1
|
Sattler A, Gamradt S, Proß V, Thole LML, He A, Schrezenmeier EV, Jechow K, Gold SM, Lukassen S, Conrad C, Kotsch K. CD3 downregulation identifies high-avidity, multipotent SARS-CoV-2 vaccine- and recall antigen-specific Th cells with distinct metabolism. JCI Insight 2024; 9:e166833. [PMID: 38206757 PMCID: PMC11143931 DOI: 10.1172/jci.insight.166833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.
Collapse
Affiliation(s)
- Arne Sattler
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Stefanie Gamradt
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
| | - Vanessa Proß
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Linda Marie Laura Thole
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - An He
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Eva Vanessa Schrezenmeier
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Katharina Jechow
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Stefan M. Gold
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
- Universitätsklinikum Hamburg Eppendorf, Institut für Neuroimmunologie und Multiple Sklerose, Hamburg, Germany
| | - Sören Lukassen
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Christian Conrad
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Katja Kotsch
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| |
Collapse
|
2
|
Liu C, Zhou J, Kudlacek S, Qi T, Dunlap T, Cao Y. Population dynamics of immunological synapse formation induced by bispecific T cell engagers predict clinical pharmacodynamics and treatment resistance. eLife 2023; 12:e83659. [PMID: 37490053 PMCID: PMC10368424 DOI: 10.7554/elife.83659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/01/2023] [Indexed: 07/26/2023] Open
Abstract
Effector T cells need to form immunological synapses (IS) with recognized target cells to elicit cytolytic effects. Facilitating IS formation is the principal pharmacological action of most T cell-based cancer immunotherapies. However, the dynamics of IS formation at the cell population level, the primary driver of the pharmacodynamics of many cancer immunotherapies, remains poorly defined. Using classic immunotherapy CD3/CD19 bispecific T cell engager (BiTE) as our model system, we integrate experimental and theoretical approaches to investigate the population dynamics of IS formation and their relevance to clinical pharmacodynamics and treatment resistance. Our models produce experimentally consistent predictions when defining IS formation as a series of spatiotemporally coordinated events driven by molecular and cellular interactions. The models predict tumor-killing pharmacodynamics in patients and reveal trajectories of tumor evolution across anatomical sites under BiTE immunotherapy. Our models highlight the bone marrow as a potential sanctuary site permitting tumor evolution and antigen escape. The models also suggest that optimal dosing regimens are a function of tumor growth, CD19 expression, and patient T cell abundance, which confer adequate tumor control with reduced disease evolution. This work has implications for developing more effective T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Stephan Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
3
|
McAuley GE, Yiu G, Chang PC, Newby GA, Campo-Fernandez B, Fitz-Gibbon ST, Wu X, Kang SHL, Garibay A, Butler J, Christian V, Wong RL, Everette KA, Azzun A, Gelfer H, Seet CS, Narendran A, Murguia-Favela L, Romero Z, Wright N, Liu DR, Crooks GM, Kohn DB. Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell 2023; 186:1398-1416.e23. [PMID: 36944331 PMCID: PMC10876291 DOI: 10.1016/j.cell.2023.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.
Collapse
Affiliation(s)
- Grace E McAuley
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gloria Yiu
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick C Chang
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sorel T Fitz-Gibbon
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaomeng Wu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sung-Hae L Kang
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amber Garibay
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey Butler
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Valentina Christian
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan L Wong
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelcee A Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Anthony Azzun
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hila Gelfer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S Seet
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aru Narendran
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Luis Murguia-Favela
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Zulema Romero
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicola Wright
- Department of Pediatrics, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Gay M Crooks
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Teppert K, Wang X, Anders K, Evaristo C, Lock D, Künkele A. Joining Forces for Cancer Treatment: From "TCR versus CAR" to "TCR and CAR". Int J Mol Sci 2022; 23:14563. [PMID: 36498890 PMCID: PMC9739809 DOI: 10.3390/ijms232314563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
T cell-based immunotherapy has demonstrated great therapeutic potential in recent decades, on the one hand, by using tumor-infiltrating lymphocytes (TILs) and, on the other hand, by engineering T cells to obtain anti-tumor specificities through the introduction of either engineered T cell receptors (TCRs) or chimeric antigen receptors (CARs). Given the distinct design of both receptors and the type of antigen that is encountered, the requirements for proper antigen engagement and downstream signal transduction by TCRs and CARs differ. Synapse formation and signal transduction of CAR T cells, despite further refinement of CAR T cell designs, still do not fully recapitulate that of TCR T cells and might limit CAR T cell persistence and functionality. Thus, deep knowledge about the molecular differences in CAR and TCR T cell signaling would greatly advance the further optimization of CAR designs and elucidate under which circumstances a combination of both receptors would improve the functionality of T cells for cancer treatment. Herein, we provide a comprehensive review about similarities and differences by directly comparing the architecture, synapse formation and signaling of TCRs and CARs, highlighting the knowns and unknowns. In the second part of the review, we discuss the current status of combining CAR and TCR technologies, encouraging a change in perspective from "TCR versus CAR" to "TCR and CAR".
Collapse
Affiliation(s)
- Karin Teppert
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Xueting Wang
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Kathleen Anders
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - César Evaristo
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Annette Künkele
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
5
|
Tristán-Manzano M, Maldonado-Pérez N, Justicia-Lirio P, Muñoz P, Cortijo-Gutiérrez M, Pavlovic K, Jiménez-Moreno R, Nogueras S, Carmona MD, Sánchez-Hernández S, Aguilar-González A, Castella M, Juan M, Marañón C, Marchal JA, Benabdellah K, Herrera C, Martin F. Physiological lentiviral vectors for the generation of improved CAR-T cells. Mol Ther Oncolytics 2022; 25:335-349. [PMID: 35694446 PMCID: PMC9163403 DOI: 10.1016/j.omto.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/07/2022] [Indexed: 10/29/2022] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR)-T cells have achieved impressive outcomes for the treatment of relapsed and refractory B-lineage neoplasms. However, important limitations still remain due to severe adverse events (i.e., cytokine release syndrome and neuroinflammation) and relapse of 40%-50% of the treated patients. Most CAR-T cells are generated using retroviral vectors with strong promoters that lead to high CAR expression levels, tonic signaling, premature exhaustion, and overstimulation, reducing efficacy and increasing side effects. Here, we show that lentiviral vectors (LVs) expressing the transgene through a WAS gene promoter (AW-LVs) closely mimic the T cell receptor (TCR)/CD3 expression kinetic upon stimulation. These AW-LVs can generate improved CAR-T cells as a consequence of their moderate and TCR-like expression profile. Compared with CAR-T cells generated with human elongation factor α (EF1α)-driven-LVs, AW-CAR-T cells exhibited lower tonic signaling, higher proportion of naive and stem cell memory T cells, less exhausted phenotype, and milder secretion of tumor necrosis factor alpha (TNF-α) and interferon (IFN)-ɣ after efficient destruction of CD19+ lymphoma cells, both in vitro and in vivo. Moreover, we also showed their improved efficiency using an in vitro CD19+ pancreatic tumor model. We finally demonstrated the feasibility of large-scale manufacturing of AW-CAR-T cells in guanosine monophosphate (GMP)-like conditions. Based on these data, we propose the use of AW-LVs for the generation of improved CAR-T products.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
- LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Noelia Maldonado-Pérez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Pedro Justicia-Lirio
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
- LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Pilar Muñoz
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
- Department of Cellular Biology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kristina Pavlovic
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
- Department of Cellular Biology, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Rosario Jiménez-Moreno
- Maimonides Institute of Biomedical Research in Córdoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Sonia Nogueras
- Maimonides Institute of Biomedical Research in Córdoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - M. Dolores Carmona
- Maimonides Institute of Biomedical Research in Córdoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Sabina Sánchez-Hernández
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Araceli Aguilar-González
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| | - María Castella
- Department of Hematology, ICMHO, Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Manel Juan
- Department of Hematology, ICMHO, Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Concepción Marañón
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Córdoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Francisco Martin
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
- Departamento de Bioquimica y Biología Molecular 3 e Inmunología, Facultad de Medicina, Universidad de Granada, Avda. de la Investigacion 11, 18071 Granada, Spain
| |
Collapse
|
6
|
Hu Y, Cao G, Chen X, Huang X, Asby N, Ankenbruck N, Rahman A, Thusu A, He Y, Riedell PA, Bishop MR, Schreiber H, Kline JP, Huang J. Antigen-Multimers: Specific, Sensitive, Precise, and Multifunctional High-Avidity CAR-Staining Reagents. MATTER 2021; 4:3917-3940. [PMID: 34901832 PMCID: PMC8654235 DOI: 10.1016/j.matt.2021.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although chimeric antigen receptor (CAR) T-cell therapy has transformed cancer treatment, high-quality and universal CAR-staining reagents are urgently required to manufacture CAR T cells, predict therapy response, decipher CAR biology, and engineer new CARs. Here, we developed tetrameric and dodecameric forms of a multifunctional and extensible category of high-avidity CAR-staining reagents: antigen-multimers. Antigen-multimers detected CARs against CD19, HER2, and Tn-glycoside with significantly higher specificity, sensitivity, and precision than existing reagents. In addition to accurate CAR T-cell detection by flow cytometry, antigen-multimers also enabled ≥100-fold magnetic enrichment of rare CAR T cells, selective CAR T-cell stimulation, and high-dimensional CAR T-cell profiling by single-cell multi-omics analyses. Finally, antigen-multimers accurately captured clinical anti-CD19 CAR T cells from patients' cellular infusion products, post-infusion peripheral blood, and tumor biopsies. Antigen-multimers can be readily extended to other CAR systems by switching its antigen ligand. As such, antigen-multimers have broad clinical and research applications.
Collapse
Affiliation(s)
- Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiaodan Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Ankenbruck
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ali Rahman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ashima Thusu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yanran He
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Peter A. Riedell
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Michael R. Bishop
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Hans Schreiber
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Justin P. Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Guo X, Kazanova A, Thurmond S, Saragovi HU, Rudd CE. Effective chimeric antigen receptor T cells against SARS-CoV-2. iScience 2021; 24:103295. [PMID: 34693218 PMCID: PMC8520176 DOI: 10.1016/j.isci.2021.103295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Current therapies to treat coronavirus disease 2019 (COVID-19) involve vaccines against the spike protein S1 of SARS-CoV-2. Here, we outline an alternative approach involving chimeric antigen receptors (CARs) in T cells (CAR-Ts). CAR-T recognition of the SARS-CoV-2 receptor-binding domain (RBD) peptide induced ribosomal protein S6 phosphorylation, the increased expression of activation antigen, CD69 and effectors, interferon-γ, granzyme B, perforin, and Fas-ligand on overlapping subsets of CAR-Ts. CAR-Ts further showed potent in vitro killing of target cells loaded with RBD, S1 peptide, or expressing the S1 protein. The efficacy of killing varied with different sized hinge regions, whereas time-lapse microscopy showed CAR-T cluster formation around RBD-expressing targets. Cytolysis of targets was mediated primarily by the GZMB/perforin pathway. Lastly, we showed in vivo killing of S1-expressing cells by our SARS-CoV-2 CAR-Ts in mice. The successful generation of SARS-CoV-2 CAR-Ts represents a living vaccine approach for the treatment of COVID-19. Cytolytic CAR-Ts can be successfully developed against SARS-CoV-2 CAR-Ts binding to RBD peptide induced effectors IFN-γ, GZMB, Perforin and FasL CAR-Ts with different hinge regions showed differences in target killing SARS-CoV-2 CAR-Ts show successful in vivo killing of S1-expressing cells in mice
Collapse
Affiliation(s)
- Xueyang Guo
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - Alexandra Kazanova
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - Stephanie Thurmond
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - H. Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Christopher E. Rudd
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
- Division of Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
- Corresponding author
| |
Collapse
|
8
|
Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao Y, Takeshima Y, Luo W, Huang TS, Yeung BZ, Papalexi E, Thakore PI, Kibayashi T, Wing JB, Hata M, Satija R, Nazor KL, Sakaguchi S, Ludwig LS, Sankaran VG, Regev A, Smibert P. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol 2021; 39:1246-1258. [PMID: 34083792 PMCID: PMC8763625 DOI: 10.1038/s41587-021-00927-2] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
Recent technological advances have enabled massively parallel chromatin profiling with scATAC-seq (single-cell assay for transposase accessible chromatin by sequencing). Here we present ATAC with select antigen profiling by sequencing (ASAP-seq), a tool to simultaneously profile accessible chromatin and protein levels. Our approach pairs sparse scATAC-seq data with robust detection of hundreds of cell surface and intracellular protein markers and optional capture of mitochondrial DNA for clonal tracking, capturing three distinct modalities in single cells. ASAP-seq uses a bridging approach that repurposes antibody:oligonucleotide conjugates designed for existing technologies that pair protein measurements with single-cell RNA sequencing. Together with DOGMA-seq, an adaptation of CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) for measuring gene activity across the central dogma of gene regulation, we demonstrate the utility of systematic multi-omic profiling by revealing coordinated and distinct changes in chromatin, RNA and surface proteins during native hematopoietic differentiation and peripheral blood mononuclear cell stimulation and as a combinatorial decoder and reporter of multiplexed perturbations in primary T cells.
Collapse
Affiliation(s)
- Eleni P Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology / Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kelvin Y Chen
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Yuhan Hao
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Yusuke Takeshima
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wendy Luo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology / Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Efthymia Papalexi
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | | | - Tatsuya Kibayashi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - James Badger Wing
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Immunology), Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mayu Hata
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Rahul Satija
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | | | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Leif S Ludwig
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology / Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology / Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York Genome Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA.
| |
Collapse
|
9
|
Evnouchidou I, Caillens V, Koumantou D, Saveanu L. The role of endocytic trafficking in antigen T Cell Receptor activation. Biomed J 2021; 45:310-320. [PMID: 34592497 PMCID: PMC9250096 DOI: 10.1016/j.bj.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Antigen T cell receptors (TCR) recognize antigenic peptides displayed by the major histocompatibility complex (pMHC) and play a critical role in T cell activation. The levels of TCR complexes at the cell surface, where signaling is initiated, depend on the balance between TCR synthesis, recycling and degradation. Cell surface TCR interaction with pMHC leads to receptor clustering and formation of a tight T cell-APC contact, the immune synapse, from which the activated TCR is internalized. While TCR internalization from the immune synapse has been initially considered to arrest TCR signaling, recent evidence support the hypothesis that the internalized receptor continues to signal from specialized endosomes. Here, we review the molecular mechanisms of TCR endocytosis and recycling, both in steady state and after T cell activation. We then discuss the experimental evidence in favor of endosomal TCR signaling and its possible consequences on T cell activation.
Collapse
Affiliation(s)
- Irini Evnouchidou
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France.
| | - Vivien Caillens
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France
| | - Despoina Koumantou
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de Recherche sur L'inflammation, INSERM U1149, CNRS ERL8252, Paris, France; Inovarion, Paris, France.
| |
Collapse
|
10
|
A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines (Basel) 2021; 9:vaccines9101058. [PMID: 34696166 PMCID: PMC8537199 DOI: 10.3390/vaccines9101058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease affecting 12 million people annually. Even in the second decade of the 21st century, it has remained without an effective vaccine for human use. In the current study, we designed three multiepitope vaccine candidates by the selection of multiple IFN-γ inducing MHC-I and MHC-II binder T-cell specific epitopes from three previously identified antigen genes of Leishmania donovani from our lab by an immuno-informatic approach using IFNepitope, the Immune Epitope Database (IEDB) T cell epitope identification tools, NET-MHC-1, and NET MHC-2 webservers. We tested the protective potential of these three multiepitope proteins as a vaccine in a hamster model of visceral leishmaniasis. The immunization data revealed that the vaccine candidates induced a very high level of Th1 biased protective immune response in-vivo in a hamster model of experimental visceral leishmaniasis, with one of the candidates inducing a near-sterile immunity. The vaccinated animals displayed highly activated monocyte macrophages with the capability of clearing intracellular parasites due to increased respiratory burst. Additionally, these proteins induced activation of polyfunctional T cells secreting INF-γ, TNF-α, and IL-2 in an ex-vivo stimulation of human peripheral blood mononuclear cells, further supporting the protective nature of the designed candidates.
Collapse
|
11
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
12
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|
13
|
AuYeung AWK, Mould RC, Stegelmeier AA, van Vloten JP, Karimi K, Woods JP, Petrik JJ, Wood GA, Bridle BW. Mechanisms that allow vaccination against an oncolytic vesicular stomatitis virus-encoded transgene to enhance safety without abrogating oncolysis. Sci Rep 2021; 11:15290. [PMID: 34315959 PMCID: PMC8316323 DOI: 10.1038/s41598-021-94483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Vaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.
Collapse
Affiliation(s)
- Amanda W K AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Rm. 4834, Bldg. 89, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
14
|
This S, Valbon SF, Lebel MÈ, Melichar HJ. Strength and Numbers: The Role of Affinity and Avidity in the 'Quality' of T Cell Tolerance. Cells 2021; 10:1530. [PMID: 34204485 PMCID: PMC8234061 DOI: 10.3390/cells10061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength of T cell receptor signaling during differentiation influences the 'function' and persistence of anergic and regulatory T cell populations. Here, we review the literature on this subject and discuss the clinical implications of how T cell receptor signal strength influences the 'quality' of anergic and regulatory T cell populations.
Collapse
Affiliation(s)
- Sébastien This
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Stefanie F. Valbon
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marie-Ève Lebel
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
| | - Heather J. Melichar
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
15
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
16
|
Connolly A, Panes R, Tual M, Lafortune R, Bellemare-Pelletier A, Gagnon E. TMEM16F mediates bystander TCR-CD3 membrane dissociation at the immunological synapse and potentiates T cell activation. Sci Signal 2021; 14:eabb5146. [PMID: 33758060 DOI: 10.1126/scisignal.abb5146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electrostatic interactions regulate many aspects of T cell receptor (TCR) activity, including enabling the dynamic binding of the TCR-associated CD3ε and CD3ζ chains to anionic lipids in the plasma membrane to prevent spontaneous phosphorylation. Substantial changes in the electrostatic potential of the plasma membrane occur at the immunological synapse, the interface between a T cell and an antigen-presenting cell. Here, we investigated how the electrostatic interactions that promote dynamic membrane binding of the TCR-CD3 cytoplasmic domains are modulated during signaling and affect T cell activation. We found that Ca2+-dependent activation of the phosphatidylserine scramblase TMEM16F, which was previously implicated in T cell activation, reduced the electrostatic potential of the plasma membrane during immunological synapse formation by locally redistributing phosphatidylserine. This, in turn, increased the dissociation of bystander TCR-CD3 cytoplasmic domains from the plasma membrane and enhanced TCR-dependent signaling and consequently T cell activation. This study establishes the molecular basis for the role of TMEM16F in bystander TCR-induced signal amplification and identifies enhancement of TMEM16F function as a potential therapeutic strategy for promoting T cell activation.
Collapse
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Rébecca Panes
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Margaux Tual
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Raphaël Lafortune
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| | - Angélique Bellemare-Pelletier
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie, 2950 Chemin de la Polytechnique, Montréal, Québec H3T1J4, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, 2900 Édouard-Montpetit, Montréal, Québec H3T1J4, Canada
| |
Collapse
|
17
|
Edmans MD, Connelley TK, Jayaraman S, Vrettou C, Vordermeier M, Mak JYW, Liu L, Fairlie DP, Maze EA, Chrun T, Klenerman P, Eckle SBG, Tchilian E, Benedictus L. Identification and Phenotype of MAIT Cells in Cattle and Their Response to Bacterial Infections. Front Immunol 2021; 12:627173. [PMID: 33777010 PMCID: PMC7991102 DOI: 10.3389/fimmu.2021.627173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/17/2021] [Indexed: 12/28/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells that utilize a semi-invariant T cell receptor (TCR) α chain and are restricted by the highly conserved antigen presenting molecule MR1. MR1 presents microbial riboflavin biosynthesis derived metabolites produced by bacteria and fungi. Consistent with their ability to sense ligands derived from bacterial sources, MAIT cells have been associated with the immune response to a variety of bacterial infections, such as Mycobacterium spp., Salmonella spp. and Escherichia coli. To date, MAIT cells have been studied in humans, non-human primates and mice. However, they have only been putatively identified in cattle by PCR based methods; no phenotypic or functional analyses have been performed. Here, we identified a MAIT cell population in cattle utilizing MR1 tetramers and high-throughput TCR sequencing. Phenotypic analysis of cattle MAIT cells revealed features highly analogous to those of MAIT cells in humans and mice, including expression of an orthologous TRAV1-TRAJ33 TCR α chain, an effector memory phenotype irrespective of tissue localization, and expression of the transcription factors PLZF and EOMES. We determined the frequency of MAIT cells in peripheral blood and multiple tissues, finding that cattle MAIT cells are enriched in mucosal tissues as well as in the mesenteric lymph node. Cattle MAIT cells were responsive to stimulation by 5-OP-RU and riboflavin biosynthesis competent bacteria in vitro. Furthermore, MAIT cells in milk increased in frequency in cows with mastitis. Following challenge with virulent Mycobacterium bovis, a causative agent of bovine tuberculosis and a zoonosis, peripheral blood MAIT cells expressed higher levels of perforin. Thus, MAIT cells are implicated in the immune response to two major bacterial infections in cattle. These data suggest that MAIT cells are functionally highly conserved and that cattle are an excellent large animal model to study the role of MAIT cells in important zoonotic infections.
Collapse
Affiliation(s)
- Matthew D. Edmans
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Timothy K. Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, Roslin, United Kingdom
| | - Siddharth Jayaraman
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, Roslin, United Kingdom
| | - Christina Vrettou
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, Roslin, United Kingdom
| | - Martin Vordermeier
- Animal and Plant Health Agency, Weybridge, United Kingdom
- Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Jeffrey Y. W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
- Centre of Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, QLD, Australia
- Centre of Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Emmanuel Atangana Maze
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Tiphany Chrun
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Elma Tchilian
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, Roslin, United Kingdom
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Karwacz K, Arce F, Bricogne C, Kochan G, Escors D. PD-L1 co-stimulation, ligand-induced TCR down-modulation and anti-tumor immunotherapy. Oncoimmunology 2021; 1:86-88. [PMID: 22318430 DOI: 10.4161/onci.1.1.17824] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PD-1 engagement on the surface of effector T cells strongly suppresses their cytotoxic function, which constitutes a major obstacle for T cell-mediated anti-tumor activities. Surprisingly, PD-1 is strongly upregulated in T cells, engaging its ligand PD-L1 during antigen presentation. However, our recent published data may provide an explanation for this apparent contradiction.
Collapse
Affiliation(s)
- Katarzyna Karwacz
- Center for Neurologic Disease; Harvard Medical School; Boston, MA USA
| | | | | | | | | |
Collapse
|
19
|
Trendel N, Kruger P, Gaglione S, Nguyen J, Pettmann J, Sontag ED, Dushek O. Perfect adaptation of CD8 + T cell responses to constant antigen input over a wide range of affinities is overcome by costimulation. Sci Signal 2021; 14:eaay9363. [PMID: 34855472 PMCID: PMC7615691 DOI: 10.1126/scisignal.aay9363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reduced T cell responses by contrast antigen stimulation can be rescued by signals from costimulatory receptors.
Collapse
Affiliation(s)
- Nicola Trendel
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Philipp Kruger
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Stephanie Gaglione
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - John Nguyen
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Eduardo D Sontag
- Electrical and Computer Engineering & Bioengineering, Northeastern University, USA
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| |
Collapse
|
20
|
Alam IS, Simonetta F, Scheller L, Mayer AT, Murty S, Vermesh O, Nobashi TW, Lohmeyer JK, Hirai T, Baker J, Lau KH, Negrin R, Gambhir SS. Visualization of Activated T Cells by OX40-ImmunoPET as a Strategy for Diagnosis of Acute Graft-versus-Host Disease. Cancer Res 2020; 80:4780-4790. [PMID: 32900772 DOI: 10.1158/0008-5472.can-20-1149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 11/16/2022]
Abstract
Graft-versus-host disease (GvHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT), mediated primarily by donor T cells that become activated and attack host tissues. Noninvasive strategies detecting T-cell activation would allow for early diagnosis and possibly more effective management of HCT recipients. PET imaging is a sensitive and clinically relevant modality ideal for GvHD diagnosis, and there is a strong rationale for the use of PET tracers that can monitor T-cell activation and expansion with high specificity. The TNF receptor superfamily member OX40 (CD134) is a cell surface marker that is highly specific for activated T cells, is upregulated during GvHD, and mediates disease pathogenesis. We recently reported the development of an antibody-based activated T-cell imaging agent targeting OX40. In the present study, we visualize the dynamics of OX40 expression in an MHC-mismatch mouse model of acute GvHD using OX40-immunoPET. This approach enabled visualization of T-cell activation at early stages of disease, prior to overt clinical symptoms with high sensitivity and specificity. This study highlights the potential utility of the OX40 PET imaging as a new strategy for GvHD diagnosis and therapy monitoring. SIGNIFICANCE: OX40-immunoPET imaging is a promising noninvasive strategy for early detection of GvHD, capable of detecting signs of GvHD pathology even prior to the development of overt clinical symptoms.
Collapse
Affiliation(s)
- Israt S Alam
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California.
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Lukas Scheller
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Aaron T Mayer
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California.,Departments of Bioengineering and Materials Science and Engineering, Bio-X, Stanford University, Stanford, California
| | - Surya Murty
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California.,Departments of Bioengineering and Materials Science and Engineering, Bio-X, Stanford University, Stanford, California
| | - Ophir Vermesh
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Tomomi W Nobashi
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Kenneth H Lau
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Robert Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California.
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California.,Departments of Bioengineering and Materials Science and Engineering, Bio-X, Stanford University, Stanford, California
| |
Collapse
|
21
|
IRAP-dependent endosomal T cell receptor signalling is essential for T cell responses. Nat Commun 2020; 11:2779. [PMID: 32487999 PMCID: PMC7265453 DOI: 10.1038/s41467-020-16471-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/03/2020] [Indexed: 11/09/2022] Open
Abstract
T cell receptor (TCR) activation is modulated by mechanisms such as TCR endocytosis, which is thought to terminate TCR signalling. Here we show that, upon internalization, TCR continues to signal from a set of specialized endosomes that are crucial for T cell functions. Mechanistically, TCR ligation leads to clathrin-mediated internalization of the TCR-CD3ζ complex, while maintaining CD3ζ signalling, in endosomal vesicles that contain the insulin responsive aminopeptidase (IRAP) and the SNARE protein Syntaxin 6. Destabilization of this compartment through IRAP deletion enhances plasma membrane expression of the TCR-CD3ζ complex, yet compromises overall CD3ζ signalling; moreover, the integrity of this compartment is also crucial for T cell activation and survival after suboptimal TCR activation, as mice engineered with a T cell-specific deletion of IRAP fail to develop efficient polyclonal anti-tumour responses. Our results thus reveal a previously unappreciated function of IRAP-dependent endosomal TCR signalling in T cell activation. T cell receptors (TCR) are internalized when activated by their ligands. Here the authors show that the internalized TCRs are localized to endosomes expressing IRAP and Syntaxin 6 to maintain intracellular signalling capacity, whose importance is shown by the absence of efficient polyclonal anti-tumour response in mice with T-specific conditional deletion of IRAP.
Collapse
|
22
|
Jacquemin C, Martins C, Lucchese F, Thiolat D, Taieb A, Seneschal J, Boniface K. NKG2D Defines a Subset of Skin Effector Memory CD8 T Cells with Proinflammatory Functions in Vitiligo. J Invest Dermatol 2019; 140:1143-1153.e5. [PMID: 31877315 DOI: 10.1016/j.jid.2019.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Vitiligo is an autoimmune disease that results from the loss of melanocytes, associated with skin infiltration of CD8+ effector memory T cells with a Tc1 skewed immune response. NKG2D is an activating receptor found on immune cells, in particular natural killer and activated CD8+ T cells, that are able to produce a high amount of IFN-γ. Here we found that NKG2D expression was increased in vitiligo skin CD8+ effector memory T cells and was promoted by IL-15. Phenotypic and functional analyses showed that NKG2D+ CD8+ skin effector memory T cells displayed an activated phenotype and produced elevated levels of both IFN-γ and tumor necrosis factor-α. Additional experiments revealed that vitiligo skin dendritic cells expressed the NKG2D ligands MICA-MICB, and in vitro experiments showed that these ligands could be induced on dendritic cells by IFN-α. Cultures of IFN-α-stimulated dendritic cells with skin NKG2D+ CD8+ T cells potentiated the production of type 1 cytokines, which was next inhibited by blocking the NKG2D/MICA-MICB interaction. These data show that NKG2D is a potential marker of pathogenic skin CD8+ effector memory T cells during vitiligo. Therefore, targeting NKG2D could be an attractive strategy in vitiligo, a disease for which there is a strong need of innovative treatments.
Collapse
Affiliation(s)
- Clément Jacquemin
- INSERM U1035, BMGIC, Immuno-dermatology, University of Bordeaux, Bordeaux, France
| | - Christina Martins
- INSERM U1035, BMGIC, Immuno-dermatology, University of Bordeaux, Bordeaux, France
| | - Fabienne Lucchese
- INSERM U1035, BMGIC, Immuno-dermatology, University of Bordeaux, Bordeaux, France
| | - Denis Thiolat
- INSERM U1035, BMGIC, Immuno-dermatology, University of Bordeaux, Bordeaux, France
| | - Alain Taieb
- INSERM U1035, BMGIC, Immuno-dermatology, University of Bordeaux, Bordeaux, France; Department of Dermatology and Pediatric Dermatology; National Reference Center for Rare Skin Diseases, Hôpital Saint-André, Bordeaux, France
| | - Julien Seneschal
- INSERM U1035, BMGIC, Immuno-dermatology, University of Bordeaux, Bordeaux, France; Department of Dermatology and Pediatric Dermatology; National Reference Center for Rare Skin Diseases, Hôpital Saint-André, Bordeaux, France; FHU ACRONIM, University of Bordeaux, Bordeaux, France
| | - Katia Boniface
- INSERM U1035, BMGIC, Immuno-dermatology, University of Bordeaux, Bordeaux, France; FHU ACRONIM, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
23
|
Gilfillan CB, Wang C, Mohsen MO, Rufer N, Hebeisen M, Allard M, Verdeil G, Irvine DJ, Bachmann MF, Speiser DE. Murine CD8 T-cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. Eur J Immunol 2019; 50:505-514. [PMID: 31785153 PMCID: PMC7187562 DOI: 10.1002/eji.201948355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 01/13/2023]
Abstract
It is known that for achieving high affinity antibody responses, vaccines must be optimized for antigen dose/density, and the prime/boost interval should be at least 4 weeks. Similar knowledge is lacking for generating high avidity T‐cell responses. The functional avidity (FA) of T cells, describing responsiveness to peptide, is associated with the quality of effector function and the protective capacity in vivo. Despite its importance, the FA is rarely determined in T‐cell vaccination studies. We addressed the question whether different time intervals for short‐term homologous vaccinations impact the FA of CD8 T‐cell responses. Four‐week instead of 2‐week intervals between priming and boosting with potent subunit vaccines in C57BL/6 mice did not improve FA. Equally, similar FA was observed after vaccination with virus‐like particles displaying low versus high antigen densities. Interestingly, FA was stable in vivo but not in vitro, depending on the antigen dose and the time interval since T‐cell activation, as observed in murine monoclonal T cells. Our findings suggest dynamic in vivo modulation for equal FA. We conclude that low antigen density vaccines or a minimal 4‐week prime/boost interval are not crucial for the T‐cell's FA, in contrast to antibody responses.
Collapse
Affiliation(s)
| | - Chensu Wang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Mona O Mohsen
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Nathalie Rufer
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | | | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Martin F Bachmann
- Inselspital, Universitaetsklinik RIA, Immunologie, Bern, Switzerland.,Jenner Institute, University of Oxford, Oxford, UK
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
24
|
Saveanu L, Zucchetti AE, Evnouchidou I, Ardouin L, Hivroz C. Is there a place and role for endocyticTCRsignaling? Immunol Rev 2019; 291:57-74. [DOI: 10.1111/imr.12764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Loredana Saveanu
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
| | - Andres E. Zucchetti
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Irini Evnouchidou
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
- Inovarion Paris France
| | - Laurence Ardouin
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Claire Hivroz
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| |
Collapse
|
25
|
Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, Nussbaumer O, Polyakova O, Roberts NA, Wesch D, Kabelitz D, Irving PM, John S, Mansour S, Bates PA, Vantourout P, Hayday AC. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat Immunol 2018; 19:1352-1365. [PMID: 30420626 PMCID: PMC6874498 DOI: 10.1038/s41590-018-0253-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023]
Abstract
T lymphocytes expressing γδ T cell antigen receptors (TCRs) comprise evolutionarily conserved cells with paradoxical features. On the one hand, clonally expanded γδ T cells with unique specificities typify adaptive immunity. Conversely, large compartments of γδTCR+ intraepithelial lymphocytes (γδ IELs) exhibit limited TCR diversity and effect rapid, innate-like tissue surveillance. The development of several γδ IEL compartments depends on epithelial expression of genes encoding butyrophilin-like (Btnl (mouse) or BTNL (human)) members of the B7 superfamily of T cell co-stimulators. Here we found that responsiveness to Btnl or BTNL proteins was mediated by germline-encoded motifs within the cognate TCR variable γ-chains (Vγ chains) of mouse and human γδ IELs. This was in contrast to diverse antigen recognition by clonally restricted complementarity-determining regions CDR1-CDR3 of the same γδTCRs. Hence, the γδTCR intrinsically combines innate immunity and adaptive immunity by using spatially distinct regions to discriminate non-clonal agonist-selecting elements from clone-specific ligands. The broader implications for antigen-receptor biology are considered.
Collapse
Affiliation(s)
- Daisy Melandri
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | | | - Robin J Dart
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London, UK
| | - Andrew Chancellor
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oliver Nussbaumer
- GammaDelta Therapeutics, London BioScience Innovation Center, London, UK
| | - Oxana Polyakova
- GammaDelta Therapeutics, London BioScience Innovation Center, London, UK
| | - Natalie A Roberts
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Peter M Irving
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London, UK
| | - Susan John
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Salah Mansour
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK.
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
26
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
27
|
Rosenberg J, Huang J. CD8 + T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr Opin Chem Eng 2018; 19:9-20. [PMID: 29623254 PMCID: PMC5880541 DOI: 10.1016/j.coche.2017.11.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD8+ T cells and NK cells are both cytotoxic effector cells of the immune system, but the recognition, specificity, sensitivity, and memory mechanisms are drastically different. While many of these topics have been extensively studied in CD8+ T cells, very little is known about NK cells. Current cancer immunotherapies mainly focus on CD8+ T cells, but have many issues of toxicity and efficacy. Given the heterogeneous nature of cancer, personalized cancer immunotherapy that integrates the power of both CD8+ T cells in adaptive immunity and NK cells in innate immunity might be the future direction, along with precision targeting and effective delivery of tumor-specific, memory CD8+ T cells and NK cells.
Collapse
Affiliation(s)
- Jillian Rosenberg
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
| | - Jun Huang
- Committee on Cancer Biology, The University of Chicago, IL 60637, USA
- Institute for Molecular Engineering, The University of Chicago, IL 60637, USA
| |
Collapse
|
28
|
Abstract
T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αβ subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαβ subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.
Collapse
Affiliation(s)
- Andrés Alcover
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| | - Balbino Alarcón
- Severo Ochoa Center for Molecular Biology, CSIC-UAM, Madrid 28049, Spain;
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| |
Collapse
|
29
|
Analysis of the recovery of CD247 expression in a PID patient: insights into the spontaneous repair of defective genes. Blood 2017; 130:1205-1208. [DOI: 10.1182/blood-2017-01-762864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
Key Points
The propensity of genes to mutate influences the probability of spontaneous reversion of genetic defects in PID.
Collapse
|
30
|
Abstract
T lymphocytes use surface [Formula: see text] T-cell receptors (TCRs) to recognize peptides bound to MHC molecules (pMHCs) on antigen-presenting cells (APCs). How the exquisite specificity of high-avidity T cells is achieved is unknown but essential, given the paucity of foreign pMHC ligands relative to the ubiquitous self-pMHC array on an APC. Using optical traps, we determine physicochemical triggering thresholds based on load and force direction. Strikingly, chemical thresholds in the absence of external load require orders of magnitude higher pMHC numbers than observed physiologically. In contrast, force applied in the shear direction ([Formula: see text]10 pN per TCR molecule) triggers T-cell Ca2+ flux with as few as two pMHC molecules at the interacting surface interface with rapid positional relaxation associated with similarly directed motor-dependent transport via [Formula: see text]8-nm steps, behaviors inconsistent with serial engagement during initial TCR triggering. These synergistic directional forces generated during cell motility are essential for adaptive T-cell immunity against infectious pathogens and cancers.
Collapse
|
31
|
Gibbons Johnson RM, Dong H. Functional Expression of Programmed Death-Ligand 1 (B7-H1) by Immune Cells and Tumor Cells. Front Immunol 2017; 8:961. [PMID: 28848559 PMCID: PMC5554355 DOI: 10.3389/fimmu.2017.00961] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/27/2017] [Indexed: 01/05/2023] Open
Abstract
The programmed death-1 (PD-1) and its ligand PD-L1 (B7-H1) signaling pathway has been the focus of much enthusiasm in the fields of tumor immunology and oncology with recent FDA approval of the anti-PD-1 antibodies pembrolizumab and nivolumab and the anti-PD-L1 antibodies durvalumab, atezolimuab, and avelumab. These therapies, referred to here as PD-L1/PD-1 checkpoint blockade therapies, are designed to block the interaction between PD-L1, expressed by tumor cells, and PD-1, expressed by tumor-infiltrating CD8+ T cells, leading to enhanced antitumor CD8+ T cell responses and tumor regression. The influence of PD-L1 expressed by tumor cells on antitumor CD8+ T cell responses is well characterized, but the impact of PD-L1 expressed by immune cells has not been well defined for antitumor CD8+ T cell responses. Although PD-L1 expression by tumor cells has been used as a biomarker in selection of patients for PD-L1/PD-1 checkpoint blockade therapies, patients whose tumor cells lack PD-L1 expression often respond positively to PD-L1/PD-1 checkpoint blockade therapies. This suggests that PD-L1 expressed by non-malignant cells may also contribute to antitumor immunity. Here, we review the functions of PD-L1 expressed by immune cells in the context of CD8+ T cell priming, contraction, and differentiation into memory populations, as well as the role of PD-L1 expressed by tumor cells in regulating antitumor CD8+ T cell responses.
Collapse
Affiliation(s)
| | - Haidong Dong
- Department of Urology, College of Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
32
|
Revenfeld ALS, Bæk R, Jørgensen MM, Varming K, Stensballe A. Induction of a Regulatory Phenotype in CD3+ CD4+ HLA-DR+ T Cells after Allogeneic Mixed Lymphocyte Culture; Indications of Both Contact-Dependent and -Independent Activation. Int J Mol Sci 2017; 18:ijms18071603. [PMID: 28737722 PMCID: PMC5536089 DOI: 10.3390/ijms18071603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Although the observation of major histocompatibility complex II (MHCII) receptors on T cells is longstanding, the explanation for this occurrence remains enigmatic. Reports of an inducible, endogenous expression exist, as do studies demonstrating a protein acquisition from other cells by mechanisms including vesicle transfer. Irrespective of origin, the presence of the human MHCII isotype, human leukocyte antigen DR (HLA-DR), potentially identifies a regulatory T cell population. Using an allogeneic mixed lymphocyte culture (MLC) to induce an antigen-specific immune response, the role of antigen-presenting cells (APCs) for the presence of HLA-DR on cluster of differentiation 3(CD3)+ CD4+ T cells was evaluated. Moreover, a functional phenotype was established for these T cells. It was demonstrated that APCs were essential for HLA-DR on CD3+ CD4+ T cells. Additionally, a regulatory T cell phenotype was induced in CD3+ CD4+ HLA-DR+ responder T cells with an expression of CD25, CTLA-4, CD62L, PD-1, and TNFRII. This phenotype was induced both with and without physical T cell:APC contact, which could reveal novel indications about its functionality. To further investigate contact-independent communication, a phenotype of the small cell-derived vesicles from the MLCs was determined. Yet heterogeneous, this vesicle phenotype displayed contact-dependent differences, providing clues about their intended function in cellular communication.
Collapse
Affiliation(s)
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000 Aalborg, Denmark.
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000 Aalborg, Denmark.
| | - Kim Varming
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000 Aalborg, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Laboratory for Medical Mass Spectrometry, Fredrik Bajersvej 7E, 9100 Aalborg, Denmark.
| |
Collapse
|
33
|
Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, Laing A, Spencer-Dene B, East P, Gibbons D, Irving PM, Pereira P, Steinhoff U, Hayday A. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell 2016; 167:203-218.e17. [PMID: 27641500 PMCID: PMC5037318 DOI: 10.1016/j.cell.2016.08.030] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.
Collapse
Affiliation(s)
- Rafael Di Marco Barros
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; MBPhD Programme, University College London, London WC1E 6BT, UK
| | | | - Robin J Dart
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK; Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Rosie Hart
- Francis Crick Institute, London WC2A3LY, UK
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Adam Laing
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | | | | | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's and St Thomas' Foundation Trust, London SE17EH, UK
| | - Pablo Pereira
- Department of Immunology, Pasteur Institute, 75015 Paris, France
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hospital Epidemiology, University of Marburg, 35037 Marburg, Germany
| | - Adrian Hayday
- Francis Crick Institute, London WC2A3LY, UK; Peter Gorer Department of Immunobiology, King's College London, London SE19RT, UK.
| |
Collapse
|
34
|
Thaventhiran T, Alhumeed N, Yeang HXA, Sethu S, Downey JS, Alghanem AF, Olayanju A, Smith EL, Cross MJ, Webb SD, Williams DP, Bristow A, Ball C, Stebbings R, Sathish JG. Failure to upregulate cell surface PD-1 is associated with dysregulated stimulation of T cells by TGN1412-like CD28 superagonist. MAbs 2014; 6:1290-9. [PMID: 25517314 PMCID: PMC4622985 DOI: 10.4161/mabs.29758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.
Collapse
Key Words
- APC, antigen presenting cell
- CCR5, C-C chemokine receptor type 5
- CD28 superagonist
- CD28SA, CD28 superagonist
- CK2, casein kinase 2
- CTLA-4, cytotoxic T-Lymphocyte Antigen 4
- IFNγ, interferon gamma
- IL-2, interleukin 2
- LAG-3, Lymphocyte-activation gene 3
- LFA-1, lymphocyte function-associated antigen 1
- MFI, mean fluorescence intensity
- PBMC, peripheral blood mononuclear cells
- PD-1
- PD-1, programmed cell death protein 1
- PD-L1, programmed cell death-ligand 1
- PTEN, phosphatase and tensin homolog
- S-phase, synthesis phase
- T cells
- TCR, T cell receptor
- TEMs, effector memory T cells
- TGN1412
- TIM-3, T cell immunoglobulin mucin 3
- immunostimulatory biologics
Collapse
Affiliation(s)
- Thilipan Thaventhiran
- a Medical Research Council Centre for Drug Safety Science and Department of Molecular and Clinical Pharmacology ; University of Liverpool ; Liverpool , UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fernández-Arenas E, Calleja E, Martínez-Martín N, Gharbi SI, Navajas R, García-Medel N, Penela P, Alcamí A, Mayor F, Albar JP, Alarcón B. β-Arrestin-1 mediates the TCR-triggered re-routing of distal receptors to the immunological synapse by a PKC-mediated mechanism. EMBO J 2014; 33:559-77. [PMID: 24502978 DOI: 10.1002/embj.201386022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
T-cell receptors (TCR) recognize their antigen ligand at the interface between T cells and antigen-presenting cells, known as the immunological synapse (IS). The IS provides a means of sustaining the TCR signal which requires the continual supply of new TCRs. These are endocytosed and redirected from distal membrane locations to the IS. In our search for novel cytoplasmic effectors, we have identified β-arrestin-1 as a ligand of non-phosphorylated resting TCRs. Using dominant-negative and knockdown approaches we demonstrate that β-arrestin-1 is required for the internalization and downregulation of non-engaged bystander TCRs. Furthermore, TCR triggering provokes the β-arrestin-1-mediated downregulation of the G-protein coupled chemokine receptor CXCR4, but not of other control receptors. We demonstrate that β-arrestin-1 recruitment to the TCR, and bystander TCR and CXCR4 downregulation, are mechanistically mediated by the TCR-triggered PKC-mediated phosphorylation of β-arrestin-1 at Ser163. This mechanism allows the first triggered TCRs to deliver a stop migration signal, and to promote the internalization of distal TCRs and CXCR4 and their translocation to the IS. This receptor crosstalk mechanism is critical to sustain the TCR signal.
Collapse
Affiliation(s)
- Elena Fernández-Arenas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Finetti F, Baldari CT. Compartmentalization of signaling by vesicular trafficking: a shared building design for the immune synapse and the primary cilium. Immunol Rev 2013; 251:97-112. [PMID: 23278743 DOI: 10.1111/imr.12018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulating evidence underscores the immune synapse (IS) of naive T cells as a site of intense vesicular trafficking. At variance with helper and cytolytic effectors, which use the IS as a secretory platform to deliver cytokines and/or lytic granules to their cellular targets, this process is exploited by naive T cells as a means to regulate the assembly and maintenance of the IS, on which productive signaling and cell activation crucially depend. We have recently identified a role of the intraflagellar transport (IFT) system, which is responsible for the assembly of the primary cilium, in the non-ciliated T-cell, where it controls IS assembly by promoting polarized T-cell receptor recycling. This unexpected finding not only provides new insight into the mechanisms of IS assembly but also strongly supports the notion that the IS and the primary cilium, which are both characterized by a specialized membrane domain highly enriched in receptors and signaling mediators, share architectural similarities and are homologous structures. Here, we review our current understanding of vesicular trafficking in the regulation of the assembly and maintenance of the naive T-cell IS and the primary cilium, with a focus on the IFT system.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | |
Collapse
|
37
|
Hu J, Havenar-Daughton C, Crotty S. Modulation of SAP dependent T:B cell interactions as a strategy to improve vaccination. Curr Opin Virol 2013; 3:363-70. [PMID: 23743125 DOI: 10.1016/j.coviro.2013.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/10/2013] [Indexed: 11/15/2022]
Abstract
Generating long-term humoral immunity is a crucial component of successful vaccines and requires interactions between T cells and B cells in germinal centers (GC). In GCs, a specialized subset of CD4+ helper T cells, called T follicular helper cells (Tfh), provide help to B cells; this help directs the magnitude and quality of the antibody response. Tfh cell help influences B cell survival, proliferation, somatic hypermutation, class switch recombination, and differentiation. Sustained contact between Tfh cells and B cells is necessary for the provision of help to B cells. SAP (Signaling lymphocytic activation molecule (SLAM)-associated protein, encoded by Sh2d1a) regulates the duration of T:B cell interactions and is required for long-term humoral immunity in animal models and in humans. SAP binds to SLAM family receptors and mediates signaling that affects cell adhesion, cytokine secretion, and TCR signaling strength. Therefore, the modulation of SAP and SLAM family receptor expression represents a major axis by which the quality and duration of an antibody response is controlled after vaccination.
Collapse
Affiliation(s)
- Joyce Hu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
38
|
Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells. Proc Natl Acad Sci U S A 2012; 109:19380-5. [PMID: 23129633 DOI: 10.1073/pnas.1213868109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex class II molecules (MHC-II) on antigen presenting cells (APCs) engage the TCR on antigen-specific CD4 T cells, thereby providing the specificity required for T cell priming and the induction of an effective immune response. In this study, we have asked whether antigen-loaded dendritic cells (DCs) that have been in contact with antigen-specific CD4 T cells retain the ability to stimulate additional naïve T cells. We show that encounter with antigen-specific primed CD4 T cells induces the degradation of surface MHC-II in antigen-loaded DCs and inhibits the ability of these DCs to stimulate additional naïve CD4 T cells. Cross-linking with MHC-II mAb as a surrogate for T-cell engagement also inhibits APC function and induces MHC-II degradation by promoting the clustering of MHC-II present in lipid raft membrane microdomains, a process that leads to MHC-II endocytosis and degradation in lysosomes. Encounter of DCs with antigen-specific primed T cells or engagement of MHC-II with antibodies promotes the degradation of both immunologically relevant and irrelevant MHC-II molecules. These data demonstrate that engagement of MHC-II on DCs after encounter with antigen-specific primed CD4 T cells promotes the down-regulation of cell surface MHC-II in DCs, thereby attenuating additional activation of naïve CD4 T cells by these APCs.
Collapse
|
39
|
Valitutti S. The Serial Engagement Model 17 Years After: From TCR Triggering to Immunotherapy. Front Immunol 2012; 3:272. [PMID: 22973273 PMCID: PMC3428561 DOI: 10.3389/fimmu.2012.00272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022] Open
Abstract
More than 15 years ago the serial engagement model was proposed as an attempt to solve the low affinity/high sensitivity paradox of TCR antigen recognition. Since then, the model has undergone ups and downs marked by the technical and conceptual advancements made in the field of T lymphocyte activation. Here, I describe the development of the model and survey recent literature providing evidence either for or against the idea that serial TCR/pMHC engagement might contribute to T lymphocyte activation. I also discuss how the concept of serial TCR engagement might be useful in the design of immunotherapeutic approaches aimed at potentiating T lymphocyte responses in vivo.
Collapse
Affiliation(s)
- Salvatore Valitutti
- INSERM, UMR 1043, Section Dynamique Moléculaire des Interactions Lymphocytaires, Centre de Physiopathologie de Toulouse Purpan Toulouse, France
| |
Collapse
|
40
|
Huang J, Meyer C, Zhu C. T cell antigen recognition at the cell membrane. Mol Immunol 2012; 52:155-64. [PMID: 22683645 DOI: 10.1016/j.molimm.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
Abstract
T cell antigen receptors (TCRs) on the surface of T cells bind specifically to particular peptide bound major histocompatibility complexes (pMHCs) presented on the surface of antigen presenting cells (APCs). This interaction is a key event in T cell antigen recognition and activation. Most studies have used surface plasmon resonance (SPR) to measure the in vitro binding kinetics of TCR-pMHC interactions in solution using purified proteins. However, these measurements are not physiologically precise, as both TCRs and pMHCs are membrane-associated molecules which are regulated by their cellular environments. Recently, single-molecule förster resonance energy transfer (FRET) and single-molecule mechanical assays were used to measure the in situ binding kinetics of TCR-pMHC interactions on the surface of live T cells. These studies have provided exciting insights into the biochemical basis of T cell antigen recognition and suggest that TCRs serially engage with a small number of antigens with very fast kinetics in order to maximize TCR signaling and sensitivity.
Collapse
Affiliation(s)
- Jun Huang
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
41
|
Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M, Escors D. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med 2011; 3:581-92. [PMID: 21739608 PMCID: PMC3191120 DOI: 10.1002/emmm.201100165] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022] Open
Abstract
T cell receptor (TCR) down-modulation after antigen presentation is a fundamental process that regulates TCR signal transduction. Current understanding of this process is that intrinsic TCR/CD28 signal transduction leads to TCR down-modulation. Here, we show that the interaction between programmed cell death 1 ligand 1 (PD-L1) on dendritic cells (DCs) and programmed death 1 (PD-1) on CD8 T cells contributes to ligand-induced TCR down-modulation. We provide evidence that this occurs via Casitas B-lymphoma (Cbl)-b E3 ubiquitin ligase up-regulation in CD8 T cells. Interference with PD-L1/PD-1 signalling markedly inhibits TCR down-modulation leading to hyper-activated, proliferative CD8 T cells as assessed in vitro and in vivo in an arthritis model. PD-L1 silencing accelerates anti-tumour immune responses and strongly potentiates DC anti-tumour capacities, when combined with mitogen-activated kinase (MAPK) modulators that promote DC activation.
Collapse
Affiliation(s)
- Katarzyna Karwacz
- Division of Infection and Immunity, Windeyer Institute of Medical Sciences, University College London, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Martínez-Martín N, Fernández-Arenas E, Cemerski S, Delgado P, Turner M, Heuser J, Irvine DJ, Huang B, Bustelo XR, Shaw A, Alarcón B. T cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis. Immunity 2011; 35:208-22. [PMID: 21820331 PMCID: PMC4033310 DOI: 10.1016/j.immuni.2011.06.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/13/2011] [Accepted: 06/01/2011] [Indexed: 12/31/2022]
Abstract
The immunological synapse (IS) serves a dual role for sustained T cell receptor (TCR) signaling and for TCR downregulation. TC21 (Rras2) is a RRas subfamily GTPase that constitutively associates with the TCR and is implicated in tonic TCR signaling by activating phosphatidylinositol 3-kinase. In this study, we demonstrate that TC21 both cotranslocates with the TCR to the IS and is necessary for TCR internalization from the IS through a mechanism dependent on RhoG, a small GTPase previously associated with phagocytosis. Indeed, we found that the TCR triggers T cells to phagocytose 1-6 μm beads through a TC21- and RhoG-dependent pathway. We further show that TC21 and RhoG are necessary for the TCR-promoted uptake of major histocompatibility complex (MHC) from antigen-presenting cells. Therefore, TC21 and RhoG dependence underlie the existence of a common phagocytic mechanism that drives TCR internalization from the IS together with its peptide-MHC ligand.
Collapse
|
43
|
Edidin M. Class I MHC molecules as probes of membrane patchiness: from biophysical measurements to modulation of immune responses. Immunol Res 2010; 47:265-72. [PMID: 20077159 DOI: 10.1007/s12026-009-8159-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Here I summarize decades of work using the biophysics of class I MHC molecules to probe the patchiness and heterogeneity of cell surfaces. This program began as a study of membranes generally. MHC molecules were a convenient probe. However, in recent years, it has become clear that the lateral distribution, clustering, of class I MHC molecules in the membrane affects their recognition by effector CTL. This offers the possibility of enhancing or reducing T-cell recognition of targets by altering the clustering of their membrane proteins.
Collapse
Affiliation(s)
- Michael Edidin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
44
|
Valitutti S, Coombs D, Dupré L. The space and time frames of T cell activation at the immunological synapse. FEBS Lett 2010; 584:4851-7. [PMID: 20940018 DOI: 10.1016/j.febslet.2010.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 01/17/2023]
Abstract
The selective recognition of antigenic peptides by T cells requires the spatio/temporal integration of a panoply of molecular triggers. The space frame of T cell antigen receptors (TCR) interaction with peptide/MHC complexes (pMHC) displayed by antigen presenting cells is delineated by the micrometer-scale area of the immunological synapse. The time frame of T cell stimulation is governed by a series of short TCR-pMHC interactions that are integrated into sustained signaling leading to productive activation. We discuss here how approaching antigen recognition from the time and space angles is key to the comprehension of the puzzling process of T cell activation.
Collapse
Affiliation(s)
- Salvatore Valitutti
- INSERM, U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.
| | | | | |
Collapse
|
45
|
Chmielewski M, Hombach AA, Abken H. CD28 cosignalling does not affect the activation threshold in a chimeric antigen receptor-redirected T-cell attack. Gene Ther 2010; 18:62-72. [PMID: 20944680 DOI: 10.1038/gt.2010.127] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adoptive immunotherapy of cancer using chimeric antigen receptor (CAR)-engineered T cells with redirected specificity showed efficacy in recent trials. In preclinical models, 'second-generation' CARs with CD28 costimulatory domain in addition to CD3ζ performed superior in redirecting T-cell effector functions and survival. Whereas CD28 costimulation sustains physiological T-cell receptor (TCR)-CD3 activation of naïve T cells, the impact of CD28 cosignalling on the threshold of CAR-mediated activation of pre-stimulated T cells without B7-CD28 recruitment remained unclear. Using CARs of different binding affinities, but same epitope specificity, we demonstrate that CD28 cosignalling neither lowered the antigen threshold nor the binding affinity for redirected T-cell activation. 'Affinity ceiling' above which increase in affinity does not increase T-cell activation was not altered. Accordingly, redirected tumor cell killing depended on the binding affinity but was likewise effective for CD3ζ and CD28-CD3ζ CARs. In contrast to CD3ζ, CD28-CD3ζ CAR-driven activation was not increased further by CD28-B7 engagement. However, CD28 cosignalling, which is required for interleukin-2 induction could not be replaced by high-affinity CD3ζ CAR binding or high-density antigen engagement. We conclude that CD28 CAR cosignalling does not alter the activation threshold but redirects T-cell effector functions.
Collapse
Affiliation(s)
- M Chmielewski
- Zentrum für Molekulare Medizin Köln, and Tumorgenetik, Klinik I für Innere Medizin, Uniklinik Köln, Köln, Germany
| | | | | |
Collapse
|
46
|
Swamy M, Siegers GM, Fiala GJ, Molnar E, Dopfer EP, Fisch P, Schraven B, Schamel WWA. Stoichiometry and intracellular fate of TRIM-containing TCR complexes. Cell Commun Signal 2010; 8:5. [PMID: 20298603 PMCID: PMC2848047 DOI: 10.1186/1478-811x-8-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/18/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Studying the stoichiometry and intracellular trafficking of the T cell antigen receptor (TCR) is pivotal in understanding its mechanisms of activation. The alphabetaTCR includes the antigen-binding TCRalphabeta heterodimer as well as the signal transducing CD3epsilongamma, CD3epsilondelta and zeta2 subunits. Although the TCR-interacting molecule (TRIM) is also part of the alphabetaTCR complex, it has not been included in most reports so far. RESULTS We used the native antibody-based mobility shift (NAMOS) assay in a first dimension (1D) blue native (BN)-PAGE and a 2D BN-/BN-PAGE to demonstrate that the stoichiometry of the digitonin-solublized TRIM-containing alphabetaTCR is TCRalphabetaCD3epsilon2gammadeltazeta2TRIM2. Smaller alphabetaTCR complexes possess a TCRalphabeta CD3epsilon2gammadeltazeta2 stoichiometry. Complexes of these sizes were detected in T cell lines as well as in primary human and mouse T cells. Stimulating the alphabetaTCR with anti-CD3 antibodies, we demonstrate by confocal laser scanning microscopy that CD3epsilon colocalizes with zeta and both are degraded upon prolonged stimulation, possibly within the lysosomal compartment. In contrast, a substantial fraction of TRIM does not colocalize with zeta. Furthermore, TRIM neither moves to lysosomes nor is degraded. Immunoprecipitation studies and BN-PAGE indicate that TRIM also associates with the gammadeltaTCR. CONCLUSIONS Small alphabetaTCR complexes have a TCRalphabeta CD3epsilon2gammadeltazeta2 stoichiometry; whereas those associated with one TRIM dimer are TCRalphabeta CD3epsilon2gammadeltazeta2TRIM2. TRIM is differentially processed compared to CD3 and zeta subunits after T cell activation and is not degraded. The gammadeltaTCR also associates with TRIM.
Collapse
Affiliation(s)
- Mahima Swamy
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Gabrielle M Siegers
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
- Cell Therapy Program, Princess Margaret Hospital/Ontario Cancer Institute, 610 University Ave., Toronto, Ontario, M5G 2M9, Canada
| | - Gina J Fiala
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Eszter Molnar
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Paul Fisch
- Department of Pathology, University of Freiburg Medical Center, 79110 Freiburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Wolfgang WA Schamel
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
47
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
48
|
Almeida JR, Sauce D, Price DA, Papagno L, Shin SY, Moris A, Larsen M, Pancino G, Douek DC, Autran B, Sáez-Cirión A, Appay V. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity. Blood 2009; 113:6351-60. [PMID: 19389882 PMCID: PMC2710928 DOI: 10.1182/blood-2009-02-206557] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/15/2009] [Indexed: 12/23/2022] Open
Abstract
CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.
Collapse
Affiliation(s)
- Jorge R Almeida
- Institut National de la Santé et de la Recherche Médicale Unité, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J Immunol Methods 2008; 340:11-24. [PMID: 18929568 PMCID: PMC3052435 DOI: 10.1016/j.jim.2008.09.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 11/21/2022]
Abstract
Flow cytometry with fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) tetramers has transformed the study of antigen-specific T-cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we demonstrate that the reversible protein kinase inhibitor (PKI) dasatinib improves the staining intensity of human (CD8+ and CD4+) and murine T-cells without concomitant increases in background staining. Dasatinib enhances the capture of cognate pMHC tetramers from solution and produces higher intensity staining at lower pMHC concentrations. Furthermore, dasatinib reduces pMHC tetramer-induced cell death and substantially lowers the T-cell receptor (TCR)/pMHC interaction affinity threshold required for cell staining. Accordingly, dasatinib permits the identification of T-cells with very low affinity TCR/pMHC interactions, such as those that typically predominate in tumour-specific responses and autoimmune conditions that are not amenable to detection by current technology.
Collapse
|