1
|
Zhang T, Zhang X, Sun D, Kim WJ. Exploring the Asymmetric Body's Influence on Interval Timing Behaviors of Drosophila melanogaster. Behav Genet 2024; 54:416-425. [PMID: 39133418 DOI: 10.1007/s10519-024-10193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The roles of brain asymmetry in Drosophila are diverse, encompassing the regulation of behavior, the creation of memory, neurodevelopment, and evolution. A comprehensive examination of the Drosophila brain has the potential to enhance our understanding of the functional significance of brain asymmetry in cognitive and behavioral processes, as well as its role in evolutionary perspectives. This study explores the influence of brain asymmetry on interval timing behaviors in Drosophila, with a specific focus on the asymmetric body (AB) structure. Despite being bilaterally symmetric, the AB exhibits functional asymmetry and is located within the central complex of the fly brain. Interval timing behaviors, such as rival-induced prolonged mating duration: longer mating duration behavior (LMD) and sexual experience-mediated shorter mating duration behavior (SMD), are essential for Drosophila. We utilize genetic manipulations to selectively activate or inhibit AB neurons and evaluates their impact on LMD and SMD behaviors. The results indicate that specific populations of AB neurons play unique roles in orchestrating these interval timing behaviors. Notably, inhibiting GAL4R38D01-labeled AB neurons disrupts both LMD and SMD, while GAL4R42C09 neuron inhibition affects only LMD. Moreover, hyperexcitation of GAL4R72A10-labeled AB neurons perturbs SMD. Our study identifies NetrinB (NetB) and Abdominal-B (Abd-B) are important genes for AB neurons in LMD and highlights the role of 5-HT1B neurons in generating LMD through peptidergic Pigment-dispersing factor (PDF) signaling. In summary, this study underscores the importance of AB neuron asymmetry in mediating interval timing behaviors and provides insights into the underlying mechanisms of memory formation and function in Drosophila.
Collapse
Affiliation(s)
- Tianmu Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Dongyu Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
2
|
Ricardo PC, Arias MC, de Souza Araujo N. Decoding bee cleptoparasitism through comparative transcriptomics of Coelioxoides waltheriae and its host Tetrapedia diversipes. Sci Rep 2024; 14:12361. [PMID: 38811580 PMCID: PMC11137135 DOI: 10.1038/s41598-024-56261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
Cleptoparasitism, also known as brood parasitism, is a widespread strategy among bee species in which the parasite lays eggs into the nests of the host species. Even though this behavior has significant ecological implications for the dynamics of several species, little is known about the molecular pathways associated with cleptoparasitism. To shed some light on this issue, we used gene expression data to perform a comparative analysis between two solitary neotropical bees: Coelioxoides waltheriae, an obligate parasite, and their specific host Tetrapedia diversipes. We found that ortholog genes involved in signal transduction, sensory perception, learning, and memory formation were differentially expressed between the cleptoparasite and the host. We hypothesize that these genes and their associated molecular pathways are engaged in cleptoparasitism-related processes and, hence, are appealing subjects for further investigation into functional and evolutionary aspects of cleptoparasitism in bees.
Collapse
Affiliation(s)
- Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Atli G, Sevgiler Y. Binary effects of fluoxetine and zinc on the biomarker responses of the non-target model organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27988-28006. [PMID: 38528217 PMCID: PMC11058962 DOI: 10.1007/s11356-024-32846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
The antidepressant effect of zinc on mammals has been documented in recent decades, and the concentration of the antidepressant fluoxetine (FLX) in aquatic environments has been rising constantly. The aim of the present study is to evaluate the combined toxicity of a serotonin reuptake inhibitor (FLX) and Zn2+ on a non-target aquatic model organism Daphnia magna. Animals were exposed to single and binary combinations of FLX (20.5 and 41 µg/L for subchronic and 41 and 82 µg/L for acute exposures) and Zn2+ (40 µg/L for subchronic and 80 µg/L for acute exposures). In vivo experiments were done for 7 days subchronic and 48 h acute exposure, while subcellular supernatants of whole Daphnia lysate (WDL) were directly treated with the same concentrations used in the acute experiments. Morphological characteristics, Ca2+-ATPase, antioxidant enzyme activities, and lipid peroxidation were examined. There was antioxidant system suppression and Ca2+-ATPase inhibition despite the diverse response patterns due to duration, concentration, and toxicant type. After acute exposure, biomarkers showed a diminishing trend compared to subchronic exposure. According to integrated biomarker response index (IBR) analysis, in vivo Zn2+ exposure was reasonably effective on the health of D. magna, whereas exposure of WDL to Zn2+ had a lesser impact. FLX toxicity increased in a concentration-dependent manner, reversed by the combined exposure. We concluded that potential pro-oxidative and adverse Ca2+-ATPase effects of FLX and Zn2+ in D. magna may also have harmful impact on ecosystem levels. Pharmaceutical exposure (FLX) should be considered along with their potential to interact with other toxicants in aquatic biota.
Collapse
Affiliation(s)
- Gülüzar Atli
- Vocational School of İmamoğlu, Çukurova University, Adana, Turkey.
- Biotechnology Research and Application Center, Çukurova University, Adana, Turkey.
| | - Yusuf Sevgiler
- Faculty of Science and Letters, Department of Biology, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
4
|
Alyoshina NM, Tkachenko MD, Nikishina YO, Nikishin DA. Serotonin Transporter Activity in Mouse Oocytes Is a Positive Indicator of Follicular Growth and Oocyte Maturity. Int J Mol Sci 2023; 24:11247. [PMID: 37511007 PMCID: PMC10379015 DOI: 10.3390/ijms241411247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is known to be a regulator of oocyte maturation in a large number of animal species. In maturing mammalian oocytes, the accumulation of exogenous, maternal serotonin occurs due to the activity of the membrane transporter SERT. In this work, we investigated how SERT activity in oocytes correlates with indicators of follicular selection and oocyte maturity. An immunohistochemical study showed that the difference in the 5-HT intake activity in oocytes does not correlate with the marker of apoptosis in follicular cells, but positively correlates with markers of follicular growth, such as granulosa proliferation and follicle size. Functional analysis of oocytes at different stages of maturation showed that the expression and activity of SERT increases with oocyte maturation. An in vivo experiment on administration of the selective serotonin reuptake inhibitor fluoxetine (20 mg/kg) for 7 days showed a significant decrease in the content of serotonin in both growing GV-oocytes and ovulated mature MII-oocytes. The data obtained clearly indicate that the mechanism of specific membrane transport of serotonin normally ensures the accumulation of serotonin in maturing oocytes, and can be considered as a promising positive marker of their mature status.
Collapse
Affiliation(s)
- Nina M Alyoshina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Maria D Tkachenko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119991 Moscow, Russia
| | - Yulia O Nikishina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
| | - Denis A Nikishin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street, 26, 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119991 Moscow, Russia
| |
Collapse
|
5
|
Mercurio S, Bozzo M, Pennati A, Candiani S, Pennati R. Serotonin Receptors and Their Involvement in Melanization of Sensory Cells in Ciona intestinalis. Cells 2023; 12:cells12081150. [PMID: 37190059 DOI: 10.3390/cells12081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serotonin (5-hydroxytryptamine (5-HT)) is a biogenic monoamine with pleiotropic functions. It exerts its roles by binding to specific 5-HT receptors (5HTRs) classified into different families and subtypes. Homologs of 5HTRs are widely present in invertebrates, but their expression and pharmacological characterization have been scarcely investigated. In particular, 5-HT has been localized in many tunicate species but only a few studies have investigated its physiological functions. Tunicates, including ascidians, are the sister group of vertebrates, and data about the role of 5-HTRs in these organisms are thus important for understanding 5-HT evolution among animals. In the present study, we identified and described 5HTRs in the ascidian Ciona intestinalis. During development, they showed broad expression patterns that appeared consistent with those reported in other species. Then, we investigated 5-HT roles in ascidian embryogenesis exposing C. intestinalis embryos to WAY-100635, an antagonist of the 5HT1A receptor, and explored the affected pathways in neural development and melanogenesis. Our results contribute to unraveling the multifaceted functions of 5-HT, revealing its involvement in sensory cell differentiation in ascidians.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| | - Matteo Bozzo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | | | - Simona Candiani
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Yang YT, Hu SW, Li X, Sun Y, He P, Kohlmeier KA, Zhu Y. Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience 2023; 26:106123. [PMID: 36876123 PMCID: PMC9976462 DOI: 10.1016/j.isci.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The courtship ritual is a dynamic interplay between males and females. Courtship successfully leading to copulation is determined by the intention of both parties which is conveyed by complex action sequences. In Drosophila, the neural mechanisms controlling the female's willingness to mate, or sexual receptivity, have only recently become the focus of investigations. Here, we report that pre-mating sexual receptivity in females requires activity within a subset of serotonergic projection neurons (SPNs), which positively regulate courtship success. Of interest, a male-derived sex peptide, SP, which was transferred to females during copulation acted to inhibit the activity of SPN and suppressed receptivity. Downstream of 5-HT, subsets of 5-HT7 receptor neurons played critical roles in SP-induced suppression of sexual receptivity. Together, our study reveals a complex serotonin signaling system in the central brain of Drosophila which manages the female's desire to mate.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Sino-Danish Center for Education and Research, Beijing 101408, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China
| |
Collapse
|
7
|
Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PLoS One 2023; 18:e0281507. [PMID: 36857360 PMCID: PMC9977066 DOI: 10.1371/journal.pone.0281507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Collapse
|
8
|
Identification and Pharmacological Characterization of Two Serotonin Type 7 Receptor Isoforms from Mythimna separata. Int J Mol Sci 2022; 24:ijms24010655. [PMID: 36614100 PMCID: PMC9820646 DOI: 10.3390/ijms24010655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important neuroactive molecule, as neurotransmitters regulate various biological functions in vertebrates and invertebrates by binding and activating specific 5-HT receptors. The pharmacology and tissue distribution of 5-HT receptors have been investigated in several model insects, and these receptors are recognized as potential insecticide targets. However, little is known about the pharmacological characterization of the 5-HT receptors in important agricultural pests. In this study, we investigated the sequence, pharmacology, and tissue distribution of 5-HT7 receptors from oriental armyworm Mythimna separata (Walker) (Lepidoptera: Noctuidae), an important migratory and polyphagous pest species. We found that the 5-HT7 receptor gene encodes two molecularly distinct transcripts, Msep5-HT7L and Msep5-HT7S, by the mechanism of alternative splicing in M. separata. Msep5-HT7S differs from Msep5-HT7L based on the deletion of 95 amino acids within the third intracellular loop. Two Msep5-HT7 receptor isoforms were activated by 5-HT and synthetic agonists α-methylserotonin, 8-hydroxy-DPAT, and 5-methoxytryptamine, resulting in increased intracellular cAMP levels in a dose-dependent manner, although these agonists showed much poorer potency and efficacy than 5-HT. The maximum efficacy of 5-HT compared to the two 5-HT isoforms was equivalent, but 5-HT exhibited 2.63-fold higher potency against the Msep5-HT7S than the Msep5-HT7L receptor. These two isoforms were also blocked by the non-selective antagonist methiothepin and the selective antagonists WAY-100635, ketanserin, SB-258719, and SB-269970. Moreover, two distinct mRNA transcripts were expressed preferentially in the brain and chemosensory organs of M. separata adults, as determined by qPCR assay. This study is the first comprehensive characterization of two splicing isoforms of 5-HT7 receptors in M. separata, and the first to demonstrate that alternative splicing is also the mechanism for producing multiple 5-HT7 isoforms in insects. Pharmacological and gene expression profiles offer important information that could facilitate further exploration of their function in the central nervous system and peripheral chemosensory organs, and may even contribute to the development of new selective pesticides.
Collapse
|
9
|
Pirtle TJ. A review of the circuit-level and cellular mechanisms contributing to locomotor acceleration in the marine mollusk Clione limacina. Front Neurosci 2022; 16:1072974. [PMID: 36620465 PMCID: PMC9815461 DOI: 10.3389/fnins.2022.1072974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The pteropod mollusk, Clione limacina, is a useful model system for understanding the neural basis of behavior. Of particular interest are the unique swimming behavior and neural circuitry that underlies this swimming behavior. The swimming system of Clione has been studied by two primary groups-one in Russia and one in the United States of America-for more than four decades. The neural circuitry, the cellular properties, and ion channels that create and change the swimming locomotor rhythm of Clione-particularly mechanisms that contribute to swimming acceleration-are presented in this review.
Collapse
Affiliation(s)
- Thomas J. Pirtle
- Department of Biology, The College of Idaho, Caldwell, ID, United States
| |
Collapse
|
10
|
Kodirov SA. Probability that there is a mammalian counterpart of cardiac clock in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21867. [PMID: 35106839 PMCID: PMC9250754 DOI: 10.1002/arch.21867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Whether or not the hyperpolarization-activated cyclic nucleotide-gated nonselective cation channel (HCN or funny current If ) is involved in pacemaking - recurrent heartbeat, it is attributed to electrical activities in all excitable cells, including those of invertebrates. In latter group of animals prevailingly the electrical signals and function of heart in terms of chrono- and inotropy are elucidated. Although in simpler models including insects experimental outcomes are reproducible and robust, involvement of "cardiac clock" mechanism in pacemaking is not conclusive. In this assay, the mechanisms of heartbeat are synthesized by focused comparisons between insect and mammalian hearts.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, Texas, USA
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Ramirez G, Gomez E, Dumas T, Rosain D, Mathieu O, Fenet H, Courant F. Early Biological Modulations Resulting from 1-Week Venlafaxine Exposure of Marine Mussels Mytilus galloprovincialis Determined by a Metabolomic Approach. Metabolites 2022; 12:metabo12030197. [PMID: 35323640 PMCID: PMC8949932 DOI: 10.3390/metabo12030197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
There is growing evidence of the presence of pharmaceuticals in natural waters and their accumulation in aquatic organisms. While their mode of action on non-target organisms is still not clearly understood, their effects warrant assessment. The present study assessed the metabolome of the Mediterranean mussel (Mytilus galloprovincialis) exposed to a 10 µg/L nominal concentration of the antidepressant venlafaxine (VLF) at 3 time-points (1, 3, and 7 days). Over the exposure period, we observed up- or down-modulations of 113 metabolites, belonging to several metabolisms, e.g., amino acids (phenylalanine, tyrosine, tryptophan, etc.), purine and pyrimidine metabolisms (adenosine, cyclic AMP, thymidine, etc.), and several other metabolites involved in diverse functions. Serotonin showed the same time-course modulation pattern in both male and female mussels, which was consistent with its mode of action in humans, i.e., after a slight decrease on the first day of exposure, its levels increased at day 7 in exposed mussels. We found that the modulation pattern of impacted metabolites was not constant over time and it was gender-specific, as male and female mussels responded differently to VLF exposure.
Collapse
Affiliation(s)
- Gaëlle Ramirez
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Elena Gomez
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Thibaut Dumas
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - David Rosain
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Olivier Mathieu
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
- Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
| | - Frédérique Courant
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France; (G.R.); (E.G.); (T.D.); (D.R.); (O.M.); (H.F.)
- Correspondence: ; Tel.: +33-411-759-414
| |
Collapse
|
12
|
Canesi L, Miglioli A, Balbi T, Fabbri E. Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Front Endocrinol (Lausanne) 2022; 13:792589. [PMID: 35282445 PMCID: PMC8913902 DOI: 10.3389/fendo.2022.792589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Contaminants of Emerging Concerns (CECs) are defined as chemicals not commonly monitored in aquatic ecosystems, but with the potential to cause adverse effects on biota. CECs include Endocrine Disrupting Chemicals (EDCs) and Neuro-Endocrine disruptors (NEDs) of vertebrates. However, most invertebrates only rely on neuroendocrine systems to maintain homeostatic processes. Although conserved neuroendocrine components have been characterized in ecologically relevant groups, limited knowledge on invertebrate neuroendocrinology makes it difficult to define EDCs and NEDs in most species. The monoamine serotonin (5-hydroxytryptamine, 5-HT) acts both as a neurotransmitter and as a peripheral hormone in mammals. In molluscs, 5-HT is involved in multiple physiological roles and molecular components of the serotonergic system have been identified. This review is focused on the effects of CECs on the serotonergic system of bivalve molluscs. Bivalves are widespread in all aquatic environments, estuarine and coastal areas in particular, where they are exposed to a variety of chemicals. In bivalves, 5-HT is involved in gametogenesis and spawning, oocyte maturation and sperm motility, regulates heart function, gill ciliary beating, mantle/siphon function, the ''catch'' state of smooth muscle and immune responses. Components of 5-HT transduction (receptors and signaling pathways) are being identified in several bivalve species. Different CECs have been shown to affect bivalve serotonergic system. This particularly applies to antidepressants, among the most commonly detected human pharmaceuticals in the aquatic environment. In particular, selective serotonin reuptake inhibitors (SSRIs) are frequently detected in seawater and in bivalve tissues. Information available on the effects and mechanisms of action of SSRIs on the serotonergic system of adult bivalves is summarized. Data are also reported on the effects of CECs on development of neuroendocrine pathways of early larval stages, in particular on the effects of model EDCs in the marine mussel Mytilus galloprovincialis. Overall, available data point at the serotonergic system as a sensitive target for neuroendocrine disruption in bivalves. The results contribute drawing Adverse Outcome Pathways (AOPs) for model EDCs and SSRIs in larvae and adults. However, basic research on neuroendocrine signaling is still needed to evaluate the potential impact of neuroendocrine disruptors in key invertebrate groups of aquatic ecosystems.
Collapse
Affiliation(s)
- Laura Canesi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Laura Canesi,
| | - Angelica Miglioli
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Teresa Balbi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Ravenna, Italy
| |
Collapse
|
13
|
Zhong Z, Zhong T, Peng Y, Zhou X, Wang Z, Tang H, Wang J. Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe 2021; 29:1545-1557.e4. [PMID: 34525331 DOI: 10.1016/j.chom.2021.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/22/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Ticks are obligate hematophagous arthropods. Blood feeding ensures that ticks obtain nutrients essential for their survival, development, and reproduction while providing routes for pathogen transmission. However, the effectors that determine tick feeding activities remain poorly understood. Here, we demonstrate that reduced abundance of the symbiont Coxiella (CHI) in Haemaphysalis longicornis decreases blood intake. Providing tetracycline-treated ticks with the CHI-derived tryptophan precursor chorismate, tryptophan, or 5-hydroxytryptamine (5-HT; serotonin) restores the feeding defect. Mechanistically, CHI-derived chorismate increases tick 5-HT biosynthesis by stimulating the expression of aromatic amino acid decarboxylase (AAAD), which catalyzes the decarboxylation of 5-hydroxytryptophan (5-HTP) to 5-HT. The increased level of 5-HT in the synganglion and midgut promotes tick feeding. Inhibition of CHI chorismate biosynthesis by treating the colonized tick with the herbicide glyphosate suppresses blood-feeding behavior. Taken together, our results demonstrate an important function of the endosymbiont Coxiella in the regulation of tick 5-HT biosynthesis and feeding.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Ting Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Yeqing Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| | - Xiaofeng Zhou
- Human Phenome Institute, Fudan University, Shanghai 200433, P. R. China
| | - Zhiqian Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
14
|
Voronezhskaya EE. Maternal Serotonin: Shaping Developmental Patterns and Behavioral Strategy on Progeny in Molluscs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.739787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin is a well-known neurotransmitter and neurohormone regulating mood, sleep, feeding, and learning in high organisms. Serotonin also affects the embryonic events related to neurogenesis and maturation of hormonal systems, the underlying organism adaptation to a changing environment. Such serotonin-based mother-to-embryo signaling is realized via direct interactions in case of internal fertilization and embryonic development inside the mother body. However, the possibility of such signaling is less obvious in organisms with the ancestral type of embryogenesis and embryo development within the egg, outside the mother body. Our data, based on the investigation of freshwater gastropod molluscs (Lymnaea and Helisoma), demonstrated a correlation between seasonal variations of serotonin content within the female reproductive system, and developmental patterns and the behavioral characteristics of progeny. The direct action of serotonin via posttranslational protein modification—serotonylation—during early development, as well as classical receptor-mediated effects, underlies such serotonin-modulated developmental changes. In the present paper, I will shortly overview our results on freshwater molluscs and parallel the experimental data with the living strategy of these species occupying almost all Holarctic regions.
Collapse
|
15
|
Kreshchenko N, Terenina N, Ermakov A. Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT 7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules 2021; 11:1212. [PMID: 34439878 PMCID: PMC8394519 DOI: 10.3390/biom11081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
The study is dedicated to the investigation of serotonin (5-hydroxytryptamine, 5-HT) and 5-HT7 type serotonin receptor of localisation in larvae of two parasitic flatworms Opisthorchis felineus (Rivolta, 1884) Blanchard, 1895 and Hymenolepis diminuta Rudolphi, 1819, performed using the immunocytochemical method and confocal laser scanning microscopy (CLSM). Using whole mount preparations and specific antibodies, a microscopic analysis of the spatial distribution of 5-HT7-immunoreactivity(-IR) was revealed in worm tissue. In metacercariae of O. felineus 5-HT7-IR was observed in the main nerve cords and in the head commissure connecting the head ganglia. The presence of 5-HT7-IR was also found in several structures located on the oral sucker. 5-HT7-IR was evident in the round glandular cells scattered throughout the larva body. In cysticercoids of H. diminuta immunostaining to 5-HT7 was found in flame cells of the excretory system. Weak staining to 5-HT7 was observed along the longitudinal and transverse muscle fibres comprising the body wall and musculature of suckers, in thin longitudinal nerve cords and a connective commissure of the central nervous system. Available publications on serotonin action in flatworms and serotonin receptors identification were reviewed. Own results and the published data indicate that the muscular structures of flatworms are deeply supplied by 5-HT7-IR elements. It suggests that the 5-HT7 type receptor can mediate the serotonin action in the investigated species and is an important component of the flatworm motor control system. The study of the neurochemical basis of parasitic flatworms can play an important role in the solution of fundamental problems in early development of the nervous system and the evolution of neuronal signalling components.
Collapse
Affiliation(s)
- Natalia Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nadezhda Terenina
- Center of Parasitology A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Artem Ermakov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 142290 Pushchino, Russia;
| |
Collapse
|
16
|
Sajadi F, Paluzzi JPV. Hormonal regulation and functional role of the "renal" tubules in the disease vector, Aedes aegypti. VITAMINS AND HORMONES 2021; 117:189-225. [PMID: 34420581 DOI: 10.1016/bs.vh.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Aedes aegypti mosquito is a vector responsible for transmitting various arboviruses including dengue and yellow fever. Their ability to regulate the ionic and water composition of their hemolymph is a major physiological phenomenon, allowing the mosquito to adapt to a range of ecological niches. Hematophagus insects, including the female A. aegypti, face the challenge of excess salt and water intake after a blood meal. Post-prandial diuresis is under rigorous control by neuroendocrine factors, acting on the Malpighian "renal" tubules (MTs), to regulate primary urine production. The MTs are made up of two cell types; mitochondria-rich principal cells, which facilitate active transport of Na+ and K+ cations across the membrane, and thin stellate cells, which allows for transepithelial Cl- secretion. The active driving force responsible for ion transport is the apical V-type H+ ATPase, which creates a proton gradient allowing for Na+ and/or K+ cation exchange through cation/H+ antiporters. Additionally, the basolaterally localized Na+-K+-2Cl- cotransporter (NKCC) is responsible for the transport of these ions from the hemolymph into the principal cells. Numerous studies have examined hormonal regulation of the mosquito MTs and identified several diuretics including serotonin (5HT), a calcitonin-related diuretic hormone 31 (DH31), a corticotropin-related factor like diuretic peptide (DH44), a kinin-related diuretic peptide, as well as anti-diuretic factors including CAPA peptides, all of which are known to regulate fluid and ion transport by the MTs. This review therefore focuses on the control of ionic homeostasis in A. aegypti mosquitoes, emphasizing the importance of the MTs, the channels and transporters involved in maintaining hydromineral balance, and the neuroendocrine regulation of both diuresis and anti-diuresis.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, Toronto, ON, Canada
| | | |
Collapse
|
17
|
Molecular Cloning and Functional Characterization of Three 5-HT Receptor Genes ( HTR1B, HTR1E, and HTR1F) in Chickens. Genes (Basel) 2021; 12:genes12060891. [PMID: 34207786 PMCID: PMC8230051 DOI: 10.3390/genes12060891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) signaling system is involved in a variety of physiological functions, including the control of cognition, reward, learning, memory, and vasoconstriction in vertebrates. Contrary to the extensive studies in the mammalian system, little is known about the molecular characteristics of the avian serotonin signaling network. In this study, we cloned and characterized the full-length cDNA of three serotonin receptor genes (HTR1B, HTR1E and HTR1F) in chicken pituitaries. Synteny analyses indicated that HTR1B, HTR1E and HTR1F were highly conserved across vertebrates. Cell-based luciferase reporter assays showed that the three chicken HTRs were functional, capable of binding their natural ligands (5-HT) or selective agonists (CP94253, BRL54443, and LY344864) and inhibiting intracellular cAMP production in a dose-dependent manner. Moreover, activation of these receptors could stimulate the MAPK/ERK signaling cascade. Quantitative real-time PCR analyses revealed that HTR1B, HTR1E and HTR1F were primarily expressed in various brain regions and the pituitary. In cultured chicken pituitary cells, we found that LY344864 could significantly inhibit the secretion of PRL stimulated by vasoactive intestinal peptide (VIP) or forskolin, revealing that HTR1F might be involved in the release of prolactin in chicken. Our findings provide insights into the molecular mechanism and facilitate a better understanding of the serotonergic modulation via HTR1B, HTR1E and HTR1F in avian species.
Collapse
|
18
|
Zhang B, Yang JW, Han T, Huang DX, Zhao ZH, Feng JQ, Zhou NM, Xie HQ, Wang TM. Identification and characterization of a novel 5-hydroxytryptamine receptor in the sea cucumber Apostichopus japonicus (Selenka). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:367-380. [PMID: 33651924 DOI: 10.1002/jez.2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/07/2022]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) receptors (5-HTRs) mediate neuroendocrine signaling via interactions with the ligand serotonin (5-HT). The 5-HT signaling system has been well studied in vertebrates, but rarely known in invertebrate animals, especially in the marine invertebrates. In this study, we identified and characterized a novel 5-HTR from the sea cucumber Apostichopus japonicus (Aj5-HT4/6 ). The cloned Aj5-HT4/6 open reading frame comprised 1290 bp and encoded 429 amino acids. Bioinformatic analysis of the receptor indicated that it was a member of the class A of the G protein-coupled receptor family. Further experiments using Aj5-HT4/6 -transfected HEK293 cells demonstrated that treatment with 5-HT could induce rapid internalization of Aj5-HT4/6 fused with enhanced green fluorescent protein from the cell surface into the cytoplasm and triggered a significant increase in levels of the second messenger cAMP as well as mitogen-activated protein kinase phosphorylation in a 5-HT dose-dependent manner. Quantitative real time-polymerase chain reaction demonstrated that Aj5-HT4/6 was predominantly expressed in the muscle and respiratory tree, and its expression was significantly decreased during estivation. Taken together, these results imply that Aj5-HT4/6 is potentially involved in the movement and metabolism of the sea cucumber.
Collapse
Affiliation(s)
- Bing Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jing-Wen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - De-Xiang Huang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Zi-Hao Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Jia-Qian Feng
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Nai-Ming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Qing Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian-Ming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
19
|
Hu SW, Yang YT, Sun Y, Zhan YP, Zhu Y. Serotonin Signals Overcome Loser Mentality in Drosophila. iScience 2020; 23:101651. [PMID: 33117967 PMCID: PMC7581928 DOI: 10.1016/j.isci.2020.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 12/03/2022] Open
Abstract
Traumatic experiences generate stressful neurological effects in the exposed persons and animals. Previous studies have demonstrated that in many species, including Drosophila, the defeated animal has a higher probability of losing subsequent fights. However, the neural basis of this “loser effect” is largely unknown. We herein report that elevated serotonin (5-HT) signaling helps a loser to overcome suppressive neurological states. Coerced activation of 5-HT neurons increases aggression in males and promotes losers to both vigorously re-engage in fights and even defeat the previous winners and regain mating motivation. P1 neurons act upstream and 5-HT1B neurons in the ellipsoid body act downstream of 5-HT neurons to arouse losers. Our results demonstrate an ancient neural mechanism of regulating depressive behavioral states after distressing events. Activating a small subset of serotonin neurons promotes losers to fight Serotonin is necessary and sufficient for modulating aggression in losers The neural circuit for motivating losers includes P1, 5-HT, and 5-HT1B neurons Elevating 5-HT signaling overcomes the depressive behavioral state in losers
Collapse
Affiliation(s)
- Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Peng Zhan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Fuertes I, Piña B, Barata C. Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139029. [PMID: 32446052 DOI: 10.1016/j.scitotenv.2020.139029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Disruptive effects of chemicals on lipids in aquatic species are mostly limited to obesogens and vertebrates. Recent studies reported that antidepressants, anxiolytic, antiepileptic and β-adrenergic pharmaceuticals, with putative distinct mechanisms of action at low environmental relevant concentrations, up-regulated common neurological and lipid metabolic pathways and enhanced similarly reproduction in the crustacean Daphnia magna. Conversely CRISPR mutants for the tryptophan hydrolase enzyme gene (TRH) that lack serotonin had the opposed phenotype: the lipid metabolism down-regulated and impaired reproduction. Lipid metabolism is strongly linked to reproduction in D. magna. The aim of this study is to test if the above mentioned neuro-active chemicals disrupted common lipid groups and showed also the opposed lipidomic effects as those individuals lacking serotonin. This study used ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) to study how neuro-active chemicals (carbamazepine, diazepam, fluoxetine and propranolol) at low (0.1 μg/L) and higher concentrations (1 μg/L) and three CRISPR TRH mutant clones disrupt the dynamics of glycerophospholipids and glycerolipids in Daphnia adults. Lipidomic analysis identified 267 individual lipids corresponding to three classes of glycerolipids, eleven of glycerophospholipids, one of sterols and one of sphingolipids, of which 132 and 125 changed according to the chemical treatments or across clones, respectively. Most pharmaceutical treatments enhanced reproduction whereas mutated clones lacking serotonin reproduced to a lesser extent. Except for carbamazepine, most of the tested pharmaceuticals increased some triacylglycerol species and decreased monoacylglycerols, lysophospholipids, sphingomyelins and cholesterol esters in exposed females. Opposed lipidomic pattern was observed in mutated clones lacking serotonin. Lipidomic data, thus, indicate a close link between reported transcriptomic and lipidomic changes, which are likely related to serotonin and other neurological signalling pathways.
Collapse
Affiliation(s)
- Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Molecular evolution of a collage of cholesterol interaction motifs in transmembrane helix V of the serotonin 1A receptor. Chem Phys Lipids 2020; 232:104955. [PMID: 32846149 DOI: 10.1016/j.chemphyslip.2020.104955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/08/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
The human serotonin1A receptor is a representative member of the superfamily of G protein-coupled receptors (GPCRs) and an important drug target for neurological disorders. Using a combination of biochemical, biophysical and molecular dynamics simulation approaches, we and others have shown that membrane cholesterol modulates the organization, dynamics and function of vertebrate serotonin1A receptors. Previous studies have shown that the cytoplasmic portion of transmembrane helix V (TM V) and the extramembraneous intracellular loop 3 are critical for G-protein coupling, phosphorylation and desensitization of the receptor. We have recently resolved a collage of putative cholesterol interaction motifs from the amino acid sequence overlapping this region. In this paper, we explore the sequence plasticity of this fragment that may have adapted to altered membrane lipidome, after vertebrates evolved from primordial invertebrates. Since invertebrates have lower levels of membrane cholesterol relative to vertebrates, we compared TM V sequence fragments from invertebrate serotonin1 receptors with vertebrate orthologs to infer the sequence plasticity in TM V. We report that the average number of cholesterol interaction motifs in TM V for diverse phyla represents an increasing trend that could mirror vertebrate evolution from primordial invertebrates. By statistical modeling, we propose that the collage of cholesterol interaction motifs in TM V of the human serotonin1A receptor may have evolved from rudimentary collages, reminiscent of primordial invertebrate orthologs. Taken together, we propose that a repertoire of cholesterol-philic nonsynonymous substitutions may have enhanced collage complexity in TM V during vertebrate evolution.
Collapse
|
22
|
Chang CC, Connahs H, Tan ECY, Norma-Rashid Y, Mrinalini, Li D, Chew FT. Female spider aggression is associated with genetic underpinnings of the nervous system and immune response to pathogens. Mol Ecol 2020; 29:2626-2638. [PMID: 32510793 DOI: 10.1111/mec.15502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Abstract
Identifying the genetic architecture underlying phenotypic variation in natural populations and assessing the consequences of polymorphisms for individual fitness are fundamental goals in evolutionary and molecular ecology. Consistent between-individual differences in behaviour have been documented for a variety of taxa. Dissecting the genetic basis of such behavioural differences is however a challenging endeavour. The molecular underpinnings of natural variation in aggression remain elusive. Here, we used comparative gene expression (transcriptome analysis and RT-PCR), genetic association analysis and pharmacological experiments to gain insight into the genetic basis of aggression in wild-caught jumping spiders (Portia labiata). We show that spider aggression is associated with a putative viral infection response gene, BTB/POZ domain-containing protein 17 (BTBDH), in addition to a putative serotonin receptor 1A (5-HT1A) gene. Spider aggression varies with virus loads, and BTBDH is upregulated in docile spiders and exhibits a genetic variant associated with aggression. We also identify a putative serotonin receptor 5-HT1A gene upregulated in docile P. labiata. Individuals that have been treated with serotonin become less aggressive, but individuals treated with a nonselective serotonin receptor antagonist (methiothepin) also reduce aggression. Further, we identify the genetic variants in the 5-HT1A gene that are associated with individual variation in aggression. We therefore conclude that co-evolution of the immune and nervous systems may have shaped the between-individual variation in aggression in natural populations of jumping spiders.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Heidi Connahs
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Estella Cai Yu Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Y Norma-Rashid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mrinalini
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
23
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
24
|
|
25
|
Identification, characterization, and expression analysis of a serotonin receptor involved in the reproductive process of the Pacific abalone, Haliotis discus hannai. Mol Biol Rep 2019; 47:555-567. [PMID: 31696430 DOI: 10.1007/s11033-019-05162-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
Serotonin receptor (5-HT) is a biogenic amine acting as a neurotransmitter and neuromodulator that mediates various aspects of reproduction and gametogenesis. The full-length nucleotide sequence of Haliotis discus hannai encodes a protein of 417 amino acids with a predicted molecular mass of 46.54 kDa and isoelectric point of 8.94. The structural profile of 5-HTHdh displayed key features of G protein-coupled receptors, including seven hydrophobic transmembrane domains, putative N-linked glycosylation sites, and several phosphorylation consensus motifs. It shares the highest homology of its amino acid sequence with the 5-HT receptor from Haliotis asinina, and to lesser extent of human 5-HT receptor. The cloned sequence possesses two cysteine residues (Cys-115 and Cys-193), which are likely to form a disulfide bond. Phylogenetic comparison with other known 5-HT receptor genes revealed that the 5-HTHdh is most closely related to the 5-HTHa receptor. The three-dimensional structure of the 5-HTHdh showed multiple alpha helices which is separated by a helix-loop-helix (HLH) structure. Quantitative PCR demonstrated that the receptor mRNA was predominantly expressed in the pleuropedal ganglion. Significant differences in the transcriptional activity of the 5-HTHdh gene were observed in the ovary at the ripening stage. An exclusive expression was detected in pleuropedal ganglion, testis, and ovary at higher effective accumulative temperature (1000 °C). In situ hybridization showed that the 5-HTHdh expressing neurosecretory cells were distributed in the cortex of the pleuropedal ganglion. Our results suggest that 5-HTHdh synthesized in the neural ganglia may be involved in oocyte maturation and spawning of H. discus hannai.
Collapse
|
26
|
Boulais M, Demoy-Schneider M, Alavi SMH, Cosson J. Spermatozoa motility in bivalves: Signaling, flagellar beating behavior, and energetics. Theriogenology 2019; 136:15-27. [PMID: 31234053 DOI: 10.1016/j.theriogenology.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
Though bivalve mollusks are keystone species and major species groups in aquaculture production worldwide, gamete biology is still largely unknown. This review aims to provide a synthesis of current knowledge in the field of sperm biology, including spermatozoa motility, flagellar beating, and energy metabolism; and to illustrate cellular signaling controlling spermatozoa motility initiation in bivalves. Serotonin (5-HT) induces hyper-motility in spermatozoa via a 5-HT receptor, suggesting a serotoninergic system in the male reproductive tract that might regulate sperm physiology. Acidic pH and high concentration of K+ are inhibitory factors of spermatozoa motility in the testis. Motility is initiated at spawning by a Na+-dependent alkalization of intracellular pH mediated by a Na+/H+ exchanger. Increase of 5-HT in the testis and decrease of extracellular K+ when sperm is released in seawater induce hyperpolarization of spermatozoa membrane potential mediated by K+ efflux and associated with an increase in intracellular Ca2+ via opening of voltage-dependent Ca2+ channels under alkaline conditions. These events activate dynein ATPases and Ca2+/calmodulin-dependent proteins resulting in flagellar beating. It may be possible that 5-HT is also involved in intracellular cAMP rise controlling cAMP-dependent protein kinase phosphorylation in the flagellum. Once motility is triggered, flagellum beats in asymmetric wave pattern leading to circular trajectories of spermatozoa. Three different flagellar wave characteristics are reported, including "full", "twitching", and "declining" propagation of wave, which are described and illustrated in the present review. Mitochondrial respiration, ATP content, and metabolic pathways producing ATP in bivalve spermatozoa are discussed. Energy metabolism of Pacific oyster spermatozoa differs from previously studied marine species since oxidative phosphorylation synthetizes a stable level of ATP throughout 24-h motility period and the end of movement is not explained by a low intracellular ATP content, revealing different strategy to improve oocyte fertilization success. Finally, our review highlights physiological mechanisms that require further researches and points out some advantages of bivalve spermatozoa to extend knowledge on mechanisms of motility.
Collapse
Affiliation(s)
- Myrina Boulais
- University of Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont d'Urville, F-29280, Plouzané, France.
| | - Marina Demoy-Schneider
- University of French Polynesia, UMR 241 EIO, BP 6570, 98702, Faa'a Aéroport, Tahiti, French Polynesia
| | | | - Jacky Cosson
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| |
Collapse
|
27
|
Ek C, Garbaras A, Yu Z, Oskarsson H, Wiklund AKE, Kumblad L, Gorokhova E. Increase in stable isotope ratios driven by metabolic alterations in amphipods exposed to the beta-blocker propranolol. PLoS One 2019; 14:e0211304. [PMID: 31095563 PMCID: PMC6522046 DOI: 10.1371/journal.pone.0211304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/05/2019] [Indexed: 12/15/2022] Open
Abstract
Anthropogenic pressures, such as contaminant exposure, may affect stable isotope ratios in biota. These changes are driven by alterations in the nutrient allocation and metabolic pathways induced by specific stressors. In a controlled microcosm study with the amphipod Gammarus spp., we studied effects of the β-blocker propranolol on stable isotope signatures (δ15N and δ13C), elemental composition (%C and %N), and growth (protein content and body size) as well as biomarkers of oxidative status (antioxidant capacity, ORAC; lipid peroxidation, TBARS) and neurological activity (acetylcholinesterase, AChE). Based on the known effects of propranolol exposure on cellular functions, i.e., its mode of action (MOA), we expected to observe a lower scope for growth, accompanied by a decrease in protein deposition, oxidative processes and AChE inhibition, with a resulting increase in the isotopic signatures. The observed responses in growth, biochemical and elemental variables supported most of these predictions. In particular, an increase in %N was observed in the propranolol exposures, whereas both protein allocation and body size declined. Moreover, both ORAC and TBARS levels decreased with increasing propranolol concentration, with the decrease being more pronounced for TBARS, which indicates the prevalence of the antioxidative processes. These changes resulted in a significant increase of the δ15N and δ13C values in the propranolol-exposed animals compared to the control. These findings suggest that MOA of β-blockers may be used to predict sublethal effects in non-target species, including inhibited AChE activity, improved oxidative balance, and elevated stable isotope ratios. The latter also indicates that metabolism-driven responses to environmental contaminants can alter stable isotope signatures, which should be taken into account when interpreting trophic interactions in the food webs.
Collapse
Affiliation(s)
- Caroline Ek
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Andrius Garbaras
- Mass Spectrometry Laboratory, Center for Physical Science and Technology, Vilnius, Lithuania
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, P. R. China
| | - Hanna Oskarsson
- Department of Ecology, Environment and Plant Science, Stockholm University, Svante Stockholm, Sweden
| | | | - Linda Kumblad
- Department of Ecology, Environment and Plant Science, Stockholm University, Svante Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
28
|
Pharmacological characterization of the 5-HT1A receptor of Bombyx mori and its role in locomotion. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:56-65. [DOI: 10.1016/j.cbpa.2019.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
|
29
|
Simão FCP, Martínez-Jerónimo F, Blasco V, Moreno F, Porta JM, Pestana JLT, Soares AMVM, Raldúa D, Barata C. Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:160-167. [PMID: 30690351 DOI: 10.1016/j.scitotenv.2019.01.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Recent advances in imaging allow to monitor in real time the behaviour of individuals under a given stress. Light is a common stressor that alters the behaviour of fish larvae and many aquatic invertebrate species. The water flea Daphnia magna exhibits a vertical negative phototaxis, swimming against light trying to avoid fish predation. The aim of this study was to develop a high-throughput image analysis system to study changes in the vertical negative phototaxis of D. magna first reproductive adult females exposed to 0.1 and 1 μg/L of four neuro-active drugs: diazepam, fluoxetine, propranolol and carbamazepine. Experiments were conducted using a custom designed experimental chamber containing four independent arenas and infrared illumination. The apical-located visible light and the GigE camera located in front of the arenas were controlled by the Ethovision XT 11.5 sofware (Noldus Information Technology, Leesburg, VA). Total distance moved, time spent per zone (bottom vs upper zones) and distance among individuals were analyzed in dark and light conditions, and the effect of different intensities of the apical-located visible light was also investigated. Results indicated that light intensity increased the locomotor activity and low light intensities allowed to better discriminate individual responses to the studied drugs. The four tested drugs decreased the response of exposed organisms to light: individuals moved less, were closer to the bottom and at low light intensities were closer each other. At high light intensities, however, exposed individuals were less aggregated. Propranolol, carbamazepine and fluoxetine induced the most severe behavioural effects. The tested drugs at environmental relevant concentrations altered locomotor activity, geotaxis, phototaxis and aggregation in D. magna individuals in the lab. Therefore the new image analysis system presented here was proven to be sensitive and versatile enough to detect changes in diel vertical migration across light intensities and low concentration levels of neuro-active drugs.
Collapse
Affiliation(s)
- Fátima C P Simão
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Fernando Martínez-Jerónimo
- Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biológicas,-Lab. de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Victor Blasco
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - Francesc Moreno
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - João L T Pestana
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Demetrio Raldúa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
30
|
The pharmacological and functional characterization of the serotonergic system in Anopheles gambiae and Aedes aegypti: influences on flight and blood-feeding behavior. Sci Rep 2019; 9:4421. [PMID: 30872615 PMCID: PMC6418270 DOI: 10.1038/s41598-019-38806-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022] Open
Abstract
Aedes aegypti and Anopheles gambiae harbor the causative agents of diseases such as dengue fever and malaria, afflicting human morbidity and mortality worldwide. Given the worldwide emergence of resistance to insecticides, the current mainstay for vector control, identification of alternative modes of action for future insecticides is paramount. The serotonergic (5-HT) system has been documented to impact physiological mechanisms involved in disease transmission, suggesting its potential as a new mode of action target for future insecticide development. Target 5-HT receptors were cloned and expressed in the HEK293 cell line for functional and pharmacological characterization. Manipulation of the 5-HT system through microinjection of compounds suggests its involvement in the modulation of flight performance and blood-feeding behavior. By attenuating these two determinants of vectorial capacity, transmission and burden of disease could effectively be reduced. Considering these positive global health implications, the 5-HT system is a compelling target for the novel insecticide pipeline.
Collapse
|
31
|
Bubak AN, Watt MJ, Renner KJ, Luman AA, Costabile JD, Sanders EJ, Grace JL, Swallow JG. Sex differences in aggression: Differential roles of 5-HT2, neuropeptide F and tachykinin. PLoS One 2019; 14:e0203980. [PMID: 30695038 PMCID: PMC6350964 DOI: 10.1371/journal.pone.0203980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Despite the conserved function of aggression across taxa in obtaining critical resources such as food and mates, serotonin's (5-HT) modulatory role on aggressive behavior appears to be largely inhibitory for vertebrates but stimulatory for invertebrates. However, critical gaps exist in our knowledge of invertebrates that need to be addressed before definitively stating opposing roles for 5-HT and aggression. Specifically, the role of 5-HT receptor subtypes are largely unknown, as is the potential interactive role of 5-HT with other neurochemical systems known to play a critical role in aggression. Similarly, the influence of these systems in driving sex differences in aggressive behavior of invertebrates is not well understood. Here, we investigated these questions by employing complementary approaches in a novel invertebrate model of aggression, the stalk-eyed fly. A combination of altered social conditions, pharmacological manipulation and 5-HT2 receptor knockdown by siRNA revealed an inhibitory role of this receptor subtype on aggression. Additionally, we provide evidence for 5-HT2's involvement in regulating neuropeptide F activity, a suspected inhibitor of aggression. However, this function appears to be stage-specific, altering only the initiation stage of aggressive conflicts. Alternatively, pharmacologically increasing systemic concentrations of 5-HT significantly elevated the expression of the neuropeptide tachykinin, which did not affect contest initiation but instead promoted escalation via production of high intensity aggressive behaviors. Notably, these effects were limited solely to males, with female aggression and neuropeptide expression remaining unaltered by any manipulation that affected 5-HT. Together, these results demonstrate a more nuanced role for 5-HT in modulating aggression in invertebrates, revealing an important interactive role with neuropeptides that is more reminiscent of vertebrates. The sex-differences described here also provide valuable insight into the evolutionary contexts of this complex behavior.
Collapse
Affiliation(s)
- Andrew N. Bubak
- Department of Neurology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael J. Watt
- Center for Brain and Behavior Research, Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Kenneth J. Renner
- Biology Department, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Abigail A. Luman
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Jamie D. Costabile
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Erin J. Sanders
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
| | - Jaime L. Grace
- Department of Biology, Bradley University, Peoria, Illinois, United States of America
| | - John G. Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, United States of America
- * E-mail:
| |
Collapse
|
32
|
Tierney AJ. Invertebrate serotonin receptors: a molecular perspective on classification and pharmacology. ACTA ACUST UNITED AC 2018; 221:221/19/jeb184838. [PMID: 30287590 DOI: 10.1242/jeb.184838] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invertebrate receptors for the neurotransmitter serotonin (5-HT) have been identified in numerous species from diverse phyla, including Arthropoda, Mollusca, Nematoda and Platyhelminthes. For many receptors, cloning and characterization in heterologous systems have contributed data on molecular structure and function across both closely and distantly related species. This article provides an overview of heterologously expressed receptors, and considers evolutionary relationships among them, classification based on these relationships and nomenclature that reflects classification. In addition, transduction pathways and pharmacological profiles are compared across receptor subtypes and species. Previous work has shown that transduction mechanisms are well conserved within receptor subtypes, but responses to drugs are complex. A few ligands display specificity for different receptors within a single species; however, none acts with high specificity in receptors across different species. Two non-selective vertebrate ligands, the agonist 5-methoxytryptamine and antagonist methiothepin, are active in most receptor subtypes in multiple species and hence bind very generally to invertebrate 5-HT receptors. Future challenges for the field include determining how pharmacological profiles are affected by differences in species and receptor subtype, and how function in heterologous receptors can be used to better understand 5-HT activity in intact organisms.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Neuroscience Program, Department of Psychology, Colgate University, Hamilton, NY 13346, USA
| |
Collapse
|
33
|
Elekes K, Hiripi L, Balog G, Maász G, Battonyai I, Khabarova MY, Horváth R, Voronezhskaya EE. Serotonergic regulation of the buccal (feeding) rhythm of the pond snail, Lymnaea stagnalis. An immunocytochemical, biochemical and pharmacological approach. ACTA BIOLOGICA HUNGARICA 2018; 69:225-243. [PMID: 30257576 DOI: 10.1556/018.68.2018.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hatching is an important phase of the development of pulmonate gastropods followed by the adult-like extracapsular foraging life. Right before hatching the juveniles start to display a rhythmic radula movement, executed by the buccal complex, consisting of the buccal musculature (mass) and a pair of the buccal ganglia. In order to have a detailed insight into this process, we investigated the serotonergic regulation of the buccal (feeding) rhythm in 100% stage embryos of the pond snail, Lymnaea stagnalis, applying quantitative immunohistochemistry combined with the pharmacological manipulation of the serotonin (5-HT) synthesis, by either stimulating (by the 5-HT precursor 5-hydroxytryptophan, 5-HTP) or inhibiting (by the 5-HT synthesis blocker para-chlorophenylalanine, pCPA) it. Corresponding to the direction of the drug effect, significant changes of the fluorescence intensity could be detected both in the cerebral ganglia and the buccal complex. HPLC-MS assay demonstrated that 5-HTP increased meanwhile pCPA decreased the 5-HT content both of the central ganglia and the buccal complex. As to the feeding activity, 5-HTP induced only a slight (20%) increase, whereas the pCPA resulted in a 20% decrease of the radula protrusion frequency. Inhibition of 5-HT re-uptake by clomipramine reduced the frequency by 75%. The results prove the role of both central and peripheral 5-HTergic processes in the regulation of feeding activity. Application of specific receptor agonists and antagonists revealed that activation of a 5-HT1-like receptor depressed the feeding activity, meanwhile activation of a 5-HT6,7-like receptor enhanced it. Saturation binding plot of [3H]-5-HT to receptor and binding experiments performed on membrane pellets prepared from the buccal mass indicated the presence of a 5-HT6-like receptor positively coupled to cAMP. The results suggest that 5-HT influences the buccal (feeding) rhythmic activity in two ways: an inhibitory action is probably exerted via 5-HT1-like receptors, while an excitatory action is realized through 5-HT6,7-like receptors.
Collapse
Affiliation(s)
- Károly Elekes
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-8237 Tihany, Hungary
| | - László Hiripi
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-8237 Tihany, Hungary
| | - Gábor Balog
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-8237 Tihany, Hungary
| | - Gábor Maász
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-8237 Tihany, Hungary
| | - Izabella Battonyai
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-8237 Tihany, Hungary
| | - Marina Yu. Khabarova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Réka Horváth
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Centre for Ecological Research, Hungarian Academy of Sciences, H-8237 Tihany, Hungary
| | | |
Collapse
|
34
|
Tamvacakis AN, Senatore A, Katz PS. Single neuron serotonin receptor subtype gene expression correlates with behaviour within and across three molluscan species. Proc Biol Sci 2018; 285:rspb.2018.0791. [PMID: 30135151 DOI: 10.1098/rspb.2018.0791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
The marine mollusc, Pleurobranchaea californica varies daily in whether it swims and this correlates with whether serotonin (5-HT) enhances the strength of synapses made by the swim central pattern generator neuron, A1/C2. Another species, Tritonia diomedea, reliably swims and does not vary in serotonergic neuromodulation. A third species, Hermissenda crassicornis, never produces this behaviour and lacks the neuromodulation. We found that expression of particular 5-HT receptor subtype (5-HTR) genes in single neurons correlates with swimming. Orthologues to seven 5-HTR genes were identified from whole-brain transcriptomes. We isolated individual A1/C2 neurons and sequenced their RNA or measured 5-HTR gene expression using absolute quantitative PCR. A1/C2 neurons isolated from Pleurobranchaea that produced a swim motor pattern just prior to isolation expressed 5-HT2a and 5-HT7 receptor genes, as did all Tritonia samples. These subtypes were absent from A1/C2 isolated from Pleurobranchaea that did not swim on that day and from Hermissenda A1/C2 neurons. Expression of other receptors was not correlated with swimming. This suggests that these 5-HTRs may mediate the modulation of A1/C2 synaptic strength and play an important role in swimming. Furthermore, it suggests that regulation of receptor expression could underlie daily changes in behaviour as well as evolution of behaviour.
Collapse
Affiliation(s)
- A N Tamvacakis
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - A Senatore
- Biology Department, University of Toronto, Mississauga, Toronto, Ontario, Canada
| | - P S Katz
- Biology Department, University of Massachusetts at Amherst, Amherst, MA, USA
| |
Collapse
|
35
|
Yang X, Huang G, Xu M, Zhang C, Cheng Y. Molecular cloning and functional expression of the 5-HT 7 receptor in Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol 2018; 226:10-17. [PMID: 30110659 DOI: 10.1016/j.cbpb.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022]
Abstract
Serotonin (5-HT) regulates numerous physiological functions and processes, such as light adaptation, food intake and ovarian maturation, and plays the role through 5-HT receptors. To our knowledge, this is the first study to isolate and characterize the serotonin receptor 7 (5-HT7 receptor) cDNA encoded in Eriocheir sinensis, an economically important aquaculture species in China, by performing rapid-amplification of cDNA ends. The full-length of 5-HT7 receptor gene cDNA is 2328 bp and encodes a polypeptide with 590 amino acids that are highly homologous with other crustaceans 5-HT7 receptor genes. Analysis of the deduced amino acid sequence of the 5-HT7, including 7 transmembrane domains and some common features of G protein-coupled receptors (GPCRs), indicated that 5-HT7 receptor was a member of GPCRs family. A gene expression analysis of the 5-HT7 receptor by RT-PCR revealed that the 5-HT7 receptor transcripts were widely distributed in various tissues, in which high expression levels were observed in the cranial ganglia, thoracic ganglia and intestines. Further study about the effects of photoperiods on the 5-HT7 expression in the tissues showed that a significantly increasing expression of the 5-HT7 receptor was observed in the thoracic ganglia induced by constant light. In addition, in the eyestalks, the expression levels of 5-HT7 mRNA in constant darkness and constant light were lower than control treatment. Then, the expression levels of the 5-HT7 receptor in three feeding statuses displayed that there were significantly increasing expressions in the hepatopancreas and intestines after feeding, compared with before feeding and during the feeding period. Finally, the 5-HT7 mRNA expression levels in stage III and stage IV were higher than the levels in stage I of ovarian development. Our experimental results showed that the 5-HT7 receptor structurally belongs to GPCRs, and the thoracic ganglia and eyestalks are the important tissues of the 5-HT7 receptor for light adaptation. The 5-HT7 receptor may also be involved in the physiological regulation of the hepatopancreas and intestines after ingestion in E. sinensis. In addition, the 5-HT7 receptor is involved in the process of ovarian maturation. The study provided a foundation for further research of light adaptation, digestive functions and ovarian maturation of the 5-HT7 receptor in Decapoda.
Collapse
Affiliation(s)
- Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Genyong Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Minjie Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
36
|
Huber R, Imeh-Nathaniel A, Nathaniel TI, Gore S, Datta U, Bhimani R, Panksepp JB, Panksepp J, van Staaden MJ. Drug-sensitive Reward in Crayfish: Exploring the Neural Basis of Addiction with Automated Learning Paradigms. Behav Processes 2018; 152:47-53. [DOI: 10.1016/j.beproc.2018.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 11/25/2022]
|
37
|
Datta U, van Staaden M, Huber R. Crayfish Self-Administer Amphetamine in a Spatially Contingent Task. Front Physiol 2018; 9:433. [PMID: 29867520 PMCID: PMC5961511 DOI: 10.3389/fphys.2018.00433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
Natural reward is an essential element of any organism’s ability to adapt to environmental variation. Its underlying circuits and mechanisms guide the learning process as they help associate an event, or cue, with the perception of an outcome’s value. More generally, natural reward serves as the fundamental generator of all motivated behavior. Addictive plant alkaloids are able to activate this circuitry in taxa ranging from planaria to humans. With modularly organized nervous systems and confirmed vulnerabilities to human drugs of abuse, crayfish have recently emerged as a compelling model for the study of the addiction cycle, including psychostimulant effects, sensitization, withdrawal, reinstatement, and drug reward in conditioned place preference paradigms. Here we extend this work with the demonstration of a spatially contingent, operant drug self-administration paradigm for amphetamine. When the animal enters a quadrant of the arena with a particular textured substrate, a computer-based control system delivers amphetamine through an indwelling fine-bore cannula. Resulting reward strength, dose-response, and the time course of operant conditioning were assessed. Individuals experiencing the drug contingent on their behavior, displayed enhanced rates of operant responses compared to that of their yoked (non-contingent) counterparts. Application of amphetamine near the supra-esophageal ganglion elicited stronger and more robust increases in operant responding than did systemic infusions. This work demonstrates automated implementation of a spatially contingent self-administration paradigm in crayfish, which provides a powerful tool to explore comparative perspectives in drug-sensitive reward, the mechanisms of learning underlying the addictive cycle, and phylogenetically conserved vulnerabilities to psychostimulant compounds.
Collapse
Affiliation(s)
- Udita Datta
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Moira van Staaden
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Robert Huber
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| |
Collapse
|
38
|
Verlinden H. Dopamine signalling in locusts and other insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:40-52. [PMID: 29680287 DOI: 10.1016/j.ibmb.2018.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Dopamine is an important catecholamine neurotransmitter in invertebrates and vertebrates. It is biochemically derived from tyrosine via L-DOPA. It is most abundant in the central nervous system, but can also be produced in e.g. epidermal cells. Dopamine has conserved roles in the control of movement, pleasure, motivation, arousal and memory between invertebrate and vertebrate animals. It is crucial for melanisation and sclerotisation, important processes for the formation of the exoskeleton of insects and immune function. In this brief review I will discuss some general aspects of insect dopamine biosynthesis and breakdown, dopamine receptors and their pharmacology. In addition, I will provide a glance on the multitude of biological functions of dopamine in insects. More detail is provided concerning the putative roles of dopamine in phase related phenomena in locusts. Finally, molecular and pharmacological adjustments of insect dopamine signalling are discussed in the light of possible approaches towards insect pest management.
Collapse
Affiliation(s)
- Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
Jia Y, Yang B, Dong W, Liu Z, Lv Z, Jia Z, Qiu L, Wang L, Song L. A serotonin receptor (Cg5-HTR-1) mediating immune response in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:83-93. [PMID: 29305167 DOI: 10.1016/j.dci.2017.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
Serotonin receptors, including ligand-gated ion channel (LGICs) and G protein-coupled receptors (GPCR), play vital roles in modulating physiological processes and immunoreaction. In the present study, a homologue of serotonin (5-HT) receptor was identified from oyster Crassostrea gigas (designated Cg5-HTR-1). Its open reading frame (ORF) was of 1239 bp, encoding a polypeptide of 412 amino acids with a seven transmembrane region. Cg5-HTR-1 shared high similarity with the 5-HTRs from other animals. The cAMP contents in HEK293T cells decreased significantly after Cg5-HTR-1 transfection and 5-HT incubation (p < .05), while blocking Cg5-HTR-1 with specific receptor antagonist reversed this downtrend. The intracellular Ca2+ concentrations increased significantly (p < .05) after cell transfection and 5-HT incubation, and the antagonist treatment also arrested this process. Cg5-HTR-1 transcripts were widely distributed in various tissues, with the highest level in hepatopancreas and lowest level in mantle and gill. The mRNA expression of Cg5-HTR-1 in hemocyte increased significantly after lipopolysaccharide (LPS) stimulation and reached the peak level (6.47-fold, p < .05) at 6 h post treatment. The inhibition of Cg5-HTR-1 significantly reduced the expression of tumor necrosis factor (TNF) mRNA in hemocyte, down-regulated the superoxide dismutase (SOD) activity in serum, and induced the apoptosis of hemocyte (p < .05). These results suggested that Cg5-HTR-1 was a novel member of 5-HT1 receptor family and it mediated serotonergic immunomodulation on both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Dong
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
40
|
Zhang L, Pan L, Xu L, Si L. Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2018; 75:48-57. [PMID: 29407613 DOI: 10.1016/j.fsi.2018.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/20/2018] [Accepted: 01/27/2018] [Indexed: 06/07/2023]
Abstract
The effects of ammonia-N exposure (transferred from 0.07 to 2, 10 and 20 mg L-1) on the mechanism of neuroendocrine-immunoregulatory network were investigated in Litopenaeus vannamei. The results showed that biogenic amines (dopamine, noradrenaline, 5-hydroxytryptamine) concentrations in treatment groups increased significantly within 12 h. The gene expression of guanylyl cyclase increased significantly from 3 h to 24 h. And dopamine receptor D4 and α2 adrenergic receptor gene expression in treatment groups decreased significantly within 12 h, whereas the mRNA expression of 5-HT7 receptor increased significantly within 3 h and reached the peak levels at 6 h. The second messengers (cAMP, cGMP) and Calmodulin (CaM) increased significantly in treatment groups after 3 h. The concentrations of protein kinases (PKA, PKG) shared a similar trend in cAMP and cGMP which were up-regulated and reached the peak value at 6 h, while the PKC decreased within 3 h and arrived at its bottom at 6 h. The nuclear factor kappa-b and cAMP-response element binding protein mRNA expression levels of treatment shrimps increased sharply and reached maximum values at 6 h. The total hemocyte count, phagocytic activity, antibacterial activity in treatment groups decreased dramatically within 48 h. Whereas the phenoloxidase activities slightly up-regulated. Then it was decreased significantly up to 48 h. α2-macroglobulin activity decreased at the first 3 h-stress. Then they up-regulated significantly in 6 h. The results suggest that there are two crucial neuroendocrine substances (biogenic amine and CHH), which play a principal role in adapting to ammonia-N exposure and cause immune response through cAMP-, CaM- and cGMP-dependent pathways.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China.
| | - Lijun Xu
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| | - Lingjun Si
- Key Laboratory of Mariculture (Ocean University of CHINA), Ministry of Education, 266003, PR China
| |
Collapse
|
41
|
Camicia F, Celentano AM, Johns ME, Chan JD, Maldonado L, Vaca H, Di Siervi N, Kamentezky L, Gamo AM, Ortega-Gutierrez S, Martin-Fontecha M, Davio C, Marchant JS, Rosenzvit MC. Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Negl Trop Dis 2018; 12:e0006267. [PMID: 29425245 PMCID: PMC5823469 DOI: 10.1371/journal.pntd.0006267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
Background Cestodes are a diverse group of parasites, some of them being agents of neglected diseases. In cestodes, little is known about the functional properties of G protein coupled receptors (GPCRs) which have proved to be highly druggable targets in other organisms. Notably, serotoninergic G-protein coupled receptors (5-HT GPCRs) play major roles in key functions like movement, development and reproduction in parasites. Methodology/Principal findings Three 5-HT GPCRs from Echinococcus granulosus and Mesocestoides corti were cloned, sequenced, bioinformatically analyzed and functionally characterized. Multiple sequence alignment with other GPCRs showed the presence of seven transmembrane segments and conserved motifs but interesting differences were also observed. Phylogenetic analysis grouped these new sequences within the 5-HT7 clade of GPCRs. Molecular modeling showed a striking resemblance in the spatial localization of key residues with their mammalian counterparts. Expression analysis using available RNAseq data showed that both E. granulosus sequences are expressed in larval and adult stages. Localization studies performed in E. granulosus larvae with a fluorescent probe produced a punctiform pattern concentrated in suckers. E. granulosus and M. corti larvae showed an increase in motility in response to serotonin. Heterologous expression revealed elevated levels of cAMP production in response to 5-HT and two of the GPCRs showed extremely high sensitivity to 5-HT (picomolar range). While each of these GPCRs was activated by 5-HT, they exhibit distinct pharmacological properties (5-HT sensitivity, differential responsiveness to ligands). Conclusions/Significance These data provide the first functional report of GPCRs in parasitic cestodes. The serotoninergic GPCRs characterized here may represent novel druggable targets for antiparasitic intervention. Cestode parasites are flatworms with the ability to parasitize almost every vertebrate species. Several of these parasites are etiological agents of neglected diseases prioritized by WHO, such as hydatid disease, or hydatidosis, a zoonosis caused by species of the genus Echinococcus that affects millions of people worldwide. Due to the scarcity of anthelmintic drugs available and the emergence of resistant parasites, the discovery of new anthelmintic drugs is mandatory. Neuromuscular function has been the target of commonly used drugs against parasitic diseases to impact movement, parasite development and reproduction. Here we describe three new proteins, some of them highly expressed in cestodes which could be relevant for motility. Using different approaches, the three proteins were identified as G protein coupled receptors for serotonin, an important neurotransmitter and a known modulator of cestode motility. These new receptors exhibit unique characteristics including a particular sensitivity to serotonin as well as a distinctive pharmacology, which will assist their targeting for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Federico Camicia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Ana M. Celentano
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Paraguay, CABA, Argentina
| | - Malcolm E. Johns
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - John D. Chan
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Lucas Maldonado
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Hugo Vaca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Nicolás Di Siervi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Laura Kamentezky
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Ana M. Gamo
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Ortega-Gutierrez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Martin-Fontecha
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Davio
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology & Anatomy; Medical College of Wisconsin; Watertown Plank Road; Milwaukee; WI; United States of America
- * E-mail: (MCR); (JSM)
| | - Mara C. Rosenzvit
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
- * E-mail: (MCR); (JSM)
| |
Collapse
|
42
|
Shipley AT, Imeh-Nathaniel A, Orfanakos VB, Wormack LN, Huber R, Nathaniel TI. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse. Front Physiol 2017; 8:1007. [PMID: 29270131 PMCID: PMC5723678 DOI: 10.3389/fphys.2017.01007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022] Open
Abstract
The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish (Orconectes rusticus) for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.
Collapse
Affiliation(s)
- Adam T Shipley
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | | | - Vasiliki B Orfanakos
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Leah N Wormack
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, United States
| | - Thomas I Nathaniel
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| |
Collapse
|
43
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
44
|
Franzellitti S, Striano T, Pretolani F, Fabbri E. Investigating appearance and regulation of the MXR phenotype in early embryo stages of the Mediterranean mussel (Mytilus galloprovincialis). Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:1-10. [PMID: 27965169 DOI: 10.1016/j.cbpc.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 11/27/2022]
Abstract
Multixenobiotic resistance (MXR) efflux transporters constitute a broad-spectrum physiological defense system allowing marine bivalves to cope with environmental challenges. There is, however, scarce information on the type and role that different MXR transporters may have in embryos, which represent the most sensitive stages of bivalves to environmental stress. In this study regulation of MXR-related transporters was investigated in early developmental stages of the Mediterranean mussel (Mytilus galloprovincialis). In vitro fertilization experiments using gametes from naturally-spawning broodstocks were performed to follow embryo development from fertilized eggs (30min post fertilization, pf) to fully developed D-shape veligers (48hpf). Quantitative PCR analyses indicated that ABCB and ABCC transcripts encoding the MXR-related transporters P-glycoproteins (P-gp) and Multidrug resistance proteins (Mrp), respectively, were expressed soon after 30minpf, with ABCC being more expressed than ABCB. Copy numbers of both transcripts were increased in trochophorae and D-veligers. MXR efflux activity assessed using the fluorescent substrate rhodamine 123 and selective P-gp or Mrp inhibitors showed that the P-gp mediated efflux was detected only in D-veligers, while a significant Mrp mediated efflux was detected soon after 30minpf and remained almost unchanged in trochophorae and D-veligers. MXR modulation by propranolol and carbamazepine showed that the pharmaceuticals may act as transcriptional regulators and substrates. Results reported lead to hypothesize that while P-gp aids in xenobiotic efflux performing a prominent protective role, Mrp could be a dual-functioning transporter performing both protective and physiological functions in mussel development.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy.
| | - Teresa Striano
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Francesco Pretolani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
45
|
Huser A, Eschment M, Güllü N, Collins KAN, Böpple K, Pankevych L, Rolsing E, Thum AS. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One 2017; 12:e0181865. [PMID: 28777821 PMCID: PMC5544185 DOI: 10.1371/journal.pone.0181865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Collapse
Affiliation(s)
- Annina Huser
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nazli Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Kathrin Böpple
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lyubov Pankevych
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Emilia Rolsing
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Genetics, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
46
|
Varano V, Fabbri E, Pasteris A. Assessing the environmental hazard of individual and combined pharmaceuticals: acute and chronic toxicity of fluoxetine and propranolol in the crustacean Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:711-728. [PMID: 28451857 DOI: 10.1007/s10646-017-1803-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceuticals are widespread emerging contaminants and, like all pollutants, are present in combination with others in the ecosystems. The aim of the present work was to evaluate the toxic response of the crustacean Daphnia magna exposed to individual and combined pharmaceuticals. Fluoxetine, a selective serotonin re-uptake inhibitor widely prescribed as antidepressant, and propranolol, a non-selective β-adrenergic receptor-blocking agent used to treat hypertension, were tested. Several experimental trials of an acute immobilization test and a chronic reproduction test were performed. Single chemicals were first tested separately. Toxicity of binary mixtures was then assessed using a fixed ratio experimental design. Five concentrations and 5 percentages of each substance in the mixture (0, 25, 50, 75, and 100%) were tested. The MIXTOX model was applied to analyze the experimental results. This tool is a stepwise statistical procedure that evaluates if and how observed data deviate from a reference model, either concentration addition (CA) or independent action (IA), and provides significance testing for synergism, antagonism, or more complex interactions. Acute EC50 values ranged from 6.4 to 7.8 mg/L for propranolol and from 6.4 to 9.1 mg/L for fluoxetine. Chronic EC50 values ranged from 0.59 to 1.00 mg/L for propranolol and from 0.23 to 0.24 mg/L for fluoxetine. Results showed a significant antagonism between chemicals in both the acute and the chronic mixture tests when CA was adopted as the reference model, while absence of interactive effects when IA was used.
Collapse
Affiliation(s)
- Valentina Varano
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy
| | - Andrea Pasteris
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, via Sant'Alberto 163,, Ravenna, 48123, Italy.
| |
Collapse
|
47
|
Song S, Yu H, Li Q. Genome survey and characterization of reproduction-related genes in the Pacific oyster. INVERTEBR REPROD DEV 2017. [DOI: 10.1080/07924259.2017.1287780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shanshan Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
48
|
Rillich J, Stevenson PA. Losing without Fighting - Simple Aversive Stimulation Induces Submissiveness Typical for Social Defeat via the Action of Nitric Oxide, but Only When Preceded by an Aggression Priming Stimulus. Front Behav Neurosci 2017; 11:50. [PMID: 28381994 PMCID: PMC5360729 DOI: 10.3389/fnbeh.2017.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
Losing a fight (social defeat) induces submissiveness and behavioral depression in many animals, but the mechanisms are unclear. Here we investigate how the social defeat syndrome can be established as a result of experiencing aversive stimuli and the roles of neuromodulators in the process. While biogenic amines and nitric oxide (NO) are associated with reduced aggression in mammals and insects, their specific actions during conflict are unknown. Although the social defeat syndrome normally results from complex interactions, we could induce it in male crickets simply by applying aversive stimuli (AS) in an aggressive context. Aggressive crickets became immediately submissive and behaved like losers after experiencing two brief AS (light wind puffs to the cerci), but only when preceded by a priming stimulus (PS, stroking the antenna with another male antenna). Notably, submissiveness was not induced when the PS preceded the AS by more than 1 min, or when the PS followed the AS, or using a female antenna as the preceding stimulus. These findings suggest that any potentially detrimental stimulus can acquire the attribute of an aversive agonistic signal when experienced in an aggressive context. Crickets, it seems, need only to evaluate their net sensory impact rather than the qualities of a variety of complex agonistic signals. Selective drug treatments revealed that NO, but not serotonin, dopamine or octopamine, is necessary to establish the submissive status following pairing of the priming and aversive stimuli. Moreover, treatment with an NO donor also induced the social defeat syndrome, but only when combined with the PS. This confirms our hypothesis that aversive agonistic experiences accumulated by crickets during fighting invoke social defeat via the action of NO and illustrates that a relatively simple mechanism underlies the seemingly complex social decision to flee. The simple stimulus regime described here for inducing social defeat opens new avenues for investigating the cellular control of subordinate behavior and post-conflict depression.
Collapse
Affiliation(s)
- Jan Rillich
- Institute for Biology, Leipzig University Leipzig, Germany
| | | |
Collapse
|
49
|
Franzellitti S, Striano T, Valbonesi P, Fabbri E. Insights into the regulation of the MXR response in haemocytes of the Mediterranean mussel (Mytilus galloprovincialis). FISH & SHELLFISH IMMUNOLOGY 2016; 58:349-358. [PMID: 27670084 DOI: 10.1016/j.fsi.2016.09.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
This study investigated functional and transcriptional modulation of the Multixenobiotic resistance (MXR) system as a cytoprotective mechanism contributing to the physiological chemoresistance of haemocytes in the Mediterranean mussel. Basal transport activity was assessed using the model substrate rhodamine 123 and specific inhibitors for the MXR-related transporters P-glycoprotein (ABCB mRNA) and Multidrug resistance-related protein (ABCC mRNA). Results showed that MXR activity in mussel haemocytes was mainly supported by the Mrp-mediated efflux. In agreement, ABCC was expressed at higher levels than ABCB. Activation of the cyclic-AMP (cAMP) dependent protein kinase A (PKA) resulted in increased rhodamine efflux, which was counteracted by the selective PKA inhibitor H89. Although serotonin, a physiological modulator of cAMP/PKA signaling and ABCB transcription in haemocytes, did not affect basal MXR transport, the environmental pharmaceuticals fluoxetine, propranolol, and carbamazepine, which interact in different ways with the adrenergic and serotoninergic pathways, were showed to act as modulators and substrates of MXR-related transporters and to affect cell viability. While the increased MXR activity may have lowered the cytotoxic effects of propranolol and carbamazepine, the lack of MXR efflux induction by fluoxetine may play a role in the observed cytotoxicity of the compound.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy.
| | - Teresa Striano
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy; Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto 163, 48123, Ravenna, Italy
| |
Collapse
|
50
|
Momohara Y, Minami H, Kanai A, Nagayama T. Role of cAMP signalling in winner and loser effects in crayfish agonistic encounters. Eur J Neurosci 2016; 44:1886-95. [PMID: 27086724 DOI: 10.1111/ejn.13259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022]
Abstract
For territorial animals, establishment of status-dependent dominance order is essential to maintain social stability. In agonistic encounters of the crayfish Procambarus clarkii, a difference of body length of 3-7% is enough for larger animals to become dominant. Despite a physical disadvantage, small winners of the first pairings were more likely to win subsequent conflicts with larger inexperienced animals. In contrast, the losers of the first pairings rarely won subsequent conflicts with smaller naive animals. Such experiences of previous winning or losing affected agonistic outcomes for a long period. The winner effects lasted more than 2 weeks and the loser effect lasted about 10 days. Injection of 5HT1 receptor antagonist into the dominant animals 15-30 min after establishment of dominance order blocked the formation of the winner effects. In contrast, injection of adrenergic-like octopamine receptor antagonist into subordinate animals blocked the formation of the loser. 5HT1 receptors are negatively coupled to adenylyl cyclase and adrenergic-like octopamine receptors are positively coupled. Consistent with this, dominant animals failed to show the winner effect when injected with pCPT-cAMP, a cAMP analogue, and subordinate animals failed to show a loser effect when injected with adenylyl cyclase inhibitor SQ 22536. These results suggest that an increase and decrease of cAMP concentration is essential in mediating loser and winner effects, respectively. Furthermore, formation of the loser effect was blocked by injection of protein kinase A (PKA) inhibitor H89, suggesting long-term memory of the loser effect is dependent on the cAMP-PKA signalling pathway.
Collapse
Affiliation(s)
- Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Hiroki Minami
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Akihiro Kanai
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, Yamagata, Japan
| |
Collapse
|