Altogether, this study accesses to the structure and dynamics of IL37 complexes, revealing the structural underpinnings of the IL37's modulatory effect on the IL18 signaling pathway.
Collapse
Affiliation(s)
- Inci Sardag
- Bogazici University, Department of Molecular Biology and Genetics, Istanbul 34342, Turkey
| | - Zeynep Sevval Duvenci
- Acibadem University, Institute of Health Sciences Department of Biostatistics and Bioinformatics, Istanbul 34752, Turkey
| | - Serkan Belkaya
- Bilkent University, Department of Molecular Biology and Genetics, Ankara 06800, Turkey
| | - Emel Timucin
- Acibadem University, Institute of Health Sciences Department of Biostatistics and Bioinformatics, Istanbul 34752, Turkey; Acibadem University, School of Medicine Biostatistics and Medical Informatics, Istanbul 34752, Turkey.
| |
Collapse
|
2
|
Iosim S, Henderson LA. Macrophage Activation Syndrome: Not Just for Rheumatologists Anymore. Hematol Oncol Clin North Am 2025:S0889-8588(25)00019-X. [PMID: 40133144 DOI: 10.1016/j.hoc.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
SYNOPSIS Macrophage activation syndrome (MAS) is a term that was originally used to describe a hyperinflammatory syndrome that developed in some patients with rheumatologic diseases. It is now clear that MAS and hemophagocytic lymphohistiocytosis (HLH) are defined by the same core pattern of clinical symptoms and share an underlying pathophysiology of impaired cytolytic activity and IFNγ-driven cytokine storm. Given that these disorders are highly related, lessons learned from the management of MAS can provide insights into effective approaches for HLH, particularly the strategy to employ anti-cytokine therapies early in the disease course.
Collapse
Affiliation(s)
- Sonia Iosim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Alboni S, Tascedda F, Uezato A, Sugama S, Chen Z, Marcondes MCG, Conti B. Interleukin 18 and the brain: neuronal functions, neuronal survival and psycho-neuro-immunology during stress. Mol Psychiatry 2025:10.1038/s41380-025-02951-z. [PMID: 40121365 DOI: 10.1038/s41380-025-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Interleukin 18 (IL-18) is a pleiotropic cytokine that regulates peripheral innate and adaptive immune response and is also expressed in the brain. Here, we summarize the current knowledge on the biology of IL-18 in the brain and the efforts to determine its significance concerning neurological and psychiatric conditions. The picture that emerges is that of a heavily regulated molecule that can contribute to neuroinflammatory-mediated neuronal survival but can also serve as a neuromodulator that affects behaviour. We also summarize evidence showing how the brain can control the synthesis of peripheral IL-18 during stress by hormonal and neuronal signalling, regulating tissue-specific promoter usage. We discuss how this may represent one of the mechanisms by which the brain affects immune functions and what its implications are when considering IL-18 as a biomarker of psychiatric conditions.
Collapse
Affiliation(s)
- Silvia Alboni
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Fabio Tascedda
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Akihito Uezato
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Shuei Sugama
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Zuxin Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P. R. China
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
4
|
Huard A, Fauteux-Daniel S, Goldstein J, Martin P, Jarlborg M, Andries J, Caruso A, Díaz-Barreiro A, Rodriguez E, Vaillant L, Savvides SN, Gabay C. Development of anti-murine IL-18 binding protein antibodies to stimulate IL-18 bioactivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:180-191. [PMID: 40018678 PMCID: PMC7617445 DOI: 10.1093/jimmun/vkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Interleukin (IL)-18 is an immunoregulatory cytokine that acts as a potent inducer of T helper 1 and cytotoxic responses. IL-18 activity is regulated by its decoy receptor IL-18 binding protein (IL-18BP) which forms a high affinity complex with IL-18 to block binding of the cognate receptors. A disbalance between IL-18 and IL-18BP associated with excessive IL-18 signaling can lead to systemic inflammation. Indeed, the severity of CpG-induced macrophage activation syndrome (MAS) is exacerbated in IL-18BP KO mice. On the contrary, targeting IL-18BP can have promising effects to enhance immune responses against pathogens and cancer. We generated monoclonal rabbit anti-mouse IL-18BP antibodies labeled from 441 to 450. All antibodies, except from antibody 443, captured mIL-18BP when used in a sandwich ELISA. Using an IL-18 bioassay, we showed that antibody 441 did not interfere with the regulatory effect of mIL-18BP, whereas all other antibodies displayed different levels of antagonism. Further experiments were performed using antibody 445 endowed with potent neutralizing activity and antibody 441. Despite binding to IL-18BP with the same affinity, antibody 445, but not antibody 441, was able to release IL-18 from preformed IL-18-IL-18BP complexes. Administration of antibody 445 significantly aggravated the severity of CpG-induced MAS as compared to antibody 441. Additional experiments using naïve WT, IL-18BP KO, and IL-18 KO mice confirmed the specificity of the neutralizing effect of antibody 445 towards IL-18BP. Our studies led to the development of a monoclonal anti-IL-18BP antibody with neutralizing activity that results in the promotion of IL-18 activities.
Collapse
Affiliation(s)
- Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Sébastien Fauteux-Daniel
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Jérémie Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Matthias Jarlborg
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Julie Andries
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
| | - Assunta Caruso
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Alejandro Díaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Emiliana Rodriguez
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Laurie Vaillant
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Savvas N. Savvides
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| |
Collapse
|
5
|
Begum E, Mahmod MR, Rahman MM, Fukuma F, Urano T, Fujita Y. IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury. Biomolecules 2024; 15:16. [PMID: 39858411 PMCID: PMC11761924 DOI: 10.3390/biom15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18. This study evaluated the functional effects of this antibody in a mouse model of SCI. IL-18 expression was significantly upregulated in the spinal cord following injury. In a mouse model of SCI (C57BL/6J strain), mice were administered 150 μg of the anti-IL-18 antibody intraperitoneally. IL-18 inhibition via antibody treatment facilitated motor functional recovery post-injury. This intervention reduced neuronal death, reactive gliosis, microglia/macrophage activation, and neutrophil infiltration. Additionally, IL-18 inhibition lowered the expression of pro-inflammatory factors, such as IL-1β and the M1 microglia/macrophage marker Ccl17, while enhancing the expression of the M2 microglia/macrophage marker Arginase 1. Collectively, our findings demonstrate that IL-18 inhibition promotes motor recovery and facilitates the polarization of M1 microglia/macrophages to the M2 phenotype, thereby fostering a neuroprotective immune microenvironment in mice with SCI.
Collapse
Affiliation(s)
- Easmin Begum
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Md Rashel Mahmod
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Md Mahbobur Rahman
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Fumiko Fukuma
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
- mAbProtein Co., Ltd., 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Yuki Fujita
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| |
Collapse
|
6
|
Novick D. IL-18 and IL-18BP: A Unique Dyad in Health and Disease. Int J Mol Sci 2024; 25:13505. [PMID: 39769266 PMCID: PMC11727785 DOI: 10.3390/ijms252413505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Interleukin-18 (IL-18) serves a dual function in the immune system, acting as a "double-edged sword" cytokine. Depending on the microenvironment and timing, IL-18 can either drive harmful inflammation or restore immune homeostasis. Pathologies characterized by elevated IL-18, recently proposed to be termed IL-18opathies, highlight the therapeutic potential for IL-18 blockade. IL-18 Binding Protein (IL-18BP) is one of only four natural cytokine antagonists encoded by a separate gene, distinguishing it from canonical soluble receptors. IL-18BP's exceptionally high affinity and slow dissociation rate make it an effective regulator of IL-18, essential for maintaining immune balance and influencing disease outcomes, and positions IL-18BP as a promising alternative to more aggressive treatments that carry risks of severe infections and other complications. Tadekinig alfa, the drug form of IL-18BP, represents a targeted therapy that modulates the IL-18/IL-18BP axis, offering a safe adverse-effect-free option. With orphan drug designation, Phase III clinical trial completion, and seven years of compassionate use, Tadekinig alfa holds promise in treating autoimmune and inflammatory diseases, cancer, and genetically linked disorders. Levels of IL-18, free IL-18 and IL-18BP, may serve as biomarkers for disease severity and therapeutic response. Given its pivotal role in immune balance, the IL-18/IL-18BP dyad has attracted interest from over ten pharmaceutical companies and startups, which are currently developing innovative strategies to either inhibit or enhance IL-18 activity depending on the therapeutic need. The review focuses on the features of the dyad members and screens the therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Novick
- Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Yu C, Xu H, Jiang S, Sun L. IL-18 signaling is regulated by caspase 6/8 and IL-18BP in turbot (Scophthalmus maximus). Int J Biol Macromol 2024; 278:135015. [PMID: 39181350 DOI: 10.1016/j.ijbiomac.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Interleukin (IL)-18 is synthesized as a precursor that requires intracellular processing to become functionally active. In human, IL-18 is processed by caspase 1 (CASP1). In teleost, the maturation and signal transduction mechanisms of IL-18 are unknown. We identified two IL-18 variants, IL-18a and IL-18b, in turbot. IL-18a, but not IL-18b, was processed by CASP6/8 cleavage. Mature IL-18a bound specifically to IL-18 receptor (IL-18R) α-expressing cells and induced IL-18Rα-IL-18Rβ association. Bacterial infection promoted IL-18a maturation in a manner that required CASP6 activation and correlated with gasdermin E activation. The mature IL-18a induced proinflammatory cytokine expression and enhanced bacterial clearance. IL-18a-mediated immune response was suppressed by IL-18 binding protein (IL-18BP), which functioned as a decoy receptor for IL-18a. IL-18BP also functioned as a pathogen pattern recognition receptor and directly inhibited pathogen infection. Our findings revealed unique mechanism of IL-18 maturation and conserved mechanism of IL-18 signaling and regulation in turbot, and provided new insights into the regulation and function of IL-18 related immune signaling.
Collapse
Affiliation(s)
- Chao Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Fischer-Riepe L, Kailayangiri S, Zimmermann K, Pfeifer R, Aigner M, Altvater B, Kretschmann S, Völkl S, Hartley J, Dreger C, Petry K, Bosio A, von Döllen A, Hartmann W, Lode H, Görlich D, Mackensen A, Jungblut M, Schambach A, Abken H, Rossig C. Preclinical Development of CAR T Cells with Antigen-Inducible IL18 Enforcement to Treat GD2-Positive Solid Cancers. Clin Cancer Res 2024; 30:3564-3577. [PMID: 38593230 DOI: 10.1158/1078-0432.ccr-23-3157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE Cytokine-engineering of chimeric antigen receptor-redirected T cells (CAR T cells) is a promising principle to overcome the limited activity of canonical CAR T cells against solid cancers. EXPERIMENTAL DESIGN We developed an investigational medicinal product, GD2IL18CART, consisting of CAR T cells directed against ganglioside GD2 with CAR-inducible IL18 to enhance their activation response and cytolytic effector functions in the tumor microenvironment. To allow stratification of patients according to tumor GD2 expression, we established and validated immunofluorescence detection of GD2 on paraffin-embedded tumor tissues. RESULTS Lentiviral all-in-one vector engineering of human T cells with the GD2-specific CAR with and without inducible IL18 resulted in cell products with comparable proportions of CAR-expressing central memory T cells. Production of IL18 strictly depends on GD2 antigen engagement. GD2IL18CART respond to interaction with GD2-positive tumor cells with higher IFNγ and TNFα cytokine release and more effective target cytolysis compared with CAR T cells without inducible IL18. GD2IL18CART further have superior in vivo antitumor activity, with eradication of GD2-positive tumor xenografts. Finally, we established GMP-compliant manufacturing of GD2IL18CART and found it to be feasible and efficient at clinical scale. CONCLUSIONS These results pave the way for clinical investigation of GD2IL18CART in pediatric and adult patients with neuroblastoma and other GD2-positive cancers (EU CT 2022- 501725-21-00). See related commentary by Locatelli and Quintarelli, p. 3361.
Collapse
Affiliation(s)
- Lena Fischer-Riepe
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michael Aigner
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jordan Hartley
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Celine Dreger
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Katja Petry
- Miltenyi Biomedicine GmbH, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Angelika von Döllen
- Institute of Transfusion Medicine and Cell Therapy, University Hospital Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
| | - Holger Lode
- Pediatric Hematology-Oncology Department, University Medicine Greifswald, Greifswald, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
- Institute of Transfusion Medicine and Cell Therapy, University Hospital Muenster, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
9
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
10
|
Cecrdlova E, Krupickova L, Fialova M, Novotny M, Tichanek F, Svachova V, Mezerova K, Viklicky O, Striz I. Insights into IL-1 family cytokines in kidney allograft transplantation: IL-18BP and free IL-18 as emerging biomarkers. Cytokine 2024; 180:156660. [PMID: 38801805 DOI: 10.1016/j.cyto.2024.156660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Proinflammatory cytokines and their inhibitors are involved in the regulation of multiple immune reactions including response to transplanted organs. In this prospective study, we evaluated changes in serum concentrations of six IL-1 family cytokines (IL-1 alpha, IL-1 beta, IL-1RA, IL-18, IL-18BP, and IL-36 beta) in 138 kidney allograft recipients and 48 healthy donors. Samples were collected before transplantation and then after one week, three months and one year, additional sera were obtained at the day of biopsy positive for acute rejection. We have shown, that concentrations of proinflammatory members of the IL-1 family (IL-1β, IL-18, IL-36 β) and anti-inflammatory IL-18BP decreased immediately after the transplantation. The decline of serum IL-1RA and IL-1α was not observed in subjects with acute rejection. IL-18, including specifically its free form, is the only cytokine which increase serum concentrations in the period between one week and three months in both groups of patients without upregulation of its inhibitor, IL-18BP. Serum concentrations of calculated free IL-18 were upregulated in the acute rejection group at the time of acute rejection. We conclude that IL-1 family cytokines are involved mainly in early phases of the response to kidney allograft. Serum concentrations of free IL-18 and IL-18BP represent possible biomarkers of acute rejection, and targeting IL-18 might be of therapeutic value.
Collapse
Affiliation(s)
- E Cecrdlova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - L Krupickova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - M Fialova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - M Novotny
- Institute for Clinical and Experimental Medicine, Transplant Center, Department of Nephrology, Prague, Czech Republic
| | - F Tichanek
- Institute for Clinical and Experimental Medicine, Department of Data Science, Prague, Czech Republic
| | - V Svachova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - K Mezerova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - O Viklicky
- Institute for Clinical and Experimental Medicine, Transplant Center, Department of Nephrology, Prague, Czech Republic
| | - I Striz
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic.
| |
Collapse
|
11
|
Gleeson TA, Kaiser C, Lawrence CB, Brough D, Allan SM, Green JP. The NLRP3 inflammasome is essential for IL-18 production in a murine model of macrophage activation syndrome. Dis Model Mech 2024; 17:dmm050762. [PMID: 38775430 PMCID: PMC11317095 DOI: 10.1242/dmm.050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin-18 (IL-18) and interferon gamma (IFNγ). Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-oligonucleotide-induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome or the downstream caspase-1 prevented MAS-mediated upregulation of IL-18 in the plasma but, interestingly, did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore blockade of IL-1 receptor with its antagonist IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that, during the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18 - a key cytokine in clinical cases of MAS - but was not a driving factor in the pathogenesis of CpG-induced MAS.
Collapse
Affiliation(s)
- Tara A. Gleeson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | | | - Catherine B. Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Stuart M. Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Jack P. Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
12
|
Jiang L, Lunding LP, Webber WS, Beckmann K, Azam T, Falkesgaard Højen J, Amo-Aparicio J, Dinarello A, Nguyen TT, Pessara U, Parera D, Orlicky DJ, Fischer S, Wegmann M, Dinarello CA, Li S. An antibody to IL-1 receptor 7 protects mice from LPS-induced tissue and systemic inflammation. Front Immunol 2024; 15:1427100. [PMID: 38983847 PMCID: PMC11231367 DOI: 10.3389/fimmu.2024.1427100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.
Collapse
Affiliation(s)
- Liqiong Jiang
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Lars P. Lunding
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - William S. Webber
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | | | - Tania Azam
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Jesper Falkesgaard Højen
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Alberto Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Tom T. Nguyen
- Mucosal Inflammation Program and Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ulrich Pessara
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Daniel Parera
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - David J. Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Stephan Fischer
- MAB Discovery GmbH, Polling, Germany
- IcanoMAB GmbH, Polling, Germany
| | - Michael Wegmann
- Division of Lung Immunology, Priority Area of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Suzhao Li
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
13
|
Sheinin R, Salomon K, Yeini E, Dulberg S, Kaminitz A, Satchi-Fainaro R, Sharan R, Madi A. interFLOW: maximum flow framework for the identification of factors mediating the signaling convergence of multiple receptors. NPJ Syst Biol Appl 2024; 10:66. [PMID: 38858414 PMCID: PMC11164912 DOI: 10.1038/s41540-024-00391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Cell-cell crosstalk involves simultaneous interactions of multiple receptors and ligands, followed by downstream signaling cascades working through receptors converging at dominant transcription factors, which then integrate and propagate multiple signals into a cellular response. Single-cell RNAseq of multiple cell subsets isolated from a defined microenvironment provides us with a unique opportunity to learn about such interactions reflected in their gene expression levels. We developed the interFLOW framework to map the potential ligand-receptor interactions between different cell subsets based on a maximum flow computation in a network of protein-protein interactions (PPIs). The maximum flow approach further allows characterization of the intracellular downstream signal transduction from differentially expressed receptors towards dominant transcription factors, therefore, enabling the association between a set of receptors and their downstream activated pathways. Importantly, we were able to identify key transcription factors toward which the convergence of multiple receptor signaling pathways occurs. These identified factors have a unique role in the integration and propagation of signaling following specific cell-cell interactions.
Collapse
Affiliation(s)
- Ron Sheinin
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Koren Salomon
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shai Dulberg
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ayelet Kaminitz
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Asaf Madi
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
14
|
Gagnon B, Murphy J, Simonyan D, Penafuerte CA, Sirois J, Chasen M, Tremblay ML. Cancer anorexia-cachexia syndrome is characterized by more than one inflammatory pathway. J Cachexia Sarcopenia Muscle 2024; 15:1041-1053. [PMID: 38481033 PMCID: PMC11154782 DOI: 10.1002/jcsm.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The interdependence of cytokines and appetite-modifying hormones implicated in cancer anorexia-cachexia syndrome (CACS) remains unclear. This study aimed to regroup these cytokines and hormones into distinct inflammatory (or non-inflammatory) pathways and determine whether these pathways can classify patients with CACS phenotypes. METHODS Clinical characteristics of 133 patients [61.7% male; mean age = 63.4 (SD: 13.1) years] with advanced cancer prior to oncology treatments were documented, including weight loss history. Patients completed the Functional Assessment of Anorexia-Cachexia Therapy (FAACT) questionnaire and Timed Up and Go test and had their sex-standardized skeletal muscle index (z-SMI) and fat mass index (z-FMI) derived using computed tomography scans. Their plasma levels of cytokines and appetite-modifying hormones were also determined. Date of death was recorded. Exploratory factor analysis (EFA) was used to regroup 15 cytokines and hormone into distinct inflammatory pathways (factors). For each patient, regression factor scores (RFS), which tell how strongly the patient associates with each factor, were derived. Two-step cluster analysis on the RFS was used to classify patients into groups. CACS phenotypes were correlated with RFS and compared between groups. Groups' survival was estimated using Kaplan-Meier analysis. RESULTS Patients had low z-SMI (mean = -3.78 cm2/m2; SD: 8.88) and z-FMI (mean = 0.08 kg2/m2; SD: 56.25), and 62 (46.6%) had cachexia. EFA identified three factors: (F-1) IFN-γ, IL-1β, Il-4, IL-6, IL-10, IL-12, TGFβ1 (positive contribution), and IL-18 (negative); (F-2) IL-8, IL-18, MCP-1, TGFβ1, TNF-α (positive), and ghrelin (negative); and (F-3) TRAIL and leptin (positive), and TGFβ1 and adiponectin (negative). RFS-1 was associated with cachexia (P = 0.002); RFS-2, with higher CRP (P < 0.0001) and decreased physical function (P = 0.01); and RFS-3 with better appetite (P = 0.04), lower CRP (P = 0.002), higher z-SMI (P = 0.04) and z-FMI (P < 0.0001), and less cachexia characteristics (all P < 0.001). Four patient groups were identified with specific RFS clusters aligning with the CACS continuum from no cachexia to pre-cachexia, cachexia, and terminal cachexia. Compared to the other two groups, groups 1 and 2 had higher plasma levels of IL-18 and TRAIL. Group 1 also had lower inflammatory cytokines, adiponectin, and CRP compared to the other three groups. Group 3 had inflammatory cytokine levels similar to group 2, except for TNF-α and leptin which were lower. Group 4 had very high inflammatory cytokines, adiponectin, and CRP compared to the other 3 groups (all P < 0.0001). Groups 3 and 4 had worse cachexia characteristics (P < 0.05) and shorter survival (log rank: P = 0.0009) than the other two groups. CONCLUSIONS This exploratory study identified three distinct pathways of inflammation, or lack thereof, characterizing different CACS phenotypes.
Collapse
Affiliation(s)
- Bruno Gagnon
- Département de médecine familiale et de médecine d'urgence, Centre de recherche sur le cancerUniversité Laval, Centre de recherche du CHU de QuébecQuébecCanada
- Division of Clinical EpidemiologyMcGill University Health CentreMontrealCanada
| | - Jessica Murphy
- Division of Clinical EpidemiologyMcGill University Health CentreMontrealCanada
- Department of Health, Kinesiology, and Applied PhysiologyConcordia UniversityMontrealCanada
| | - David Simonyan
- Clinical and Evaluative Research PlatformUniversité Laval, Centre de recherche du CHU de QuébecQuébecCanada
| | - Claudia A. Penafuerte
- Cura TherapeuticsNEOMED InstituteSaint‐LaurentCanada
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| | - Jacinthe Sirois
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| | - Martin Chasen
- Departments of Medicine and Family and Community MedicineUniversity of TorontoTorontoCanada
- Department of Family MedicineMcMaster UniversityHamiltonCanada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| |
Collapse
|
15
|
Wang F. Interleukin‑18 binding protein: Biological properties and roles in human and animal immune regulation (Review). Biomed Rep 2024; 20:87. [PMID: 38665423 PMCID: PMC11040224 DOI: 10.3892/br.2024.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/11/2024] [Indexed: 04/28/2024] Open
Abstract
IL-18 binding protein (IL-18BP) is a natural regulatory molecule of the proinflammatory cytokine IL-18. It can regulate activity of IL-18 by high affinity binding. The present review aimed to highlight developments, characteristics and functions of IL-18BP. IL-18BP serves biological and anti-pathological roles in treating disease. In humans, it modulates progression of a number of chronic diseases, such as adult-onset Still's disease. The present review summarizes molecular structure, role of IL-18BP in disease and interaction with other proteins in important pathological processes.
Collapse
Affiliation(s)
- Fengxue Wang
- College of Veterinary Medicine, Key Laboratory for Clinical Diagnosis and Treatment of Animal Disease at the Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot 010018, P.R. China
| |
Collapse
|
16
|
Sang L, Gong X, Huang Y, Zhang L, Sun J. Immunotherapeutic implications on targeting the cytokines produced in rhinovirus-induced immunoreactions. FRONTIERS IN ALLERGY 2024; 5:1427762. [PMID: 38859875 PMCID: PMC11163110 DOI: 10.3389/falgy.2024.1427762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Rhinovirus is a widespread virus associated with several respiratory diseases, especially asthma exacerbation. Currently, there are no accurate therapies for rhinovirus. Encouragingly, it is found that during rhinovirus-induced immunoreactions the levels of certain cytokines in patients' serum will alter. These cytokines may have pivotal pro-inflammatory or anti-inflammatory effects via their specific mechanisms. Thus far, studies have shown that inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection can be applied to viruses of other species, with certain practicability.
Collapse
Affiliation(s)
- Le Sang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Xia Gong
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Yunlei Huang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Linling Zhang
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Jian Sun
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
17
|
Hu H, Wu A, Mu X, Zhou H. Role of Interleukin 1 Receptor 2 in Kidney Disease. J Interferon Cytokine Res 2024; 44:170-177. [PMID: 38527174 DOI: 10.1089/jir.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
The interleukin 1 (IL-1) family plays a significant role in the innate immune response. IL-1 receptor 2 (IL-1R2) is the decoy receptor of IL-1. It is a negative regulator that can be subdivided into membrane-bound and soluble types. IL-1R2 plays a role in the IL-1 family mainly through the following mechanisms: formation of inactive signaling complexes upon binding to the receptor auxiliary protein and inhibition of ligand IL-1 maturation. This review covers the roles of IL-1R2 in kidney disorders. Chronic kidney disease, acute kidney injury, lupus nephritis, IgA nephropathy, renal clear cell carcinoma, rhabdoid tumor of kidney, kidney transplantation, and kidney infection were all shown to have abnormal IL-1R2 expression. IL-1R2 may be a potential marker and a promising therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Huiyue Hu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Aihua Wu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaodie Mu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hua Zhou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
18
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Gleeson TA, Kaiser C, Lawrence CB, Brough D, Allan SM, Green JP. The NLRP3 inflammasome is essential for IL-18 production in a murine model of macrophage activation syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582284. [PMID: 38464243 PMCID: PMC10925192 DOI: 10.1101/2024.02.27.582284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin (IL)-18 and interferon (IFN)-γ. Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-DNA induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome, or downstream caspase-1, prevented MAS-mediated upregulation of plasma IL-18 but interestingly did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore IL-1 receptor blockade with IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that in the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18, a key cytokine in clinical cases of MAS, but was not a driving factor in the pathogenesis of CpG-induced MAS.
Collapse
Affiliation(s)
- Tara A Gleeson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | | | - Catherine B Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024; 16:AD.2024.0214-1. [PMID: 38421829 PMCID: PMC11745440 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Taheri M, Tehrani HA, Daliri F, Alibolandi M, Soleimani M, Shoari A, Arefian E, Ramezani M. Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy. Cytokine Growth Factor Rev 2024; 75:65-80. [PMID: 37813764 DOI: 10.1016/j.cytogfr.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Kim S, Yu H, Azam T, Dinarello CA. Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application. Immune Netw 2024; 24:e1. [PMID: 38455460 PMCID: PMC10917572 DOI: 10.4110/in.2024.24.e1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 03/09/2024] Open
Abstract
IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.
Collapse
Affiliation(s)
- Soohyun Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Hyeon Yu
- Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Tania Azam
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz, Aurora, CO 80045, USA
| | - Charles A. Dinarello
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Landy E, Carol H, Ring A, Canna S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat Rev Rheumatol 2024; 20:33-47. [PMID: 38081945 DOI: 10.1038/s41584-023-01053-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable 'free IL-18', defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called 'IL-18opathies'. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Emily Landy
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hallie Carol
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron Ring
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott Canna
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Rheumatology and Immune Dysregulation Program, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Zhang Y, Yang Y, Li H, Feng Q, Ge W, Xu X. Investigating the Potential Mechanisms and Therapeutic Targets of Inflammatory Cytokines in Post-stroke Depression. Mol Neurobiol 2024; 61:132-147. [PMID: 37592185 DOI: 10.1007/s12035-023-03563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Post-stroke depression (PSD) affects approximately one-third of stroke survivors, severely impacting general recovery and quality of life. Despite extensive studies, the exact mechanisms underlying PSD remain elusive. However, emerging evidence implicates proinflammatory cytokines, including interleukin-1β, interleukin-6, tumor necrosis factor-alpha, and interleukin-18, play critical roles in PSD development. These cytokines contribute to PSD through various mechanisms, including hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neurotransmitter alterations, neurotrophic factor changes, gut microbiota imbalances, and genetic predispositions. This review is aimed at exploring the role of cytokines in stroke and PSD while identifying their potential as specific therapeutic targets for managing PSD. A more profound understanding of the mechanisms regulating inflammatory cytokine expression and anti-inflammatory cytokines like interleukin-10 in PSD may facilitate the development of innovative interventions to improve outcomes for stroke survivors experiencing depression.
Collapse
Affiliation(s)
- Yutong Zhang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yuehua Yang
- Department of Neurology, Suzhou Yongding Hospital, Suzhou, 215028, China
| | - Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Qian Feng
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Ge
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China.
| | - Xingshun Xu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
25
|
Guo L, Chen X, Zeng H, Tian N, Lu W, Zhang J, Xiao Y. Production of recombinant human long-acting IL-18 binding protein: inhibitory effect on ulcerative colitis in mice. Appl Microbiol Biotechnol 2023; 107:7135-7150. [PMID: 37768347 DOI: 10.1007/s00253-023-12806-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Interleukin-18 binding protein (IL-18BP) is a natural IL-18 inhibitor in vivo, which can effectively neutralize IL-18 and inhibit the inflammatory signaling pathway induced by IL-18, thus playing an anti-inflammatory role. Traditional production methods primarily rely on eukaryotic animal cell expression systems, which often entail complex processes, lower yields, and increase production costs. In this study, we present a novel approach for expressing IL-18BP fusion protein using the Escherichia coli (E. coli) system. The N-terminal segment of IL-18BP was fused with the small ubiquitin-related modifier (SUMO) tag, enabling soluble expression, while the C-terminal segment was fused with the human IgG1 Fc fragment to prolong its in vivo lifespan. Through screening, we obtained a high-expression engineering strain from a single colony and developed optimized protocols for fermentation and purification of the recombinant SUMO-IL-18BP-Fc protein. The SUMO tag was subsequently cleaved using SUMO protease, and the purified recombinant human IL-18BP-Fc (rhIL-18BP-Fc) exhibited a purity exceeding 90% with a yield of 1 g per liter of bacterial solution. The biological activities and underlying mechanisms of rhIL-18BP-Fc were evaluated using cell lines and a mouse model. Our results demonstrated that rhIL-18BP-Fc effectively inhibited IL-18-stimulated IFN-γ production in KG-1a cells in vitro and ameliorated DSS-induced ulcerative colitis in mice. In conclusion, we successfully employed the SUMO fusion system to achieve high-level production, soluble expression, and prolonged activity of rhIL-18BP-Fc in E. coli. These findings lay the groundwork for future large-scale industrial production and pharmaceutical development of rhIL-18BP-Fc protein. KEY POINTS: • Effective expression, fermentation, and purification of bioactive rhIL-18BP-Fc protein in E. coli. • The rhIL-18BP-Fc protein has a great potential for the therapy of ulcerative colitis by inhibiting the expression of inflammatory factors.
Collapse
Affiliation(s)
- Lei Guo
- Department of Biotechnology, College of Basic Medical Science, Guangdong Medical University, Dongguan, 523808, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130021, China
| | - Xiuze Chen
- Department of Biotechnology, College of Basic Medical Science, Guangdong Medical University, Dongguan, 523808, China
| | - Haifeng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Na Tian
- Jilin Tuohua Biotechnology Co., LTD, Siping, 136001, China
| | - Weijie Lu
- Department of Biotechnology, College of Basic Medical Science, Guangdong Medical University, Dongguan, 523808, China
| | - Jizhou Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, 130021, China.
| | - Yechen Xiao
- Department of Biotechnology, College of Basic Medical Science, Guangdong Medical University, Dongguan, 523808, China.
- Jilin Tuohua Biotechnology Co., LTD, Siping, 136001, China.
| |
Collapse
|
26
|
Novick D. Conversation with Dr. Daniela Novick. J Interferon Cytokine Res 2023; 43:539-543. [PMID: 37878764 DOI: 10.1089/jir.2023.29057.int] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Affiliation(s)
- Daniela Novick
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Eeckhout E, Asaoka T, Van Gorp H, Demon D, Girard-Guyonvarc’h C, Andries V, Vereecke L, Gabay C, Lamkanfi M, van Loo G, Wullaert A. The autoinflammation-associated NLRC4 V341A mutation increases microbiota-independent IL-18 production but does not recapitulate human autoinflammatory symptoms in mice. Front Immunol 2023; 14:1272639. [PMID: 38090573 PMCID: PMC10713841 DOI: 10.3389/fimmu.2023.1272639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Background Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.
Collapse
Affiliation(s)
- Elien Eeckhout
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Tomoko Asaoka
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Hanne Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Dieter Demon
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Charlotte Girard-Guyonvarc’h
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Department of Pathology and Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Vanessa Andries
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Lars Vereecke
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Department of Pathology and Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
28
|
Tengesdal IW, Dinarello CA, Marchetti C. NLRP3 and cancer: Pathogenesis and therapeutic opportunities. Pharmacol Ther 2023; 251:108545. [PMID: 37866732 PMCID: PMC10710902 DOI: 10.1016/j.pharmthera.2023.108545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
More than a decade ago IL-1 blockade was suggested as an add-on therapy for the treatment of cancer. This proposal was based on the overall safety record of anti-IL-1 biologics and the anti-tumor properties of IL-1 blockade in animal models of cancer. Today, a new frontier in IL-1 activity regulation has developed with several orally active NLRP3 inhibitors currently in clinical trials, including cancer. Despite an increasing body of evidence suggesting a role of NLRP3 and IL-1-mediated inflammation driving cancer initiation, immunosuppression, growth, and metastasis, NLRP3 activation in cancer remains controversial. In this review, we discuss the recent advances in the understanding of NLRP3 activation in cancer. Further, we discuss the current opportunities for NLRP3 inhibition in cancer intervention with novel small molecules.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, Connors JM, De Caterina R, Abbate A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res 2023; 119:2046-2060. [PMID: 37253117 PMCID: PMC10893977 DOI: 10.1093/cvr/cvad084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023] Open
Abstract
Immunothrombosis-immune-mediated activation of coagulation-is protective against pathogens, but excessive immunothrombosis can result in pathological thrombosis and multiorgan damage, as in severe coronavirus disease 2019 (COVID-19). The NACHT-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome produces major proinflammatory cytokines of the interleukin (IL)-1 family, IL-1β and IL-18, and induces pyroptotic cell death. Activation of the NLRP3 inflammasome pathway also promotes immunothrombotic programs including release of neutrophil extracellular traps and tissue factor by leukocytes, and prothrombotic responses by platelets and the vascular endothelium. NLRP3 inflammasome activation occurs in patients with COVID-19 pneumonia. In preclinical models, NLRP3 inflammasome pathway blockade restrains COVID-19-like hyperinflammation and pathology. Anakinra, recombinant human IL-1 receptor antagonist, showed safety and efficacy and is approved for the treatment of hypoxaemic COVID-19 patients with early signs of hyperinflammation. The non-selective NLRP3 inhibitor colchicine reduced hospitalization and death in a subgroup of COVID-19 outpatients but is not approved for the treatment of COVID-19. Additional COVID-19 trials testing NLRP3 inflammasome pathway blockers are inconclusive or ongoing. We herein outline the contribution of immunothrombosis to COVID-19-associated coagulopathy, and review preclinical and clinical evidence suggesting an engagement of the NLRP3 inflammasome pathway in the immunothrombotic pathogenesis of COVID-19. We also summarize current efforts to target the NLRP3 inflammasome pathway in COVID-19, and discuss challenges, unmet gaps, and the therapeutic potential that inflammasome-targeted strategies may provide for inflammation-driven thrombotic disorders including COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Evan Garrad
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRAE, Marseille, France
- Division of Internal Medicine and Clinical Immunology, Assistance Publique - Hôpitaux de Marseille, Hôpital Conception, Aix-Marseille Université, Marseille, France
| | - Aldo Bonaventura
- Department of Internal Medicine, Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Jean Marie Connors
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaele De Caterina
- University Cardiology Division, Pisa University Hospital, Pisa, Italy
- Chair and Postgraduate School of Cardiology, University of Pisa, Pisa, Italy
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, Pescara, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, 415 Lane Rd (MR5), PO Box 801394, Charlottesville, VA 22903, USA
| |
Collapse
|
30
|
Dai Q, Zhang G, Wang Y, Ye L, Shi R, Peng L, Guo S, He J, Yang H, Zhang Y, Jiang Y. Cytokine network imbalance in children with B-cell acute lymphoblastic leukemia at diagnosis. Cytokine 2023; 169:156267. [PMID: 37320964 DOI: 10.1016/j.cyto.2023.156267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Immune imbalance has been proved to be involved in the pathogenesis of hematologic neoplasm. However, little research has been reported altered cytokine network in childhood B-cell acute lymphoblastic leukemia (B-ALL) at diagnosis. Our study aimed to evaluate the cytokine network in peripheral blood of newly diagnosed pediatric patients with B-ALL. Serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), interferon (IFN)-γ, and IL-17A in 45 children with B-ALL and 37 healthy control children were measured by cytometric bead array, while the level of transforming growth factor-β1 (TGF-β1) in the serum was measured by enzyme-linked immunosorbent assay. Patients showed a significant increase in IL-6 (p < 0.001), IL-10 (p < 0.001), IFN-γ (p = 0.023) and a significant reduction in TGF-β1 (p = 0.001). The levels of IL-2, IL-4, TNF and IL-17A were similar in the two groups. Higher concentrations of pro-inflammatory cytokines were associated with febrile in patients without apparent infection by using unsupervised machine learning algorithms. In conclusion, our results indicated a critical role for aberrant cytokine expression profiles in the progression of childhood B-ALL. Distinct cytokine subgroups with different clinical features and immune response have been identified in patients with B-ALL at the time of diagnosis.
Collapse
Affiliation(s)
- Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Hao Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yingjun Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstrtric & Gynecologic and Pediatric Disease and Birth Defects of Ministry of Education, China.
| |
Collapse
|
31
|
Borgonetti V, Cruz B, Vozella V, Khom S, Steinman MQ, Bullard R, D’Ambrosio S, Oleata CS, Vlkolinsky R, Bajo M, Zorrilla EP, Kirson D, Roberto M. IL-18 Signaling in the Rat Central Amygdala Is Disrupted in a Comorbid Model of Post-Traumatic Stress and Alcohol Use Disorder. Cells 2023; 12:1943. [PMID: 37566022 PMCID: PMC10416956 DOI: 10.3390/cells12151943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share dysregulated neuroimmune-related pathways. Here, we used our established rat model of comorbid post-traumatic stress disorder (PTSD)/AUD to characterize the interleukin 18 (IL-18) system in the central amygdala (CeA). Male and female rats underwent novel (NOV) and familiar (FAM) shock stress, or no stress (unstressed controls; CTL) followed by voluntary alcohol drinking and PTSD-related behaviors, then all received renewed alcohol access prior to the experiments. In situ hybridization revealed that the number of CeA positive cells for Il18 mRNA increased, while for Il18bp decreased in both male and female FAM stressed rats versus CTL. No changes were observed in Il18r1 expression across groups. Ex vivo electrophysiology showed that IL-18 reduced GABAA-mediated miniature inhibitory postsynaptic currents (mIPSCs) frequencies in CTL, suggesting reduced CeA GABA release, regardless of sex. Notably, this presynaptic effect of IL-18 was lost in both NOV and FAM males, while it persisted in NOV and FAM females. IL-18 decreased mIPSC amplitude in CTL female rats, suggesting postsynaptic effects. Overall, our results suggest that stress in rats with alcohol access impacts CeA IL-18-system expression and, in sex-related fashion, IL-18's modulatory function at GABA synapses.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Michael Q. Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Shannon D’Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Christopher S. Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92073, USA; (V.B.); (B.C.); (V.V.); (S.K.); (M.Q.S.); (R.B.); (S.D.); (C.S.O.); (R.V.); (M.B.); (E.P.Z.); (D.K.)
| |
Collapse
|
32
|
Yazıcı YY, Belkaya S, Timucin E. A small non-interface surface epitope in human IL18 mediates the dynamics and self-assembly of IL18-IL18BP heterodimers. Comput Struct Biotechnol J 2023; 21:3522-3531. [PMID: 37484491 PMCID: PMC10362265 DOI: 10.1016/j.csbj.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Interleukin 18 (IL18) is a pro-inflammatory cytokine that modulates innate and adaptive immune responses. IL18 activity is tightly controlled by the constitutively secreted IL18 binding protein (IL18BP). PDB structures of human IL18 showed that a short stretch of amino acids between 68 and 81 adopted a disordered conformation in all IL18-IL18BP complexes while adopting a 310 helical structure in other IL18 structures, including the receptor complexes. The C74 of human IL18, which was reported to form a novel intermolecular disulfide bond in the human tetrameric assembly, is also located in this short epitope. These observations reflected the importance of this short surface epitope for the structure and dynamics of the IL18-IL18BP heterodimers. We have analyzed all known IL18-IL18BP complexes in the PDB by all-atom MD simulations. The analysis also included two computed complex models adopting a helical structure for the surface epitope. Heterodimer simulations showed a stabilizing impact of the small surface region at the helical form by reducing flexibility of the complex backbone. Analysis of the symmetry-related human IL18-IL18BP tetramer showed that the unfolding of this small surface region also contributed to the IL18-IL18BP stability through a completely exposed C74 sidechain to form an intermolecular disulfide bond in the self-assembled human IL18-IL18BP dimer. Our findings showed how the conformation of the short IL18 epitope between amino acids 68 and 81 would affect IL18 activity by mediating the intermolecular interactions of IL18.
Collapse
Affiliation(s)
- Yılmaz Yücehan Yazıcı
- İhsan Doğramacı Bilkent University, Department of Molecular Biology and Genetics, Ankara 06800, Turkey
| | - Serkan Belkaya
- İhsan Doğramacı Bilkent University, Department of Molecular Biology and Genetics, Ankara 06800, Turkey
| | - Emel Timucin
- Acibadem University, School of Medicine, Department of Biostatistics and Medical Informatics, Istanbul 34752, Turkey
| |
Collapse
|
33
|
Fauteux-Daniel S, Merlo Pich LM, Girard-Guyonvarc’h C, Caruso A, Rodriguez E, Gabay C. The role of interleukin-18 and interleukin-18 binding protein in K/BxN serum transfer-induced arthritis. Front Immunol 2023; 14:1215364. [PMID: 37415987 PMCID: PMC10320286 DOI: 10.3389/fimmu.2023.1215364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Background Interleukin-18 is a proinflammatory cytokine, the activity of which is regulated by its natural inhibitor, IL-18 binding protein (IL-18BP). Elevated circulating levels of IL-18 have been observed in patients with systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD), two conditions associated with dysregulated innate immune responses. This study examines the expression and function of IL-18 and IL-18BP in K/BxN serum transfer arthritis (STA), a model that is uniquely dependent on innate immune responses. Methods Naïve and serum transfer-induced arthritis (STA) wild-type (WT) mice were used to examine the articular levels of IL-18 and IL-18BP mRNA by RT-qPCR. The cellular sources of IL-18BP in the joints were determined by using Il18bp-tdTomato reporter knock-in mice. The incidence and severity of arthritis, including mRNA levels of different cytokines, were compared in IL-18BP or IL-18 knock-out (KO) mice and their WT littermates. Results IL-18 and IL-18BP mRNA levels were significantly increased in arthritic as compared to normal joints. Synovial neutrophils, macrophages, and endothelial cells represented the cellular sources of IL-18BP in arthritic joints, whereas IL-18BP production was limited to endothelial cells in non-inflamed joints. The incidence and severity of arthritis were similar in IL-18BP KO and IL-18 KO compared to their WT littermates. Transcript levels of different inflammatory cytokines were not different in the two KO mouse lines compared to WT mice. Conclusion Although IL-18 and IL-18BP levels were increased in arthritic joints, our results show that the IL-18/IL-18BP balance is not involved in the regulation of STA.
Collapse
Affiliation(s)
- Sebastien Fauteux-Daniel
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Laura M. Merlo Pich
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Charlotte Girard-Guyonvarc’h
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Assunta Caruso
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Emiliana Rodriguez
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| |
Collapse
|
34
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
35
|
Ghezzi P, Fantuzzi G, Dinarello CA. Perspective: Daniela Novick, cytokines and their receptors. Front Immunol 2023; 14:1160651. [PMID: 37251377 PMCID: PMC10213776 DOI: 10.3389/fimmu.2023.1160651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
This Perspective highlights the work of Dr. Daniela Novick in the field of cytokine biology. Using affinity chromatography to characterize cytokine-binding proteins, she identified soluble forms of the receptors as well as binding proteins for several cytokines, including tumor necrosis factor, interleukin (IL) 6, IL-18 and IL-32. Importantly, her work has been key in the development of monoclonal antibodies against interferons and cytokines. This Perspective discusses her contribution to the field and highlights her recent review on this topic.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Department of Biomolecular Sciences, Università di Urbino, Urbino, Italy
| | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
36
|
Clark JT, Weizman OE, Aldridge DL, Shallberg LA, Eberhard J, Lanzar Z, Wasche D, Huck JD, Zhou T, Ring AM, Hunter CA. IL-18BP mediates the balance between protective and pathological immune responses to Toxoplasma gondii. Cell Rep 2023; 42:112147. [PMID: 36827187 PMCID: PMC10131179 DOI: 10.1016/j.celrep.2023.112147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Interleukin-18 (IL-18) promotes natural killer (NK) and T cell production of interferon (IFN)-γ, a key factor in resistance to Toxoplasma gondii, but previous work has shown a limited role for endogenous IL-18 in control of this parasite. Although infection with T. gondii results in release of IL-18, the production of IFN-γ induces high levels of the IL-18 binding protein (IL-18BP). Antagonism of IL-18BP with a "decoy-to-the-decoy" (D2D) IL-18 construct that does not signal but rather binds IL-18BP results in enhanced innate lymphoid cell (ILC) and T cell responses and improved parasite control. In addition, the use of IL-18 resistant to IL-18BP ("decoy-resistant" IL-18 [DR-18]) is more effective than exogenous IL-18 at promoting innate resistance to infection. DR-18 enhances CD4+ T cell production of IFN-γ but results in CD4+ T cell-mediated pathology. Thus, endogenous IL-18BP restrains aberrant immune pathology, and this study highlights strategies that can be used to tune this regulatory pathway for optimal anti-pathogen responses.
Collapse
Affiliation(s)
- Joseph T Clark
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Orr-El Weizman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Daniel L Aldridge
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Julia Eberhard
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Zachary Lanzar
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Devon Wasche
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Ting Zhou
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA.
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Yang YC, Chen SN, Gan Z, Huang L, Li N, Wang KL, Nie P. Functional characterization of IL-18 receptor subunits, IL-18Rα and IL-18Rβ, and its natural inhibitor, IL-18 binding protein (IL-18BP) in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104610. [PMID: 36496012 DOI: 10.1016/j.dci.2022.104610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
As an important proinflammation and immunomodulatory cytokine, IL-18 has been reported in several species of fish, but its receptor subunits, IL-18Rα and IL-18Rβ, and its decoy receptor, IL-18BP, have not been functionally characterized in fish. In the present study, IL-18Rα, IL-18Rβ and IL-18BP were cloned from rainbow trout Oncorhynchus mykiss, and they possess common conserved domains with their mammalian orthologues. In tested organs/tissues, IL-18Rα and IL-18Rβ exhibit basal expression levels, and IL-18BP has a pattern of constitutive expression. When transfected with different combinations of chimeric receptors in HEK293T cells, recombinant IL-18 (rIL-18) can induce the activation of NF-κB only when pcDNA3.1-IL-18Rα/IL-1R1 and pcDNA3.1-IL-18Rβ/IL-1RAP were both expressed. On the other hand, recombinant receptors, including rIL-18BP, rIL-18Rα-ECD-Fc and rIL-18Rβ-ECD-Fc can down-regulate significantly the activity of NF-κB, suggesting the participation of IL-18Rα, IL-18Rβ and IL-18BP in rainbow trout IL-18 signal transduction. Co-IP assays indicated that IL-18Rβ may form a complex with MyD88, IRAK4, IRAK1, TRAF6 and TAB2 in HEK293T cells, indicating that IL-18Rβ, in IL-18 signalling pathway, is associated with these signalling molecules. In conclusion, IL-18Rα, IL-18Rβ and IL-18BP in rainbow trout are conserved in function and signalling pathway with their mammalian orthologues.
Collapse
Affiliation(s)
- Yue Chong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - P Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
38
|
Agarwood Oil Nanoemulsion Attenuates Cigarette Smoke-Induced Inflammation and Oxidative Stress Markers in BCi-NS1.1 Airway Epithelial Cells. Nutrients 2023; 15:nu15041019. [PMID: 36839377 PMCID: PMC9959783 DOI: 10.3390/nu15041019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
Collapse
|
39
|
Novick D. A natural goldmine of binding proteins and soluble receptors simplified their translation to blockbuster drugs, all in one decade. Front Immunol 2023; 14:1151620. [PMID: 36875111 PMCID: PMC9980337 DOI: 10.3389/fimmu.2023.1151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Human urinary proteins are a goldmine of natural proteins a feature that simplifies their translation to biologics. Combining this goldmine together with the ligand-affinity-chromatography (LAC) purification method, proved a winning formula in their isolation. LAC specificity, efficiency, simplicity and inherent indispensability in the search for predictable and unpredictable proteins, is superior to other separation techniques. Unlimited amounts of recombinant cytokines and monoclonal antibodies (mAb) accelerated the "triumph". My approach concluded 35 years of worldwide pursuit for Type I IFN receptor (IFNAR2) and advanced the understanding of the signal transduction of this Type of IFN. TNF, IFNγ and IL-6 as baits enabled the isolation of their corresponding soluble receptors and N-terminal amino acid sequence of the isolated proteins facilitated the cloning of their cell surface counterparts. IL-18, IL-32, and heparanase as the baits yielded the corresponding unpredictable proteins: the antidote IL-18 Binding Protein (IL-18BP), the enzyme Proteinase 3 (PR3) and the hormone Resistin. IFNβ proved beneficial in Multiple Sclerosis and is a blockbuster drug, Rebif®. TNF mAbs translated into Remicade® to treat Crohn's disease. Enbrel® based on TBPII is for Rheumatoid Arthritis. Both are blockbusters. Tadekinig alfa™, a recombinant IL-18BP, is in phase III clinical study for inflammatory and autoimmune diseases. Seven years of continuous compassionate use of Tadekinig alfa™ in children born with mutations (NLRC4, XIAP) proved life-saving and is an example of tailored made medicine. IL-18 is a checkpoint biomarker in cancer and IL-18BP is planned recently to target cytokine storms resulting from CAR-T treatment and in COVID 19.
Collapse
Affiliation(s)
- Daniela Novick
- Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
40
|
Korol CB, Belkaya S, Alsohime F, Lorenzo L, Boisson-Dupuis S, Brancale J, Neehus AL, Vilarinho S, Zobaida A, Halwani R, Al-Muhsen S, Casanova JL, Jouanguy E. Fulminant Viral Hepatitis in Two Siblings with Inherited IL-10RB Deficiency. J Clin Immunol 2023; 43:406-420. [PMID: 36308662 PMCID: PMC9892130 DOI: 10.1007/s10875-022-01376-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 02/05/2023]
Abstract
Fulminant viral hepatitis (FVH) caused by hepatitis A virus (HAV) is a life-threatening disease that typically strikes otherwise healthy individuals. The only known genetic etiology of FVH is inherited IL-18BP deficiency, which unleashes IL-18-dependent lymphocyte cytotoxicity and IFN-γ production. We studied two siblings who died from a combination of early-onset inflammatory bowel disease (EOIBD) and FVH due to HAV. The sibling tested was homozygous for the W100G variant of IL10RB previously described in an unrelated patient with EOIBD. We show here that the out-of-frame IL10RB variants seen in other EOIBD patients disrupt cellular responses to IL-10, IL-22, IL-26, and IFN-λs in overexpression conditions and in homozygous cells. By contrast, the impact of in-frame disease-causing variants varies between cases. When overexpressed, the W100G variant impairs cellular responses to IL-10, but not to IL-22, IL-26, or IFN-λ1, whereas cells homozygous for W100G do not respond to IL-10, IL-22, IL-26, or IFN-λ1. As IL-10 is a potent antagonist of IFN-γ in phagocytes, these findings suggest that the molecular basis of FVH in patients with IL-18BP or IL-10RB deficiency may involve excessive IFN-γ activity during HAV infections of the liver. Inherited IL-10RB deficiency, and possibly inherited IL-10 and IL-10RA deficiencies, confer a predisposition to FVH, and patients with these deficiencies should be vaccinated against HAV and other liver-tropic viruses.
Collapse
Affiliation(s)
- Cecilia B Korol
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Ihan Dogramaci Bilkent University, Ankara, Turkey
| | - Fahad Alsohime
- Immunology Research Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Joseph Brancale
- Department of Internal Medicine, Section of Digestive Diseases, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alsum Zobaida
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Saleh Al-Muhsen
- Immunology Research Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York City, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, Paris Cité University, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Wang X, Wang L, Wen X, Zhang L, Jiang X, He G. Interleukin-18 and IL-18BP in inflammatory dermatological diseases. Front Immunol 2023; 14:955369. [PMID: 36742296 PMCID: PMC9889989 DOI: 10.3389/fimmu.2023.955369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-18, an interferon-γ inducer, belongs to the IL-1 family of pleiotropic pro-inflammatory factors, and IL-18 binding protein (IL-18BP) is a native antagonist of IL-18 in vivo, regulating its activity. Moreover, IL-18 exerts an influential function in host innate and adaptive immunity, and IL-18BP has elevated levels of interferon-γ in diverse cells, suggesting that IL-18BP is a negative feedback inhibitor of IL-18-mediated immunity. Similar to IL-1β, the IL-18 cytokine is produced as an indolent precursor that requires further processing into an active cytokine by caspase-1 and mediating downstream signaling pathways through MyD88. IL-18 has been implicated to play a role in psoriasis, atopic dermatitis, rosacea, and bullous pemphigoid in human inflammatory skin diseases. Currently, IL-18BP is less explored in treating inflammatory skin diseases, while IL-18BP is being tested in clinical trials for other diseases. Thereby, IL-18BP is a prospective therapeutic target.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Xian Jiang, ; Gu He,
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Xian Jiang, ; Gu He,
| |
Collapse
|
42
|
Lipinski B, Unmuth L, Arras P, Becker S, Bauer C, Toleikis L, Krah S, Doerner A, Yanakieva D, Boje AS, Klausz K, Peipp M, Siegmund V, Evers A, Kolmar H, Pekar L, Zielonka S. Generation and engineering of potent single domain antibody-based bispecific IL-18 mimetics resistant to IL-18BP decoy receptor inhibition. MAbs 2023; 15:2236265. [PMID: 37469014 PMCID: PMC10361135 DOI: 10.1080/19420862.2023.2236265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Here, we generated bispecific antibody (bsAb) derivatives that mimic the function of interleukin (IL)-18 based on single domain antibodies (sdAbs) specific to IL-18 Rα and IL-18 Rβ. For this, camelids were immunized, followed by yeast surface display (YSD)-enabled discovery of VHHs targeting the individual receptor subunits. Upon reformatting into a strictly monovalent (1 + 1) bispecific sdAb architecture, several bsAbs triggered dose-dependent IL-18 R downstream signaling on IL-18 reporter cells, as well as IFN-γ release by peripheral blood mononuclear cells in the presence of low-dose IL-12. However, compared with IL-18, potencies and efficacies were considerably attenuated. By engineering paratope valencies and the spatial orientation of individual paratopes within the overall design architecture, we were able to generate IL-18 mimetics displaying significantly augmented functionalities, resulting in bispecific cytokine mimetics that were more potent than IL-18 in triggering proinflammatory cytokine release. Furthermore, generated IL-18 mimetics were unaffected from inhibition by IL-18 binding protein decoy receptor. Essentially, we demonstrate that this strategy enables the generation of IL-18 mimetics with tailor-made cytokine functionalities.
Collapse
Affiliation(s)
- Britta Lipinski
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Laura Unmuth
- Early Protein Supply and Characterization (EPSC), Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization (EPSC), Merck Healthcare KGaA, Darmstadt, Germany
| | - Christina Bauer
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
| | - Lars Toleikis
- Early Protein Supply and Characterization (EPSC), Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
| | - Achim Doerner
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
| | - Desislava Yanakieva
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
| | - Ammelie Svea Boje
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katja Klausz
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University Kiel, Kiel, Germany
| | - Vanessa Siegmund
- Early Protein Supply and Characterization (EPSC), Merck Healthcare KGaA, Darmstadt, Germany
| | - Andreas Evers
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Antibody Discovery and Protein Engineering (ADPE), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
43
|
Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, Xiao M. Pharmacokinetic Study of rhIL-18BP and Its Effect on Radiation-Induced Cytokine Changes in Mouse Serum and Intestine. TOXICS 2022; 11:toxics11010035. [PMID: 36668761 PMCID: PMC9863660 DOI: 10.3390/toxics11010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 05/14/2023]
Abstract
Administration of recombinant human IL-18 binding protein (rhIL-18BP), a natural antagonist of IL-18, significantly increased mouse survival after lethal doses of irradiation. To further understand the roles of IL-18BP in radiation mitigation, we studied the pharmacokinetic (PK) parameters of rhIL-18BP, and the serum and intestinal cytokine changes in CD2F1 mice treated with vehicle or rhIL-18BP after 9.0 Gy total body irradiation (TBI). For the PK study, non-compartmental pharmacokinetic analysis was performed using PKsolver. Serum and intestine specimens were collected to measure 44-cytokine levels. Principal component analysis showed a clear separation of the non-irradiated samples from the irradiated samples; and partial separation with or without rhIL-18BP treatment. Cytokine clusters that were significantly correlated in the serum or intestine, respectively were identified. On the individual cytokine levels, serum and intestinal cytokines that were significantly changed by irradiation and rhIL-18BP treatment were identified. Finally, cytokines that were significantly correlated between their serum and intestinal levels were identified. The current study established the PK parameters of rhIL-18BP in mice, identified significantly changed cytokines in mouse serum and intestine after radiation exposure and rhIL-18BP treatment. Current data provide critical insights into IL-18BP's mechanism of action as a radiation mitigator.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| |
Collapse
|
44
|
González L, Rivera K, Andia ME, Martínez Rodriguez G. The IL-1 Family and Its Role in Atherosclerosis. Int J Mol Sci 2022; 24:17. [PMID: 36613465 PMCID: PMC9820551 DOI: 10.3390/ijms24010017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Katherine Rivera
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| | - Marcelo E. Andia
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| |
Collapse
|
45
|
Meng Q, Wu W, Zhang W, Yuan J, Yang L, Zhang X, Tao K. IL-18BP Improves Early Graft Function and Survival in Lewis-Brown Norway Rat Orthotopic Liver Transplantation Model. Biomolecules 2022; 12:biom12121801. [PMID: 36551229 PMCID: PMC9775331 DOI: 10.3390/biom12121801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-18 (IL-18) can effectively activate natural killer (NK) cells and induce large concentrations of interferon-γ (IFN-γ). In healthy humans, IL-18 binding protein (IL-18BP) can inhibit the binding of IL-18 to IL-18R and counteract the biological action of IL-18 due to its high concentration and high affinity, thus preventing the production of IFN-γ and inhibiting NK-cell activation. Through previous studies and the phenomena observed by our group in pig-non-human primates (NHPs) liver transplantation experiments, we proposed that the imbalance in IL-18/IL-18BP expression upon transplantation encourages the activation, proliferation, and cytotoxic effects of NK cells, ultimately causing acute vascular rejection of the graft. In this research, we used Lewis-Brown Norway rat orthotopic liver transplantation (OLTx) as a model of acute vascular rejection. AAV8-Il18bp viral vectors as gene delivery vehicles were constructed for gene therapy to overexpress IL-18BP and alleviate NK-cell rejection of the graft after transplantation. The results showed that livers overexpressing IL-18BP had reduced damage and could function longer after transplantation, effectively improving the survival time of the recipients.
Collapse
Affiliation(s)
- Qiang Meng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Weikang Wu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710032, China
| | - Juzheng Yuan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (X.Z.); (K.T.)
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (X.Z.); (K.T.)
| |
Collapse
|
46
|
Ambler WG, Nanda K, Onel KB, Shenoi S. Refractory systemic onset juvenile idiopathic arthritis: current challenges and future perspectives. Ann Med 2022; 54:1839-1850. [PMID: 35786149 PMCID: PMC9258439 DOI: 10.1080/07853890.2022.2095431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic juvenile idiopathic arthritis (SJIA) is a rare disease with distinct features not seen in other categories of juvenile idiopathic arthritis. In recent years, advances in the understanding of disease immunopathogenesis have led to improved targeted therapies with significant improvement in patient outcomes. Despite these advances, there remain subsets of SJIA with refractory disease and severe disease-associated complications. This review highlights existing options for treatment of refractory SJIA and explores potential future therapeutics for refractory disease.Key Points:Despite targeted Interleukin IL-1 and IL-6 inhibitors a subset of SJIA remains refractory to therapy. About 1 in 7 SJIA patients will be refractory to targeted IL-1 or IL-6 therapy.There is no current agreed upon definition for refractory SJIA and we propose in this review that refractory SJIA is presence of active systemic or arthritic features despite treatment with anti-IL-1 or anti-IL-6 therapy or disease requiring glucocorticoids for control beyond 6 months.SJIA disease associated complications include presence of associated macrophage activation syndrome (MAS), interstitial lung disease (ILD) or amyloidosis and management of each differs.Refractory SJIA treatment options currently include additional conventional synthetic disease modifying anti-rheumatic drugs (csDMARDS), biologic (bDMARDS), combination biologic therapy, targeted synthetic (tsDMARDS) or other immunomodulatory therapies.
Collapse
Affiliation(s)
- William G. Ambler
- Division of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Kabita Nanda
- Department of Pediatrics, Division of Rheumatology, University of Washington School of Medicine & Seattle Children’s Hospital, Seattle, WA, USA
| | - Karen Brandt Onel
- Division of Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Susan Shenoi
- Department of Pediatrics, Division of Rheumatology, University of Washington School of Medicine & Seattle Children’s Hospital, Seattle, WA, USA
| |
Collapse
|
47
|
Chen LH, Chan SH, Li CJ, Wu HM, Huang HY. Altered Expression of Interleukin-18 System mRNA at the Level of Endometrial Myometrial Interface in Women with Adenomyosis. Curr Issues Mol Biol 2022; 44:5550-5561. [PMID: 36354688 PMCID: PMC9689074 DOI: 10.3390/cimb44110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Adenomyosis is a uterine pathology characterized by a deep invasion of endometrial glands and stroma, disrupting the endometrial−myometrial interface (EMI). Interleukin-18 (IL-18) system is a dominant cytokine involved in the menstrual cycle of human endometrium. IL-18 may play a defensive role against maternal immune response in the uterine cavity. The present study was designed to determine IL-18-mediated immune response at the level of EMI. We uncovered that mRNA of IL-18 system, including IL-18, IL-18 receptor (IL-18R), and its antagonist, IL-18 binding protein (IL-18BP), expressed in eutopic, ectopic endometrium, and corresponding myometrium in patients with adenomyosis. IL-18 system was demonstrated in paired tissue samples by immunochemistry and immunofluorescence study. According to RT-PCR with CT value quantification and 2−∆∆Ct method, a significant down-regulation of IL-18BP in corresponding myometrium in comparison to eutopic endometrium (p < 0.05) indicates that the IL-18 system acts as a local immune modulator at the level of EMI and regulating cytokine networks in the pathogenesis of adenomyosis. Furthermore, an increased IL-18 antagonist to agonist ratio was noted in ectopic endometrium compared with corresponding myometrium. We suggest that altered IL-18 system expression contributes to immunological dysfunction and junctional zone disturbance in women with adenomyosis.
Collapse
Affiliation(s)
- Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - She-Hung Chan
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Cosmetic Science, Providence University, No. 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung 43301, Taiwan
| | - Chin-Jung Li
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
48
|
Wang Z, Li B, Li S, Lin W, Wang Z, Wang S, Chen W, Shi W, Chen T, Zhou H, Yinwang E, Zhang W, Mou H, Chai X, Zhang J, Lu Z, Ye Z. Metabolic control of CD47 expression through LAT2-mediated amino acid uptake promotes tumor immune evasion. Nat Commun 2022; 13:6308. [PMID: 36274066 PMCID: PMC9588779 DOI: 10.1038/s41467-022-34064-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy elicits tumor immune evasion with poorly characterized mechanisms. Here, we demonstrate that chemotherapy markedly enhances the expression levels of CD47 in osteosarcoma tissues, which are positively associated with patient mortality. We reveal that macrophages in response to chemotherapy secrete interleukin-18, which in turn upregulates expression of L-amino acid transporter 2 (LAT2) in tumor cells for substantially enhanced uptakes of leucine and glutamine, two potent stimulators of mTORC1. The increased levels of leucine and enhanced glutaminolysis activate mTORC1 and subsequent c-Myc-mediated transcription of CD47. Depletion of LAT2 or treatment of tumor cells with a LAT inhibitor downregulates CD47 with enhanced macrophage infiltration and phagocytosis of tumor cells, and sensitizes osteosarcoma to doxorubicin treatment in mice. These findings unveil a mutual regulation between macrophage and tumor cells that plays a critical role in tumor immune evasion and underscore the potential to intervene with the LAT2-mediated amino acid uptake for improving cancer therapies.
Collapse
Affiliation(s)
- Zenan Wang
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Binghao Li
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Shan Li
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Wenlong Lin
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Zhan Wang
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Shengdong Wang
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Weida Chen
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Wei Shi
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Tao Chen
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Hao Zhou
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Eloy Yinwang
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Wenkan Zhang
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Haochen Mou
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Xupeng Chai
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Jiahao Zhang
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| | - Zhimin Lu
- grid.13402.340000 0004 1759 700XDepartment of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XZhejiang University Cancer Center, Hangzhou, Zhejiang China
| | - Zhaoming Ye
- grid.13402.340000 0004 1759 700XDepartment of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XOrthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang China ,grid.412465.0Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang China
| |
Collapse
|
49
|
Shimizu M, Takei S, Mori M, Yachie A. Pathogenic roles and diagnostic utility of interleukin-18 in autoinflammatory diseases. Front Immunol 2022; 13:951535. [PMID: 36211331 PMCID: PMC9537046 DOI: 10.3389/fimmu.2022.951535] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin (IL)-18 is a pleiotropic, pro-inflammatory cytokine involved in the regulation of innate and adaptive immune responses. IL-18 has attracted increasing attention as a key mediator in autoinflammatory diseases associated with the development of macrophage activation syndrome (MAS) including systemic juvenile idiopathic arthritis and adult-onset Still’s disease. In these diseases, dysregulation of inflammasome activity and overproduction of IL-18 might be associated with the development of MAS by inducing natural killer cell dysfunction. Serum IL-18 levels are high in patients with these diseases and therefore are useful for the diagnosis and monitoring of disease activity. In contrast, a recent study revealed the overproduction of IL-18 was present in cases of autoinflammation without susceptibility to MAS such as pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. The pathogenic and causative roles of IL-18 remain unclear in these autoinflammatory diseases. Further investigations are necessary to clarify the role of IL-18 and its importance as a therapeutic target in the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Masaki Shimizu
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Masaki Shimizu,
| | - Syuji Takei
- Department of Pediatrics, Field of Developmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaaki Mori
- Department of Lifetime Clinical Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Yachie
- Division of Medical Safety, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
50
|
Gleeson TA, Nordling E, Kaiser C, Lawrence CB, Brough D, Green JP, Allan SM. Looking into the IL-1 of the storm: are inflammasomes the link between immunothrombosis and hyperinflammation in cytokine storm syndromes? DISCOVERY IMMUNOLOGY 2022; 1:kyac005. [PMID: 38566906 PMCID: PMC10917224 DOI: 10.1093/discim/kyac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 04/04/2024]
Abstract
Inflammasomes and the interleukin (IL)-1 family of cytokines are key mediators of both inflammation and immunothrombosis. Inflammasomes are responsible for the release of the pro-inflammatory cytokines IL-1β and IL-18, as well as releasing tissue factor (TF), a pivotal initiator of the extrinsic coagulation cascade. Uncontrolled production of inflammatory cytokines results in what is known as a "cytokine storm" leading to hyperinflammatory disease. Cytokine storms can complicate a variety of diseases and results in hypercytokinemia, coagulopathies, tissue damage, multiorgan failure, and death. Patients presenting with cytokine storm syndromes have a high mortality rate, driven in part by disseminated intravascular coagulation (DIC). While our knowledge on the factors propagating cytokine storms is increasing, how cytokine storm influences DIC remains unknown, and therefore treatments for diseases, where these aspects are a key feature are limited, with most targeting specific cytokines. Currently, no therapies target the immunothrombosis aspect of hyperinflammatory syndromes. Here we discuss how targeting the inflammasome and pyroptosis may be a novel therapeutic strategy for the treatment of hyperinflammation and its associated pathologies.
Collapse
Affiliation(s)
- Tara A Gleeson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Erik Nordling
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | | | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jack P Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|