1
|
Upadhyay R, Tandel P, Patel AB. Halogen-based quinazolin-4(3H)-one derivatives as MCF-7 breast cancer inhibitors: Current developments and structure-activity relationship. Arch Pharm (Weinheim) 2025; 358:e2400740. [PMID: 39535302 DOI: 10.1002/ardp.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Currently, cancer is a serious health challenge with predominance beyond restrictions. Breast cancer remains one of the major contributors to cancer-related morbidity and mortality in women. Chemotherapy continues to be crucial in the treatment of all variants of cancer. Several antitumor drugs are presently in different phases of clinical trials, whereas many more have been approved for clinical use. However, these drugs have the potential to cause adverse effects, and certain individuals may become resistant to them, which would eventually reduce the drug's efficacy. Therefore, it is essential to discover, develop, and improve newer anticancer drug molecules that could potentially inhibit proliferative pathways. In recent years, quinazolinone derivatives, more specifically halogen-substituted 4(3H)-quinazolinone, have drawn attention as a promising new class of chemotherapeutic agents. In addition, these molecules showed significant inhibition in micromolar ranges when tested in vitro against the MCF-7 cell line. Therefore, this study aims to emphasize the intriguing versatility of halogen atoms, providing an in-depth summary and highlighting recent developments in the anticancer properties of halogenated 4(3H)-quinazolinones. It also features a detailed discussion of the structure-activity relationship (SAR) of various functional groups and their interaction with amino acid residues utilizing molecular docking studies. The intent is to foster novel discoveries that can inspire innovative investigations in this domain. Hence, this study simplifies the drug design and development strategies by prolonging the array of pharmacologically active candidates.
Collapse
Affiliation(s)
- Rachana Upadhyay
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Pooja Tandel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
2
|
Son SS, Jeong HS, Lee SW, Lee ES, Lee JG, Lee JH, Yi J, Park MJ, Choi MS, Lee D, Choi SY, Ha J, Kang JS, Cho NJ, Park S, Gil HW, Chung CH, Park JS, Kim MH, Park J, Lee EY. EPRS1-mediated fibroblast activation and mitochondrial dysfunction promote kidney fibrosis. Exp Mol Med 2024; 56:2673-2689. [PMID: 39623092 DOI: 10.1038/s12276-024-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 12/28/2024] Open
Abstract
Kidney fibrosis causes irreversible structural damage in chronic kidney disease and is characterized by aberrant extracellular matrix (ECM) accumulation. Although glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is a crucial enzyme involved in proline-rich protein synthesis, its role in kidney fibrosis remains unclear. The present study revealed that EPRS1 expression levels were increased in the fibrotic kidneys of patients and mice, especially in fibroblasts and proximal tubular epithelial cells, on the basis of single-cell analysis and immunostaining of fibrotic kidneys. Moreover, C57BL/6 EPRS1tm1b heterozygous knockout (Eprs1+/-) and pharmacological EPRS1 inhibition with the first-in-class EPRS1 inhibitor DWN12088 protected against kidney fibrosis and dysfunction by preventing fibroblast activation and proximal tubular injury. Interestingly, in vitro assays demonstrated that EPRS1-mediated nontranslational pathways in addition to translational pathways under transforming growth factor β-treated conditions by phosphorylating SMAD family member 3 in fibroblasts and signal transducers and activators of transcription 3 in injured proximal tubules. EPRS1 knockdown and catalytic inhibition suppressed these pathways, preventing fibroblast activation, proliferation, and subsequent collagen production. Additionally, we revealed that EPRS1 caused mitochondrial damage in proximal tubules but that this damage was attenuated by EPRS1 inhibition. Our findings suggest that the EPRS1-mediated ECM accumulation induces kidney fibrosis via fibroblast activation and mitochondrial dysfunction. Therefore, targeting EPRS1 could be a potential therapeutic target for alleviating fibrotic injury in chronic kidney disease.
Collapse
Affiliation(s)
- Seung Seob Son
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Hee Seul Jeong
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Seong-Woo Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jeong Geon Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Ji-Hye Lee
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Mi Ju Park
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Min Sun Choi
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Donghyeong Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Sin Young Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jiheon Ha
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nam-Jun Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Samel Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Yongin, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Young Lee
- Department of Medicine, Graduate School of Soonchunhyang University, Cheonan, Korea.
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea.
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea.
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Korea.
| |
Collapse
|
3
|
Piecyk M, Ferraro-Peyret C, Laville D, Perros F, Chaveroux C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J 2024; 291:4867-4889. [PMID: 38879870 DOI: 10.1111/febs.17203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 11/14/2024]
Abstract
Defining the mechanisms that allow cells to adapt to environmental stress is critical for understanding the progression of chronic diseases and identifying relevant drug targets. Among these, activation of the pathway controlled by the eIF2-alpha kinase GCN2 is critical for translational and metabolic reprogramming of the cell in response to various metabolic, proteotoxic, and ribosomal stressors. However, its role has frequently been investigated through the lens of a stress pathway signaling via the eIF2α-activating transcription factor 4 (ATF4) downstream axis, while recent advances in the field have revealed that the GCN2 pathway is more complex than previously thought. Indeed, this kinase can be activated through a variety of mechanisms, phosphorylate substrates other than eIF2α, and regulate cell proliferation in a steady state. This review presents recent findings regarding the fundamental mechanisms underlying GCN2 signaling and function, as well as the development of drugs that modulate its activity. Furthermore, by comparing the literature on GCN2's antagonistic roles in two challenging pathologies, cancer and pulmonary diseases, the benefits, and drawbacks of GCN2 targeting, particularly inhibition, are discussed.
Collapse
Affiliation(s)
- Marie Piecyk
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, University Lyon I, Oullins, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, Plateforme AURAGEN, France
| | - David Laville
- Department of Pathology, Hospices Civils de Lyon, East Hospital Group, Bron, France
| | - Frédéric Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, University of Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
| |
Collapse
|
4
|
Trujillo Cubillo L, Gurdal M, Zeugolis DI. Corneal fibrosis: From in vitro models to current and upcoming drug and gene medicines. Adv Drug Deliv Rev 2024; 209:115317. [PMID: 38642593 DOI: 10.1016/j.addr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-β (TGF-β) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-β inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.
Collapse
Affiliation(s)
- Laura Trujillo Cubillo
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
5
|
Prajjwal P, Marsool MDM, Yadav V, Kanagala RSD, Reddy YB, John J, Lam JR, Karra N, Amiri B, Islam MU, Nithya V, Marsool ADM, Gadam S, Vora N, Hussin OA. Neurological, cardiac, musculoskeletal, and renal manifestations of scleroderma along with insights into its genetics, pathophysiology, diagnostic, and therapeutic updates. Health Sci Rep 2024; 7:e2072. [PMID: 38660003 PMCID: PMC11040569 DOI: 10.1002/hsr2.2072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Background Scleroderma, also referred to as systemic sclerosis, is a multifaceted autoimmune condition characterized by abnormal fibrosis and impaired vascular function. Pathologically, it encompasses the persistent presence of inflammation, abnormal collagen buildup, and restructuring of blood vessels in various organs, resulting in a wide range of clinical symptoms. This review incorporates the most recent scientific literature on scleroderma, with a particular emphasis on its pathophysiology, clinical manifestations, diagnostic approaches, and treatment options. Methodology A comprehensive investigation was carried out on numerous databases, such as PubMed, MEDLINE, Scopus, Web of Science, and Google Scholar, to collect pertinent studies covering diverse facets of scleroderma research. Results Scleroderma presents with a range of systemic manifestations, such as interstitial lung disease, gastrointestinal dysmotility, Raynaud's phenomenon, pulmonary arterial hypertension, renal complications, neurological symptoms, and cardiac abnormalities. Serological markers, such as antinuclear antibodies, anti-centromere antibodies, and anti-topoisomerase antibodies, are important for classifying diseases and predicting their outcomes. Discussion The precise identification of scleroderma is crucial for promptly and correctly implementing effective treatment plans. Treatment approaches aim to improve symptoms, reduce complications, and slow down the progression of the disease. An integrated approach that combines pharmacological agents, including immunosuppressants, endothelin receptor antagonists, and prostanoids, with nonpharmacological interventions such as physical and occupational therapy is essential for maximizing patient care. Conclusion Through the clarification of existing gaps in knowledge and identification of emerging trends, our goal is to improve the accuracy of diagnosis, enhance the effectiveness of therapeutic interventions, and ultimately enhance the overall quality of life for individuals suffering from scleroderma. Ongoing cooperation and creative research are necessary to advance the field and achieve improved patient outcomes and new therapeutic discoveries.
Collapse
Affiliation(s)
| | | | - Vikas Yadav
- Department of Internal MedicinePt. B. D. S. Postgraduate Institute of Medical SciencesRohtakIndia
| | | | | | - Jobby John
- Department of Internal MedicineDr. Somervell Memorial CSI Medical College and HospitalNeyyāttinkaraIndia
| | - Justin Riley Lam
- Department of Internal MedicineCebu Institute of MedicineCebuPhilippines
| | - Nanditha Karra
- Department of Internal MedicineOsmania Medical CollegeHyderabadTelanganaIndia
| | - Bita Amiri
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | - Moiz Ul Islam
- Department of Internal MedicinePunjab Medical CollegeFaisalabadPakistan
| | - Venkatesh Nithya
- Department of Internal MedicineS. D. Asfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | | | | | | | - Omniat Amir Hussin
- Department of MedicineAlmanhal University Academy of ScienceKhartoumSudan
| |
Collapse
|
6
|
Lee DK, Jo SH, Lee ES, Ha KB, Park NW, Kong DH, Park SI, Park JS, Chung CH. DWN12088, A Prolyl-tRNA Synthetase Inhibitor, Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis. Diabetes Metab J 2024; 48:97-111. [PMID: 38173372 PMCID: PMC10850270 DOI: 10.4093/dmj.2022.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Nonalcoholic steatohepatitis (NASH) is a liver disease caused by obesity that leads to hepatic lipoapoptosis, resulting in fibrosis and cirrhosis. However, the mechanism underlying NASH is largely unknown, and there is currently no effective therapeutic agent against it. DWN12088, an agent used for treating idiopathic pulmonary fibrosis, is a selective prolyl-tRNA synthetase (PRS) inhibitor that suppresses the synthesis of collagen. However, the mechanism underlying the hepatoprotective effect of DWN12088 is not clear. Therefore, we investigated the role of DWN12088 in NASH progression. METHODS Mice were fed a chow diet or methionine-choline deficient (MCD)-diet, which was administered with DWN12088 or saline by oral gavage for 6 weeks. The effects of DWN12088 on NASH were evaluated by pathophysiological examinations, such as real-time quantitative reverse transcription polymerase chain reaction, immunoblotting, biochemical analysis, and immunohistochemistry. Molecular and cellular mechanisms of hepatic injury were assessed by in vitro cell culture. RESULTS DWN12088 attenuated palmitic acid (PA)-induced lipid accumulation and lipoapoptosis by downregulating the Rho-kinase (ROCK)/AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein-1c (SREBP-1c) and protein kinase R-like endoplasmic reticulum kinase (PERK)/α subunit of eukaryotic initiation factor 2 (eIF2α)/activating transcription factor 4 (ATF4)/C/EBP-homologous protein (CHOP) signaling cascades. PA increased but DWN12088 inhibited the phosphorylation of nuclear factor-κB (NF-κB) p65 (Ser536, Ser276) and the expression of proinflammatory genes. Moreover, the DWN12088 inhibited transforming growth factor β (TGFβ)-induced pro-fibrotic gene expression by suppressing TGFβ receptor 1 (TGFβR1)/Smad2/3 and TGFβR1/glutamyl-prolyl-tRNA synthetase (EPRS)/signal transducer and activator of transcription 6 (STAT6) axis signaling. In the case of MCD-diet-induced NASH, DWN12088 reduced hepatic steatosis, inflammation, and lipoapoptosis and prevented the progression of fibrosis. CONCLUSION Our findings provide new insights about DWN12088, namely that it plays an important role in the overall improvement of NASH. Hence, DWN12088 shows great potential to be developed as a new integrated therapeutic agent for NASH.
Collapse
Affiliation(s)
- Dong-Keon Lee
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Su Ho Jo
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eun Soo Lee
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyung Bong Ha
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Na Won Park
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Deok-Hoon Kong
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Sang-In Park
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Seoul, Korea
| | - Choon Hee Chung
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
7
|
Hidalgo Calleja C, Sánchez González MD, Medina Luezas J, López Corral L. Chronic graft-versus-recipient disease: Systematic review of joint and fascial involvement. REUMATOLOGIA CLINICA 2023; 19:235-243. [PMID: 37087381 DOI: 10.1016/j.reumae.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/15/2022] [Indexed: 04/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic graft-versus-host disease (cGVRD) is a systemic immune-mediated complication that occurs in approximately half of the patients undergoing allogeneic haematopoietic stem cell transplantation (allo-HCT) and, although it is associated with beneficial graft versus tumour effects and lower relapse rates, it remains the leading cause of late morbidity and mortality in these patients. The aim of this systematic review of the literature is to provide a current overview on the diagnostic musculoskeletal manifestations of cGVRD, its clinical evaluation, and therapeutic possibilities. METHODS We ran a systematic search in PubMed, Embase, and Cochrane Library. Studies from the last 20 years were included. Priority was given to cross-sectional studies to evaluate diagnostic methods and to clinical trials in the case of articles referring to treatment. The search was limited to humans and articles published in English or Spanish. RESULTS We identified 6423 studies, of which we selected 86 (37 on clinical and diagnostic evaluation and 49 on treatments). Specific studies on fascial and joint complications are scarce and of low quality, including only isolated clinical cases or case series. Fasciitis is the most relevant musculoskeletal manifestation, and isolated joint involvement is low, sometimes unnoticed and underdiagnosed, if a thorough exploration of joint motion is not performed. Early detection of cGVRD with fascial and/or joint involvement requires careful and repeated evaluation. CONCLUSIONS The search for new biomarkers or advanced imaging techniques that allow early diagnosis is necessary. Physiotherapy is essential to improve functionality and prevent disease progression. Controlled studies are needed to establish recommendations on second lines of treatment. Because of its multisystemic nature, cGVRD requires a multidisciplinary approach.
Collapse
Affiliation(s)
- Cristina Hidalgo Calleja
- Servicio de Reumatología, Complejo Asistencial Universitario de Salamanca-IBSAL, Salamanca, Spain.
| | | | - Julio Medina Luezas
- Servicio de Reumatología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Lucía López Corral
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca-IBSAL. Centro de Investigación del Cáncer-IBMCC, Salamanca, Spain
| |
Collapse
|
8
|
Cheng B, Cai Z, Luo Z, Luo S, Luo Z, Cheng Y, Yu Y, Guo J, Ju Y, Gu Q, Xu J, Jiang X, Li G, Zhou H. Structure-Guided Design of Halofuginone Derivatives as ATP-Aided Inhibitors Against Bacterial Prolyl-tRNA Synthetase. J Med Chem 2022; 65:15840-15855. [PMID: 36394909 DOI: 10.1021/acs.jmedchem.2c01496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are promising antimicrobial targets due to their essential roles in protein translation, and expanding their inhibitory mechanisms will provide new opportunities for drug discovery. We report here that halofuginone (HF), an herb-derived medicine, moderately inhibits prolyl-tRNA synthetases (ProRSs) from various pathogenic bacteria. A cocrystal structure of Staphylococcus aureus ProRS (SaProRS) with HF and an ATP analog was determined, which guided the design of new HF analogs. Compound 3 potently inhibited SaProRS at IC50 = 0.18 μM and Kd = 30.3 nM and showed antibacterial activities with an MIC of 1-4 μg/mL in vitro. The bacterial drug resistance to 3 only developed at a rate similar to or slower than those of clinically used antibiotics in vitro. Our study indicates that the scaffold and ATP-aided inhibitory mechanism of HF could apply to bacterial ProRS and also provides a chemical validation for using bacterial ProRS as an antibacterial target.
Collapse
Affiliation(s)
- Bao Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhengjun Cai
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ziqing Luo
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Siting Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yanfang Cheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ying Yu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junsong Guo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xianxing Jiang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Geng Li
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
9
|
|
10
|
Panda H, Suzuki M, Naito M, Saito R, Wen H, Baird L, Uruno A, Miyata K, Yamamoto M. Halofuginone micelle nanoparticles eradicate Nrf2-activated lung adenocarcinoma without systemic toxicity. Free Radic Biol Med 2022; 187:92-104. [PMID: 35618180 DOI: 10.1016/j.freeradbiomed.2022.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022]
Abstract
The Keap1-Nrf2 system is the master regulator of the cellular response against oxidative and xenobiotic stresses. Constitutive activation of Nrf2 is frequently observed in various types of cancers. Nrf2 hyperactivation induces metabolic reprogramming in cancer cells, which supports the increased energy demand required for rapid proliferation and confers high-level resistance against anticancer radio/chemotherapy. Hence, Nrf2 inhibition has emerged as an attractive therapeutic strategy to counter such acquired resistance in Nrf2-activated tumors. We previously identified Halofuginone (HF) as a promising Nrf2 inhibitor. In this study, we pursued preclinical characterization of HF and found that while HF markedly reduced the viability of cancer cells, it also caused severe hematopoietic and immune cell suppression in a dose-dependent manner. Hence, to overcome this toxicity, we decided to employ a nanomedicine approach to HF. We found that encapsulation of HF into a polymeric micelle (HF micelle; HFm) largely relieved the systemic toxicity exhibited by free HF while maintaining the tumor-suppressive properties of HF. LC-MS/MS analysis revealed that the reduction in the magnitude of adverse effects was the result of the ability to release HF from the HFm core in a slow and sustained manner. These results thus support the contention that HFm will potentially counteract Nrf2-activated cancers in the clinical settings.
Collapse
Affiliation(s)
- Harit Panda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Ritsumi Saito
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Huaichun Wen
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Liam Baird
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Akira Uruno
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
11
|
Gill J, Sharma A. Prospects of halofuginone as an antiprotozoal drug scaffold. Drug Discov Today 2022; 27:2586-2592. [DOI: 10.1016/j.drudis.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
12
|
Biosynthesis and Chemical Synthesis of Albomycin Nucleoside Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11040438. [PMID: 35453190 PMCID: PMC9032320 DOI: 10.3390/antibiotics11040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread emergence of antibiotic-resistant bacteria highlights the urgent need for new antimicrobial agents. Albomycins are a group of naturally occurring sideromycins with a thionucleoside antibiotic conjugated to a ferrichrome-type siderophore. The siderophore moiety serves as a vehicle to deliver albomycins into bacterial cells via a “Trojan horse” strategy. Albomycins function as specific inhibitors of seryl-tRNA synthetases and exhibit potent antimicrobial activities against both Gram-negative and Gram-positive bacteria, including many clinical pathogens. These distinctive features make albomycins promising drug candidates for the treatment of various bacterial infections, especially those caused by multidrug-resistant pathogens. We herein summarize findings on the discovery and structure elucidation, mechanism of action, biosynthesis and immunity, and chemical synthesis of albomcyins, with special focus on recent advances in the biosynthesis and chemical synthesis over the past decade (2012–2022). A thorough understanding of the biosynthetic pathway provides the basis for pathway engineering and combinatorial biosynthesis to create new albomycin analogues. Chemical synthesis of natural congeners and their synthetic analogues will be useful for systematic structure–activity relationship (SAR) studies, and thereby assist the design of novel albomycin-derived antimicrobial agents.
Collapse
|
13
|
Wang J, Wang B, Lv X, Wang Y. Halofuginone functions as a therapeutic drug for chronic periodontitis in a mouse model. Int J Immunopathol Pharmacol 2021; 34:2058738420974893. [PMID: 33259259 PMCID: PMC7716055 DOI: 10.1177/2058738420974893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by host immune response, resulting in a loss of periodontium and alveolar bone. Immune cells, such as T cells and macrophages, play a critical role in the periodontitis onset. Halofuginone, a natural quinazolinone alkaloid, has been shown to possess anti-fibrosis, anti-cancer, and immunomodulatory properties. However, the effect of halofuginone on periodontitis has never been reported. In this study, a ligature-induced mice model of periodontitis was applied to investigate the potential beneficial effect of halofuginone on periodontitis. We demonstrated that the administration of halofuginone significantly reduced the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in vivo, and markedly suppressed immune cell infiltration into the infected sites. Furthermore, we also observed that halofuginone treatment blocked the T-helper 17 (Th17) cell differentiation in vivo and in vitro. We demonstrated for the first time that halofuginone alleviated the onset of periodontitis through reducing immune responses.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bo Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Center, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Lv
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingjie Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
- Yingjie Wang, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China.
| |
Collapse
|
14
|
Jain PP, Zhao T, Xiong M, Song S, Lai N, Zheng Q, Chen J, Carr SG, Babicheva A, Izadi A, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Simonson T, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Makino A, Yuan JXJ. Halofuginone, a promising drug for treatment of pulmonary hypertension. Br J Pharmacol 2021; 178:3373-3394. [PMID: 33694155 PMCID: PMC9792225 DOI: 10.1111/bph.15442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 μM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 μM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amin Izadi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shayan Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Allen J. Effects of corticosteroids vs halofuginone on vocal fold wound healing in an ovine model. Laryngoscope Investig Otolaryngol 2021; 6:786-793. [PMID: 34401503 PMCID: PMC8356862 DOI: 10.1002/lio2.602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To evaluate antifibrotic effects of corticosteroids and halofuginone, a small molecule inhibitor of Smad3, in an ovine model of vocal fold (VF) injury. METHODS Thirty sheep, using a paired study design, underwent controlled right VF injury by biopsy and then were treated with either no treatment, oral dexamethasone, intralesional triamcinolone, or oral halofuginone. Larynges were evaluated for histological evidence of fibrosis, immunohistochemical presence of Smad3, and vibratory parameters. Outcomes were compared across treatment groups. RESULTS Following injury, VF collagen density decreased in both halofuginone-treated and dexamethasone-treated sheep but not in triamcinolone treated sheep. A significant difference was noted between halofuginone and triamcinolone treated sheep (27.8% vs 37%, P = .017). Elastin was preserved postinjury by halofuginone treatment in contrast with all steroid treated animals where significant loss of elastin was noted (P <.05). Smad3 staining was up-regulated at all injury sites compared to normal left VFs however halofuginone and dexamethasone treatment reduced Smad3 activity significantly whereas triamcinolone treatment did not (P <.05). Ex-vivo stroboscopic evaluation demonstrated mucosal wave in all excised larynges with a normalized glottal gap less than 3, suggesting adequate glottal closure. CONCLUSIONS VF injury in an ovine model results in a wound response able to be modified by Smad3 inhibitor, halofuginone, with benefit to vibratory function. Halofuginone treated sheep demonstrated reduced collagenization of lamina propria with greater elastin density after injury, than sheep treated with either steroid medication. These data support this pathway as a suitable target for manipulation to prevent or reverse fibrosis in the glottis and restore voice quality.Level of Evidence: NA.
Collapse
|
16
|
Differential Effects of Halofuginone Enantiomers on Muscle Fibrosis and Histopathology in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22137063. [PMID: 34209117 PMCID: PMC8268105 DOI: 10.3390/ijms22137063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Progressive loss of muscle and muscle function is associated with significant fibrosis in Duchenne muscular dystrophy (DMD) patients. Halofuginone, an analog of febrifugine, prevents fibrosis in various animal models, including those of muscular dystrophies. Effects of (+)/(−)-halofuginone enantiomers on motor coordination and diaphragm histopathology in mdx mice, the mouse model for DMD, were examined. Four-week-old male mice were treated with racemic halofuginone, or its separate enantiomers, for 10 weeks. Controls were treated with saline. Racemic halofuginone-treated mice demonstrated better motor coordination and balance than controls. However, (+)-halofuginone surpassed the racemic form’s effect. No effect was observed for (−)-halofuginone, which behaved like the control. A significant reduction in collagen content and degenerative areas, and an increase in utrophin levels were observed in diaphragms of mice treated with racemic halofuginone. Again, (+)-halofuginone was more effective than the racemic form, whereas (−)-halofuginone had no effect. Both racemic and (+)-halofuginone increased diaphragm myofiber diameters, with no effect for (−)-halofuginone. No effects were observed for any of the compounds tested in an in-vitro cell viability assay. These results, demonstrating a differential effect of the halofuginone enantiomers and superiority of (+)-halofuginone, are of great importance for future use of (+)-halofuginone as a DMD antifibrotic therapy.
Collapse
|
17
|
Chen Y, Lear TB, Evankovich JW, Larsen MB, Lin B, Alfaras I, Kennerdell JR, Salminen L, Camarco DP, Lockwood KC, Tuncer F, Liu J, Myerburg MM, McDyer JF, Liu Y, Finkel T, Chen BB. A high-throughput screen for TMPRSS2 expression identifies FDA-approved compounds that can limit SARS-CoV-2 entry. Nat Commun 2021; 12:3907. [PMID: 34162861 PMCID: PMC8222394 DOI: 10.1038/s41467-021-24156-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.
Collapse
Affiliation(s)
- Yanwen Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Travis B Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mads B Larsen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Bo Lin
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Irene Alfaras
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Laura Salminen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Daniel P Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Michael M Myerburg
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bill B Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Cutler C. Treating Inflammation and Fibrosis in Chronic GVHD: Two Birds, One ROCK. J Clin Oncol 2021; 39:1942-1945. [PMID: 33877859 DOI: 10.1200/jco.21.00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Bo Y, Liu B, Yang L, Zhang L, Yan Y. Exosomes derived from miR-16-5p-overexpressing keratinocytes attenuates bleomycin-induced skin fibrosis. Biochem Biophys Res Commun 2021; 561:113-119. [PMID: 34022711 DOI: 10.1016/j.bbrc.2021.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
microRNAs have been shown to be associated with the development of skin fibrosis. Therefore, miRNA modulators play an important role in the management of cutaneous fibrotic diseases and are worthy of investigation. However, a major obstacle of miRNAs therapy is to deliver miRNAs to target cell types, tissues or organs. The study reported here investigated the effects of miR-16-5p delivery by keratinocytes-derived exosomes on skin fibrosis in the bleomycin (BLM)-treated mice. In results, miR-16-5p-overexpressing keratinocytes-derived exosomes significantly suppressed the enhancing effects of TGF-β1 on proliferation, migration and COL1A1 expression of fibroblasts. Moreover, we found that miR-16-5p-overexpressing keratinocytes-derived exosomes inhibited the endogenous Smad3 expression. In vivo, subcutaneously injected of miR-16-5p-overexpressing keratinocytes-derived exosomes significantly enhanced miR-16-5p expression in the skin compared with the control group, while suppressing BLM-induced skin fibrosis with reduced dermal thickening and lower COL1A1 expression. In conclusion, our results suggest that the localized delivery of miR-16-5p by keratinocytes-derived exosomes may have potential for efficient clinical treatment of skin fibrosis.
Collapse
Affiliation(s)
- Yunyao Bo
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Baiting Liu
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lijun Yang
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China; NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangzhou, 510515, China.
| | - Yuan Yan
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China; NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Bouz G, Zitko J. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review. Bioorg Chem 2021; 110:104806. [PMID: 33799176 DOI: 10.1016/j.bioorg.2021.104806] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are crucial for the correct assembly of amino acids to cognate tRNA to maintain the fidelity of proteosynthesis. AaRSs have become a hot target in antimicrobial research. Three aaRS inhibitors are already in clinical practice; antibacterial mupirocin inhibits the synthetic site of isoleucyl-tRNA synthetase, antifungal tavaborole inhibits the editing site of leucyl-tRNA synthetase, and antiprotozoal halofuginone inhibits proline-tRNA synthetase. According to the World Health Organization, tuberculosis globally remains the leading cause of death from a single infectious agent. The rising incidence of multidrug-resistant tuberculosis is alarming and urges the search for new antimycobacterial compounds, preferably with yet unexploited mechanism of action. In this literature review, we have covered the up-to-date state in the field of inhibitors of mycobacterial aaRSs. The most studied aaRS in mycobacteria is LeuRS with at least four structural types of inhibitors, followed by TyrRS and AspRS. Inhibitors of MetRS, LysRS, and PheRS were addressed in a single significant study each. In many cases, the enzyme inhibition activity translated into micromolar or submicromolar inhibition of growth of mycobacteria. The most promising aaRS inhibitor as an antimycobacterial compound is GSK656 (compound 8), the only aaRS inhibitor in clinical trials (Phase IIa) for systemic use against tuberculosis. GSK656 is orally available and shares the oxaborole tRNA-trapping mechanism of action with antifungal tavaborole.
Collapse
Affiliation(s)
- Ghada Bouz
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University.
| |
Collapse
|
21
|
Wang C, Zhu JB, Yan YY, Zhang W, Gong XJ, Wang X, Wang XL. Halofuginone inhibits tumorigenic progression of 5-FU-resistant human colorectal cancer HCT-15/FU cells by targeting miR-132-3p in vitro. Oncol Lett 2020; 20:385. [PMID: 33154782 PMCID: PMC7607966 DOI: 10.3892/ol.2020.12248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
5-Fluorouracil (5-FU)-based chemotherapy is the first-line option for patients with advanced colorectal cancer (CRC). However, the development of chemoresistance is the primary cause of treatment failure. Halofuginone (HF), a small molecule alkaloid derived from febrifugine, has been demonstrated to exert strong anti-proliferative effects. However, to the best of our knowledge, whether HF inhibits the progression of 5-FU-resistant human CRC HCT-15/FU cells, and the underlying mechanisms, remain unknown. In the present study, the effects of HF on HCT-15/FU cells were assessed in vitro. The results revealed that HF inhibited HCT-15/FU cell viability as demonstrated by the MTT and colony formation assays. Following treatment of HCT-15/FU cells with HF, the migratory and invasive capacities of the cells were significantly decreased. MicroRNA (miRNA/miR)-sequencing data, subsequent miRNA trend analysis and reverse transcription-quantitative PCR all demonstrated that miR-132-3p expression was increased following treatment with HF in a dose-dependent manner. Western blot analysis indicated that following treatment with HF, the expression levels of proteins associated with proliferation, invasion and metastasis in cells were markedly downregulated. These results suggested that HF inhibited the proliferation, invasion and migration of HCT-15/FU cells by upregulating the expression levels of miR-132-3p. Therefore, miR-132-3p may serve as a molecular marker, which may be used to predict CRC resistance to 5-FU, and HF may serve as a novel clinical treatment for 5-FU-resistant CRC.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology, Wuhai Municipal People's Hospital, Wuhai, Inner Mongolia Autonomous Region 016000, P.R. China
| | - Jian-Bin Zhu
- Department of Gastroenterology, Wuhai Municipal People's Hospital, Wuhai, Inner Mongolia Autonomous Region 016000, P.R. China
| | - Yan-Yan Yan
- Department of Pharmacology, Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Wei Zhang
- Department of Gastroenterology, Cancer Center of Datong, The Second People's Hospital of Datong, Datong, Shanxi 037005, P.R. China
| | - Xiao-Jie Gong
- Department of Gastroenterology, Wuhai Municipal People's Hospital, Wuhai, Inner Mongolia Autonomous Region 016000, P.R. China
| | - Xia Wang
- Department of Gastroenterology, Wuhai Municipal People's Hospital, Wuhai, Inner Mongolia Autonomous Region 016000, P.R. China
| | - Xiao-Liang Wang
- General Surgery Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, P.R. China
| |
Collapse
|
22
|
Chen Y, Lear TB, Evankovich JW, Larsen MB, Lin B, Alfaras I, Kennerdell JR, Salminen L, Camarco DP, Lockwood KC, Liu J, Myerburg MM, McDyer JF, Liu Y, Finkel T, Chen BB. A high throughput screen for TMPRSS2 expression identifies FDA-approved and clinically advanced compounds that can limit SARS-CoV-2 entry. RESEARCH SQUARE 2020:rs.3.rs-48659. [PMID: 32818215 PMCID: PMC7430593 DOI: 10.21203/rs.3.rs-48659/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identified small molecules that can reduce surface expression of TMPRSS2 using a 2,700 FDA-approved or current clinical trial compounds. Among these, homoharringtonine and halofuginone appear the most potent agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrated marked resistance to SARS-CoV-2 pseudoviral infection. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat COVID-19 infection.
Collapse
Affiliation(s)
- Yanwen Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John W. Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mads B. Larsen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Bo Lin
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Irene Alfaras
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | | | - Laura Salminen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Daniel P. Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Karina C. Lockwood
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Michael M. Myerburg
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John F. McDyer
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B. Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
23
|
Nyamai DW, Tastan Bishop Ö. Identification of Selective Novel Hits against Plasmodium falciparum Prolyl tRNA Synthetase Active Site and a Predicted Allosteric Site Using in silico Approaches. Int J Mol Sci 2020; 21:E3803. [PMID: 32471245 PMCID: PMC7312540 DOI: 10.3390/ijms21113803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been increased interest in aminoacyl tRNA synthetases (aaRSs) as potential malarial drug targets. These enzymes play a key role in protein translation by the addition of amino acids to their cognate tRNA. The aaRSs are present in all Plasmodium life cycle stages, and thus present an attractive malarial drug target. Prolyl tRNA synthetase is a class II aaRS that functions in charging tRNA with proline. Various inhibitors against Plasmodium falciparum ProRS (PfProRS) active site have been designed. However, none have gone through clinical trials as they have been found to be highly toxic to human cells. Recently, a possible allosteric site was reported in PfProRS with two possible allosteric modulators: glyburide and TCMDC-124506. In this study, we sought to identify novel selective inhibitors targeting PfProRS active site and possible novel allosteric modulators of this enzyme. To achieve this, virtual screening of South African natural compounds against PfProRS and the human homologue was carried out using AutoDock Vina. The modulation of protein motions by ligand binding was studied by molecular dynamics (MD) using the GROningen MAchine for Chemical Simulations (GROMACS) tool. To further analyse the protein global motions and energetic changes upon ligand binding, principal component analysis (PCA), and free energy landscape (FEL) calculations were performed. Further, to understand the effect of ligand binding on the protein communication, dynamic residue network (DRN) analysis of the MD trajectories was carried out using the MD-TASK tool. A total of ten potential natural hit compounds were identified with strong binding energy scores. Binding of ligands to the protein caused observable global and residue level changes. Dynamic residue network calculations showed increase in betweenness centrality (BC) metric of residues at the allosteric site implying these residues are important in protein communication. A loop region at the catalytic domain between residues 300 and 350 and the anticodon binding domain showed significant contributions to both PC1 and PC2. Large motions were observed at a loop in the Z-domain between residues 697 and 710 which was also in agreement with RMSF calculations that showed increase in flexibility of residues in this region. Residues in this loop region are implicated in ATP binding and thus a change in dynamics may affect ATP binding affinity. Free energy landscape (FEL) calculations showed that the holo protein (protein-ADN complex) and PfProRS-SANC184 complexes were stable, as shown by the low energy with very few intermediates and hardly distinguishable low energy barriers. In addition, FEL results agreed with backbone RMSD distribution plots where stable complexes showed a normal RMSD distribution while unstable complexes had multimodal RMSD distribution. The betweenness centrality metric showed a loss of functional importance of key ATP binding site residues upon allosteric ligand binding. The deep basins in average L observed at the allosteric region imply that there is high accessibility of residues at this region. To further analyse BC and average L metrics data, we calculated the ΔBC and ΔL values by taking each value in the holo protein BC or L matrix less the corresponding value in the ligand-bound complex BC or L matrix. Interestingly, in allosteric complexes, residues located in a loop region implicated in ATP binding had negative ΔL values while in orthosteric complexes these residues had positive ΔL values. An increase in contact frequency between residues Ser263, Thr267, Tyr285, and Leu707 at the allosteric site and residues Thr397, Pro398, Thr402, and Gln395 at the ATP binding TXE loop was observed. In summary, this study identified five potential orthosteric inhibitors and five allosteric modulators against PfProRS. Allosteric modulators changed ATP binding site dynamics, as shown by RMSF, PCA, and DRN calculations. Changes in dynamics of the ATP binding site and increased contact frequency between residues at the proposed allosteric site and the ATP binding site may explain how allosteric modulators distort the ATP binding site and thus might inhibit PfProRS. The scaffolds of the identified hits in the study can be used as a starting point for antimalarial inhibitor development with low human cytotoxicity.
Collapse
Affiliation(s)
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa;
| |
Collapse
|
24
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Discovery of novel tRNA-amino acid dual-site inhibitors against threonyl-tRNA synthetase by fragment-based target hopping. Eur J Med Chem 2020; 187:111941. [DOI: 10.1016/j.ejmech.2019.111941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/21/2022]
|
26
|
Navarro J, Clohessy RM, Holder RC, Gabard AR, Herendeen GJ, Christy RJ, Burnett LR, Fisher JP. In Vivo Evaluation of Three-Dimensional Printed, Keratin-Based Hydrogels in a Porcine Thermal Burn Model. Tissue Eng Part A 2020; 26:265-278. [PMID: 31774034 DOI: 10.1089/ten.tea.2019.0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Keratin is a natural material that can be derived from the cortex of human hair. Our group had previously presented a method for the printed, sequential production of three-dimensional (3D) keratin scaffolds. Using a riboflavin-sodium persulfate-hydroquinone (initiator-catalyst-inhibitor) photosensitive solution, we produced 3D keratin-based constructs through ultraviolet crosslinking in a lithography-based 3D printer. In this study, we have used this bioink to produce a keratin-based construct that is capable of delivering small molecules, providing an environment conducive to healing of dermal burn wounds in vivo, and maintaining stability in customized packaging. We characterized the effects of manufacturing steps, such as lyophilization and gamma irradiation sterilization on the properties of 3D printed keratin scaffolds prepared for in vivo testing. Keratin hydrogels are viable for the uptake and release of contracture-inhibiting Halofuginone, a collagen synthesis inhibitor that has been shown to decrease collagen synthesis in fibrosis cases. This small-molecule delivery provides a mechanism to reduce scarring of severe burn wounds in vitro. In vivo data show that the Halofuginone-laden printed keratin is noninferior to other similar approaches reported in literature. This is indicative that the use of 3D printed keratin is not inhibiting the healing processes, and the inclusion of Halofuginone induces a more organized dermal healing after a burn; in other words, this treatment is slower but improves healing. These studies are indicative of the potential of Halofuginone-laden keratin dressings in dermal wound healing. We aim to keep increasing the complexity of the 3D printed constructs toward the production of complex scaffolds for the treatment and topographical reconstruction of severe burn wounds to the face.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissue, University of Maryland, College Park, Maryland
| | | | | | | | | | - Robert J Christy
- U.S. Army Institute of Surgical Research, Combat Trauma and Burn Injury Research, San Antonio, Texas
| | | | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland.,Center for Engineering Complex Tissue, University of Maryland, College Park, Maryland
| |
Collapse
|
27
|
Du HL, Zhai AD, Yu H. Synergistic effect of halofuginone and dexamethasone on LPS‑induced acute lung injury in type II alveolar epithelial cells and a rat model. Mol Med Rep 2019; 21:927-935. [PMID: 31974595 DOI: 10.3892/mmr.2019.10865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Acute lung injury (ALI) is characterized by neutrophilic infiltration, uncontrolled oxidative stress and inflammatory processes. Despite various therapeutic regimes having been performed, there remains no effective pharmacotherapy available to treat ALI. Halofuginone (HF), a ketone isolated from Dichroa febrifuga, exhibits significant anti‑inflammatory and antifibrotic effects. Dexamethasone (DEX), a synthetic glucocorticoid, has been routinely used as an adjuvant therapy in treating inflammatory diseases, including ALI. The present study aimed to investigate the effects of the combination of HF and DEX in the treatment of ALI. The present results suggested that the simultaneous administration of HF and DEX markedly decreased the level of pro‑inflammatory cytokines and increased the level of anti‑inflammatory cytokines, as assessed by western blot analysis. In addition, HF and DEX effectively decreased nuclear factor‑κB activity via suppressing the phosphorylation of P65 in lipopolysaccharide (LPS)‑induced human pulmonary alveolar epithelial cells (HPAEpiC) and lung tissues extracted from ALI rats, as determined by immunofluorescence. Furthermore, in vivo experiments demonstrated that the combination of HF and DEX in LPS‑induced ALI rats defended against lung fibrosis, perivascular inflammation, congestion and edema of pulmonary alveoli, as assessed by histopathological analysis, TUNEL staining and immunohistochemistry assay. Taken together, the present study indicated the synergistic effect of HF and DEX on LPS‑induced ALI in HPAEpiC cells and a rat model. These results offer a novel therapeutic approach for the treatment of ALI.
Collapse
Affiliation(s)
- Hai-Lian Du
- Department of Respiratory Medicine, Yidu Central Hospital Affiliated to Weifang Medical College, Qingzhou, Shandong 262500, P.R. China
| | - Ai-Dong Zhai
- Department of Internal Medicine, Maternal and Child Health Hospital of Zibo, Zibo, Shandong 255029, P.R. China
| | - Hong Yu
- Intensive Care Unit, Second Hospital of Harbin City, Harbin, Heilongjiang 150036, P.R. China
| |
Collapse
|
28
|
Kunimi H, Miwa Y, Inoue H, Tsubota K, Kurihara T. A Novel HIF Inhibitor Halofuginone Prevents Neurodegeneration in a Murine Model of Retinal Ischemia-Reperfusion. Int J Mol Sci 2019; 20:E3171. [PMID: 31261724 PMCID: PMC6651456 DOI: 10.3390/ijms20133171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 01/07/2023] Open
Abstract
Neurodegeneration caused with retinal ischemia or high intraocular pressure is irreversible in general. We have focused on the role of hypoxia-inducible factor (HIF) in retinal homeostasis and revealed that HIF inhibition may be effective against retinal neovascular and neurodegeneration. In this study, we performed in vitro screening of natural products and found halofuginone, which is a derivative of febrifugine extracted from hydrangea, as a novel HIF inhibitor. Administration of halofuginone showed a significant neuroprotective effect by inhibiting HIF-1α expression in a murine retinal ischemia-reperfusion model histologically and functionally. These results indicate that halofuginone can be a neuroprotective agent in ischemic retinal degenerative diseases.
Collapse
Affiliation(s)
- Hiromitsu Kunimi
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Yukihiro Miwa
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Hiroyoshi Inoue
- Department of Chemistry, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan.
| | - Toshihide Kurihara
- Department of Ophthalmology, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan.
- Laboratory of Photobiology, School of Medicine, Keio University, Shinjuku-ku, 160-8582 Tokyo, Japan.
| |
Collapse
|
29
|
Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrotic pathways. Adv Drug Deliv Rev 2019; 146:3-16. [PMID: 29709492 DOI: 10.1016/j.addr.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.
Collapse
|
30
|
Follo C, Vidoni C, Morani F, Ferraresi A, Seca C, Isidoro C. Amino acid response by Halofuginone in Cancer cells triggers autophagy through proteasome degradation of mTOR. Cell Commun Signal 2019; 17:39. [PMID: 31046771 PMCID: PMC6498594 DOI: 10.1186/s12964-019-0354-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the event of amino acid starvation, the cell activates two main protective pathways: Amino Acid starvation Response (AAR), to inhibit global translation, and autophagy, to recover the essential substrates from degradation of redundant self-components. Whether and how AAR and autophagy (ATG) are cross-regulated and at which point the two regulatory pathways intersect remain unknown. Here, we provide experimental evidence that the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) specifically located at the lysosome level links the AAR with the autophagy pathway. Methods As an inducer of the AAR, we used halofuginone (HF), an alkaloid that binds to the prolyl-tRNA synthetase thus mimicking the unavailability of proline (PRO). Induction of AAR was determined assessing the phosphorylation of the eukaryotic translation initiation factor (eIF) 2α. Autophagy was monitored by assessing the processing and accumulation of microtubule-associated protein 1 light chain 3 isoform B (LC3B) and sequestosome-1 (p62/SQSTM1) levels. The activity of mTORC1 was monitored through assessment of the phosphorylation of mTOR, (rp)S6 and 4E-BP1. Global protein synthesis was determined by puromycin incorporation assay. mTORC1 presence on the membrane of the lysosomes was monitored by cell fractionation and mTOR expression was determined by immunoblotting. Results In three different types of human cancer cells (thyroid cancer WRO cells, ovarian cancer OAW-42 cells, and breast cancer MCF-7 cells), HF induced both the AAR and the autophagy pathways time-dependently. In WRO cells, which showed the strongest induction of autophagy and of AAR, global protein synthesis was little if any affected. Consistently, 4E-BP1 and (rp)S6 were phosphorylated. Concomitantly, mTOR expression and activation declined along with its detachment from the lysosomes and its degradation by the proteasome, and with the nuclear translocation of transcription factor EB (TFEB), a transcription factor of many ATG genes. The extra supplementation of proline rescued all these effects. Conclusions We demonstrate that the AAR and autophagy are mechanistically linked at the level of mTORC1, and that the lysosome is the central hub of the cross-talk between these two metabolic stress responses. ![]()
Collapse
Affiliation(s)
- Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy.,Present address: Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA, 94110, USA
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy. .,Dipartimento di Scienze della Salute, Università "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
31
|
Wu S, Lu H, Bai Y. Nrf2 in cancers: A double-edged sword. Cancer Med 2019; 8:2252-2267. [PMID: 30929309 PMCID: PMC6536957 DOI: 10.1002/cam4.2101] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2/Keap1 pathway is an important signaling cascade responsible for the resistance of oxidative damage induced by exogenous chemicals. It maintains the redox homeostasis, exerts anti-inflammation and anticancer activity by regulating its multiple downstream cytoprotective genes, thereby plays a vital role in cell survival. Interestingly, in recent years, accumulating evidence suggests that Nrf2 has a contradictory role in cancers. Aberrant activation of Nrf2 is associated with poor prognosis. The constitutive activation of Nrf2 in various cancers induces pro-survival genes and promotes cancer cell proliferation by metabolic reprogramming, repression of cancer cell apoptosis, and enhancement of self-renewal capacity of cancer stem cells. More importantly, Nrf2 is proved to contribute to the chemoresistance and radioresistance of cancer cells as well as inflammation-induced carcinogenesis. A number of Nrf2 inhibitors discovered for cancer treatment were reviewed in this report. These provide a new strategy that targeting Nrf2 could be a promising therapeutic approach against cancer. This review aims to summarize the dual effects of Nrf2 in cancer, revealing its function both in cancer prevention and inhibition, to further discover novel anticancer treatment.
Collapse
Affiliation(s)
- Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Xia X, Wang X, Zhang S, Zheng Y, Wang L, Xu Y, Hang B, Sun Y, Lei L, Bai Y, Hu J. miR-31 shuttled by halofuginone-induced exosomes suppresses MFC-7 cell proliferation by modulating the HDAC2/cell cycle signaling axis. J Cell Physiol 2019; 234:18970-18984. [PMID: 30916359 DOI: 10.1002/jcp.28537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
Traditional Chinese medicine (TCM) are both historically important therapeutic agents and important source of new drugs. Halofuginone (HF), a small molecule alkaloid derived from febrifugine, has been shown to exert strong antiproliferative effects that differ markedly among various cell lines. However, whether HF inhibits MCF-7 cell growth in vitro and underlying mechanisms of this process are not yet clear. Here, we offer the strong evidence of the connection between HF treatment, exosome production and proliferation of MCF-7 cells. Our results showed that HF inhibits MCF-7 cell growth in both time- and dose-dependent manner. Further microRNA (miRNA) profiles analysis in HF treated and nontreated MCF-7 cell and exosomes observed that six miRNAs are particularly abundant and sorted in exosomes. miRNAs knockdown experiment in exosomes and the MCF-7 growth inhibition assay showed that exosomal microRNA-31 (miR-31) modulates MCF-7 cells growth by specially targeting the histone deacetylase 2 (HDAC2), which increases the levels of cyclin-dependent kinases 2 (CDK2) and cyclin D1 and suppresses the expression of p21. In conclusion, these data indicate that inhibition of exosome production reduces exosomal miR-31, which targets the HDAC2 and further regulates the level of cell cycle regulatory proteins, contributing to the anticancer functions of HF. Our data suggest a new role for HF and the exosome production in tumorigenesis and may provide novel insights into prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xin Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yi Zheng
- College of Basic Medical Sciences, Shandong University, Ji'nan, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - YueYu Bai
- Animal Health Supervision of Henan Province, Bureau of Animal Husbandry of Henan province, Zhengzhou, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
33
|
Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disorders: a Comprehensive Review. Clin Rev Allergy Immunol 2018; 53:306-336. [PMID: 28712039 DOI: 10.1007/s12016-017-8625-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Scleroderma refers to an autoimmune connective tissue fibrosing disease, including three different subsets: localized scleroderma, limited cutaneous systemic sclerosis, and diffuse cutaneous systemic sclerosis with divergent patterns of organ involvement, autoantibody profiles, management, and prognostic implications. Although systemic sclerosis is considered the disease prototype that causes cutaneous sclerosis, there are many other conditions that can mimic and be confused with SSc. They can be classified into immune-mediated/inflammatory, immune-mediated/inflammatory with abnormal deposit (mucinoses), genetic, drug-induced and toxic, metabolic, panniculitis/vascular, and (para)neoplastic disorders according to clinico-pathological and pathogenetic correlations. This article reviews the clinical presentation with emphasis on cutaneous disease, etiopathogenesis, diagnosis, and treatment options available for the different forms of scleroderma firstly and for scleroderma-like disorders, including scleromyxedema, scleredema, nephrogenic systemic fibrosis, eosinophilic fasciitis, chronic graft-versus-host disease, porphyria cutanea tarda, diabetic stiff-hand syndrome (diabetic cheiroartropathy), and other minor forms. This latter group of conditions, termed also scleroderma mimics, sclerodermiform diseases, or pseudosclerodermas, shares the common thread of skin thickening but presents with distinct cutaneous manifestations, skin histology, and systemic implications or disease associations, differentiating each entity from the others and from scleroderma. The lack of Raynaud's phenomenon, capillaroscopic abnormalities, or scleroderma-specific autoantibodies is also important diagnostic clues. As cutaneous involvement is the earliest, most frequent and characteristic manifestation of scleroderma and sclerodermoid disorders, dermatologists are often the first-line doctors who must be able to promptly recognize skin symptoms to provide the affected patient a correct diagnosis and appropriate management.
Collapse
Affiliation(s)
- Caterina Ferreli
- Section of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Giulia Gasparini
- Section of Dermatology, Department of Health Sciences, DISSAL, IRCSS-AOU S. Martino-IST, University of Genoa, Genoa, Italy
| | - Aurora Parodi
- Section of Dermatology, Department of Health Sciences, DISSAL, IRCSS-AOU S. Martino-IST, University of Genoa, Genoa, Italy
| | - Emanuele Cozzani
- Section of Dermatology, Department of Health Sciences, DISSAL, IRCSS-AOU S. Martino-IST, University of Genoa, Genoa, Italy
| | - Franco Rongioletti
- Section of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Laura Atzori
- Section of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
34
|
Liu L, Zhu Y, Noë M, Li Q, Pasricha PJ. Neuronal Transforming Growth Factor beta Signaling via SMAD3 Contributes to Pain in Animal Models of Chronic Pancreatitis. Gastroenterology 2018; 154:2252-2265.e2. [PMID: 29505748 PMCID: PMC5985212 DOI: 10.1053/j.gastro.2018.02.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/15/2018] [Accepted: 02/26/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS Chronic pancreatitis (CP) is characterized by pancreatic inflammation and fibrosis, associated with increased pancreatic expression of transforming growth factor beta (TGFB). It is not clear how these might contribute to pain. We investigated whether TGFB signaling via SMAD induces sensitization of pancreatic sensory neurons to increase nociception. METHODS CP was induced in Sprague-Dawley rats by infusion of trinitrobenzene sulfonic acid; some rats were given intrathecal infusions of TGFB1. CP was induced in control mice by administration of cerulein; we also studied β1glo/Ptf1acre-ER mice, which on induction overexpress TGFB1 in pancreatic acinar cells, and TGFBr1f/f-CGRPcreER mice, which have inducible disruption of TGFBr1 in calcitonin gene-related peptide-positive neurons. Dominant negative forms of human TGFBR2 and SMAD3 were overexpressed from viral vectors in rat pancreas. Some rats were given the SMAD3 inhibitors SIS3 or halofuginone. After induction of CP, mice were analyzed for pain in behavior tests or electrophysiologic studies of sensory neurons. Pancreatic nociceptor excitability was examined by patch-clamp techniques and nociception was measured by Von Frey Filament tests for referred somatic hyperalgesia and behavioral responses to pancreatic electrical stimulation. Pancreata were collected from mice and rats and analyzed histologically and by enzyme-linked immunosorbent assay and immunohistochemistry. RESULTS Overexpression of TGFB in pancreatic acinar cells of mice and infusion of TGFB1 into rats resulted in sensory neuron hyperexcitability, SMAD3 activation, and increased nociception. This was accompanied by a reduction in the transient A-type current in pancreas-specific sensory neurons in rats, a characteristic of nociceptive sensitization in animal models of CP. Conversely, pancreata from TGFBr1f/f-CGRPcreER mice, rats with pancreatic expression of dominant negative forms of human TGFBR2 or SMAD3, and rats given small molecule inhibitors of SMAD3 had attenuated neuronal sensitization and pain behavior following induction of CP. In contrast to findings from peripheral administration of TGFB1, intrathecal infusion of TGFB1 reduced hyperalgesia in rats with CP. CONCLUSIONS In pancreata of mice and rats, TGFB promotes peripheral nociceptive sensitization via a direct effect on primary sensory neurons mediated by intra-neuronal SMAD3. This is distinct from the central nervous system, where TGFB reduces nociception. These results provide an explanation for the link between fibrosis and pain in patients with CP. This signaling pathway might be targeted therapeutically to reduce pain in patients with CP.
Collapse
Affiliation(s)
- Liansheng Liu
- Johns Hopkins Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yaohui Zhu
- Johns Hopkins Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michaël Noë
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qian Li
- Johns Hopkins Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pankaj Jay Pasricha
- Johns Hopkins Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
35
|
Kheirkhah A, Coco G, Satitpitakul V, Dana R. Subtarsal Fibrosis Is Associated With Ocular Surface Epitheliopathy in Graft-Versus-Host Disease. Am J Ophthalmol 2018; 189:102-110. [PMID: 29505774 DOI: 10.1016/j.ajo.2018.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/24/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate occurrence of subtarsal fibrosis in patients with graft-vs-host disease (GVHD) and to determine its association with ocular surface epitheliopathy. DESIGN Cross-sectional study. METHODS We enrolled 40 patients with moderate or severe dry eye disease, including 20 patients with chronic ocular GVHD and 20 patients without (as the control group). All patients had a comprehensive ophthalmic assessment including evaluation for subtarsal fibrosis, corneal and conjunctival staining, tear break-up time (TBUT), and Schirmer test. Furthermore, meibomian gland drop-out area and densities of epithelial and stromal immune cells were measured using meibography and in vivo confocal microscopy, respectively. RESULTS Subtarsal fibrosis was not seen in any eye of the non-GVHD group. However, 16 eyes (40%) of 10 patients (50%) in the GVHD group had subtarsal fibrosis (P < .001) with an average involvement of 28.9% ± 13.7% of the tarsal area. Fibrosis was more frequent in the upper lids (35%) than in the lower lids (5%). Regression analyses showed that corneal fluorescein staining was significantly associated with the extent of fibrosis (P < .001, β = 0.14) and TBUT (P < .001, β = -0.53) but not with other clinical or imaging parameters. Conjunctival lissamine green staining also had a statistically significant association with the extent of fibrosis (P = .04, β = 0.12) but not other clinical or imaging parameters. Eyes with subtarsal fibrosis had a more severe ocular surface epitheliopathy compared with eyes without fibrosis. CONCLUSIONS Subtarsal fibrosis is present in a significant percentage of patients with chronic ocular GVHD, likely contributing to the ocular surface damage in these patients.
Collapse
|
36
|
Current Approaches Including Novel Nano/Microtechniques to Reduce Silicone Implant-Induced Contracture with Adverse Immune Responses. Int J Mol Sci 2018; 19:ijms19041171. [PMID: 29649133 PMCID: PMC5979366 DOI: 10.3390/ijms19041171] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Capsular contracture, which is the pathologic development of fibrous capsules around implants, is a major complication of reconstructive and aesthetic breast surgeries. Capsular contracture can cause implant failure with breast hardening, deformity, and severe pain. The exact mechanisms underlying this complication remain unclear. In addition, anaplastic large cell lymphoma is now widely recognized as a very rare disease associated with breast implants. Foreign body reactions are an inevitable common denominator of capsular contracture. A number of studies have focused on the associated immune responses and their regulation. The present article provides an overview of the currently available techniques, including novel nano/microtechniques, to reduce silicone implant-induced contracture and associated foreign body responses.
Collapse
|
37
|
Diastereoselective approach to trans -5-hydroxy-6-substitutedethanone-2-piperidinones: Scalable syntheses of (+)-febrifugine and (+)-halofuginone. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Mu W, Xu B, Ma H, Li J, Ji B, Zhang Z, Amat A, Cao L. Halofuginone Attenuates Osteoarthritis by Rescuing Bone Remodeling in Subchondral Bone Through Oral Gavage. Front Pharmacol 2018; 9:269. [PMID: 29636687 PMCID: PMC5881118 DOI: 10.3389/fphar.2018.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a common debilitating joint disorder worldwide without effective medical therapy. Articular cartilage and subchondral bone act in concert as a functional unit with the onset of OA. Halofuginone is an analog of the alkaloid febrifugine extracted from the plant Dichroa febrifuga, which has been demonstrated to exert inhibition of SMAD 2/3 phosphorylation downstream of the TGF-β signaling pathway and osteoclastogenesis. To investigate whether halofuginone (HF) alleviates OA after administration by oral gavage, 3-month-old male mice were allocated to the Sham group, vehicle-treated anterior cruciate ligament transection (ACLT) group, and HF-treated ACLT group. The immunostaining analysis indicated that HF reduced the number of matrix metalloproteinase 13 (MMP-13) and collagen X (Col X) positive cells in the articular cartilage. Moreover, HF lowered histologic OA score and prevented articular cartilage degeneration. The micro-computed tomography (μCT) scan showed that HF maintained the subchondral bone microarchitecture, demonstrated by the restoration of bone volume fraction (BV/TV), subchondral bone plate thickness (SBP.Th.), and trabecular pattern factor (Tb.Pf) to a level comparable to that of the Sham group. Immunostaining for CD31 and μCT based angiography showed that the number and volume of vessels in subchondral bone was restored by HF. HF administered by oral gavage recoupled bone remodeling and inhibited aberrant angiogenesis in the subchondral bone, further slowed the progression of OA. Therefore, HF administered by oral gavage could be a potential therapy for OA.
Collapse
Affiliation(s)
- Wenbo Mu
- Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Boyong Xu
- Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian Xinjiang Key Laboratory of Echinococcosis, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jiao Li
- Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Baochao Ji
- Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zhendong Zhang
- Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Abdusami Amat
- Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Li Cao
- Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
39
|
Jeong SJ, Kim JH, Lim BJ, Yoon I, Song JA, Moon HS, Kim D, Lee DK, Kim S. Inhibition of MUC1 biosynthesis via threonyl-tRNA synthetase suppresses pancreatic cancer cell migration. Exp Mol Med 2018; 50:e424. [PMID: 29328069 PMCID: PMC5799795 DOI: 10.1038/emm.2017.231] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Mucin1 (MUC1), a heterodimeric oncoprotein, containing tandem repeat structures with a high proportion of threonine, is aberrantly overexpressed in many human cancers including pancreatic cancer. Since the overall survival rate of pancreatic cancer patients has remained low for several decades, novel therapeutic approaches are highly needed. Intestinal mucin has been known to be affected by dietary threonine supply since de novo synthesis of mucin proteins is sensitive to luminal threonine concentration. However, it is unknown whether biosynthesis of MUC1 is regulated by threonine in human cancers. In this study, data provided suggests that threonine starvation reduces the level of MUC1 and inhibits the migration of MUC1-expressing pancreatic cancer cells. Interestingly, knockdown of threonyl-tRNA synthetase (TRS), an enzyme that catalyzes the ligation of threonine to its cognate tRNA, also suppresses MUC1 levels but not mRNA levels. The inhibitors of TRS decrease the level of MUC1 protein and prohibit the migration of MUC1-expressing pancreatic cancer cells. In addition, a positive correlation between TRS and MUC1 levels is observed in human pancreatic cancer cells. Concurrent with these results, the bioinformatics data indicate that co-expression of both TRS and MUC1 is correlated with the poor survival of pancreatic cancer patients. Taken together, these findings suggest a role for TRS in controlling MUC1-mediated cancer cell migration and provide insight into targeting TRS as a novel therapeutic approach to pancreatic cancer treatment.
Collapse
Affiliation(s)
- Seung Jae Jeong
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jong Hyun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Beom Jin Lim
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ji-Ae Song
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Hee-Sun Moon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea
| | - Dong Ki Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
40
|
Shibata A, Kuno M, Adachi R, Sato Y, Hattori H, Matsuda A, Okuzono Y, Igaki K, Tominari Y, Takagi T, Yabuki M, Okaniwa M. Discovery and pharmacological characterization of a new class of prolyl-tRNA synthetase inhibitor for anti-fibrosis therapy. PLoS One 2017; 12:e0186587. [PMID: 29065190 PMCID: PMC5655428 DOI: 10.1371/journal.pone.0186587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022] Open
Abstract
Scleroderma has clinical characteristics including skin and other tissue fibrosis, but there is an unmet need for anti-fibrotic therapy. Halofuginone (HF) is a well-known anti-fibrosis agent in preclinical and clinical studies which exerts its effect via inhibition of TGF-β/Smad3 signaling pathway. Recently, prolyl-tRNA synthetase (PRS) was elucidated as a target protein for HF that binds to the proline binding site of the catalytic domain of PRS. Here, we characterized a new class of PRS inhibitor (T-3833261) that is carefully designed in a way that binds to the ATP site of the catalytic domain and does not disrupt binding of proline. The anti-fibrotic activity and the mechanism of action for T-3833261 on TGF-β-induced fibrotic assay were compared with those of HF in primary human skin fibroblast. We evaluated in vivo effect of topical application of T-3833261 and HF on TGF-β-induced fibrotic genes expression in mice. We found that T-3833261 suppressed TGF-β-induced α-smooth muscle actin (α-SMA) and type I collagen α1 (COL1A1) expression through the Smad3 axis in a similar fashion to HF. In vivo topical application of T-3833261 reduced the increase of fibrotic genes expression such as α-Sma, Col1a1 and Col1a2 by TGF-β intradermal injection to the ear of a mouse. We revealed that T-3833261 is more effective than HF under the conditions of high proline concentration, as reported in fibrotic tissues. These results suggest the potential of ATP competitive PRS inhibitors for the treatment of fibrotic diseases such as scleroderma.
Collapse
Affiliation(s)
- Akira Shibata
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- * E-mail: (AS); (MO)
| | - Masako Kuno
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Ryutaro Adachi
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yosuke Sato
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Harumi Hattori
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Atsushi Matsuda
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yuumi Okuzono
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Keiko Igaki
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yusuke Tominari
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Terufumi Takagi
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masato Yabuki
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masanori Okaniwa
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- * E-mail: (AS); (MO)
| |
Collapse
|
41
|
Zhan W, Kang Y, Chen N, Mao C, Kang Y, Shang J. Halofuginone ameliorates inflammation in severe acute hepatitis B virus (HBV)-infected SD rats through AMPK activation. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2947-2955. [PMID: 29066866 PMCID: PMC5644545 DOI: 10.2147/dddt.s149623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hepatitis B virus (HBV) has caused acute and chronic liver diseases in ~350 million infected people worldwide. Halofuginone (HF) is a plant alkaloid which has been demonstrated to play a crucial role in immune regulation. Our present study explored the function of HF in the immune response of HBV-infected Sprague Dawley (SD) rats. Plasmid containing pCDNA3.1-HBV1.3 was injected in SD rats for the construction of an acute HBV-infected animal model. Our data showed that HF reduced the high concentrations of serum hepatitis B e-antigen, hepatitis B surface antigen, and HBV DNA induced by HBV infection. HF also reduced the number of T helper (Th)17 cells and the expression of interleukin (IL)-17 compared with the pCDNA3.1-HBV1.3 group. Moreover, pro-inflammatory cytokine levels (IL-17, IL-23, interferon-γ, and IL-2) were downregulated and anti-inflammatory cytokine levels (IL-4 and IL-13) were upregulated by HF. Through further research we found that the expression of AMP-activated protein kinase (AMPK) and IKBA which suppressed NF-κB activation was increased while the expression of p-NF-κB P65 was decreased in pCDNA3.1-HBV1.3+HF group compared with pCDNA3.1-HBV1.3 group, indicating that HF may work through the activation of AMPK. Finally, our conjecture was further verified by using the AMPK inhibitor compound C, which counteracted the anti-inflammation effect of HF, resulting in the decreased expression of AMPK, IKBA and increased expression of p-NF-κB P65 and reduced number of Th17 cells. In our present study, HF was considered as an anti-inflammatory factor in acute HBV-infected SD rats and worked through AMPK-mediated NF-κB p65 inactivation. This study implicated HF as a potential therapeutic strategy for hepatitis B.
Collapse
Affiliation(s)
- Weili Zhan
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanhong Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ning Chen
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Chongshan Mao
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Mu W, Xu B, Ma H, Ji B, Zhang Z, Li J, Amat A, Cao L. Halofuginone attenuates articular cartilage degeneration by inhibition of elevated TGF‑β1 signaling in articular cartilage in a rodent osteoarthritis model. Mol Med Rep 2017; 16:7679-7684. [PMID: 28944864 DOI: 10.3892/mmr.2017.7549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/14/2017] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative condition of the weight‑bearing joints worldwide without effective medical therapy. In order to investigate whether administration of halofuginone (HF) may attenuate OA, the present study allocated 3‑month‑old male mice into Sham group, vehicle‑treated anterior cruciate ligament transection (ACLT) group and HF‑treated ACLT group. The present study determined that HF treatment reduced the expression of matrix metallopeptidase‑13 and collagen X in articular cartilage. Additionally, it lowered the Osteoarthritis Research Society International‑Modified Mankin score and prevented the loss of articular cartilage from Safranin O and Fast Green staining. HF reduced the progression of osteoarthritis by downregulating abnormally elevated TGF‑β1 activity in articular cartilage. Administration of HF may be a potential preventive therapy for OA.
Collapse
Affiliation(s)
- Wenbo Mu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hairong Ma
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zhendong Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jiao Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abdusami Amat
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
43
|
Taguchi K, Yamamoto M. The KEAP1-NRF2 System in Cancer. Front Oncol 2017; 7:85. [PMID: 28523248 PMCID: PMC5415577 DOI: 10.3389/fonc.2017.00085] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/18/2017] [Indexed: 12/30/2022] Open
Abstract
Cancer cells first adapt to the microenvironment and then propagate. Mutations in tumor suppressor genes or oncogenes are frequently found in cancer cells. Comprehensive genomic analyses have identified somatic mutations and other alterations in the KEAP1 or NRF2 genes and in well-known tumor suppressor genes or oncogenes, such as TP53, CDKN2A, PTEN, and PIK3CA, in various types of cancer. Aberrant NRF2 activation in cancer cells occurs through somatic mutations in the KEAP1 or NRF2 gene as well as through other mechanisms that disrupt the binding of KEAP1 to NRF2. Unregulated NRF2 confers on cancer cells high-level resistance to anticancer drugs and reactive oxygen species (ROS) and directs cancer cells toward metabolic reprogramming. Therefore, NRF2 has been studied as a therapeutic target molecule in cancer. Two strategies have been used to target NRF2 via therapeutic drugs: inhibition of NRF2 and induction of NRF2. NRF2 inhibitors may be effective against NRF2-addicted cancer cells in which NRF2 is aberrantly activated. These inhibitors have not yet been established as NRF2-targeted anticancer drugs for the treatment of human cancers. Diagnosis of NRF2 activation could facilitate the use of NRF2 inhibitors for the treatment of patients with NRF2-addicted cancers. Conversely, NRF2 inducers have been used or are being developed for non-cancer diseases. In addition, NRF2 inducers may be useful for cancer chemotherapy in combination with conventional anticancer agents or even NRF2 inhibitors.
Collapse
Affiliation(s)
- Keiko Taguchi
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
44
|
Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, Otsuki A, Kikuchi H, Oshima Y, Suzuki M, Yamamoto M. Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med 2017; 103:236-247. [PMID: 28039084 DOI: 10.1016/j.freeradbiomed.2016.12.041] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022]
Abstract
The KEAP1-NRF2 system regulates the cellular defence against oxidative and xenobiotic stresses. NRF2 is a transcription factor that activates the expression of cytoprotective genes encoding antioxidative, detoxifying and metabolic enzymes as well as transporters. Under normal conditions, KEAP1 represses NRF2 activity by degrading the NRF2 protein. When cells are exposed to stresses, KEAP1 stops promoting NRF2 degradation, and NRF2 rapidly accumulates and activates the transcription of target genes. Constitutive accumulation of NRF2 via a variety of mechanisms that disrupt KEAP1-mediated NRF2 degradation has been observed in various cancer types. Constitutive NRF2 accumulation confers cancer cells with a proliferative advantage as well as resistance to anti-cancer drugs and radiotherapies. To suppress the chemo- and radio-resistance of cancer cells caused by NRF2 accumulation, we conducted high-throughput chemical library screening for NRF2 inhibitors and identified febrifugine derivatives. We found that application of the less-toxic derivative halofuginone in a low dose range rapidly reduced NRF2 protein levels. Halofuginone induced a cellular amino acid starvation response that repressed global protein synthesis and rapidly depleted NRF2. Halofuginone treatment ameliorated the resistance of NRF2-addicted cancer cells to anti-cancer drugs both in vitro and in vivo. These results provide preclinical proof-of-concept evidence for halofuginone as an NRF2 inhibitor applicable to treatment of chemo- and radio-resistant forms of cancer.
Collapse
Affiliation(s)
- Kouhei Tsuchida
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tadayuki Tsujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Makiko Hayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Asaka Ojima
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nadine Keleku-Lukwete
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Akihito Otsuki
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| |
Collapse
|
45
|
Zeng S, Wang K, Huang M, Qiu Q, Xiao Y, Shi M, Zou Y, Yang X, Xu H, Liang L. Halofuginone inhibits TNF-α-induced the migration and proliferation of fibroblast-like synoviocytes from rheumatoid arthritis patients. Int Immunopharmacol 2017; 43:187-194. [DOI: 10.1016/j.intimp.2016.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
|
46
|
|
47
|
Single-cell analysis reveals IGF-1 potentiation of inhibition of the TGF-β/Smad pathway of fibrosis in human keratocytes in vitro. Sci Rep 2016; 6:34373. [PMID: 27687492 PMCID: PMC5043377 DOI: 10.1038/srep34373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/13/2016] [Indexed: 11/21/2022] Open
Abstract
Corneal wound healing is often affected by TGF-β–mediated fibrosis and scar formation. Guided fibrosis with IGF-1 and antifibrotic substances might maintain corneal transparency. Primary human corneal keratocytes under serum-free conditions were used as a model of corneal stromal wounding, with markers of corneal fibrosis and opacity studied under TGF-β2 stimulation. Single-cell imaging flow cytometry was used to determine nuclearization of Smad3, and intracellular fluorescence intensity of Smad7 and the corneal crystallin aldehyde dehydrogenase 3A1. Extracellular matrix proteoglycans keratocan and biglycan were quantified using ELISAs. On the TGF-β2 background, the keratocytes were treated with IGF-1, and suberoylanilidehydroxamic acid (SAHA) or halofuginone ± IGF-1. IGF-1 alone decreased Smad3 nuclearization and increased aldehyde dehydrogenase 3A1 expression, with favorable extracellular matrix proteoglycan composition. SAHA induced higher Smad7 levels and inhibited translocation of Smad3 to the nucleus, also when combined with IGF-1. Immunofluorescence showed that myofibroblast transdifferentiation is attenuated and appearance of fibroblasts is favored by IGF-1 alone and in combination with the antifibrotic substances. The TGF-β/Smad pathway of fibrosis and opacity was inhibited by IGF-1, and further with SAHA in particular, and with halofuginone. IGF-1 is thus a valid aid to antifibrotic treatment, with potential for effective and transparent corneal wound healing.
Collapse
|
48
|
Wang X, Feng S, Fan J, Li X, Wen Q, Luo N. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem Pharmacol 2016; 116:200-9. [DOI: 10.1016/j.bcp.2016.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
|
49
|
Calik M, Yavas G, Calik SG, Yavas C, Celik ZE, Sargon MF, Esme H. Amelioration of radiation-induced lung injury by halofuginone: An experimental study in Wistar-Albino rats. Hum Exp Toxicol 2016; 36:638-647. [PMID: 27457799 DOI: 10.1177/0960327116660753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To evaluate effects of halofuginone (H) on radiation-induced lung injury (RILI), 60 rats were divided into six groups: Group (G) 1 control, G2 radiotherapy (RT) only, G3 and G4 2. 5 and 5 μg H and G5 and G6 RT + 2.5 and 5 μg H groups, respectively. A single dose of 12 Gy RT was given to both lungs. H was applied intraperitoneally with daily doses, until animals were killed at 6 and 16 weeks after RT. At 6th and 16th weeks of RT, five rats from each group were killed. Lung tissues were dissected for light and electron microscopy. Chronic inflammation, fibrosis and transforming growth factor-beta (TGF)-β scores of all study groups were significantly different at 6th and 16th week ( p < 0.001). Chronic inflammation, fibrosis and TGF-β scores of G2 were higher than G5 and G6 at 6th and 16th weeks of RT. At 16th week, fibrosis and TGF-β scores of G5 were higher than G6 ( p = 0.040 and 0.028, respectively). Electron microscopical findings also supported these results. Therefore, H may ameliorate RILI. The effect of the H was more prominent at higher dose and after long-term follow-up. These findings should be clarified with further studies.
Collapse
Affiliation(s)
- M Calik
- 1 Department of Thoracic Surgery, Konya Training and Research Hospital, Konya, Turkey
| | - G Yavas
- 2 Department of Radiation Oncology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - S G Calik
- 3 Department of Emergency Medicine, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - C Yavas
- 2 Department of Radiation Oncology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Z E Celik
- 4 Department of Pathology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - M F Sargon
- 5 Department of Anatomy, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - H Esme
- 1 Department of Thoracic Surgery, Konya Training and Research Hospital, Konya, Turkey
| |
Collapse
|
50
|
Developmental Biology and Regenerative Medicine: Addressing the Vexing Problem of Persistent Muscle Atrophy in the Chronically Torn Human Rotator Cuff. Phys Ther 2016; 96:722-33. [PMID: 26847008 PMCID: PMC4858662 DOI: 10.2522/ptj.20150029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
Persistent muscle atrophy in the chronically torn rotator cuff is a significant obstacle for treatment and recovery. Large atrophic changes are predictive of poor surgical and nonsurgical outcomes and frequently fail to resolve even following functional restoration of loading and rehabilitation. New insights into the processes of muscle atrophy and recovery gained through studies in developmental biology combined with the novel tools and strategies emerging in regenerative medicine provide new avenues to combat the vexing problem of muscle atrophy in the rotator cuff. Moving these treatment strategies forward likely will involve the combination of surgery, biologic/cellular agents, and physical interventions, as increasing experimental evidence points to the beneficial interaction between biologic therapies and physiologic stresses. Thus, the physical therapy profession is poised to play a significant role in defining the success of these combinatorial therapies. This perspective article will provide an overview of the developmental biology and regenerative medicine strategies currently under investigation to combat muscle atrophy and how they may integrate into the current and future practice of physical therapy.
Collapse
|