1
|
Mancuso RV, Schneider G, Hürzeler M, Gut M, Zurflüh J, Breitenstein W, Bouitbir J, Reisen F, Atz K, Ehrhardt C, Duthaler U, Gygax D, Schmidt AG, Krähenbühl S, Weitz-Schmidt G. Allosteric targeting resolves limitations of earlier LFA-1 directed modalities. Biochem Pharmacol 2023; 211:115504. [PMID: 36921634 DOI: 10.1016/j.bcp.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Integrins are a family of cell surface receptors well-recognized for their therapeutic potential in a wide range of diseases. However, the development of integrin targeting medications has been impacted by unexpected downstream effects, reflecting originally unforeseen interference with the bidirectional signalling and cross-communication of integrins. We here selected one of the most severely affected target integrins, the integrin lymphocyte function-associated antigen-1 (LFA-1, αLβ2, CD11a/CD18), as a prototypic integrin to systematically assess and overcome these known shortcomings. We employed a two-tiered ligand-based virtual screening approach to identify a novel class of allosteric small molecule inhibitors targeting this integrin's αI domain. The newly discovered chemical scaffold was derivatized, yielding potent bis-and tris-aryl-bicyclic-succinimides which inhibit LFA-1 in vitro at low nanomolar concentrations. The characterisation of these compounds in comparison to earlier LFA-1 targeting modalities established that the allosteric LFA-1 inhibitors (i) are devoid of partial agonism, (ii) selectively bind LFA-1 versus other integrins, (iii) do not trigger internalization of LFA-1 itself or other integrins and (iv) display oral availability. This profile differentiates the new generation of allosteric LFA-1 inhibitors from previous ligand mimetic-based LFA-1 inhibitors and anti-LFA-1 antibodies, and is projected to support novel immune regulatory regimens selectively targeting the integrin LFA-1. The rigorous computational and experimental assessment schedule described here is designed to be adaptable to the preclinical discovery and development of novel allosterically acting compounds targeting integrins other than LFA-1, providing an exemplary approach for the early characterisation of next generation integrin inhibitors.
Collapse
Affiliation(s)
- Riccardo V Mancuso
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | - Marianne Hürzeler
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Martin Gut
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Jonas Zurflüh
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Werner Breitenstein
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland
| | - Felix Reisen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | - Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | | | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland
| | - Daniel Gygax
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | | | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | | |
Collapse
|
2
|
Wang B, Zhang Z, Liu W, Tan B. Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother 2023; 158:114180. [PMID: 36586241 DOI: 10.1016/j.biopha.2022.114180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer (GC) remains one of the most common malignancies worldwide. Despite immune-checkpoint inhibitors (ICIs) has revolutionized cancer treatment and obtained durable clinical responses, only a fraction of GC patients benefit from it. As an important component of T cells, regulatory T cells (Tregs) play a vital role in the pathogenesis of GC, keep a core balance between immune suppression and autoimmunity, and function as predictive biomarkers for prognosis of GC patients. In this review, we discuss the role of Tregs in the pathogenesis of GC, and targeting Tregs via influencing their transcription factor, migration, co-stimulatory receptors, immune checkpoints, and cytokines. We also focus on the currently important findings of Tregs metabolism including amino acid, fatty acid, and lactic acid metabolism of GC. The emerging role of microbiome and clinical combined therapy in modulating Tregs in GC treatment is also summarized. Meanwhile, this review recapitulates a novel regulator, magnesium, is involved in mediating Tregs in GC. These research advances on Treg-related strategies provide new insights and challenges for GC progression, treatment, and prognosis. And we hope our review can stimulate further discovery and implication of mediators and pathways targeting Tregs.
Collapse
Affiliation(s)
- Bingyu Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Zaibo Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Wenbo Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, 050011 Shijiazhuang, China.
| |
Collapse
|
3
|
Mastrogiovanni M, Vargas P, Rose T, Cuche C, Esposito E, Juzans M, Laude H, Schneider A, Bernard M, Goyard S, Renaudat C, Ungeheuer MN, Delon J, Alcover A, Di Bartolo V. The tumor suppressor adenomatous polyposis coli regulates T lymphocyte migration. SCIENCE ADVANCES 2022; 8:eabl5942. [PMID: 35417240 PMCID: PMC9007504 DOI: 10.1126/sciadv.abl5942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance in T cell biology is ill defined. APC regulates cytoskeleton organization, cell polarity, and migration in various cell types. Here, we address whether APC plays a role in T lymphocyte migration. Using a series of cell biology tools, we unveiled that T cells from FAP patients carrying APC mutations display impaired adhesion and motility in constrained environments. We further dissected the cellular mechanisms underpinning these defects in APC-depleted CEM T cell line that recapitulate the phenotype observed in FAP T cells. We found that APC affects T cell motility by modulating integrin-dependent adhesion and cytoskeleton reorganization. Hence, APC mutations in FAP patients not only drive intestinal neoplasms but also impair T cell migration, potentially contributing to inefficient antitumor immunity.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Thierry Rose
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Céline Cuche
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Elric Esposito
- Institut Pasteur, Université de Paris, UTechS BioImagerie Photonique, F-75015 Paris, France
| | - Marie Juzans
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Hélène Laude
- Institut Pasteur, Université de Paris, ICAReB, F-75015 Paris, France
| | - Amandine Schneider
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Mathilde Bernard
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Sophie Goyard
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | | | | | - Jérôme Delon
- Université de Paris, Institut Cochin, Inserm, CNRS, F-75014 Paris, France
| | - Andrés Alcover
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Corresponding author. (A.A.); (V.D.B.)
| | - Vincenzo Di Bartolo
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Corresponding author. (A.A.); (V.D.B.)
| |
Collapse
|
4
|
Lötscher J, Martí I Líndez AA, Kirchhammer N, Cribioli E, Giordano Attianese GMP, Trefny MP, Lenz M, Rothschild SI, Strati P, Künzli M, Lotter C, Schenk SH, Dehio P, Löliger J, Litzler L, Schreiner D, Koch V, Page N, Lee D, Grählert J, Kuzmin D, Burgener AV, Merkler D, Pless M, Balmer ML, Reith W, Huwyler J, Irving M, King CG, Zippelius A, Hess C. Magnesium sensing via LFA-1 regulates CD8 + T cell effector function. Cell 2022; 185:585-602.e29. [PMID: 35051368 DOI: 10.1016/j.cell.2021.12.039] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.
Collapse
Affiliation(s)
- Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Adrià-Arnau Martí I Líndez
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicole Kirchhammer
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Greta Maria Paola Giordano Attianese
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Marcel P Trefny
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Markus Lenz
- University of Applied Science Northwestern Switzerland, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - Sacha I Rothschild
- Division of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, 4031 Basel, Switzerland; Swiss Group for Clinical Cancer Research, 3008 Bern, Switzerland
| | - Paolo Strati
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marco Künzli
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Philippe Dehio
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jordan Löliger
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Ludivine Litzler
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - David Schreiner
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Victoria Koch
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Dahye Lee
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jasmin Grählert
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London SW1Y 5ES, UK; Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne-Valérie Burgener
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Miklos Pless
- Swiss Group for Clinical Cancer Research, 3008 Bern, Switzerland; Department of Oncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department for Biomedical Research (DBMR), University Clinic for Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, University of Bern, 3008 Bern, Switzerland; Diabetes Center Berne (DCB), 3010 Bern, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Carolyn G King
- Department of Biomedicine, Immune Cell Biology, University and University Hospital of Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Cancer Immunology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Division of Medical Oncology and Comprehensive Cancer Center, University Hospital Basel, 4031 Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
5
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
6
|
Mancuso RV, Casper J, Schmidt AG, Krähenbühl S, Weitz‐Schmidt G. Anti-αLβ2 antibodies reveal novel endocytotic cross-modulatory functionality. Br J Pharmacol 2020; 177:2696-2711. [PMID: 31985813 PMCID: PMC7236072 DOI: 10.1111/bph.14996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/17/2019] [Accepted: 12/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Antibodies targeting cell surface receptors are considered to enable highly selective therapeutic interventions for immune disorders and cancer. Their biological profiles are found, generally, to represent the net effects of antibody-target interactions. The former therapeutic anti-integrin αLβ2 antibody efalizumab seems to defeat this paradigm by eliciting, via mechanisms currently unknown, much broader effects than would be predicted based on its target specificity. EXPERIMENTAL APPROACH To elucidate the mechanisms behind these broad effects, we investigated in primary human lymphocytes in vitro the effects of anti-αLβ2 antibodies on the expression of αLβ2 as well as unrelated α4 integrins, in comparison to Fab fragments and small-molecule inhibitors. KEY RESULTS We demonstrate that anti-αLβ2 mAbs directly induce the internalization of α4 integrins. The endocytotic phenomenon is a direct consequence of their antibody nature. It is inhibited when monovalent Fab fragments or small-molecule inhibitors are used. It is independent of crosslinking via anti-Fc mAbs and of αLβ2 activation. The cross-modulatory effect is unidirectional and not observed in a similar fashion with the α4 integrin antibody natalizumab. CONCLUSION AND IMPLICATIONS The present study identifies endocytotic cross-modulation as a hitherto unknown non-canonical functionality of anti-αLβ2 antibodies. This cross-modulation has the potential to fundamentally alter an antibody's benefit risk profile, as evident with efalizumab. The newly described phenomenon may be of relevance to other therapeutic antibodies targeting cluster-forming receptors. Thus, pharmacologists should be cognizant of this action when investigating such antibodies.
Collapse
Affiliation(s)
- Riccardo V. Mancuso
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Jens Casper
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Stephan Krähenbühl
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
| | - Gabriele Weitz‐Schmidt
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- AlloCyte Pharmaceuticals AGBaselSwitzerland
| |
Collapse
|
7
|
Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020; 21:E1402. [PMID: 32092981 PMCID: PMC7073085 DOI: 10.3390/ijms21041402] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
β2 integrins are heterodimeric surface receptors composed of a variable α (CD11a-CD11d) and a constant β (CD18) subunit and are specifically expressed by leukocytes. The α subunit defines the individual functional properties of the corresponding β2 integrin, but all β2 integrins show functional overlap. They mediate adhesion to other cells and to components of the extracellular matrix (ECM), orchestrate uptake of extracellular material like complement-opsonized pathogens, control cytoskeletal organization, and modulate cell signaling. This review aims to delineate the tremendous role of β2 integrins for immune functions as exemplified by the phenotype of LAD-I (leukocyte adhesion deficiency 1) patients that suffer from strong recurrent infections. These immune defects have been largely attributed to impaired migratory and phagocytic properties of polymorphonuclear granulocytes. The molecular base for this inherited disease is a functional impairment of β2 integrins due to mutations within the CD18 gene. LAD-I patients are also predisposed for autoimmune diseases. In agreement, polymorphisms within the CD11b gene have been associated with autoimmunity. Consequently, β2 integrins have received growing interest as targets in the treatment of autoimmune diseases. Moreover, β2 integrin activity on leukocytes has been implicated in tumor development.
Collapse
Affiliation(s)
| | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.B.); (H.S.); (S.G.)
| |
Collapse
|
8
|
Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019; 39:2314-2342. [PMID: 30957264 DOI: 10.1002/med.21585] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are closely implicated in various types of cellular activities and are thus pivotal to health and disease states. Given their fundamental roles in a wide range of biological processes, the modulation of PPIs has enormous potential in drug discovery. However, owing to the general properties of large, flat, and featureless interfaces of PPIs, previous attempts have demonstrated that the generation of therapeutic agents targeting PPI interfaces is challenging, rendering them almost "undruggable" for decades. To date, rapid progress in chemical and structural biology techniques has promoted the exploitation of allostery as a novel approach in drug discovery. By attaching to allosteric sites that are topologically and spatially distinct from PPI interfaces, allosteric modulators can achieve improved physiochemical properties. Thus, allosteric modulators may represent an alternative strategy to target intractable PPIs and have attracted intense pharmaceutical interest. In this review, we first briefly introduce the characteristics of PPIs and then present different approaches for investigating PPIs, as well as the latest methods for modulating PPIs. Importantly, we comprehensively review the recent progress in the development of allosteric modulators to inhibit or stabilize PPIs. Finally, we conclude with future perspectives on the discovery of allosteric PPI modulators, especially the application of computational methods to aid in allosteric PPI drug discovery.
Collapse
Affiliation(s)
- Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Center for Single-Cell Omics, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Connexins and Integrins in Exosomes. Cancers (Basel) 2019; 11:cancers11010106. [PMID: 30658425 PMCID: PMC6356207 DOI: 10.3390/cancers11010106] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
Connexins and integrins, the two structurally and functionally distinct families of transmembrane proteins, have been shown to be inter-connected by various modes of cross-talk in cells, such as direct physical coupling via lateral contact, indirect physical coupling via actin and actin-binding proteins, and functional coupling via signaling cascades. This connexin-integrin cross-talk exemplifies a biologically important collaboration between channels and adhesion receptors in cells. Exosomes are biological lipid-bilayer nanoparticles secreted from virtually all cells via endosomal pathways into the extracellular space, thereby mediating intercellular communications across a broad range of health and diseases, including cancer progression and metastasis, infection and inflammation, and metabolic deregulation. Connexins and integrins are embedded in the exosomal membranes and have emerged as critical regulators of intercellular communication. This concise review article will explain and discuss recent progress in better understanding the roles of connexins, integrins, and their cross-talk in cells and exosomes.
Collapse
|
11
|
Morikis VA, Simon SI. Neutrophil Mechanosignaling Promotes Integrin Engagement With Endothelial Cells and Motility Within Inflamed Vessels. Front Immunol 2018; 9:2774. [PMID: 30546362 PMCID: PMC6279920 DOI: 10.3389/fimmu.2018.02774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are the most motile of mammalian cells, a feature that enables them to protect the host against the rapid spread of pathogens from tissue into the circulatory system. A critical process is the recruitment of neutrophils to inflamed endothelium within post-capillary venules. This occurs through cooperation between at least four families of adhesion molecules and G-protein coupled signaling receptors. These adhesion molecules convert the drag force induced by blood flow acting on the cell surface into bond tension that resists detachment. A common feature of selectin-glycoprotein tethering and integrin-ICAM bond formation is the mechanics by which force acting on these specific receptor-ligand pairs influences their longevity, strength, and topographic organization on the plasma membrane. Another distinctly mechanical aspect of neutrophil guidance is the capacity of adhesive bonds to convert external mechanical force into internal biochemical signals through the transmission of force from the outside-in at focal sites of adhesive traction on inflamed endothelium. Within this region of the plasma membrane, we denote the inflammatory synapse, Ca2+ release, and intracellular signaling provide directional cues that guide actin assembly and myosin driven motive force. This review provides an overview of how bond formation and outside-in signaling controls neutrophil recruitment and migration relative to the hydrodynamic shear force of blood flow.
Collapse
Affiliation(s)
- Vasilios A Morikis
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Scott I Simon
- Simon Lab, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
A novel elastin-like polypeptide drug carrier for cyclosporine A improves tear flow in a mouse model of Sjögren's syndrome. J Control Release 2018; 292:183-195. [PMID: 30359668 DOI: 10.1016/j.jconrel.2018.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022]
Abstract
As a potent macrolide immunosuppressant, cyclosporine A (CsA) is used to treat multiple autoimmune diseases, including non-autoimmune and autoimmune-mediated dry eye disease, rheumatoid arthritis and psoriasis. Despite its potency, CsA has poor solubility, poor bioavailability, and can cause serious adverse reactions such as nephrotoxicity and neurotoxicity. To overcome these limitations, we invented a new strategy to carry CsA by fusing its cognate human receptor, cyclophilin A (CypA), to a 73 kDa elastin-like polypeptide (ELP) termed A192 using recombinant protein expression. Derived from human tropoelastin, ELPs are characterized by the ability to phase separate above a temperature that is a function of variables including concentration, molecular weight, and hydrophobicity. The resultant fusion protein, termed CA192, which assembles into a dimeric species in solution, effectively binds and solubilizes CsA with a Kd of 189 nM, comparable to that of endogenous CypA with a Kd of 35.5 nM. The release profile of CsA from CA192 follows a one phase decay model with a half-life of 957.3 h without a burst release stage. Moreover, CA192-CsA inhibited IL-2 expression induced in Jurkat cells through the calcineurin-NFAT signaling pathway with an IC50 of 1.2 nM, comparable to that of free CsA with an IC50 of 0.5 nM. The intravenous pharmacokinetics of CA192 followed a two-compartment model with a mean residence time of 7.3 h. Subcutaneous administration revealed a bioavailability of 30% and a mean residence time of 15.9 h. When given subcutaneously for 2 weeks starting at 14 weeks in male non-obese diabetic (NOD) mice, a model of autoimmune dacryoadenitis used to study Sjögren's syndrome (SS), CA192-CsA (2.5 mg/kg, every other day) significantly (p = 0.014) increased tear production relative to CA192 alone. Moreover, CA192 delivery reduced indications of CsA nephrotoxicity relative to free CsA. CA192 represents a viable new approach to deliver this effective but nephrotoxic agent in a modality that preserves therapeutic efficacy but suppresses drug toxicity.
Collapse
|
13
|
Xu S, Zhou GC. A Convenient Synthesis of a Lymphocyte Function-Associated Antigen-1 (LFA-1) Antagonist of ‘Compound 4’. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15272594754006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lymphocyte function-associated antigen-1 (LFA-1) antagonist of ‘Compound 4’ was synthesised by a convenient route using cheap, commercially available starting materials and catalysts under mild reaction conditions and by easily handled reactions. The total yield in the preparation of ‘Compound 4’ was more than 38% via Sonogashira coupling of an iodide and an alkyne, reduction of the alkyne catalysed by Raney nickel and later steps involving hydrolysis of an ester, condensation of an acid and an amine and a final hydrolysis of an ester.
Collapse
Affiliation(s)
- Sheng Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
14
|
Abdullahi M, Olotu FA, Soliman ME. Allosteric inhibition abrogates dysregulated LFA-1 activation: Structural insight into mechanisms of diminished immunologic disease. Comput Biol Chem 2018; 73:49-56. [DOI: 10.1016/j.compbiolchem.2018.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 01/18/2018] [Accepted: 02/03/2018] [Indexed: 11/16/2022]
|
15
|
Wilson ZS, Ahn LB, Serratelli WS, Belley MD, Lomas-Neira J, Sen M, Lefort CT. Activated β 2 Integrins Restrict Neutrophil Recruitment during Murine Acute Pseudomonal Pneumonia. Am J Respir Cell Mol Biol 2017; 56:620-627. [PMID: 28157452 DOI: 10.1165/rcmb.2016-0215oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rapid neutrophil recruitment is critical for the efficient clearance of bacterial pathogens from the lungs. Although β2 integrins and their activation are required for neutrophil recruitment from postcapillary venules of the systemic circulation into inflamed tissues, the involvement of integrins in neutrophil recruitment in response to respiratory infection varies among bacterial pathogens. For stimuli eliciting β2 integrin-dependent neutrophil influx, including Pseudomonas aeruginosa, it remains unclear whether the activation of β2 integrins is an essential step in this process. In the current study, we analyze neutrophil trafficking within the lungs of mice infected with Pseudomonas aeruginosa and evaluate the role of β2 integrin activation through genetic deletion of talin-1 or Kindlin-3 or by pharmacological inhibition of high-affinity β2 integrins using a small molecule allosteric antagonist. We observe that attenuation of high-affinity β2 integrins leads to an enhancement of neutrophil emigration into lung interstitium and airspaces. Neutrophil effector functions, including the production of reactive oxygen species and the phagocytosis of bacteria, are only partially dependent on high-affinity β2 integrins. These results reveal a mechanism by which activated β2 integrins limit neutrophil entry into the lung tissue and airspaces during acute pseudomonal pneumonia and suggest potential strategies for modulating neutrophil-mediated host defense.
Collapse
Affiliation(s)
- Zachary S Wilson
- 1 Division of Surgical Research, Department of Surgery, and.,2 Graduate Program in Pathobiology and
| | - Lawrence B Ahn
- 1 Division of Surgical Research, Department of Surgery, and
| | | | - Matthew D Belley
- 4 Department of Radiation Oncology, Rhode Island Hospital, Providence, Rhode Island.,3 Warren Alpert Medical School, Brown University, Providence, Rhode Island.,5 Department of Physics, University of Rhode Island, Kingston, Rhode Island; and
| | | | - Mehmet Sen
- 6 Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Craig T Lefort
- 1 Division of Surgical Research, Department of Surgery, and.,3 Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
16
|
Tolomelli A, Galletti P, Baiula M, Giacomini D. Can Integrin Agonists Have Cards to Play against Cancer? A Literature Survey of Small Molecules Integrin Activators. Cancers (Basel) 2017; 9:cancers9070078. [PMID: 28678151 PMCID: PMC5532614 DOI: 10.3390/cancers9070078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
The ability of integrins to activate and integrate intracellular communication illustrates the potential of these receptors to serve as functional distribution hubs in a bi-directional signal transfer outside-in and inside-out of the cells. Tight regulation of the integrin signaling is paramount for normal physiological functions such as migration, proliferation, and differentiation, and misregulated integrin activity could be associated with several pathological conditions. Because of the important roles of integrins and their ligands in biological development, immune responses, leukocyte traffic, haemostasis, and cancer, their potential as therapeutic tools is now widely recognized. Nowadays extensive efforts have been made to discover and develop small molecule ligands as integrin antagonists, whereas less attention has been payed to agonists. In recent years, it has been recognized that integrin agonists could open up novel opportunities for therapeutics, which gain benefits to increase rather than decrease integrin-dependent adhesion and transductional events. For instance, a significant factor in chemo-resistance in melanoma is a loss of integrin-mediated adhesion; in this case, stimulation of integrin signaling by agonists significantly improved the response to chemotherapy. In this review, we overview results about small molecules which revealed an activating action on some integrins, especially those involved in cancer, and examine from a medicinal chemistry point of view, their structure and behavior.
Collapse
Affiliation(s)
- Alessandra Tolomelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Paola Galletti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors that are expressed on all cells except red blood cells and that play essential roles in the regulation of cell growth and function. The leukocyte integrins, which include members of the β
1, β
2, β
3, and β
7 integrin family, are critical for innate and adaptive immune responses but also can contribute to many inflammatory and autoimmune diseases when dysregulated. This review focuses on the β
2 integrins, the principal integrins expressed on leukocytes. We review their discovery and role in host defense, the structural basis for their ligand recognition and activation, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- M Amin Arnaout
- Leukocyte Biology & Inflammation Program, Structural Biology Program, Nephrology, Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Mancuso RV, Welzenbach K, Steinberger P, Krähenbühl S, Weitz-Schmidt G. Downstream effect profiles discern different mechanisms of integrin αLβ2 inhibition. Biochem Pharmacol 2016; 119:42-55. [PMID: 27613223 DOI: 10.1016/j.bcp.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/02/2016] [Indexed: 10/24/2022]
Abstract
The integrin leucocyte function-associated antigen-1 (αLβ2, LFA-1) plays crucial roles in T cell adhesion, migration and immunological synapse (IS) formation. Consequently, αLβ2 is an important therapeutic target in autoimmunity. Three major classes of αLβ2 inhibitors with distinct modes of action have been described to date: Monoclonal antibodies (mAbs), small molecule α/β I allosteric and small molecule α I allosteric inhibitors. The objective of this study was to systematically compare these three modes of αLβ2 inhibition for their αLβ2 inhibitory as well as their potential agonist-like effects. All inhibitors assessed were found to potently block αLβ2-mediated leucocyte adhesion. None of the inhibitors induced ZAP70 phosphorylation, indicating absence of agonistic outside-in signalling. Paradoxically, however, the α/β I allosteric inhibitor XVA143 induced conformational changes within αLβ2 characteristic for an intermediate affinity state. This effect was not observed with the α I allosteric inhibitor LFA878 or the anti-αLβ2 mAb efalizumab. On the other hand, efalizumab triggered the unscheduled internalization of αLβ2 in CD4+ and CD8+ T cells while LFA878 and XVA143 did not affect or only mildly reduced αLβ2 surface expression, respectively. Moreover, efalizumab, in contrast to the small molecule inhibitors, disturbed the fine-tuned internalization/recycling of engaged TCR/CD3, concomitantly decreasing ZAP70 expression levels. In conclusion, different modes of αLβ2 inhibition are associated with fundamentally different biologic effect profiles. The differential established here is expected to provide important translational guidance as novel αLβ2 inhibitors will be advanced from bench to bedside.
Collapse
Affiliation(s)
- Riccardo V Mancuso
- Division of Clinical Pharmacology and Toxicology and Department of Research, University Hospital, CH-4031 Basel, Switzerland
| | - Karl Welzenbach
- Novartis Pharma AG, Novartis Institutes of Biomedical Research, CH-4002 Basel, Switzerland
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology and Department of Research, University Hospital, CH-4031 Basel, Switzerland
| | | |
Collapse
|
19
|
Semba CP, Gadek TR. Development of lifitegrast: a novel T-cell inhibitor for the treatment of dry eye disease. Clin Ophthalmol 2016; 10:1083-94. [PMID: 27354762 PMCID: PMC4910612 DOI: 10.2147/opth.s110557] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder of the ocular surface characterized by symptoms of discomfort, decreased tear quality, and chronic inflammation that affects an estimated 20 million patients in the US alone. DED is associated with localized inflammation of the ocular surface and periocular tissues leading to homing and activation of T cells, cytokine release, and development of hyperosmolar tears. This inflammatory milieu results in symptoms of eye dryness and discomfort. Homing of T cells to the ocular surface is influenced by the binding of lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18; αLβ2), a cell surface adhesion protein, to its cognate ligand, intercellular adhesion molecule-1 (ICAM-1; CD54), which is expressed on inflamed ocular/periocular epithelium and vascular endothelium. LFA-1/ICAM-1 binding within the immunologic synapse enables both T-cell activation and cytokine release. Lifitegrast is a novel T-cell integrin antagonist that is designed to mimic the binding epitope of ICAM-1. It serves as a molecular decoy to block the binding of LFA-1/ICAM-1 and inhibits the downstream inflammatory process. In vitro studies have demonstrated that lifitegrast inhibits T-cell adhesion to ICAM-1-expressing cells and inhibits secretion of pro-inflammatory cytokines including interferon gamma, tumor necrosis factor alpha, macrophage inflammatory protein 1 alpha, interleukin (IL)-1α, IL-1β, IL-2, IL-4, and IL-6, all of which are known to be associated with DED. Lifitegrast has the potential to be the first pharmaceutical product approved in the US indicated for the treatment of both symptoms and signs of DED. Clinical trials involving over 2,500 adult DED patients have demonstrated that topically administered lifitegrast 5.0% ophthalmic solution can rapidly reduce the symptoms of eye dryness and decrease ocular surface staining with an acceptable long-term safety profile. The purpose of this review is to highlight the developmental story – from bench top to bedside – behind the scientific rationale, engineering, and clinical experience of lifitegrast for the treatment of DED.
Collapse
Affiliation(s)
- Charles P Semba
- Vascular and Interventional Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
20
|
Perez VL, Pflugfelder SC, Zhang S, Shojaei A, Haque R. Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease. Ocul Surf 2016; 14:207-15. [DOI: 10.1016/j.jtos.2016.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
|
21
|
Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discov 2016; 15:173-83. [PMID: 26822833 PMCID: PMC4890615 DOI: 10.1038/nrd.2015.10] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrins are activatable molecules that are involved in adhesion and signalling. Of the 24 known human integrins, 3 are currently targeted therapeutically by monoclonal antibodies, peptides or small molecules: drugs targeting the platelet αIIbβ3 integrin are used to prevent thrombotic complications after percutaneous coronary interventions, and compounds targeting the lymphocyte α4β1 and α4β7 integrins have indications in multiple sclerosis and inflammatory bowel disease. New antibodies and small molecules targeting β7 integrins (α4β7 and αEβ7 integrins) and their ligands are in clinical development for the treatment of inflammatory bowel diseases. Integrin-based therapeutics have shown clinically significant benefits in many patients, leading to continued medical interest in the further development of novel integrin inhibitors. Of note, almost all integrin antagonists in use or in late-stage clinical trials target either the ligand-binding site or the ligand itself.
Collapse
Affiliation(s)
- Klaus Ley
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, Califoria 92037, USA, and the Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| | - Jesus Rivera-Nieves
- La Jolla Institute for Allergy and the Immunology, 9420 Athena Circle Drive, La Jolla, Califoria 92037, USA, and the Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| | - William J Sandborn
- Immunology and the Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| | - Sanford Shattil
- Division of Haematology-Oncology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| |
Collapse
|
22
|
Waffarn EE, Hastey CJ, Dixit N, Soo Choi Y, Cherry S, Kalinke U, Simon SI, Baumgarth N. Infection-induced type I interferons activate CD11b on B-1 cells for subsequent lymph node accumulation. Nat Commun 2015; 6:8991. [PMID: 26612263 DOI: 10.1038/ncomms9991] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Innate-like B-1a lymphocytes rapidly redistribute to regional mediastinal lymph nodes (MedLNs) during influenza infection to generate protective IgM. Here we demonstrate that influenza infection-induced type I interferons directly stimulate body cavity B-1 cells and are a necessary signal required for B-1 cell accumulation in MedLNs. Vascular mimetic flow chamber studies show that type I interferons increase ligand-mediated B-1 cell adhesion under shear stress by inducing high-affinity conformation shifts of surface-expressed integrins. In vivo trafficking experiments identify CD11b as the non-redundant, interferon-activated integrin required for B-1 cell accumulation in MedLNs. Thus, CD11b on B-1 cells senses infection-induced innate signals and facilitates their rapid sequester into secondary lymphoid tissues, thereby regulating the accumulation of polyreactive IgM producers at sites of infection.
Collapse
Affiliation(s)
- Elizabeth E Waffarn
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,The Graduate Group in Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Christine J Hastey
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,The Graduate Group in Microbiology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Neha Dixit
- The Graduate Group in Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Youn Soo Choi
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,The Graduate Group in Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Simon Cherry
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, Helmholtz-Centre for Infection Research, Hannover Medical School, 7 Feodor-Lynen Strasse, Hannover 30625, Germany
| | - Scott I Simon
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA.,Department of Pathology, Microbiology and Immunology, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
23
|
Welzenbach K, Mancuso RV, Krähenbühl S, Weitz-Schmidt G. A novel multi-parameter assay to dissect the pharmacological effects of different modes of integrin αLβ2 inhibition in whole blood. Br J Pharmacol 2015. [PMID: 26224111 DOI: 10.1111/bph.13256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The integrin αLβ2 plays central roles in leukocyte adhesion and T cell activation, rendering αLβ2 an attractive therapeutic target. Compounds with different modes of αLβ2 inhibition are in development, currently. Consequently, there is a foreseeable need for bedside assays, which allow assessment of the different effects of diverse types of αLβ2 inhibitors in the peripheral blood of treated patients. EXPERIMENTAL APPROACH Here, we describe a flow cytometry-based technology that simultaneously quantitates αLβ2 conformational change upon inhibitor binding, αLβ2 expression and T cell activation at the single-cell level in human blood. Two classes of allosteric low MW inhibitors, designated α I and α/β I allosteric αLβ2 inhibitors, were investigated. The first application revealed intriguing inhibitor class-specific profiles. KEY RESULTS Half-maximal inhibition of T cell activation was associated with 80% epitope loss induced by α I allosteric inhibitors and with 40% epitope gain induced by α/β I allosteric inhibitors. This differential establishes that inhibitor-induced αLβ2 epitope changes do not directly predict the effect on T cell activation. Moreover, we show here for the first time that α/β I allosteric inhibitors, in contrast to α I allosteric inhibitors, provoked partial downmodulation of αLβ2, revealing a novel property of this inhibitor class. CONCLUSIONS AND IMPLICATIONS The multi-parameter whole blood αLβ2 assay described here may enable therapeutic monitoring of αLβ2 inhibitors in patients' blood. The assay dissects differential effect profiles of different classes of αLβ2 inhibitors.
Collapse
Affiliation(s)
- Karl Welzenbach
- Novartis Pharma AG, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Riccardo V Mancuso
- Division of Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
| | - Gabriele Weitz-Schmidt
- Novartis Pharma AG, Novartis Institutes of Biomedical Research, Basel, Switzerland.,AlloCyte Pharmaceuticals AG, Basel, Switzerland
| |
Collapse
|
24
|
Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. ACTA ACUST UNITED AC 2015; 21:1102-14. [PMID: 25237857 DOI: 10.1016/j.chembiol.2014.09.001] [Citation(s) in RCA: 773] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The past 20 years have seen many advances in our understanding of protein-protein interactions (PPIs) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of "lead-like" or "drug-like" molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery-structure, computation, screening, and biomarkers. PPIs become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last 10 years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery.
Collapse
|
25
|
Rosetti F, Chen Y, Sen M, Thayer E, Azcutia V, Herter JM, Luscinskas FW, Cullere X, Zhu C, Mayadas TN. A Lupus-Associated Mac-1 Variant Has Defects in Integrin Allostery and Interaction with Ligands under Force. Cell Rep 2015; 10:1655-1664. [PMID: 25772353 DOI: 10.1016/j.celrep.2015.02.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/26/2014] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
Leukocyte CD18 integrins increase their affinity for ligand by transmitting allosteric signals to and from their ligand-binding αI domain. Mechanical forces induce allosteric changes that paradoxically slow dissociation by increasing the integrin/ligand bond lifetimes, referred to as catch bonds. Mac-1 formed catch bonds with its ligands. However, a Mac-1 gene (ITGAM) coding variant (rs1143679, R77H), which is located in the β-propeller domain and is significantly associated with systemic lupus erythematosus risk, exhibits a marked impairment in 2D ligand affinity and affinity maturation under mechanical force. Targeted mutations and activating antibodies reveal that the failure in Mac-1 R77H allostery is rescued by induction of cytoplasmic tail separation and full integrin extension. These findings demonstrate roles for R77, and the β-propeller in which it resides, in force-induced allostery relay and integrin bond stabilization. Defects in these processes may have pathological consequences, as the Mac-1 R77H variant is associated with increased susceptibility to lupus.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Immunology Graduate Program, Division of Medical Sciences, Harvard Graduate School of Arts and Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mehmet Sen
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Thayer
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Veronica Azcutia
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jan M Herter
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - F William Luscinskas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xavier Cullere
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Tanya N Mayadas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Chigaev A, Smagley Y, Haynes MK, Ursu O, Bologa CG, Halip L, Oprea T, Waller A, Carter MB, Zhang Y, Wang W, Buranda T, Sklar LA. FRET detection of lymphocyte function-associated antigen-1 conformational extension. Mol Biol Cell 2014; 26:43-54. [PMID: 25378583 PMCID: PMC4279228 DOI: 10.1091/mbc.e14-06-1050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lymphocyte function–associated antigen 1 (LFA-1) and its ligands are essential for immune cell interactions. LFA-1 is regulated through conformational changes. The relationship between molecular conformation and function is unclear. Förster resonance energy transfer is used to assess LFA-1 conformation under real-time signaling conditions. Lymphocyte function–associated antigen 1 (LFA-1, CD11a/CD18, αLβ2-integrin) and its ligands are essential for adhesion between T-cells and antigen-presenting cells, formation of the immunological synapse, and other immune cell interactions. LFA-1 function is regulated through conformational changes that include the modulation of ligand binding affinity and molecular extension. However, the relationship between molecular conformation and function is unclear. Here fluorescence resonance energy transfer (FRET) with new LFA-1–specific fluorescent probes showed that triggering of the pathway used for T-cell activation induced rapid unquenching of the FRET signal consistent with extension of the molecule. Analysis of the FRET quenching at rest revealed an unexpected result that can be interpreted as a previously unknown LFA-1 conformation.
Collapse
Affiliation(s)
| | | | - Mark K Haynes
- University of New Mexico Center for Molecular Discovery, and
| | - Oleg Ursu
- University of New Mexico Center for Molecular Discovery, and Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Cristian G Bologa
- University of New Mexico Center for Molecular Discovery, and Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Liliana Halip
- Department of Computational Chemistry, Institute of Chemistry, Romanian Academy, Timisoara 300223, Romania
| | - Tudor Oprea
- University of New Mexico Center for Molecular Discovery, and Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Anna Waller
- University of New Mexico Center for Molecular Discovery, and
| | - Mark B Carter
- University of New Mexico Center for Molecular Discovery, and
| | - Yinan Zhang
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, KY 40506
| | - Wei Wang
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
| | | | - Larry A Sklar
- Department of Pathology and Cancer Center, University of New Mexico Center for Molecular Discovery, and
| |
Collapse
|
27
|
Anil Kumar KS, Misra A, Siddiqi TI, Srivastava S, Jain M, Bhatta RS, Barthwal M, Dikshit M, Dikshit DK. Synthesis and identification of chiral aminomethylpiperidine carboxamides as inhibitor of collagen induced platelet activation. Eur J Med Chem 2014; 81:456-72. [PMID: 24859764 DOI: 10.1016/j.ejmech.2014.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 11/19/2022]
Abstract
A series of chiral lactam carboxamides of aminomethylpiperidine were synthesized and investigated for the collagen induced in vitro anti-platelet efficacy and collagen plus epinephrine induced in vivo pulmonary thromboembolism. The compound 31a (30 μM/kg) displayed a remarkable antithrombotic efficacy (60% protection) which was sustained for more than 24 h and points to its excellent bioavailability. The compounds 31a (IC50 = 6.6 μM) and 32a (IC50 = 37 μM), as well as their racemic mixture 28i (IC50 = 16 μM) significantly inhibited collagen-induced human platelet aggregation in vitro. Compound 34c displayed dual mechanism of action against both collagen (IC50 = 3.3 μM) and U46619 (IC50 = 2.7 μM) induced platelet aggregation. The pharmacokinetic study of 31a indicated very faster absorption, prolonged and constant systemic exposure and thereby exhibiting better therapeutic response.
Collapse
Affiliation(s)
- K S Anil Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India
| | - Ankita Misra
- Pharmacology Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India
| | - Tanveer Irshad Siddiqi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India
| | - Stuti Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India
| | - Manish Jain
- Pharmacology Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India
| | - Rabi Sankar Bhatta
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India
| | - Manoj Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India.
| | - Dinesh K Dikshit
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sec-10, Janakipuram Ext., Sitapur Road, Lucknow 226 031, India.
| |
Collapse
|
28
|
Abstract
T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycle, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force, but display variable substrate rigidities to the blood and lymphatic circulation systems, where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they respond and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here, we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
29
|
Willenbrock F, Zicha D, Hoppe A, Hogg N. Novel automated tracking analysis of particles subjected to shear flow: kindlin-3 role in B cells. Biophys J 2014; 105:1110-22. [PMID: 24010654 PMCID: PMC3762340 DOI: 10.1016/j.bpj.2013.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022] Open
Abstract
Shear flow assays are used to mimic the influence of physiological shear force in diverse situations such as leukocyte rolling and arrest on the vasculature, capture of nanoparticles, and bacterial adhesion. Analysis of such assays usually involves manual counting, is labor-intensive, and is subject to bias. We have developed the Leukotrack program that incorporates a novel (to our knowledge) segmentation routine capable of reliable detection of cells in phase contrast images. The program also automatically tracks rolling cells in addition to those that are more firmly attached and migrating in random directions. We demonstrate its use in the analysis of lymphocyte arrest mediated by one or more active conformations of the integrin LFA-1. Activation of LFA-1 is a multistep process that depends on several proteins including kindlin-3, the protein that is mutated in leukocyte adhesion deficiency-III patients. We find that the very first stage of LFA-1-mediated attaching is unable to proceed in the absence of kindlin-3. Our evidence indicates that kindlin-3-mediated high-affinity LFA-1 controls both the early transient integrin-dependent adhesions in addition to the final stable adhesions made under flow conditions.
Collapse
|
30
|
Kollmann CS, Bai X, Tsai CH, Yang H, Lind KE, Skinner SR, Zhu Z, Israel DI, Cuozzo JW, Morgan BA, Yuki K, Xie C, Springer TA, Shimaoka M, Evindar G. Application of encoded library technology (ELT) to a protein–protein interaction target: Discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorg Med Chem 2014; 22:2353-65. [DOI: 10.1016/j.bmc.2014.01.050] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 11/16/2022]
|
31
|
Sen M, Yuki K, Springer TA. An internal ligand-bound, metastable state of a leukocyte integrin, αXβ2. ACTA ACUST UNITED AC 2014; 203:629-42. [PMID: 24385486 PMCID: PMC3840939 DOI: 10.1083/jcb.201308083] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of a metastable, internal ligand-bound conformation of the αXβ2 integrin suggests it enables rapid equilibration between the bent-closed and extended-open conformational states. How is massive conformational change in integrins achieved on a rapid timescale? We report crystal structures of a metastable, putative transition state of integrin αXβ2. The αXβ2 ectodomain is bent; however, a lattice contact stabilizes its ligand-binding αI domain in a high affinity, open conformation. Much of the αI α7 helix unwinds, loses contact with the αI domain, and reshapes to form an internal ligand that binds to the interface between the β propeller and βI domains. Lift-off of the αI domain above this platform enables a range of extensional and rotational motions without precedent in allosteric machines. Movements of secondary structure elements in the β2 βI domain occur in an order different than in β3 integrins, showing that integrin β subunits can be specialized to assume different intermediate states between closed and open. Mutations demonstrate that the structure trapped here is metastable and can enable rapid equilibration between bent and extended-open integrin conformations and up-regulation of leukocyte adhesiveness.
Collapse
Affiliation(s)
- Mehmet Sen
- Program in Cellular and Molecular Medicine, 2 Department of Medicine, 3 Department of Anethesiology, 4 Children's Hospital Boston, and 5 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
32
|
Brennan M, Cox D. The therapeutic potential of I-domain integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:157-78. [PMID: 25023174 DOI: 10.1007/978-94-017-9153-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to their role in processes central to cancer and autoimmune disease I-domain integrins are an attractive drug target. Both antibodies and small molecule antagonists have been discovered and tested in the clinic. Much of the effort has focused on αLβ2 antagonists. Maybe the most successful was the monoclonal antibody efalizumab, which was approved for the treatment of psoriasis but subsequently withdrawn from the market due to the occurrence of a serious adverse effect (progressive multifocal leukoencephalopathy). Other monoclonal antibodies were tested for the treatment of reperfusion injury, post-myocardial infarction, but failed to progress due to lack of efficacy. New potent small molecule inhibitors of αv integrins are promising reagents for treating fibrotic disease. Small molecule inhibitors targeting collagen-binding integrins have been discovered and future work will focus on identifying molecules selectively targeting each of the collagen receptors and identifying appropriate target diseases for future clinical studies.
Collapse
Affiliation(s)
- Marian Brennan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
33
|
Fry D, Huang KS, Di Lello P, Mohr P, Müller K, So SS, Harada T, Stahl M, Vu B, Mauser H. Design of Libraries Targeting Protein-Protein Interfaces. ChemMedChem 2013; 8:726-32. [DOI: 10.1002/cmdc.201200540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/10/2022]
|
34
|
San Sebastián E, Zimmerman T, Zubia A, Vara Y, Martin E, Sirockin F, Dejaegere A, Stote RH, Lopez X, Pantoja-Uceda D, Valcárcel M, Mendoza L, Vidal-Vanaclocha F, Cossío FP, Blanco FJ. Design, synthesis, and functional evaluation of leukocyte function associated antigen-1 antagonists in early and late stages of cancer development. J Med Chem 2013; 56:735-47. [PMID: 23339734 DOI: 10.1021/jm3016848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The integrin leukocyte function associated antigen 1 (LFA-1) binds the intercellular adhesion molecule 1 (ICAM-1) by its α(L)-chain inserted domain (I-domain). This interaction plays a key role in cancer and other diseases. We report the structure-based design, small-scale synthesis, and biological activity evaluation of a novel family of LFA-1 antagonists. The design led to the synthesis of a family of highly substituted homochiral pyrrolidines with antiproliferative and antimetastatic activity in a murine model of colon carcinoma, as well as potent antiadhesive properties in several cancer cell lines in the low micromolar range. NMR analysis of their binding to the isolated I-domain shows that they bind to the I-domain allosteric site (IDAS), the binding site of other allosteric LFA-1 inhibitors. These results provide evidence of the potential therapeutic value of a new set of LFA-1 inhibitors, whose further development is facilitated by a synthetic strategy that is versatile and fully stereocontrolled.
Collapse
|
35
|
Carbo C, Yuki K, Demers M, Wagner DD, Shimaoka M. Isoflurane inhibits neutrophil recruitment in the cutaneous Arthus reaction model. J Anesth 2012; 27:261-8. [PMID: 23096126 DOI: 10.1007/s00540-012-1508-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/11/2012] [Indexed: 12/29/2022]
Abstract
PURPOSE Neutrophil recruitment to the inflammatory sites is regulated by a variety of adhesion molecules including β2 integrins. The dependency of neutrophil recruitment on β2 integrins is variable in different tissues, but has not yet been verified in the cutaneous passive reverse Arthus reaction. We examined this question and also evaluated the impact of isoflurane on neutrophil recruitment to the skin because we previously showed in vitro that isoflurane binds and inhibits β2 integrins. METHODS The dependency on β2 integrins in neutrophil recruitment to the skin in the Arthus reaction was examined using αL, αM and β2 knockout mice. Then, we evaluated the effect of isoflurane on neutrophil recruitment to the skin. In addition, the effects of isoflurane on neutrophil binding to intercellular adhesion molecule-1 (ICAM-1), one of the β2 integrin ligands, were studied in vitro using cell adhesion assays. RESULTS Neutrophil recruitment to the skin in the Arthus reaction model was totally dependent on β2 integrins, as β2 knockout mice completely abolished it. However, the defect of only one of the β2 integrins was not sufficient to abolish neutrophil recruitment. Isoflurane reduced neutrophil recruitment to the skin by approximately 90 %. Also, isoflurane inhibited neutrophil adhesion to β2 integrin ligand ICAM-1. CONCLUSIONS We demonstrated that (1) neutrophil recruitment to the skin was totally dependent on β2 integrins, and (2) isoflurane significantly impaired neutrophil recruitment. Based on the previous studies on the contribution of other adhesion molecules in neutrophil recruitment, it is likely that isoflurane at least partially affects on β2 integrins in this model.
Collapse
|
36
|
Weinreb PH, Li S, Gao SX, Liu T, Pepinsky RB, Caravella JA, Lee JH, Woods VL. Dynamic structural changes are observed upon collagen and metal ion binding to the integrin α1 I domain. J Biol Chem 2012; 287:32897-912. [PMID: 22847004 PMCID: PMC3463359 DOI: 10.1074/jbc.m112.354365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/11/2012] [Indexed: 02/05/2023] Open
Abstract
We have applied hydrogen-deuterium exchange mass spectrometry, in conjunction with differential scanning calorimetry and protein stability analysis, to examine solution dynamics of the integrin α1 I domain induced by the binding of divalent cations, full-length type IV collagen, or a function-blocking monoclonal antibody. These studies revealed features of integrin activation and α1I-ligand complexes that were not detected by static crystallographic data. Mg(2+) and Mn(2+) stabilized α1I but differed in their effects on exchange rates in the αC helix. Ca(2+) impacted α1I conformational dynamics without altering its gross thermal stability. Interaction with collagen affected the exchange rates in just one of three metal ion-dependent adhesion site (MIDAS) loops, suggesting that MIDAS loop 2 plays a primary role in mediating ligand binding. Collagen also induced changes consistent with increased unfolding in both the αC and allosteric C-terminal helices of α1I. The antibody AQC2, which binds to α1I in a ligand-mimetic manner, also reduced exchange in MIDAS loop 2 and increased exchange in αC, but it did not impact the C-terminal region. This is the first study to directly demonstrate the conformational changes induced upon binding of an integrin I domain to a full-length collagen ligand, and it demonstrates the utility of the deuterium exchange mass spectrometry method to study the solution dynamics of integrin/ligand and integrin/metal ion interactions. Based on the ligand and metal ion binding data, we propose a model for collagen-binding integrin activation that explains the differing abilities of Mg(2+), Mn(2+), and Ca(2+) to activate I domain-containing integrins.
Collapse
Affiliation(s)
| | - Sheng Li
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| | - Sharon X. Gao
- From Biogen Idec, Inc., Cambridge, Massachusetts 02142 and
| | - Tong Liu
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| | | | | | - Jun H. Lee
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| | - Virgil L. Woods
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0656
| |
Collapse
|
37
|
Yuki K, Bu W, Xi J, Sen M, Shimaoka M, Eckenhoff RG. Isoflurane binds and stabilizes a closed conformation of the leukocyte function-associated antigen-1. FASEB J 2012; 26:4408-17. [PMID: 22815384 DOI: 10.1096/fj.12-212746] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We previously demonstrated that isoflurane targets lymphocyte function-associated antigen-1 (LFA-1), a critical adhesion molecule for leukocyte arrest. However, it remains to be determined how isoflurane interacts with the full ectodomain LFA-1 and modulates its conformation and function. Isoflurane binding sites on the full ectodomain LFA-1 were probed by photolabeling using photoactivatable isoflurane (azi-isoflurane). The adducted residues were determined by liquid chromatography/mass spectrometry analysis. Separately, docking simulations were performed to predict binding sites. Point mutations were introduced around isoflurane binding sites. The significance of isoflurane's effect was assessed in both intracellular adhesion molecule-1 (ICAM-1) binding assays and epitope mapping of activation-sensitive antibodies using flow cytometry. Two isoflurane binding sites were identified using photolabeling and were further validated by the docking simulation: one at the hydrophobic pocket in the ICAM-1 binding domain (the αI domain); the other at the βI domain. Mutagenesis of the α'1 helix showed that isoflurane binding sites at the βI domain were significantly important in modulating LFA-1 function and conformation. Epitope mapping using activation-sensitive antibodies suggested that isoflurane stabilized LFA-1 in the closed conformation. This study suggested that isoflurane binds to both the αI and βI domains allosteric to the ICAM-1 binding site, and that isoflurane binding stabilizes LFA-1 in the closed conformation.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Lymphocyte function-associated antigen-1 (LFA-1) is a heterodimeric integrin consisting of αL (gene name, Itgal) and β2 (gene name, Itgb2) subunits expressed in all leukocytes. LFA-1 is essential for neutrophil recruitment to inflamed tissue. Activation of LFA-1 by chemokines allows neutrophils and other leukocytes to undergo arrest, resulting in firm adhesion on endothelia expressing intercellular adhesion molecules (ICAMs). In mice, CXCR2 is the primary chemokine receptor involved in triggering neutrophil arrest, and it does so through “inside-out” activation of LFA-1. CXCR2 signaling induces changes in LFA-1 conformation that are coupled to affinity upregulation of the ligand-binding headpiece (extended with open I domain). Unlike naïve lymphocytes, engagement of P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophils stimulates a slow rolling behavior that is mediated by LFA-1 in a distinct activation state (extended with closed I domain). How inside-out signaling cascades regulate the structure and function of LFA-1 is being studied using flow chambers, intravital microscopy, and flow cytometry for ligand and reporter antibody binding. Here, we review how LFA-1 activation is regulated by cellular signaling and ligand binding. Two FERM domain-containing proteins, talin-1 and Kindlin-3, are critical integrin co-activators and have distinct roles in the induction of LFA-1 conformational rearrangements. This review integrates these new results into existing models of LFA-1 activation.
Collapse
Affiliation(s)
- Craig T Lefort
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
39
|
|
40
|
Xiang X, Lee CY, Li T, Chen W, Lou J, Zhu C. Structural basis and kinetics of force-induced conformational changes of an αA domain-containing integrin. PLoS One 2011; 6:e27946. [PMID: 22140490 PMCID: PMC3225382 DOI: 10.1371/journal.pone.0027946] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Integrin α(L)β₂ (lymphocyte function-associated antigen, LFA-1) bears force upon binding to its ligand intercellular adhesion molecule 1 (ICAM-1) when a leukocyte adheres to vascular endothelium or an antigen presenting cell (APC) during immune responses. The ligand binding propensity of LFA-1 is related to its conformations, which can be regulated by force. Three conformations of the LFA-1 αA domain, determined by the position of its α₇-helix, have been suggested to correspond to three different affinity states for ligand binding. METHODOLOGY/PRINCIPAL FINDINGS The kinetics of the force-driven transitions between these conformations has not been defined and dynamically coupled to the force-dependent dissociation from ligand. Here we show, by steered molecular dynamics (SMD) simulations, that the αA domain was successively transitioned through three distinct conformations upon pulling the C-terminus of its α₇-helix. Based on these sequential transitions, we have constructed a mathematical model to describe the coupling between the αA domain conformational changes of LFA-1 and its dissociation from ICAM-1 under force. Using this model to analyze the published data on the force-induced dissociation of single LFA-1/ICAM-1 bonds, we estimated the force-dependent kinetic rates of interstate transition from the short-lived to intermediate-lived and from intermediate-lived to long-lived states. Interestingly, force increased these transition rates; hence activation of LFA-1 was accelerated by pulling it via an engaged ICAM-1. CONCLUSIONS/SIGNIFICANCE Our study defines the structural basis for mechanical regulation of the kinetics of LFA-1 αA domain conformational changes and relates these simulation results to experimental data of force-induced dissociation of single LFA-1/ICAM-1 bonds by a new mathematical model, thus provided detailed structural and kinetic characterizations for force-stabilization of LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
- Xue Xiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Cho-yin Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tian Li
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Jizhong Lou
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
41
|
Blancas AA, Chen CS, Stolberg S, McCloskey KE. Adhesive forces in embryonic stem cell cultures. Cell Adh Migr 2011; 5:472-9. [PMID: 22274712 PMCID: PMC3277780 DOI: 10.4161/cam.5.6.18270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/21/2011] [Accepted: 09/30/2011] [Indexed: 12/19/2022] Open
Abstract
Most cell culture systems grow and spread as contact-inhibited monolayers on flat culture dishes, but the embryonic stem cell (ESC) is one of the cell phenotypes that prefer to self-organize as tightly packed three-dimensional (3D) colonies. ESC also readily form 3D cell aggregates, called embryoid bodies (EB) that partially mimic the spatial and temporal processes of the developing embryo. Here, the rationale for ESC aggregatation, rather than "spreading" on gelatin-coated or mouse embryonic fibroblast (MEF)-coated dishes, is examined through the quantification of the expression levels of adhesion molecules on ESC and the calculation of the adhesive forces on ESC. Modeling each ESC as a dodecahedron, the adhesive force for each ESC-ESC binding was found to be 9.1 x 10(5) pN, whereas, the adhesive force for ESC-MEF binding was found to be an order of magnitude smaller at 7.9 x 10(4) pN. We also show that E-cadherin is the dominating molecule in the ESC-ESC adhesion and blocking E-cadherin leads to a significant reduction in colony formation. Here, we mathematically describe the preference for ESC to self-assemble into ESC-ESC aggregates and 3D colonies, rather than to bind and spread on gelatin or MEF-coated dishes, and have shown that these interactions are predominantly due to E-cadherin expression on ESC.
Collapse
Affiliation(s)
- Alicia A Blancas
- Graduate Program in Quantitative and Systems Biology, University of California Merced, Merced, CA, USA
| | | | | | | |
Collapse
|
42
|
Grigoryan G, Moore DT, DeGrado WF. Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Annu Rev Biochem 2011; 80:211-37. [PMID: 21548783 DOI: 10.1146/annurev-biochem-091008-152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.
Collapse
Affiliation(s)
- Gevorg Grigoryan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
43
|
Weitz-Schmidt G, Schürpf T, Springer TA. The C-terminal αI domain linker as a critical structural element in the conformational activation of αI integrins. J Biol Chem 2011; 286:42115-42122. [PMID: 21965670 DOI: 10.1074/jbc.m111.282830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of α/β heterodimeric integrins is the result of highly coordinated rearrangements within both subunits. The molecular interactions between the two subunits, however, remain to be characterized. In this study, we use the integrin α(L)β(2) to investigate the functional role of the C-linker polypeptide that connects the C-terminal end of the inserted (I) domain with the β-propeller domain on the α subunit and is located at the interface with the βI domain of the β chain. We demonstrate that shortening of the C-linker by eight or more amino acids results in constitutively active α(L)β(2) in which the αI domain is no longer responsive to the regulation by the βI domain. Despite this intersubunit uncoupling, both I domains remain individually sensitive to intrasubunit conformational changes induced by allosteric modulators. Interestingly, the length and not the sequence of the C-linker appears to be critical for its functionality in α/β intersubunit communication. Using two monoclonal antibodies (R7.1 and CBR LFA-1/1) we further demonstrate that shortening of the C-linker results in the gradual loss of combinational epitopes that require both the αI and β-propeller domains for full reactivity. Taken together, our findings highlight the role of the C-linker as a spring-like element that allows relaxation of the αI domain in the resting state and controlled tension of the αI domain during activation, exerted by the β chain.
Collapse
Affiliation(s)
- Gabriele Weitz-Schmidt
- Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston Massachusetts 02115; University Basel, PharmaCenter, Klingelbergstr. 50-70, 4056 Basel, Switzerland.
| | - Thomas Schürpf
- Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston Massachusetts 02115
| | - Timothy A Springer
- Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston Massachusetts 02115.
| |
Collapse
|
44
|
Schürpf T, Springer TA. Regulation of integrin affinity on cell surfaces. EMBO J 2011; 30:4712-27. [PMID: 21946563 DOI: 10.1038/emboj.2011.333] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/22/2011] [Indexed: 11/09/2022] Open
Abstract
Lymphocyte activation triggers adhesiveness of lymphocyte function-associated antigen-1 (LFA-1; integrin α(L)β(2)) for intercellular adhesion molecules (ICAMs) on endothelia or antigen-presenting cells. Whether the activation signal, after transmission through multiple domains to the ligand-binding αI domain, results in affinity changes for ligand has been hotly debated. Here, we present the first comprehensive measurements of LFA-1 affinities on T lymphocytes for ICAM-1 under a broad array of activating conditions. Only a modest increase in affinity for soluble ligand was detected after activation by chemokine or T-cell receptor ligation, conditions that primed LFA-1 and robustly induced lymphocyte adhesion to ICAM-1 substrates. By stabilizing well-defined LFA-1 conformations by Fab, we demonstrate the absolute requirement of the open LFA-1 headpiece for adhesiveness and high affinity. Interaction of primed LFA-1 with immobilized but not soluble ICAM-1 triggers energy-dependent affinity maturation of LFA-1 to an adhesive, high affinity state. Our results lend support to the traction or translational motion dependence of integrin activation.
Collapse
Affiliation(s)
- Thomas Schürpf
- Department of Pathology, Harvard Medical School, Immune Disease Institute and Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
45
|
Yuki K, Soriano SG, Shimaoka M. Sedative drug modulates T-cell and lymphocyte function-associated antigen-1 function. Anesth Analg 2011; 112:830-8. [PMID: 21385989 DOI: 10.1213/ane.0b013e31820dcabb] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Sedative drugs modify immune cell functions via several mechanisms. However, the effects of sedatives on immune function have been primarily investigated in neutrophils and macrophages, and to the lesser extent lymphocytes. Lymphocyte function-associated antigen-1 (LFA-1) is an adhesion molecule that has a central role in regulating immune function of lymphocytes including interleukin-2 (IL-2) production and lymphocyte proliferation. Previous clinical studies reported that propofol and isoflurane reduced IL-2 level in patients, but midazolam did not. We previously demonstrated that isoflurane inhibited LFA-1 binding to its counter ligand, intercellular adhesion molecule-1 (ICAM-1), which might contribute to the reduction of IL-2 levels. In the current study, we examined the effect of propofol, midazolam, and dexmedetomidine on LFA-1/ICAM-1 binding, and the subsequent biological effects. METHODS The effect of sedative drugs on T-cell proliferation and IL-2 production was measured by calorimetric assays on human peripheral blood mononuclear cells. Because LFA-1/ICAM-1 binding has an important role in T-cell proliferation and IL-2 production, we measured the effect of sedative drugs on ICAM-1 binding to LFA-1 protein (cell-free assay). This analysis was followed by flow cytometric analysis of LFA-1 expressing T-cell binding to ICAM-1 (cell-based assay). To determine whether the drug/LFA-1 interaction is caused by competitive or allosteric inhibition, we analyzed the sedative drug effect on wild-type and high-affinity LFA-1 and a panel of monoclonal antibodies that bind to different regions of LFA-1. RESULTS Propofol at 10 to 100 μM inhibited ICAM-1 binding to LFA-1 in cell-free assays and cell-based assays (P < 0.05). However, dexmedetomidine and midazolam did not affect LFA-1/ICAM-1 binding. Propofol directly inhibits LFA-1 binding to ICAM-1 by binding near the ICAM-1 contact area in a competitive manner. At clinically relevant concentrations, propofol, but not dexmedetomidine or midazolam, inhibited IL-2 production (P < 0.05). Additionally, propofol inhibited lymphocyte proliferation (P < 0.05). CONCLUSIONS Our study suggests that propofol competitively inhibits LFA-1 binding to ICAM-1 on T-cells and suppresses T-cell proliferation and IL-2 production, whereas dexmedetomidine and midazolam do not significantly influence these immunological assays.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Pain and Perioperative Medicine, Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA.
| | | | | |
Collapse
|
46
|
Chen W, Lou J, Zhu C. Forcing switch from short- to intermediate- and long-lived states of the alphaA domain generates LFA-1/ICAM-1 catch bonds. J Biol Chem 2010; 285:35967-78. [PMID: 20819952 PMCID: PMC2975219 DOI: 10.1074/jbc.m110.155770] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/30/2010] [Indexed: 11/06/2022] Open
Abstract
Binding of lymphocyte function-associated antigen-1 (LFA-1) to intercellular adhesion molecule-1 (ICAM-1) mediates leukocyte adhesion under force. Using a biomembrane force probe capable of measuring single bond interactions, we showed ICAM-1 binding to LFA-1 at different conformations, including the bent conformation with the lowest affinity. We quantify how force and conformations of LFA-1 regulate its kinetics with ICAM-1. At zero-force, on-rates were substantially changed by conditions that differentially favor a bent or extended LFA-1 with a closed or open headpiece; but off-rates were identical. With increasing force, LFA-1/ICAM-1 bond lifetimes (reciprocal off-rates) first increased (catch bonds) and then decreased (slip bonds). Three states with distinct off-rates were identified from lifetime distributions. Force shifted the associated fractions from the short- to intermediate- and long-lived states, producing catch bonds at low forces, but increased their off-rates exponentially, converting catch to slip bonds at high forces. An internal ligand antagonist that blocks pulling of the α(7)-helix suppressed the intermediate-/long-lived states and eliminated catch bonds, revealing an internal catch bond between the αA and βA domains. These results elucidate an allosteric mechanism for the mechanochemistry of LFA-1/ICAM-1 binding.
Collapse
Affiliation(s)
- Wei Chen
- From the Coulter Department of Biomedical Engineering
- Woodruff School of Mechanical Engineering, and
| | - Jizhong Lou
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 and
- the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zhu
- From the Coulter Department of Biomedical Engineering
- Woodruff School of Mechanical Engineering, and
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 and
| |
Collapse
|
47
|
Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 2010; 9:804-20. [PMID: 20885411 DOI: 10.1038/nrd3266] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets.
Collapse
Affiliation(s)
- Dermot Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| | | | | |
Collapse
|
48
|
Sevoflurane binds and allosterically blocks integrin lymphocyte function-associated antigen-1. Anesthesiology 2010; 113:600-9. [PMID: 20693879 DOI: 10.1097/aln.0b013e3181e89a77] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Volatile anesthetics have been shown to modify immune cell functions via several mechanisms, some of which have been only partially elucidated. We demonstrated that isoflurane inhibits primary leukocyte integrin lymphocyte function-associated antigen-1 (LFA-1) by binding to the allosteric cavity critical for conformational activation to its high-affinity form. It remains to be determined whether the allosteric inhibition of LFA-1 by isoflurane can be generalized to other anesthetics such as sevoflurane. METHODS The effects of sevoflurane on the ability of LFA-1 to bind to its counter-ligand, intercellular adhesion molecule-1, was studied in leukocytes by flow cytometry. To examine whether sevoflurane acts directly on LFA-1, we measured ligand-binding using beads coated with purified LFA-1 protein. To distinguish between competitive versus allosteric inhibition, we analyzed the effects of sevoflurane on both wild-type and mutant-locked high-affinity LFA-1. One-way analysis of variance was employed for statistical analysis of the data. Nuclear magnetic resonance spectroscopy was used to identify sevoflurane binding site(s). RESULTS Sevoflurane at clinically relevant concentrations inhibited the ligand-binding function of LFA-1 in leukocytes as well as in cell-free assays (P<0.05). Sevoflurane blocked wild-type but not locked high-affinity LFA-1, thereby demonstrating an allosteric mode of inhibition. Nuclear magnetic resonance spectroscopy revealed that sevoflurane bound to the allosteric cavity, to which LFA-1 allosteric antagonists and isoflurane also bind. CONCLUSIONS This study suggests that sevoflurane also blocks the activation-dependent conformational changes of LFA-1 to the high-affinity form. The allosteric mode of action exemplified by sevoflurane and isoflurane via LFA-1 might represent one of the underlying mechanisms of anesthetic-mediated immunomodulation.
Collapse
|
49
|
Vovk MV, Golovach NM, Sukach VA, Chernyuk ON, Manoilenko OV. Synthesis of (7S)-(−)-7-aryl-5-methyl-7-trifluoromethyl-1,3,6,7-tetrahydro-2H-1,4-diazepin-2-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2010. [DOI: 10.1134/s1070428010040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Jokinen J, White DJ, Salmela M, Huhtala M, Käpylä J, Sipilä K, Puranen JS, Nissinen L, Kankaanpää P, Marjomäki V, Hyypiä T, Johnson MS, Heino J. Molecular mechanism of alpha2beta1 integrin interaction with human echovirus 1. EMBO J 2009; 29:196-208. [PMID: 19927126 DOI: 10.1038/emboj.2009.326] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 10/08/2009] [Indexed: 11/09/2022] Open
Abstract
Conformational activation increases the affinity of integrins to their ligands. On ligand binding, further changes in integrin conformation elicit cellular signalling. Unlike any of the natural ligands of alpha2beta1 integrin, human echovirus 1 (EV1) seemed to bind more avidly a 'closed' than an activated 'open' form of the alpha2I domain. Furthermore, a mutation E336A in the alpha2 subunit, which inactivated alpha2beta1 as a collagen receptor, enhanced alpha2beta1 binding to EV1. Thus, EV1 seems to recognize an inactive integrin, and not even the virus binding could trigger the conformational activation of alpha2beta1. This was supported by the fact that the integrin clustering by EV1 did not activate the p38 MAP kinase pathway, a signalling pathway that was shown to be dependent on E336-related conformational changes in alpha2beta1. Furthermore, the mutation E336A did neither prevent EV1 induced and alpha2beta1 mediated protein kinase C activation nor EV1 internalization. Thus, in its entry strategy EV1 seems to rely on the activation of signalling pathways that are dependent on alpha2beta1 clustering, but do not require the conformational regulation of the receptor.
Collapse
Affiliation(s)
- Johanna Jokinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|