1
|
Sun W, Liu H, Zhu H, Gao M, Xu S. Eucalyptol antagonized the apoptosis and immune dysfunction of grass carp hepatocytes induced by tetrabromobisphenol A by regulating ROS/ASK1/JNK pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:820-832. [PMID: 36629057 DOI: 10.1002/tox.23726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a common environmental pollutant which has multi-organ toxicity to mammals. Eucalyptol (EUC) has super antioxidant biological activity. However, in this experimental study, we probed into the mechanism of toxic of TBBPA exposure on Grass carp hepatocytes (L8824 cells) and the antagonistic impact of EUC on TBBPA. We treated L8824 cells with 8 μg/ml TBBPA and/or 20 μM EUC for 24 h in this test research. The experiment results suggested that TBBPA exposure induced elevated levels of reactive oxygen species (ROS), led to oxidative stress, decreased SOD and CAT activities, decreased GSH and T-AOC contents, exacerbated MDA accumulation, activated ASK1/JNK signaling pathway, and further increased the contents of mitochondrial dependent apoptosis pathway related indicators (Cyt-C, Bax, Caspase 9, Caspase 3), while Bcl-2 expression decreased. In addition, TBBPA exposure induced increased expression of TNF-α, IL-6, IL-1β, and decreased expression of IL-2, IFN-γ, Hepcidin, β-defensin, LEAP2. The oxidative stress level, ASK1/JNK signal pathway expression level, apoptosis ratio and cellular immune function of cells exposed to EUC alone did not change significantly. Combined exposure of TBBPA and EUC significantly reduced the proportion of apoptosis and restored cellular immune function. Therefore, these results suggest that EUC can effectively antagonize TBBPA-induced apoptosis and immune dysfunction of L8824 cells by regulating ROS/ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
2
|
Brennan CM, Hill AS, St. Andre M, Li X, Madeti V, Breitkopf S, Garren S, Xue L, Gilbert T, Hadjipanayis A, Monetti M, Emerson CP, Moccia R, Owens J, Christoforou N. DUX4 expression activates JNK and p38 MAP kinases in myoblasts. Dis Model Mech 2022; 15:dmm049516. [PMID: 36196640 PMCID: PMC10655719 DOI: 10.1242/dmm.049516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by misexpression of the DUX4 transcription factor in skeletal muscle that results in transcriptional alterations, abnormal phenotypes and cell death. To gain insight into the kinetics of DUX4-induced stresses, we activated DUX4 expression in myoblasts and performed longitudinal RNA sequencing paired with proteomics and phosphoproteomics. This analysis revealed changes in cellular physiology upon DUX4 activation, including DNA damage and altered mRNA splicing. Phosphoproteomic analysis uncovered rapid widespread changes in protein phosphorylation following DUX4 induction, indicating that alterations in kinase signaling might play a role in DUX4-mediated stress and cell death. Indeed, we demonstrate that two stress-responsive MAP kinase pathways, JNK and p38, are activated in response to DUX4 expression. Inhibition of each of these pathways ameliorated DUX4-mediated cell death in myoblasts. These findings uncover that the JNK pathway is involved in DUX4-mediated cell death and provide additional insights into the role of the p38 pathway, a clinical target for the treatment of FSHD.
Collapse
Affiliation(s)
- Christopher M. Brennan
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
- WRDM Postdoctoral Program, Pfizer Inc., Cambridge, MA 02139, USA
| | - Abby S. Hill
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | | - Xianfeng Li
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Vijaya Madeti
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Susanne Breitkopf
- Proteomics Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Seth Garren
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Liang Xue
- Machine Learning and Computational Science, Pfizer Inc., Cambridge, MA 02139, USA
| | - Tamara Gilbert
- High Content Imaging Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Angela Hadjipanayis
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Mara Monetti
- Proteomics Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Charles P. Emerson
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert Moccia
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
3
|
Anlotinib Benefits the αPDL1 Immunotherapy by Activating ROS/JNK/AP-1 Pathway to Upregulate PDL1 Expression in Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8965903. [PMID: 36238642 PMCID: PMC9553391 DOI: 10.1155/2022/8965903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Colorectal cancer (CRC) is one of the prevalent malignant tumors. This study is aimed at evaluating the mechanism of anlotinib (anlo) on tumor microenvironment (TME) in CRC, and its effects in combination with immune checkpoint inhibitors (ICIs) therapy. Firstly, MC38 and CT26 cells were both exposed to different gradient concentrations of anlo for 72 h, to investigate the cell viability and synergetic therapy efficacy with ICIs by CCK8. The results showed that anlo could obviously inhibit cell growth and showed no synergistic efficacy therapy in combination with αPDL1 in vitro. Then, we found the upregulation of programmed cell death ligand 1(PDL1) expression both in vitro and in vivo after anlo treatment. In vivo, anlo could enhance the percentage of natural killer (NK) cells and M1 macrophage cells and decrease the percentage of M2 macrophage cells in TME. Moreover, we explored the mechanism and we proved that anlo could activate reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling pathway to increase the expression levels of PDL1, IFN-α/β/γ, and CXCL2 in two cell lines in vitro. We also proved that anlo had synergistic effects with ICIs in vivo. Finally, it could also increase the mRNA and protein PDL1 expression levels in human cell lines, which was consistent with mouse CRC cell lines. However, there are still a few limitations. On one hand, the ROS/JNK/AP-1 pathway needs to be proved whether it can be activated in human cell lines. On the other hand, the mechanism behind ROS promoting phosphorylation of JNK needs to be explored.
Collapse
|
4
|
The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112756. [PMID: 35681736 PMCID: PMC9179436 DOI: 10.3390/cancers14112756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that metabolizes an essential amino acid tryptophan (Trp) into kynurenine (Kyn), and it promotes the occurrence of immunosuppressive effects by regulating the consumption of Trp and the accumulation of Kyn in the tumor microenvironment (TME). Recent studies have shown that the main cellular components of TME interact with each other through this pathway to promote the formation of tumor immunosuppressive microenvironment. Here, we review the role of the immunosuppression mechanisms mediated by the IDO1 pathway in tumor growth. We discuss obstacles encountered in using IDO1 as a new tumor immunotherapy target, as well as the current clinical research progress.
Collapse
|
5
|
Huang Y, Nie XM, Zhu ZJ, Zhang X, Li BZ, Ge JC, Ren Q. A novel JNK induces innate immune response by activating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. Mol Immunol 2021; 138:76-86. [PMID: 34364075 DOI: 10.1016/j.molimm.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
c-Jun NH2-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) that participates in the regulation of various physiological and pathological processes. In this study, we identified a novel JNK (EsJNK) and determined the cDNA sequence of its isoform (EsJNK-a) from the Chinese mitten crab Eriocheir sinensis. The open reading frame (ORF) of EsJNK was predicted to encode 421 peptides with a serine/threonine protein kinase, a catalytic (S_TKc) domain, and a low complexity region. The ORF of EsJNK-a was 1380 bp encoding a protein with 459 amino acids, which was 38 amino acids more than that of EsJNK. The predicted tertiary structure of EsJNK was conserved and contained 15 α-helices and 10 β-sheets. Phylogenetic tree analysis revealed that EsJNK was clustered with the JNK homologs of other crustaceans. Quantitative real-time PCR assays showed that EsJNK was expressed in all the tissues examined, but it was relatively higher in hemocytes, muscles, and intestines. The expression of EsJNK mRNA in the hemocytes was upregulated by lipopolysaccharides and peptidoglycans, as well as by Staphylococcus aureus or Vibrio parahaemolyticus challenge. Functionally, after silencing EsJNK by siRNA in crabs, the expression levels of two antimicrobial peptides (AMPs), namely, anti-lipopolysaccharide factor and crustin, were significantly inhibited. The purified recombinant EsJNK protein with His-tag accelerated the elimination of the aforementioned bacteria in vivo. However, knockdown of EsJNK had an opposite effect. These findings suggested that EsJNK might be involved in the antibacterial immune defense of crabs by regulating the transcription of AMPs.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Xi-Mei Nie
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zheng-Jie Zhu
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Bing-Zhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jia-Chun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
6
|
Taft J, Markson M, Legarda D, Patel R, Chan M, Malle L, Richardson A, Gruber C, Martín-Fernández M, Mancini GMS, van Laar JAM, van Pelt P, Buta S, Wokke BHA, Sabli IKD, Sancho-Shimizu V, Chavan PP, Schnappauf O, Khubchandani R, Cüceoğlu MK, Özen S, Kastner DL, Ting AT, Aksentijevich I, Hollink IHIM, Bogunovic D. Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death. Cell 2021; 184:4447-4463.e20. [PMID: 34363755 DOI: 10.1016/j.cell.2021.07.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022]
Abstract
TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.
Collapse
Affiliation(s)
- Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Markson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roosheel Patel
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Chan
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Louise Malle
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashley Richardson
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Conor Gruber
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marta Martín-Fernández
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Jan A M van Laar
- Department of Immunology, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Philomine van Pelt
- Department of Rheumatology, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beatrijs H A Wokke
- Department of Neurology, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Ira K D Sabli
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Pallavi Pimpale Chavan
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA; Pediatric Rheumatology, SRCC Children's Hospital, Mumbai, India
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Raju Khubchandani
- Pediatric Rheumatology, SRCC Children's Hospital, Mumbai, India; Consultant Pediatrician, Jaslok and Breach Candy Hospitals, Mumbai, India
| | | | - Seza Özen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Adrian T Ting
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Iris H I M Hollink
- Department of Clinical Genetics, Erasmus University Medical Center, 3015GD Rotterdam, the Netherlands
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Rojas JM, Avia M, Martín V, Sevilla N. Inhibition of the IFN Response by Bluetongue Virus: The Story So Far. Front Microbiol 2021; 12:692069. [PMID: 34168637 PMCID: PMC8217435 DOI: 10.3389/fmicb.2021.692069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bluetongue virus (BTV) is the prototypical orbivirus that belongs to the Reoviridae family. BTV infection produces a disease in ruminants, particularly in sheep, that results in economic losses through reduced productivity. BTV is transmitted by the bite of Culicoides spp. midges and is nowadays distributed globally throughout subtropical and even temperate regions. As most viruses, BTV is susceptible to the IFN response, the first line of defense employed by the immune system to combat viral infections. In turn, BTV has evolved strategies to counter the IFN response and promote its replication. The present review we will revise the works describing how BTV interferes with the IFN response.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A, Baghbanzadeh A, Baghi HB, Javadrashid D, Najafi S, Ar Gouilh M, Baradaran B. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch Virol 2021; 166:675-696. [PMID: 33462671 PMCID: PMC7812983 DOI: 10.1007/s00705-021-04958-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
The number of descriptions of emerging viruses has grown at an unprecedented rate since the beginning of the 21st century. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the third highly pathogenic coronavirus that has introduced itself into the human population in the current era, after SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Molecular and cellular studies of the pathogenesis of this novel coronavirus are still in the early stages of research; however, based on similarities of SARS-CoV-2 to other coronaviruses, it can be hypothesized that the NF-κB, cytokine regulation, ERK, and TNF-α signaling pathways are the likely causes of inflammation at the onset of COVID-19. Several drugs have been prescribed and used to alleviate the adverse effects of these inflammatory cellular signaling pathways, and these might be beneficial for developing novel therapeutic modalities against COVID-19. In this review, we briefly summarize alterations of cellular signaling pathways that are associated with coronavirus infection, particularly SARS-CoV and MERS-CoV, and tabulate the therapeutic agents that are currently approved for treating other human diseases.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Basira Najafzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne, EA2656 Université de Caen Normandie, Caen, France.
- Virology Lab, Department of Biology, Centre Hospitalier Universitaire de Caen, 14000, Caen, France.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Jha PK, Vijay A, Halu A, Uchida S, Aikawa M. Gene Expression Profiling Reveals the Shared and Distinct Transcriptional Signatures in Human Lung Epithelial Cells Infected With SARS-CoV-2, MERS-CoV, or SARS-CoV: Potential Implications in Cardiovascular Complications of COVID-19. Front Cardiovasc Med 2021; 7:623012. [PMID: 33521069 PMCID: PMC7844200 DOI: 10.3389/fcvm.2020.623012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative virus for the current global pandemic known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 belongs to the family of single-stranded RNA viruses known as coronaviruses, including the MERS-CoV and SARS-CoV that cause Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), respectively. These coronaviruses are associated in the way that they cause mild to severe upper respiratory tract illness. This study has used an unbiased analysis of publicly available gene expression datasets from Gene Expression Omnibus to understand the shared and unique transcriptional signatures of human lung epithelial cells infected with SARS-CoV-2 relative to MERS-CoV or SARS-CoV. A major goal was to discover unique cellular responses to SARS-CoV-2 among these three coronaviruses. Analyzing differentially expressed genes (DEGs) shared by the three datasets led to a set of 17 genes, suggesting the lower expression of genes related to acute inflammatory response (TNF, IL32, IL1A, CXCL1, and CXCL3) in SARS-CoV-2. This subdued transcriptional response to SARS-CoV-2 may cause prolonged viral replication, leading to severe lung damage. Downstream analysis of unique DEGs of SARS-CoV-2 infection revealed changes in genes related to apoptosis (NRP1, FOXO1, TP53INP1, CSF2, and NLRP1), coagulation (F3, PROS1, ITGB3, and TFPI2), and vascular function (VAV3, TYMP, TCF4, and NR2F2), which may contribute to more systemic cardiovascular complications of COVID-19 than MERS and SARS. The study has uncovered a novel set of transcriptomic signatures unique to SARS-CoV-2 infection and shared by three coronaviruses, which may guide the initial efforts in the development of prognostic or therapeutic tools for COVID-19.
Collapse
Affiliation(s)
- Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aatira Vijay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Arda Halu
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Aoyama-Ishiwatari S, Okazaki T, Iemura SI, Natsume T, Okada Y, Gotoh Y. NUDT21 Links Mitochondrial IPS-1 to RLR-Containing Stress Granules and Activates Host Antiviral Defense. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:154-163. [PMID: 33219146 DOI: 10.4049/jimmunol.2000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
Viral RNA in the cytoplasm of mammalian host cells is recognized by retinoic acid-inducible protein-I-like receptors (RLRs), which localize to cytoplasmic stress granules (SGs). Activated RLRs associate with the mitochondrial adaptor protein IPS-1, which activates antiviral host defense mechanisms, including type I IFN induction. It has remained unclear, however, how RLRs in SGs and IPS-1 in the mitochondrial outer membrane associate physically and engage in information transfer. In this study, we show that NUDT21, an RNA-binding protein that regulates alternative transcript polyadenylation, physically associates with IPS-1 and mediates its localization to SGs in response to transfection with polyinosinic-polycytidylic acid [poly(I:C)], a mimic of viral dsRNA. We found that despite its well-established function in the nucleus, a fraction of NUDT21 localizes to mitochondria in resting cells and becomes localized to SGs in response to poly(I:C) transfection. NUDT21 was also found to be required for efficient type I IFN induction in response to viral infection in both human HeLa cells and mouse macrophage cell line RAW264.7 cells. Our results together indicate that NUDT21 links RLRs in SGs to mitochondrial IPS-1 and thereby activates host defense responses to viral infection.
Collapse
Affiliation(s)
| | - Tomohiko Okazaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shun-Ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka 565-0874, Japan
- Department of Physics, Universal Biology Institute, Tokyo 113-0033, Japan; and
- International Research Center for Neurointelligence, World Premier International Research Center Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence, World Premier International Research Center Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Abstract
In Part One of this exploration of the pathogenesis of coronavirus disease (COVID-19), the author will evaluate the viral and cellular immunological basis for the condition. The virus demonstrates a remarkable capability not just to evade, but to exploit host immune characteristics to perpetuate viral replication. In this regard, severe acute respiratory syndrome (SARS)/severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disables most antiviral mechanisms, including the early interferon response, and avoids detection to permit unimpeded viral multiplication. Consequently, antigen-presenting cells fail to adequately stimulate the T-cell receptor. As a consequence, T-cell p53 remains highly expressed, which in turn disables an adequate effector T-cell response.
Replicating SARS-CoV-2 double-strand RNA robustly activates protein kinase R (PKR)/PKR-like endoplasmic reticulum kinase (PERK). While the virus is grossly invulnerable to its antiviral effects, PKR is crucial for effecting the cytokine milieu in COVID-19. PERK is a component of the unfolded protein response, which eventuates in autophagy. SARS virions use double-membrane vesicles and adapt PERK signalling not only to avoid autophagy, but to facilitate replication. Viral activation of PKR/PERK is mutually exclusive to NLRP3 stimulation. The NLRP3 pathway elaborates IL-1β. This is chiefly a feature of paediatric SARS/SARS-CoV-2 cases. The difficulties encountered in predicting outcome and forging effective therapeutics speaks to the breadth of complexity of the immunopathogenesis of this virus.
Collapse
Affiliation(s)
- Thomas Walsh
- Rheumatology Department, Harrogate and District Hospital, Harrogate, UK
| |
Collapse
|
12
|
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2020; 78:1423-1444. [PMID: 33084946 PMCID: PMC7576986 DOI: 10.1007/s00018-020-03671-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN induced antiviral activities.
Collapse
|
13
|
Hu J, Kong M, Cui Z, Gao Z, Ma C, Hu Z, Jiao X, Liu X. PA-X protein of H5N1 avian influenza virus inhibits NF-kappaB activity, a potential mechanism for PA-X counteracting the host innate immune responses. Vet Microbiol 2020; 250:108838. [PMID: 33045633 DOI: 10.1016/j.vetmic.2020.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
PA-X is a fusion protein of influenza virus which plays a crucial role in modulating influenza virus-induced host innate immune response and subsequent pathogenicity. However, the potential mechanism of PA-X regulation of the host innate immune response remains largely unknown. It is well known that NF-κB signal pathway is crucial for the immediate early step of immune responses activation, while the specific role of PA-X in NF-κB transcriptional activity is totally unknown. In this study, we initially showed that PA-X inhibits NF-κB transcription that stimulated by poly(I:C). We then further determined that the inhibitory effect on NF-κB activation mediated by PA-X was characterized by restricting NF-κB p65 nuclear translocation and nuclear NF-κB p65 activity but not by impeding the phosphorylation of NF-κB p65. Correspondingly, PA-X decreases the amount of NF-κB signaling pathway-associated genes, including TNF-α, Nos2, IL-6 and IL-2. Moreover, PA-X also suppresses both the mRNA and protein expression level of IFN-β, suggesting the direct contribution of PA-X to the inhibition of NF-κB-regulated IFN-β expression. Together, our study sheds light on the potential molecular mechanisms underlying the regulation of host NF-κB activity by PA-X and also identifies a novel functional role for PA-X in counteracting the host innate immune response. However, further exploration of the more elaborate mechanism of PA-X-mediated inhibition of NF-κB activity and the associated signaling pathway may help to elucidate its precise mechanism of evading and subverting the host immune response.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Ming Kong
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhu Cui
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Chunxi Ma
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
14
|
Aptamer based proteomic pilot study reveals a urine signature indicative of pediatric urinary tract infections. PLoS One 2020; 15:e0235328. [PMID: 32628701 PMCID: PMC7337308 DOI: 10.1371/journal.pone.0235328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Objective Current urinary tract infection (UTI) diagnostic strategies that rely on leukocyte esterase have limited accuracy. We performed an aptamer-based proteomics pilot study to identify urine protein levels that could differentiate a culture proven UTI from culture negative samples, regardless of pyuria status. Methods We analyzed urine from 16 children with UTIs, 8 children with culture negative pyuria and 8 children with negative urine culture and no pyuria. The urine levels of 1,310 proteins were quantified using the Somascan™ platform and normalized to urine creatinine. Machine learning with support vector machine (SVM)-based feature selection was performed to determine the combination of urine biomarkers that optimized diagnostic accuracy. Results Eight candidate urine protein biomarkers met filtering criteria. B-cell lymphoma protein, C-X-C motif chemokine 6, C-X-C motif chemokine 13, cathepsin S, heat shock 70kDA protein 1A, mitogen activated protein kinase, protein E7 HPV18 and transgelin. AUCs ranged from 0.91 to 0.95. The best prediction was achieved by the SVMs with radial basis function kernel. Conclusions Biomarkers panel can be identified by the emerging technologies of aptamer-based proteomics and machine learning that offer the potential to increase UTI diagnostic accuracy, thereby limiting unneeded antibiotics.
Collapse
|
15
|
Namineni S, O'Connor T, Faure-Dupuy S, Johansen P, Riedl T, Liu K, Xu H, Singh I, Shinde P, Li F, Pandyra A, Sharma P, Ringelhan M, Muschaweckh A, Borst K, Blank P, Lampl S, Neuhaus K, Durantel D, Farhat R, Weber A, Lenggenhager D, Kündig TM, Staeheli P, Protzer U, Wohlleber D, Holzmann B, Binder M, Breuhahn K, Assmus LM, Nattermann J, Abdullah Z, Rolland M, Dejardin E, Lang PA, Lang KS, Karin M, Lucifora J, Kalinke U, Knolle PA, Heikenwalder M. A dual role for hepatocyte-intrinsic canonical NF-κB signaling in virus control. J Hepatol 2020; 72:960-975. [PMID: 31954207 DOI: 10.1016/j.jhep.2019.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatic innate immune control of viral infections has largely been attributed to Kupffer cells, the liver-resident macrophages. However, hepatocytes, the parenchymal cells of the liver, also possess potent immunological functions in addition to their known metabolic functions. Owing to their abundance in the liver and known immunological functions, we aimed to investigate the direct antiviral mechanisms employed by hepatocytes. METHODS Using lymphocytic choriomeningitis virus (LCMV) as a model of liver infection, we first assessed the role of myeloid cells by depletion prior to infection. We investigated the role of hepatocyte-intrinsic innate immune signaling by infecting mice lacking canonical NF-κB signaling (IkkβΔHep) specifically in hepatocytes. In addition, mice lacking hepatocyte-specific interferon-α/β signaling-(IfnarΔHep), or interferon-α/β signaling in myeloid cells-(IfnarΔMyel) were infected. RESULTS Here, we demonstrate that LCMV activates NF-κB signaling in hepatocytes. LCMV-triggered NF-κB activation in hepatocytes did not depend on Kupffer cells or TNFR1 signaling but rather on Toll-like receptor signaling. LCMV-infected IkkβΔHep livers displayed strongly elevated viral titers due to LCMV accumulation within hepatocytes, reduced interferon-stimulated gene (ISG) expression, delayed intrahepatic immune cell influx and delayed intrahepatic LCMV-specific CD8+ T cell responses. Notably, viral clearance and ISG expression were also reduced in LCMV-infected primary hepatocytes lacking IKKβ, demonstrating a hepatocyte-intrinsic effect. Similar to livers of IkkβΔHep mice, enhanced hepatocytic LCMV accumulation was observed in livers of IfnarΔHep mice, whereas IfnarΔMyel mice were able to control LCMV infection. Hepatocytic NF-κB signaling was also required for efficient ISG induction in HDV-infected dHepaRG cells and interferon-α/β-mediated inhibition of HBV replication in vitro. CONCLUSIONS Together, these data show that hepatocyte-intrinsic NF-κB is a vital amplifier of interferon-α/β signaling, which is pivotal for strong early ISG responses, immune cell infiltration and hepatic viral clearance. LAY SUMMARY Innate immune cells have been ascribed a primary role in controlling viral clearance upon hepatic infections. We identified a novel dual role for NF-κB signaling in infected hepatocytes which was crucial for maximizing interferon responses and initiating adaptive immunity, thereby efficiently controlling hepatic virus replication.
Collapse
Affiliation(s)
- Sukumar Namineni
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Virology, Technical University of Munich and Helmholtz Zentrum München, Schneckenburgerstrasse 8, 81675 Munich, Germany; Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pål Johansen
- Department of Dermatology, University Hospital Zurich and University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaijing Liu
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Haifeng Xu
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Prashant Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätstr.1, 40225 Düsseldorf, Germany
| | - Fanghui Li
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Aleksandra Pandyra
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Piyush Sharma
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA, 38105
| | - Marc Ringelhan
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Virology, Technical University of Munich and Helmholtz Zentrum München, Schneckenburgerstrasse 8, 81675 Munich, Germany; Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Andreas Muschaweckh
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Sandra Lampl
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Katharina Neuhaus
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR 5286, Centre Léon Bérard, Lyon, France
| | - Rayan Farhat
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR 5286, Centre Léon Bérard, Lyon, France
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich and University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Peter Staeheli
- Institute of Virology, University of Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Virology, Technical University of Munich and Helmholtz Zentrum München, Schneckenburgerstrasse 8, 81675 Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Jacob Nattermann
- Department of Internal Medicine, University of Bonn, Bonn, Germany
| | | | - Maude Rolland
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, 4000 Liège, Belgium
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, 4000 Liège, Belgium
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätstr.1, 40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR 5286, Centre Léon Bérard, Lyon, France
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Virology, Technical University of Munich and Helmholtz Zentrum München, Schneckenburgerstrasse 8, 81675 Munich, Germany; Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Ismaningerstraße 22, 81675 Munich, Germany.
| |
Collapse
|
16
|
Qu F, Xu W, Deng Z, Xie Y, Tang J, Chen Z, Luo W, Xiong D, Zhao D, Fang J, Zhou Z, Liu Z. Fish c-Jun N-Terminal Kinase (JNK) Pathway Is Involved in Bacterial MDP-Induced Intestinal Inflammation. Front Immunol 2020; 11:459. [PMID: 32292404 PMCID: PMC7134542 DOI: 10.3389/fimmu.2020.00459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun NH2-terminal kinases (JNKs) are an evolutionarily conserved family of serine/threonine protein kinases that play critical roles in the pathological process in species ranging from insects to mammals. However, the function of JNKs in bacteria-induced intestinal inflammation is still poorly understood. In this study, a fish JNK (CiJNK) pathway was identified, and its potential roles in bacterial muramyl dipeptide (MDP)-induced intestinal inflammation were investigated in Ctenopharyngodon idella. The present CiJNK was found to possess a conserved dual phosphorylation motif (TPY) in a serine/threonine protein kinase (S_TKc) domain and to contain several potential immune-related transcription factor binding sites, including nuclear factor kappa B (NF-κB), activating protein 1 (AP-1), and signal transducer and activator of downstream transcription 3 (STAT3), in its 5′ flanking regions. Quantitative real-time PCR results revealed that the mRNA levels of the JNK pathway genes in the intestine were significantly upregulated after challenge with a bacterial pathogen (Aeromonas hydrophila) and MDP in a time-dependent manner. Additionally, the JNK pathway was found to be involved in regulating the MDP-induced expression levels of inflammatory cytokines (IL-6, IL-8, and TNF-α) in the intestine of grass carp. Moreover, the nutritional dipeptide carnosine and Ala–Gln could effectively alleviate MDP-induced intestinal inflammation by regulating the intestinal expression of JNK pathway genes and inflammatory cytokines in grass carp. Finally, fluorescence microscopy and dual-reporter assays indicated that CiJNK could associate with CiMKK4 and CiMKK7 involved in the regulation of the AP-1 signaling pathway. Overall, these results provide the first experimental demonstration that the JNK signaling pathway is involved in the intestinal immune response to MDP challenge in C. idella, which may provide new insight into the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenqian Xu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhangren Deng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yifang Xie
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhiguo Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Wenjie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Dafang Zhao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jiamei Fang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China.,Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Zharkov MI, Zenkova MA, Vlassov VV, Chernolovskaya EL. Molecular Mechanism of the Antiproliferative Activity of Short Immunostimulating dsRNA. Front Oncol 2020; 9:1454. [PMID: 31921696 PMCID: PMC6933605 DOI: 10.3389/fonc.2019.01454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022] Open
Abstract
Small double-stranded RNAs with certain sequence motifs are able to interact with pattern-recognition receptors and activate the innate immune system. Recently, we identified a set of short double-stranded 19-bp RNA molecules with 3-nucleotide 3′-overhangs that exhibited pronounced antiproliferative activity against cancer cells in vitro, and antitumor and antimetastatic activities in mouse models in vivo. The main objectives of this study were to identify the pattern recognition receptors that mediate the antiproliferative action of immunostimulating RNA (isRNA). Two cell lines, epidermoid carcinoma KB-3-1 cells and lung cancer A549 cells, were used in the study. These lines respond to the action of isRNA by a decrease in the growth rate, and in the case of A549 cells, also by a secretion of IL-6. Two sets of cell lines with selectively silenced genes encoding potential sensors and signal transducers of isRNA action were obtained on the basis of KB-3-1 and A549 cells. It was found that the selective silencing of PKR and RIG-I genes blocked the antiproliferative effect of isRNA, both in KB-3-1 and A549 cells, whereas the expression of MDA5 and IRF3 was not required for the antiproliferative action of isRNA. It was shown that, along with PKR and RIG-I genes, the expression of IRF3 also plays a role in isRNA mediated IL-6 synthesis in A549 cells. Thus, PKR and RIG-I sensors play a major role in the anti-proliferative signaling triggered by isRNA.
Collapse
Affiliation(s)
- Mikhail I Zharkov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Marina A Zenkova
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Valentin V Vlassov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
18
|
NF-κB Activation Promotes Alphavirus Replication in Mature Neurons. J Virol 2019; 93:JVI.01071-19. [PMID: 31554691 DOI: 10.1128/jvi.01071-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Alphaviruses are enveloped, positive-sense RNA viruses that are important causes of viral encephalomyelitis. Sindbis virus (SINV) infects the neurons of rodents and is a model for studying factors that regulate infection of neuronal cells. The outcome of alphavirus infection of the central nervous system is dependent on neuronal maturation status. Differentiated mature neurons survive and control viral replication better than undifferentiated immature neurons. The cellular factors involved in age-dependent susceptibility include higher levels of antiapoptotic and innate immune factors in mature neurons. Because NF-κB pathway activation is required for the initiation of both apoptosis and the host antiviral response, we analyzed the role of NF-κB during SINV infection of differentiated and undifferentiated rat neuronal cells. SINV infection induced canonical NF-κB activation, as evidenced by the degradation of IκBα and the phosphorylation and nuclear translocation of p65. Inhibition or deletion of the upstream IκB kinase substantially reduced SINV replication in differentiated but not in undifferentiated neuronal cells or mouse embryo fibroblasts. NF-κB inhibition did not affect the establishment of infection, replication complex formation, the synthesis of nonstructural proteins, or viral RNA synthesis in differentiated neurons. However, the translation of structural proteins was impaired, phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) was decreased, and host protein synthesis was maintained, suggesting that NF-κB activation was involved in the regulation of translation during infection of mature neurons. Inhibition or deletion of double-stranded RNA-activated protein kinase (PKR) also decreased eIF2α phosphorylation, the translation of viral structural proteins, and virus production. Therefore, canonical NF-κB activation synergizes with PKR to promote SINV replication in differentiated neurons by facilitating viral structural protein translation.IMPORTANCE Mosquito-borne alphaviruses are a significant and growing cause of viral encephalomyelitis worldwide. The outcome of alphaviral neuronal infections is host age dependent and greatly affected by neuronal maturation status, with differentiated, mature neurons being more resistant to infection than undifferentiated, immature neurons. The biological factors that change during neuronal maturation and that influence the outcome of viral infection are currently only partially defined. These studies investigated the role of NF-κB in determining the outcome of alphaviral infection in mature and immature neurons. Inhibition of canonical NF-κB activation decreased alphavirus replication in mature neurons by regulating protein synthesis and limiting the production of the viral structural proteins but had little effect on viral replication in immature neurons or fibroblasts. Therefore, NF-κB is a signaling pathway that influences the maturation-dependent outcome of alphaviral infection in neurons and that highlights the importance of cellular context in determining the effects of signal pathway activation.
Collapse
|
19
|
Polygalasaponin F treats mice with pneumonia induced by influenza virus. Inflammopharmacology 2019; 28:299-310. [PMID: 31446589 PMCID: PMC7102181 DOI: 10.1007/s10787-019-00633-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Influenza is an acute viral respiratory illness that causes high morbidity and mortality globally. Therapeutic actions are limited to vaccines and a few anti-viral drugs. Polygala (P.) japonica herba is rich in Polygalasaponin F (PSF, C53H86O23), used for acute bronchitis, pharyngitis, pneumonia, amygdalitis, and respiratory tract infections treatment in China. Hypercytokinemia is often correlated with severe pneumonia caused by several influenza viruses. PSF was reported to have anti-inflammatory effects and its mechanism is associated with the nuclear factor (NF)-κB signaling pathway. The action of PSF to alleviate pulmonary inflammation caused by influenza A virus (IAV) infection requires careful assessment. In the present study, we evaluated the effect and mechanism of PSF on mice with pneumonia caused by influenza H1N1 (A/FM/1/47). METHODS Mice were infected intranasally with fifteen 50% mouse lethal challenge doses (MLD50) of influenza virus. BALB/c mice were treated with PSF or oseltamivir (oral administration) for 2 h post-infection and received concomitant treatment for 5 days after infection. On day 6 post-infection, 10 mice per group were killed to collect related samples, measure body weight and lung wet weight, and detect the viral load, cytokine, prostaglandins, pathological changes, and cell pathway protein expression in the lungs. In addition, the survival experiments were carried out to investigate the survival of mice. The expression profile of cell pathway proteins was detected and analyzed using a broad pathway antibody array and confirmed the findings from the array by western blotting. RESULTS Polygalasaponin F and oseltamivir can protect against influenza viral infection in mice. PSF and oseltamivir significantly relieved the signs and symptoms, reduced body weight loss, and improved the survival rate of H1N1-infected mice. Moreover, PSF efficiently decreased the level of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, interferon (IFN)-γ, thromboxane A2 (TXA2), and prostaglandin E2 (PGE2) in lung tissues of mice infected with influenza virus (p < 0.05-0.01). Oseltamivir had a similar effect to lung cytokine of PSF, but did not decrease the levels of TXA2 and PGE2. There was a twofold or greater increase in four cell pathway protein, namely NF-κB p65 (2.68-fold), I-kappa-B-alpha (IκBα) (2.56-fold), and MAPK/ERK kinase 1 (MEK1) (7.15-fold) assessed in the array induced by influenza virus. Western blotting showed that the expression of these proteins was significantly decreased in lung after influenza virus challenge in PSF and oseltamivir-treated mice (p < 0.05-0.01). CONCLUSION Polygalasaponin F appears to be able to augment protection against IAV infection in mice via attenuation of pulmonary inflammatory responses. Its effect on IAV-induced pulmonary inflammation was associated with suppression of Raf/MEK/ERK and NF-κB expressions.
Collapse
|
20
|
Li ZW, Sun B, Gong T, Guo S, Zhang J, Wang J, Sugawara A, Jiang M, Yan J, Gurary A, Zheng X, Gao B, Xiao SY, Chen W, Ma C, Farrar C, Zhu C, Chan OTM, Xin C, Winnicki A, Winnicki J, Tang M, Park R, Winnicki M, Diener K, Wang Z, Liu Q, Chu CH, Arter ZL, Yue P, Alpert L, Hui GS, Fei P, Turkson J, Yang W, Wu G, Tao A, Ramos JW, Moisyadi S, Holcombe RF, Jia W, Birnbaumer L, Zhou X, Chu WM. GNAI1 and GNAI3 Reduce Colitis-Associated Tumorigenesis in Mice by Blocking IL6 Signaling and Down-regulating Expression of GNAI2. Gastroenterology 2019; 156:2297-2312. [PMID: 30836096 PMCID: PMC6628260 DOI: 10.1053/j.gastro.2019.02.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/06/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Interleukin 6 (IL6) and tumor necrosis factor contribute to the development of colitis-associated cancer (CAC). We investigated these signaling pathways and the involvement of G protein subunit alpha i1 (GNAI1), GNAI2, and GNAI3 in the development of CAC in mice and humans. METHODS B6;129 wild-type (control) or mice with disruption of Gnai1, Gnai2, and/or Gnai3 or conditional disruption of Gnai2 in CD11c+ or epithelial cells were given dextran sulfate sodium (DSS) to induce colitis followed by azoxymethane (AOM) to induce carcinogenesis; some mice were given an antibody against IL6. Feces were collected from mice, and the compositions of microbiomes were analyzed by polymerase chain reactions. Dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) isolated from spleen and colon tissues were analyzed by flow cytometry. We performed immunoprecipitation and immunoblot analyses of colon tumor tissues, MDSCs, and mouse embryonic fibroblasts to study the expression levels of GNAI1, GNAI2, and GNAI3 and the interactions of GNAI1 and GNAI3 with proteins in the IL6 signaling pathway. We analyzed the expression of Gnai2 messenger RNA by CD11c+ cells in the colonic lamina propria by PrimeFlow, expression of IL6 in DCs by flow cytometry, and secretion of cytokines in sera and colon tissues by enzyme-linked immunosorbent assay. We obtained colon tumor and matched nontumor tissues from 83 patients with colorectal cancer having surgery in China and 35 patients with CAC in the United States. Mouse and human colon tissues were analyzed by histology, immunoblot, immunohistochemistry, and/or RNA-sequencing analyses. RESULTS GNAI1 and GNAI3 (GNAI1;3) double-knockout (DKO) mice developed more severe colitis after administration of DSS and significantly more colonic tumors than control mice after administration of AOM plus DSS. Development of increased tumors in DKO mice was not associated with changes in fecal microbiomes but was associated with activation of nuclear factor (NF) κB and signal transducer and activator of transcription (STAT) 3; increased levels of GNAI2, nitric oxide synthase 2, and IL6; increased numbers of CD4+ DCs and MDSCs; and decreased numbers of CD8+ DCs. IL6 was mainly produced by CD4+/CD11b+, but not CD8+, DCs in DKO mice. Injection of DKO mice with a blocking antibody against IL6 reduced the expansion of MDSCs and the number of tumors that developed after CAC induction. Incubation of MDSCs or mouse embryonic fibroblasts with IL6 induced activation of either NF-κB by a JAK2-TRAF6-TAK1-CHUK/IKKB signaling pathway or STAT3 by JAK2. This activation resulted in expression of GNAI2, IL6 signal transducer (IL6ST, also called GP130) and nitric oxide synthase 2, and expansion of MDSCs; the expression levels of these proteins and expansion of MDSCs were further increased by the absence of GNAI1;3 in cells and mice. Conditional disruption of Gnai2 in CD11c+ cells of DKO mice prevented activation of NF-κB and STAT3 and changes in numbers of DCs and MDSCs. Colon tumor tissues from patients with CAC had reduced levels of GNAI1 and GNAI3 and increased levels of GNAI2 compared with normal tissues. Further analysis of a public human colorectal tumor DNA microarray database (GSE39582) showed that low Gani1 and Gnai3 messenger RNA expression and high Gnai2 messenger RNA expression were significantly associated with decreased relapse-free survival. CONCLUSIONS GNAI1;3 suppresses DSS-plus-AOM-induced colon tumor development in mice, whereas expression of GNAI2 in CD11c+ cells and IL6 in CD4+/CD11b+ DCs appears to promote these effects. Strategies to induce GNAI1;3, or block GNAI2 and IL6, might be developed for the prevention or therapy of CAC in patients.
Collapse
Affiliation(s)
- Zhi-Wei Li
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ting Gong
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Sheng Guo
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; Department of Endocrine, Genetics and Metabolism, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Zhang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; Department of Pediatrics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junlong Wang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Atsushi Sugawara
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Junjun Yan
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Alexandra Gurary
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Xin Zheng
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Bifeng Gao
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shu-Yuan Xiao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pathology, University of Chicago, Chicago, Illinois
| | - Wenlian Chen
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chi Ma
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Christine Farrar
- The Microscopy, Imaging, and Flow Cytometry Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chenjun Zhu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Owen T M Chan
- Pathology Core, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Can Xin
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Andrew Winnicki
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - John Winnicki
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Mingxin Tang
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ryan Park
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Mary Winnicki
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Katrina Diener
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zhanwei Wang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Qicai Liu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; Department of Cardiology and Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Catherine H Chu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Zhaohui L Arter
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Peibin Yue
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Lindsay Alpert
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - George S Hui
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Peiwen Fei
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - James Turkson
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Wentian Yang
- Department of Orthopedics, Rhode Island Hospital, Brown University Alpert Medical School, Providence, Rhode Island
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Randall F Holcombe
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Wei Jia
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; Institute for Biomedical Research (BIOMED), Universidad Católica Argentina, Buenos Aires, Argentina
| | - Xiqiao Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wen-Ming Chu
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii; The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Elbahesh H, Gerlach T, Saletti G, Rimmelzwaan GF. Response Modifiers: Tweaking the Immune Response Against Influenza A Virus. Front Immunol 2019; 10:809. [PMID: 31031778 PMCID: PMC6473099 DOI: 10.3389/fimmu.2019.00809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023] Open
Abstract
Despite causing pandemics and yearly epidemics that result in significant morbidity and mortality, our arsenal of options to treat influenza A virus (IAV) infections remains limited and is challenged by the virus itself. While vaccination is the preferred intervention strategy against influenza, its efficacy is reduced in the elderly and infants who are most susceptible to severe and/or fatal infections. In addition, antigenic variation of IAV complicates the production of efficacious vaccines. Similarly, effectiveness of currently used antiviral drugs is jeopardized by the development of resistance to these drugs. Like many viruses, IAV is reliant on host factors and signaling-pathways for its replication, which could potentially offer alternative options to treat infections. While host-factors have long been recognized as attractive therapeutic candidates against other viruses, only recently they have been targeted for development as IAV antivirals. Future strategies to combat IAV infections will most likely include approaches that alter host-virus interactions on the one hand or dampen harmful host immune responses on the other, with the use of biological response modifiers (BRMs). In principle, BRMs are biologically active agents including antibodies, small peptides, and/or other (small) molecules that can influence the immune response. BRMs are already being used in the clinic to treat malignancies and autoimmune diseases. Repurposing such agents would allow for accelerated use against severe and potentially fatal IAV infections. In this review, we will address the potential therapeutic use of different BRM classes to modulate the immune response induced after IAV infections.
Collapse
Affiliation(s)
- Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo), Hanover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo), Hanover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo), Hanover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo), Hanover, Germany
| |
Collapse
|
22
|
Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza Virus Infections and Cellular Kinases. Viruses 2019; 11:E171. [PMID: 30791550 PMCID: PMC6410056 DOI: 10.3390/v11020171] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses (IAVs) are a major cause of respiratory illness and are responsible for yearly epidemics associated with more than 500,000 annual deaths globally. Novel IAVs may cause pandemic outbreaks and zoonotic infections with, for example, highly pathogenic avian influenza virus (HPAIV) of the H5N1 and H7N9 subtypes, which pose a threat to public health. Treatment options are limited and emergence of strains resistant to antiviral drugs jeopardize this even further. Like all viruses, IAVs depend on host factors for every step of the virus replication cycle. Host kinases link multiple signaling pathways in respond to a myriad of stimuli, including viral infections. Their regulation of multiple response networks has justified actively targeting cellular kinases for anti-cancer therapies and immune modulators for decades. There is a growing volume of research highlighting the significant role of cellular kinases in regulating IAV infections. Their functional role is illustrated by the required phosphorylation of several IAV proteins necessary for replication and/or evasion/suppression of the innate immune response. Identified in the majority of host factor screens, functional studies further support the important role of kinases and their potential as host restriction factors. PKC, ERK, PI3K and FAK, to name a few, are kinases that regulate viral entry and replication. Additionally, kinases such as IKK, JNK and p38 MAPK are essential in mediating viral sensor signaling cascades that regulate expression of antiviral chemokines and cytokines. The feasibility of targeting kinases is steadily moving from bench to clinic and already-approved cancer drugs could potentially be repurposed for treatments of severe IAV infections. In this review, we will focus on the contribution of cellular kinases to IAV infections and their value as potential therapeutic targets.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
23
|
Canivet C, Rhéaume C, Lebel M, Piret J, Gosselin J, Boivin G. Both IRF3 and especially IRF7 play a key role to orchestrate an effective cerebral inflammatory response in a mouse model of herpes simplex virus encephalitis. J Neurovirol 2018; 24:761-768. [PMID: 30094631 DOI: 10.1007/s13365-018-0666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 11/26/2022]
Abstract
The impact of a deficiency in interferon regulatory factor (IRF)3 and IRF7 was evaluated in an herpes simplex virus encephalitis (HSE) model. Compared to wild type (WT), the mortality rates of infected IRF3-/- and IRF7-/- mice were higher and associated with increased brain viral titers. At a critical time post-infection, IRF7-/- mice exhibited a deficit in IFN-β production. At a later time point, levels of type I IFNs and cytokines were increased in brains of both deficient mice compared to WT. Our results suggest that IRF3, and especially IRF7, are important for an effective control of inflammatory responses during HSE.
Collapse
Affiliation(s)
- Coraline Canivet
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Chantal Rhéaume
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Manon Lebel
- Laboratory of Innate Immunology of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHU of Quebec and Laval University, 2705 Boul. Laurier, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
24
|
Sun J, Li Y, Li M, Liu Y, Qu C, Wang L, Song L. A novel JNK is involved in immune response by regulating IL expression in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 79:93-101. [PMID: 29751034 DOI: 10.1016/j.fsi.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
The c-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPK) highly conserved from yeast to mammals and participates in regulating many physiological and pathological processes. In the present study, a novel JNK was identified from oyster Crassostrea gigas (designated as CgJNK) and its biological functions were investigated in response against lipopolysaccharide (LPS) stimulation. The CgJNK consists of 415 amino acids, which includes a serine/threonine protein kinase (S_TKc) domain with a conserved Thr-Pro-Tyr (TPY) motif. Phylogenetic analysis revealed that CgJNK shared high similarity with other members of the JNK subfamily. CgJNK mRNA was detected in all the tested tissues and CgJNK mRNA expression levels in hemocytes were significantly up-regulated from 6 to 72 h after LPS stimulation and reached the highest level (16.1-fold, p < 0.01) at 24 h. The phosphorylation level of CgJNK in C. gigas hemocytes was increased at 2 h after LPS stimulation. The subcellular localization of CgJNK phosphorylation in hemocytes was analyzed after LPS stimulation, and CgJNK phosphorylation could be detected in both cytoplasm and nucleus of oyster hemocytes at 2 h post LPS stimulation. Additionally, the interleukins (CgILs) were detected in hemocytes of CgJNK-knockdown oysters. CgIL17-1, CgIL17-2, CgIL17-4 and CgIL17-6 transcripts were decreased significantly in CgJNK-knockdown oysters at 24 h post LPS stimulation. In summary, these results suggested that CgJNK played an important role in the immune response of oysters by regulating IL expression.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
25
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
26
|
Zhang H, Huang X, Shi Y, Liu W, He M. Identification and analysis of an MKK4 homologue in response to the nucleus grafting operation and antigens in the pearl oyster, Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2018; 73:279-287. [PMID: 29269289 DOI: 10.1016/j.fsi.2017.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4) is a key component of the c-Jun N-terminal kinase (JNK) signaling pathway and regulates multiple cellular activities. However, little is known about the roles of this kinase in pearl oyster. In this study, we identified an MKK4 homologue in Pinctada fucata by using a transcriptome database. Sequence analysis and protein structure prediction showed that PfMKK4 is highly conserved to MKK4 from other vertebrate and invertebrate species. Phylogenetic analysis revealed that PfMKK4 has the closest relationship with that from Crassostrea gigas. QPCR was used to investigate expression profiles in different healthy adult tissues and developmental stages of P. fucata. We found that PfMKK4 was ubiquitously expressed in all tissues and developmental stages examined except for in D-shaped larvae. Gene expression analysis suggested that PfMKK4 is involved in the response to the nucleus insertion operation. Lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid [poly(I:C)] stimulation in vivo reduced PfMKK4 mRNA expression at 6 h, 48 h and 48 h, 72 h, respectively. LPS and poly(I:C) induced PfMKK4 phosphorylation in a primary mantle cell culture. These results contribute to better understanding of the potential role played by PfMKK4 in protecting the pearl oyster from injury caused by grafting or disease.
Collapse
Affiliation(s)
- Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiande Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
27
|
Crosse KM, Monson EA, Beard MR, Helbig KJ. Interferon-Stimulated Genes as Enhancers of Antiviral Innate Immune Signaling. J Innate Immun 2017; 10:85-93. [PMID: 29186718 DOI: 10.1159/000484258] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/14/2017] [Indexed: 12/15/2022] Open
Abstract
The ability of a host to curb a viral infection is heavily reliant on the effectiveness of an initial antiviral innate immune response, resulting in the upregulation of interferon (IFN) and, subsequently, IFN-stimulated genes (ISGs). ISGs serve to mount an antiviral state within a host cell, and although the specific antiviral function of a number of ISGs has been characterized, the function of many of these ISGs remains to be determined. Recent research has uncovered a novel role for a handful of ISGs, some of them directly induced by IFN regulatory factor 3 in the absence of IFN itself. These ISGs, most with potent antiviral activity, are also able to augment varying arms of the innate immune response to viral infection, thereby strengthening this response. This new understanding of the role of ISGs may, in turn, help the recent advancement of novel therapeutics aiming to augment innate signaling pathways in an attempt to control viral infection and pathogenesis.
Collapse
Affiliation(s)
- Keaton M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
28
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
29
|
Wang H, Xu Q, Xu X, Hu Y, Hou Q, Zhu Y, Hu C. Ctenopharyngodon idella IKKβ interacts with PKR and IκBα. Acta Biochim Biophys Sin (Shanghai) 2017; 49:729-736. [PMID: 28673044 DOI: 10.1093/abbs/gmx065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibitor of nuclear factor kappa-B kinase β (IKKβ) is a subunit of the IKK complex. It can activate the NF-κB pathway through phosphorylating IκB in response to a wide range of stimuli. In the present study, an IKKβ gene from grass carp (Ctenopharyngodon idella; KT282114) was cloned and identified by homologous cloning and rapid-amplification of cDNA ends (RACE) technique. The complete CiIKKβ cDNA is 3428 bp in length, with the longest open reading frame (ORF) of 2337 bp encoding a polypeptide of 778 amino acids. The deduced amino acid sequence of CiIKKβ has similar domain distribution to those of mammalian. For example, CiIKKβ consists of a serine/threonine kinase domain at the N-terminal, a basic region leucin zipper (BRLZ) domain in the middle, a homeobox associated leucin zipper (HALZ) domain and an IKKβ NEMO (NF-κB essential modulator) binding domain at the C-terminal. Phylogenetic tree analysis also showed that CiIKKβ is highly homologous to zebrafish IKKβ (DrIKKβ) and clearly distinct from the mammalian and amphibian counterparts. The expression of CiIKKβ was ubiquitously found in the liver, intestine, kidney, gill, spleen, heart, and brain tissues of grass carp and significantly up-regulated in CIK cells under the stimulation with Poly I:C and UV-inactivated grass carp hemorrhagic virus. To investigate the activation mechanism of NF-κB pathway in fish and the role of CiIKKβ in the pathway, we explored the protein interactions of protein kinase R (PKR) with IKKβ and IKKβ with IκBα by co-immunoprecipitation and GST-pull down assays. The interaction between each pair was confirmed. The results suggest that CiIKKβ may be a primary member in the activation of NF-κB pathway in fish.
Collapse
Affiliation(s)
- Haizhou Wang
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| | - Qun Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Xiaowen Xu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Yousheng Hu
- Medical College, Jinggangshan University, Ji'an 343009, China
| | - Qunhao Hou
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Youlin Zhu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang 330031, China
| |
Collapse
|
30
|
Wang YS, Hsi E, Cheng HY, Hsu SH, Liao YC, Juo SHH. Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis. Oncotarget 2017; 8:101026-101041. [PMID: 29254143 PMCID: PMC5731853 DOI: 10.18632/oncotarget.18197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/29/2017] [Indexed: 12/15/2022] Open
Abstract
Transformation of macrophages to foam cells contributes to atherosclerosis. Here, we report that let-7g reduces macrophage transformation and alleviates foam cell apoptosis by suppressing both canonical and non-canonical NF-κB pathways. In the canonical pathway, let-7g inhibits phosphorylation of IKKβ and IκB, down-regulates SREBF2 and miR-33a, and up-regulates ABCA1. In the non-canonical pathway, let-7g directly knocks down MEKK1, IKKα and ablates IKKα phosphorylation. Let-7g's effects in macrophages can be almost completely blocked by inactivation of NF-κB signaling, which suggests that let-7g's effects are primarily mediated through the suppression of NF-κB pathways. NF-κB has been reported to directly activate lin28 transcription, and lin28 is a well-known negative regulator for let-7 biogenesis. Therefore, there is negative feedback between NF-κB and let-7g. Additional macrophages-specific NF-κB knockout in the apoE deficiency mice reduces atherosclerotic lesion by 85%. Let-7g also suppresses p53-dependent apoptosis. Altogether, sufficient let-7g levels are important to prevent NF-κB over-activation in macrophages and to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yung-Song Wang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Edward Hsi
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yun Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Suh-Hang H Juo
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
31
|
Qu F, Xiang Z, Xiao S, Wang F, Li J, Zhang Y, Zhang Y, Qin Y, Yu Z. c-Jun N-terminal kinase (JNK) is involved in immune defense against bacterial infection in Crassostrea hongkongensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:77-85. [PMID: 27840294 DOI: 10.1016/j.dci.2016.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/08/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
c-Jun N-terminal kinase (JNK) is a universal and essential subgroup of the mitogen-activated protein kinase (MAPK) superfamily, which is highly conserved from yeast to mammals and functions in a variety of physiological and pathological processes. In this study, we report the first oyster JNK gene homolog (ChJNK) and its biological functions in the Hong Kong oyster Crassostrea hongkongensis. The ChJNK protein consists of 383 amino acids and contains a conserved serine/threonine protein kinase (S_TKc) domain with a typical TPY motif. Phylogenetic analysis revealed that ChJNK shared a close evolutionary relationship with Crassostrea gigas JNK. Quantitative RT-PCR analyses revealed broad expression patterns of ChJNK mRNA in various adult tissues and different embryonic and larval stages of C. hongkongensis. When exposed to Vibrio alginolyticus or Staphylococcus haemolyticus, ChJNK mRNA expression levels were significantly up-regulated in the hemocytes and gills in a time-dependent manner. Additionally, subcellular localization studies that ChJNK is a cytoplasm-localized protein, and that its overexpression could significantly enhance the transcriptional activities of AP-1-Luc in HEK293T cells. In summary, this study provided the first experimental demonstration that oysters possess a functional JNK that participates in host defense against bacterial infection in C. hongkongensis.
Collapse
Affiliation(s)
- Fufa Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Fuxuan Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yanping Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
32
|
Abstract
Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to advance medicine.
Collapse
Affiliation(s)
- G Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
33
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
34
|
Guo M, Wei J, Zhou Y, Qin Q. Molecular clone and characterization of c-Jun N-terminal kinases 2 from orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2016; 49:355-363. [PMID: 26691306 DOI: 10.1016/j.fsi.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
c-Jun N-terminal kinase 2 (JNK2) is a multifunctional mitogen-activated protein kinases involving in cell differentiation and proliferation, apoptosis, immune response and inflammatory conditions. In this study, we reported a new JNK2 (Ec-JNK2) derived from orange-spotted grouper, Epinephelus coioides. The full-length cDNA of Ec-JNK2 was 1920 bp in size, containing a 174 bp 5'-untranslated region (UTR), 483 bp 3'-UTR, and a 1263 bp open reading frame (ORF), which encoded a putative protein of 420 amino acids. The deduced protein sequence of Ec-JNK2 contained a conserved Thr-Pro-Tyr (TPY) motif in the domain of serine/threonine protein kinase (S-TKc). Ec-JNK2 has been found to involve in the immune response to pathogen challenges in vivo, and the infection of Singapore grouper iridovirus (SGIV) in vitro. Immunofluorescence staining showed that Ec-JNK2 was localized in the cytoplasm of grouper spleen (GS) cells, and moved to the nucleus after infecting with SGIV. Ec-JNK2 distributed in all immune-related tissues examined. After challenging with lipopolysaccharide (LPS), SGIV and polyriboinosinic polyribocytidylic acid (poly I:C), the mRNA expression of Ec-JNK2 was significantly (P < 0.01) up-regulated in juvenile orange-spotted grouper. Over-expressing Ec-JNK2 in fathead minnow (FHM) cells increased the SGIV infection and replication, while over-expressing the dominant-negative Ec-JNK2Δ181-183 mutant decreased it. These results indicated that Ec-JNK2 could be an important molecule in the successful infection and evasion of SGIV.
Collapse
Affiliation(s)
- Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Yongcan Zhou
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China.
| |
Collapse
|
35
|
Makkoch J, Poomipak W, Saengchoowong S, Khongnomnan K, Praianantathavorn K, Jinato T, Poovorawan Y, Payungporn S. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1). Exp Biol Med (Maywood) 2015; 241:409-20. [PMID: 26518627 DOI: 10.1177/1535370215611764] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulation of gene silencing and are involved in many cellular processes including inhibition of infected viral replication. This study investigated cellular miRNA expression profiles operating in response to influenza virus in early stage of infection which might be useful for understanding and control of viral infection. A549 cells were infected with different subtypes of influenza virus (pH1N1, H3N2 and H5N1). After 24 h post-infection, miRNAs were extracted and then used for DNA library construction. All DNA libraries with different indexes were pooled together with equal concentration, followed by high-throughput sequencing based on MiSeq platform. The miRNAs were identified and counted from sequencing data by using MiSeq reporter software. The miRNAs expressions were classified into up and downregulated miRNAs compared to those found in non-infected cells. Mostly, each subtype of influenza A virus triggered the upregulated responses in miRNA expression profiles. Hsa-miR-101, hsa-miR-193b, hsa-miR-23b, and hsa-miR-30e* were upregulated when infected with all three subtypes of influenza A virus. Target prediction results showed that virus infection can trigger genes in cellular process, metabolic process, developmental process and biological regulation. This study provided some insights into the cellular miRNA profiling in response to various subtypes of influenza A viruses in circulation and which have caused outbreaks in human population. The regulated miRNAs might be involved in virus-host interaction or host defense mechanism, which should be investigated for effective antiviral therapeutic interventions.
Collapse
Affiliation(s)
- Jarika Makkoch
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Witthaya Poomipak
- Research affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | - Suthat Saengchoowong
- Joint Chulalongkorn University - University of Liverpool PhD Programme in Biomedical Sciences and Biotechnology, Bangkok 10330, Thailand
| | - Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand
| | | | - Thananya Jinato
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
36
|
Okazaki T, Higuchi M, Takeda K, Iwatsuki-Horimoto K, Kiso M, Miyagishi M, Yanai H, Kato A, Yoneyama M, Fujita T, Taniguchi T, Kawaoka Y, Ichijo H, Gotoh Y. The ASK family kinases differentially mediate induction of type I interferon and apoptosis during the antiviral response. Sci Signal 2015; 8:ra78. [PMID: 26243192 DOI: 10.1126/scisignal.aab1883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral infection activates host defense mechanisms, including the production of type I interferon (IFN) and the apoptosis of infected cells. We investigated whether these two antiviral responses were differentially regulated in infected cells. We showed that the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK) apoptosis signal-regulating kinase 1 (ASK1) was activated in cells by the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid [poly(I:C)] and by RNA viruses, and that ASK1 played an essential role in both the induction of the gene encoding IFN-β (IFNB) and apoptotic cell death. In contrast, we found that the MAPKKK ASK2, a modulator of ASK1 signaling, was essential for ASK1-dependent apoptosis, but not for inducing IFNB expression. Furthermore, genetic deletion of either ASK1 or ASK2 in mice promoted the replication of influenza A virus in the lung. These results indicated that ASK1 and ASK2 are components of the antiviral defense mechanism and suggested that ASK2 acts as a key modulator that promotes apoptosis rather than the type I IFN response. Because ASK2 is selectively present in epithelium-rich tissues, such as the lung, ASK2-dependent apoptosis may contribute to an antiviral defense in tissues with a rapid repair rate in which cells could be readily replaced.
Collapse
Affiliation(s)
- Tomohiko Okazaki
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Maiko Higuchi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohsuke Takeda
- Division of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology and Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan. Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 153-8505, Japan
| | - Atsushi Kato
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology and Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan. Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 153-8505, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan. Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Besbes A, Le Goff S, Antunes A, Terrade A, Hong E, Giorgini D, Taha MK, Deghmane AE. Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease. PLoS Pathog 2015; 11:e1005078. [PMID: 26241037 PMCID: PMC4524725 DOI: 10.1371/journal.ppat.1005078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/10/2015] [Indexed: 11/30/2022] Open
Abstract
Differential modulation of NF-κB during meningococcal infection is critical in innate immune response to meningococcal disease. Non-invasive isolates of Neisseria meningitidis provoke a sustained NF-κB activation in epithelial cells. However, the hyperinvasive isolates of the ST-11 clonal complex (ST-11) only induce an early NF-κB activation followed by a sustained activation of JNK and apoptosis. We show that this temporal activation of NF-κB was caused by specific cleavage at the C-terminal region of NF-κB p65/RelA component within the nucleus of infected cells. This cleavage was mediated by the secreted 150 kDa meningococcal ST-11 IgA protease carrying nuclear localisation signals (NLS) in its α-peptide moiety that allowed efficient intra-nuclear transport. In a collection of non-ST-11 healthy carriage isolates lacking NLS in the α-peptide, secreted IgA protease was devoid of intra-nuclear transport. This part of iga polymorphism allows non-invasive isolates lacking NLS, unlike hyperinvasive ST-11 isolates of N. meningitides habouring NLS in their α-peptide, to be carried asymptomatically in the human nasopharynx through selective eradication of their ability to induce apoptosis in infected epithelial cells.
Collapse
Affiliation(s)
- Anissa Besbes
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Salomé Le Goff
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Ana Antunes
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Aude Terrade
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Dario Giorgini
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | | | | |
Collapse
|
38
|
Zhou HR, He K, Landgraf J, Pan X, Pestka JJ. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins (Basel) 2014; 6:3406-25. [PMID: 25521494 PMCID: PMC4280541 DOI: 10.3390/toxins6123406] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/29/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR’s interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Kaiyu He
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeff Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA.
| | - Xiao Pan
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
39
|
Kolb JP, Casella CR, SenGupta S, Chilton PM, Mitchell TC. Type I interferon signaling contributes to the bias that Toll-like receptor 4 exhibits for signaling mediated by the adaptor protein TRIF. Sci Signal 2014; 7:ra108. [PMID: 25389373 PMCID: PMC4459894 DOI: 10.1126/scisignal.2005442] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by Toll-like receptor 4 (TLR4) is mediated by either of two adaptor proteins: myeloid differentiation marker 88 (MyD88) or Toll-interleukin-1 (IL-1) receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF). Whereas MyD88-mediated signaling leads to proinflammatory responses, TRIF-mediated signaling leads to less toxic immunostimulatory responses that are beneficial in boosting vaccine responses. The hypothesis that monophosphorylated lipid A structures act as TRIF-biased agonists of TLR4 offered a potential mechanism to explain their clinical value as vaccine adjuvants, but studies of TRIF-biased agonists have been contradictory. In experiments with mouse dendritic cells, we found that irrespective of the agonist used, TLR4 functioned as a TRIF-biased signaling system through a mechanism that depended on the autocrine and paracrine effects of type I interferons. The TLR4 agonist synthetic lipid A induced expression of TRIF-dependent genes at lower concentrations than were necessary to induce the expression of genes that depend on MyD88-mediated signaling. Blockade of type I interferon signaling selectively decreased the potency of lipid A (increased the concentration required) in inducing the expression of TRIF-dependent genes, thereby eliminating adaptor bias. These data may explain how high-potency TLR4 agonists can act as clinically useful vaccine adjuvants by selectively activating TRIF-dependent signaling events required for immunostimulation, without or only weakly activating potentially harmful MyD88-dependent inflammatory responses.
Collapse
Affiliation(s)
- Joseph P Kolb
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Carolyn R Casella
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Shuvasree SenGupta
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Paula M Chilton
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, 570 South Preston Street, Louisville, KY 40202, USA. Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
40
|
Cannon G, Callahan MA, Gronemus JQ, Lowy RJ. Early activation of MAP kinases by influenza A virus X-31 in murine macrophage cell lines. PLoS One 2014; 9:e105385. [PMID: 25166426 PMCID: PMC4148262 DOI: 10.1371/journal.pone.0105385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/23/2014] [Indexed: 12/17/2022] Open
Abstract
Early molecular responses to Influenza A (FLUA) virus strain A/X-31 H3N2 in macrophages were explored using J774.A1 and RAW 264.7 murine cell lines. NF-kappa B (NFκB) was reported to be central to FLUA host-response in other cell types. Our data showed that FLUA activation of the classical NFκB dependent pathway in these macrophages was minimal. Regulator proteins, IkappaB-alpha and -beta (IκBα, IκBβ), showed limited degradation peaking at 2 h post FLUA exposure and p65 was not observed to translocate from the cytoplasm to the nucleus. Additionally, the non-canonical NFκB pathway was not activated in response to FLUA. The cells did display early increases in TNFα and other inflammatory cytokine and chemokine production. Mitogen activated phosphokinase (MAPK) signaling pathways are also reported to control production of inflammatory cytokines in response to FLUA. The activation of the MAPKs, cJun kinases 1 and 2 (JNK 1/2), extracellular regulated kinases 1 and 2 (ERK 1/2), and p38 were investigated in both cell lines between 0.25 and 3 h post-infection. Each of these kinases showed increased phosphorylation post FLUA exposure. JNK phosphorylation occurred early while p38 phosphorylation appeared later. Phosphorylation of ERK 1/2 occurred earlier in J774.A1 cells compared to RAW 264.7 cells. Inhibition of MAPK activation resulted in decreased production of most FLUA responsive cytokines and chemokines in these cells. The results suggest that in these monocytic cells the MAPK pathways are important in the early response to FLUA.
Collapse
Affiliation(s)
- Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Michelle A. Callahan
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jenny Q. Gronemus
- Central Accessing Unit, American Type Culture Collection, Manassas, Virginia, United States of America
| | - R. Joel Lowy
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
41
|
Jones Buie JN, Oates JC. Role of interferon alpha in endothelial dysfunction: insights into endothelial nitric oxide synthase-related mechanisms. Am J Med Sci 2014; 348:168-75. [PMID: 24796291 PMCID: PMC4526236 DOI: 10.1097/maj.0000000000000284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the production of autoantibodies against nuclear antigens such as double-stranded DNA. Lupus predominantly affects women (ratio, 9:1). Moreover, premenopausal women with SLE are 50 times more likely to have a myocardial infarction. Although specific risk factors for advanced cardiovascular complications have not been identified in this patient population, endothelial dysfunction is highly prevalent. Recent studies show that the type I interferon signature gene expression coincides with impaired brachial artery flow-mediated dilation and diminished endothelial progenitor cell circulation, both markers of impaired endothelial function. Although many factors promote the development of vascular endothelial dysfunction, all pathways converge on the diminished activity of endothelial nitric oxide synthase (eNOS) and loss of nitric oxide (NO) bioavailability. Studies examining the effects of type I interferons on eNOS and NO in SLE are missing. This literature review examines the current literature regarding the role of type I interferons in cardiovascular disease and its known effects on regulators of eNOS and NO bioavailability that are important for proper endothelial cell function.
Collapse
Affiliation(s)
- Joy N Jones Buie
- Division of Rheumatology and Immunology in the Department of Medicine, Medical University of South Carolina; and Division of Rheumatology and Immunology (JNJB, JCO), Department of Microbiology and Immunology, Medical Research Service of the Ralph H. Johnson VAMC, The Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
42
|
Feng Q, Langereis MA, van Kuppeveld FJM. Induction and suppression of innate antiviral responses by picornaviruses. Cytokine Growth Factor Rev 2014; 25:577-85. [PMID: 25086453 PMCID: PMC7172595 DOI: 10.1016/j.cytogfr.2014.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
The family Picornaviridae comprises of small, non-enveloped, positive-strand RNA viruses and contains many human and animal pathogens including enteroviruses (e.g. poliovirus, coxsackievirus, enterovirus 71 and rhinovirus), cardioviruses (e.g. encephalomyocarditis virus), hepatitis A virus and foot-and-mouth disease virus. Picornavirus infections activate a cytosolic RNA sensor, MDA5, which in turn, induces a type I interferon response, a crucial component of antiviral immunity. Moreover, picornaviruses activate the formation of stress granules (SGs), large aggregates of preassembled mRNPs (messenger ribonucleoprotein particles) to temporarily store these molecules upon cellular stress. Meanwhile, picornaviruses actively suppress these antiviral responses to ensure efficient replication. In this review we provide an overview of the induction and suppression of the MDA5-mediated IFN-α/β response and the cellular stress pathway by picornaviruses.
Collapse
Affiliation(s)
- Qian Feng
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584CL Utrecht, The Netherlands
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584CL Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, 3584CL Utrecht, The Netherlands.
| |
Collapse
|
43
|
Melo AM, Benatti RO, Ignacio-Souza LM, Okino C, Torsoni AS, Milanski M, Velloso LA, Torsoni MA. Hypothalamic endoplasmic reticulum stress and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy and lactation. Metabolism 2014; 63:682-92. [PMID: 24636055 DOI: 10.1016/j.metabol.2014.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The goal of this study was to determine the presence early of markers of endoplasmic reticulum stress (ERS) and insulin resistance in the offspring from dams fed HFD (HFD-O) or standard chow diet (SC-O) during pregnancy and lactation. MATERIALS/METHODS To address this question, we evaluated the hypothalamic and hepatic tissues in recently weaned mice (d28) and the hypothalamus of newborn mice (d0) from dams fed HFD or SC during pregnancy and lactation. RESULTS Body weight, adipose tissue mass, and food intake were more accentuated in HFD-O mice than in SC-O mice. In addition, intolerance to glucose and insulin was higher in HFD-O mice than in SC-O mice. Compared with SC-O mice, levels of hypothalamic IL1-β mRNA, NFκB protein, and p-JNK were increased in HFD-O mice. Furthermore, compared with SC-O mice, hypothalamic AKT phosphorylation after insulin challenge was reduced, while markers of ERS (p-PERK, p-eIF2α, XBP1s, GRP78, and GRP94) and p-AMPK were increased in the hypothalamic tissue of HFD-O at d28 but not at d0. These damages to hypothalamic signaling were accompanied by increased triglyceride deposits, activation of NFκB, p-JNK, p-PERK and p-eIF2α. CONCLUSION These point out lactation period as maternal trigger for metabolic changes in the offspring. These changes may occur early and quietly contribute to obesity and associated pathologies in adulthood. Although in rodents the establishment of ARC neuronal projections occurs during the lactation period, in humans it occurs during the third trimester. Gestational diabetes and obesity in this period may contribute to impairment of energy homeostasis.
Collapse
Affiliation(s)
- Arine M Melo
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Rafaela O Benatti
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | | | - Caroline Okino
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Adriana S Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil; Center for Studies of lipid in Nutrigenomic, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil; Center for Studies of lipid in Nutrigenomic, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil
| | - Licio A Velloso
- Laboratoty of Cell Signaling, Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas-UNICAMP, Campinas, São Paulo, Brasil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil; Center for Studies of lipid in Nutrigenomic, Faculty of Applied Sciences, University of Campinas -UNICAMP, Limeira, São Paulo, Brasil.
| |
Collapse
|
44
|
Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci 2013; 70:3493-511. [PMID: 23354059 PMCID: PMC11113696 DOI: 10.1007/s00018-012-1252-6] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 12/16/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023]
Abstract
Cell signaling in response to an array of diverse stress stimuli converges on the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2). Phosphorylation of eIF2α on serine 51 results in a severe decline in de novo protein synthesis and is an important strategy in the cell's armory against stressful insults including viral infection, the accumulation of misfolded proteins, and starvation. The phosphorylation of eIF2α is carried out by a family of four kinases, PERK (PKR-like ER kinase), PKR (protein kinase double-stranded RNA-dependent), GCN2 (general control non-derepressible-2), and HRI (heme-regulated inhibitor). Each primarily responds to a distinct type of stress or stresses. Thus, while significant sequence similarity exists between the eIF2α kinases in their kinase domains, underlying their common role in phosphorylating eIF2α, additional unique features determine the regulation of these four proteins, that is, what signals activate them. This review will describe the structure of each eIF2α kinase and discuss how this is linked to their activation and function. In parallel to the general translational attenuation elicited by eIF2α kinase activation the translation of stress-induced mRNAs, most notably activating transcription factor 4 (ATF4) is enhanced and these set in motion cascades of gene expression constituting the integrated stress response (ISR), which seek to remediate stress and restore homeostasis. Depending on the cellular context and concurrent signaling pathways active, however, translational attenuation can also facilitate apoptosis. Accordingly, the role of the kinases in determining cell fate will also be discussed.
Collapse
Affiliation(s)
- Neysan Donnelly
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
- Present Address: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, 82152 Germany
| | - Adrienne M. Gorman
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Sanjeev Gupta
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
45
|
Liu Y, Lu N, Yuan B, Weng L, Wang F, Liu YJ, Zhang Z. The interaction between the helicase DHX33 and IPS-1 as a novel pathway to sense double-stranded RNA and RNA viruses in myeloid dendritic cells. Cell Mol Immunol 2013; 11:49-57. [PMID: 24037184 DOI: 10.1038/cmi.2013.40] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, there are at least 60 members of the DExD/H helicase family, many of which are able to sense viral nucleic acids. By screening all known family members, we identified the helicase DHX33 as a novel double-stranded RNA (dsRNA) sensor in myeloid dendritic cells (mDCs). The knockdown of DHX33 using small heteroduplex RNA (shRNA) blocked the ability of mDCs to produce type I interferon (IFN) in response to poly I:C and reovirus. The HELICc domain of DHX33 was shown to bind poly I:C. The interaction between DHX33 and IPS-1 is mediated by the HELICc region of DHX33 and the C-terminal domain of IPS-1 (also referred to MAVS and VISA). The inhibition of DHX33 expression by RNA interference blocked the poly I:C-induced activation of MAP kinases, NF-κB and IRF3. The interaction between the helicase DHX33 and IPS-1 was independent of RIG-I/MDA5 and may be a novel pathway for sensing poly I:C and RNA viruses in mDCs.
Collapse
Affiliation(s)
- Ying Liu
- Department of Infectious Diseases, The First Hospital, Jilin University, Changchun, China
| | - Ning Lu
- Department of Immunology, Center for Cancer Immunology Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Department of Immunology, Center for Cancer Immunology Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leiyun Weng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
| | - Feng Wang
- Department of Infectious Diseases, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
| | - Zhiqiang Zhang
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
| |
Collapse
|
46
|
Cunningham CA, Knudson KM, Peng BJ, Teixeiro E, Daniels MA. The POSH/JIP-1 scaffold network regulates TCR-mediated JNK1 signals and effector function in CD8+T cells. Eur J Immunol 2013; 43:3361-71. [DOI: 10.1002/eji.201343635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/15/2013] [Accepted: 08/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Cody A. Cunningham
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Karin M. Knudson
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Binghao J. Peng
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| |
Collapse
|
47
|
Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. PLoS One 2013; 8:e66796. [PMID: 23805279 PMCID: PMC3689682 DOI: 10.1371/journal.pone.0066796] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2013] [Indexed: 01/07/2023] Open
Abstract
Human protein kinases (HPKs) have profound effects on cellular responses. To better understand the role of HPKs and the signaling networks that influence influenza virus replication, a small interfering RNA (siRNA) screen of 720 HPKs was performed. From the screen, 17 HPKs (NPR2, MAP3K1, DYRK3, EPHA6, TPK1, PDK2, EXOSC10, NEK8, PLK4, SGK3, NEK3, PANK4, ITPKB, CDC2L5 (CDK13), CALM2, PKN3, and HK2) were validated as essential for A/WSN/33 influenza virus replication, and 6 HPKs (CDK13, HK2, NEK8, PANK4, PLK4 and SGK3) were identified as vital for both A/WSN/33 and A/New Caledonia/20/99 influenza virus replication. These HPKs were found to affect multiple host pathways and regulated by miRNAs induced during infection. Using a panel of miRNA agonists and antagonists, miR-149* was found to regulate NEK8 expression, miR-548d-3p was found to regulate MAPK1 transcript expression, and miRs -1228 and -138 to regulate CDK13 expression. Up-regulation of miR-34c induced PLK4 transcript and protein expression and enhanced influenza virus replication, while miR-34c inhibition reduced viral replication. These findings identify HPKs important for influenza viral replication and show the miRNAs that govern their expression.
Collapse
|
48
|
Walther AE, Mohanty SK, Donnelly B, Coots A, McNeal M, Tiao GM. Role of myeloid differentiation factor 88 in Rhesus rotavirus-induced biliary atresia. J Surg Res 2013; 184:322-9. [PMID: 23768919 DOI: 10.1016/j.jss.2013.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biliary atresia (BA) is a unique neonatal disease resulting from inflammatory and fibrosing obstruction of the extrahepatic biliary tree. Previous studies have demonstrated the critical role of innate immunity and the Th1 response to activated inflammatory cells and overexpressed cytokines in the pathogenesis of BA. Myeloid differentiation factor 88 (MyD88) is a critical adaptor molecule that has been shown to play a crucial role in immunity. We investigated the role of MyD88 in the inflammatory response and development of cholangiopathy in murine BA. METHODS MyD88 knockout (MyD88(-/-)) and wild-type (WT) BALB/c pups were injected with Rhesus rotavirus or saline on day 1 of life. The mice were monitored for clinical symptoms of BA, including jaundice, acholic stools, bilirubinuria, and death. The liver and extrahepatic bile ducts were harvested for histologic evaluation and the quantification of viral content, determination of cytokine expression, and detection of inflammatory cells. RESULTS Rhesus rotavirus infection produced symptoms in 100% of both MyD88(-/-) and WT pups, with survival of 18% of WT and 0% of MyD88(-/-) mice. Histologic analysis demonstrated bile duct obstruction in both MyD88(-/-) and WT mice. Viral titers obtained 7 d after infection and expression of interferon-γ and tumor necrosis factor-α at day 3, 5, 8, and 12 after infection revealed no significant differences between the WT and MyD88(-/-) mice. Flow cytometry demonstrated similar levels of activated CD8+ T cells and natural killer cells. CONCLUSIONS The pathogenesis of murine BA is independent of the MyD88 signaling inflammatory pathway, suggesting alternative mechanisms are crucial in the induction of the model.
Collapse
Affiliation(s)
- Ashley E Walther
- Department of Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
49
|
Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Res 2013; 98:457-68. [DOI: 10.1016/j.antiviral.2013.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/23/2013] [Accepted: 04/08/2013] [Indexed: 01/04/2023]
|
50
|
MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J Virol 2013; 87:6314-25. [PMID: 23536668 DOI: 10.1128/jvi.03213-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Virus infection can initiate a type I interferon (IFN-α/β) response via activation of the cytosolic RNA sensors retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Furthermore, it can activate kinases that phosphorylate eukaryotic translation initiation factor 2α (eIF2α), which leads to inhibition of (viral) protein translation and formation of stress granules (SG). Most viruses have evolved mechanisms to suppress these cellular responses. Here, we show that a mutant mengovirus expressing an inactive leader (L) protein, which we have previously shown to be unable to suppress IFN-α/β, triggered SG formation in a protein kinase R (PKR)-dependent manner. Furthermore, we show that infection of cells that are defective in SG formation yielded higher viral RNA levels, suggesting that SG formation acts as an antiviral defense mechanism. Since the induction of both IFN-α/β and SG is suppressed by mengovirus L, we set out to investigate a potential link between these pathways. We observed that MDA5, the intracellular RNA sensor that recognizes picornaviruses, localized to SG. However, activation of the MDA5 signaling pathway did not trigger and was not required for SG formation. Moreover, cells that were unable to form SG-by protein kinase R (PKR) depletion, using cells expressing a nonphosphorylatable eIF2α protein, or by drug treatment that inhibits SG formation-displayed a normal IFN-α/β response. Thus, although MDA5 localizes to SG, this localization seems to be dispensable for induction of the IFN-α/β pathway.
Collapse
|