1
|
Hasan MZ, Claus M, Krüger N, Reusing S, Gall E, Bade-Döding C, Braun A, Watzl C, Uhrberg M, Walter L. SARS-CoV-2 infection induces adaptive NK cell responses by spike protein-mediated induction of HLA-E expression. Emerg Microbes Infect 2024; 13:2361019. [PMID: 38804979 PMCID: PMC11212573 DOI: 10.1080/22221751.2024.2361019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
HLA-E expression plays a central role for modulation of NK cell function by interaction with inhibitory NKG2A and stimulatory NKG2C receptors on canonical and adaptive NK cells, respectively. Here, we demonstrate that infection of human primary lung tissue with SARS-CoV-2 leads to increased HLA-E expression and show that processing of the peptide YLQPRTFLL from the spike protein is primarily responsible for the strong, dose-dependent increase of HLA-E. Targeting the peptide site within the spike protein revealed that a single point mutation was sufficient to abrogate the increase in HLA-E expression. Spike-mediated induction of HLA-E differentially affected NK cell function: whereas degranulation, IFN-γ production, and target cell cytotoxicity were enhanced in NKG2C+ adaptive NK cells, effector functions were inhibited in NKG2A+ canonical NK cells. Analysis of a cohort of COVID-19 patients in the acute phase of infection revealed that adaptive NK cells were induced irrespective of the HCMV status, challenging the paradigm that adaptive NK cells are only generated during HCMV infection. During the first week of hospitalization, patients exhibited a selective increase of early NKG2C+CD57- adaptive NK cells whereas mature NKG2C+CD57+ cells remained unchanged. Further analysis of recovered patients suggested that the adaptive NK cell response is primarily driven by a wave of early adaptive NK cells during acute infection that wanes once the infection is cleared. Together, this study suggests that NK cell responses to SARS-CoV-2 infection are majorly influenced by the balance between canonical and adaptive NK cells via the HLA-E/NKG2A/C axis.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- PhD Program Molecular Biology of Cells, GGNB, Georg August University, Göttingen, Germany
| | - Maren Claus
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Sarah Reusing
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Eline Gall
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
2
|
Verhaar ER, Gan J, Buhl S, Li Z, Horowitz A, Ploegh HL. A monoclonal antibody that recognizes a unique 13-residue epitope in the cytoplasmic tail of HLA-E. Mol Immunol 2024; 172:56-67. [PMID: 38901180 PMCID: PMC11257791 DOI: 10.1016/j.molimm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The Class I MHC molecule (MHC-I) HLA-E presents peptides that are derived from the signal sequences, either those of other MHC-I products, or of viral type I membrane glycoproteins. Monoclonal antibodies with proven specificity for HLA-E, and with no cross-reactions with other MHC-I products, have yet to be described. To obtain anti-HLA-E-specific antibodies suitable for a range of applications, we generated monoclonal antibodies against a unique feature of HLA-E: its cytoplasmic tail. We created an immunogen by performing an enzymatically catalyzed transpeptidation reaction to obtain a fusion of the cytoplasmic tail of HLA-E with a nanobody that recognizes murine Class II MHC (MHC-II) products. We obtained a mouse monoclonal antibody that recognizes a 13-residue stretch in the HLA-E cytoplasmic tail. We cloned the genes that encode this antibody in expression vectors to place an LPETG sortase recognition motif at the C-terminus of the heavy and light chains. This arrangement allows the site-specific installation of fluorophores or biotin at these C-termini. The resulting immunoglobulin preparations, labeled with 4 equivalents of a fluorescent or biotinylated payload of choice, can then be used for direct immunofluorescence or detection of the tag by fluorescence or by streptavidin-based methods. We also show that the 13-residue sequence can serve as an epitope tag, independent of the site of its placement within a protein's sequence. The antibody can be used diagnostically to stain for HLA-E on patient tumor samples, it can be used as an antibody-epitope tag for extracellular proteins, and it enables research into the unique role of the cytoplasmic tail of HLA-E.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jin Gan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Buhl
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Ziao Li
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Rohn H, Rebmann V. Is HLA-E with its receptors an immune checkpoint or an antigenic determinant in allo-HCT? Best Pract Res Clin Haematol 2024; 37:101560. [PMID: 39098806 DOI: 10.1016/j.beha.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Wallace Z, Heunis T, Paterson RL, Suckling RJ, Grant T, Dembek M, Donoso J, Brener J, Long J, Bunjobpol W, Gibbs-Howe D, Kay DP, Leneghan DB, Godinho LF, Walker A, Singh PK, Knox A, Leonard S, Dorrell L. Instability of the HLA-E peptidome of HIV presents a major barrier to therapeutic targeting. Mol Ther 2024; 32:678-688. [PMID: 38219014 PMCID: PMC10928138 DOI: 10.1016/j.ymthe.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.
Collapse
Affiliation(s)
- Zoë Wallace
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK.
| | - Tiaan Heunis
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Jose Donoso
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Joshua Long
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | - Daniel P Kay
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Andrew Knox
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Lucy Dorrell
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| |
Collapse
|
5
|
Middelburg J, Ghaffari S, Schoufour TAW, Sluijter M, Schaap G, Göynük B, Sala BM, Al-Tamimi L, Scheeren F, Franken KLMC, Akkermans JJLL, Cabukusta B, Joosten SA, Derksen I, Neefjes J, van der Burg SH, Achour A, Wijdeven RHM, Weidanz J, van Hall T. The MHC-E peptide ligands for checkpoint CD94/NKG2A are governed by inflammatory signals, whereas LILRB1/2 receptors are peptide indifferent. Cell Rep 2023; 42:113516. [PMID: 38048225 DOI: 10.1016/j.celrep.2023.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Soroush Ghaffari
- Department of Biology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Büsra Göynük
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Benedetta M Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Lejla Al-Tamimi
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ian Derksen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ruud H M Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jon Weidanz
- Abexxa Biologics, Inc., Arlington, TX, USA; College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Martín Almazán N, Sala BM, Sandalova T, Sun Y, Resink T, Cichocki F, Söderberg-Nauclér C, Miller JS, Achour A, Sarhan D. Non-classical HLA-E restricted CMV 15-mer peptides are recognized by adaptive NK cells and induce memory responses. Front Immunol 2023; 14:1230718. [PMID: 37809084 PMCID: PMC10552778 DOI: 10.3389/fimmu.2023.1230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) reactivation causes complications in immunocompromised patients after hematopoietic stem cell transplantation (HSCT), significantly increasing morbidity and mortality. Adaptive Natural Killer (aNK) cells undergo a persistent reconfiguration in response to HCMV reactivation; however, the exact role of aNK cell memory in HCMV surveillance remains elusive. Methods We employed mass spectrometry and computational prediction approaches to identify HLA-E-restricted HCMV peptides that can elucidate aNK cell responses. We also used the K562 cell line transfected with HLA-E0*0103 for specific peptide binding and blocking assays. Subsequently, NK cells were cocultured with dendritic cells (DCs) loaded with each of the identified peptides to examine aNK and conventional (c)NK cell responses. Results Here, we discovered three unconventional HLA-E-restricted 15-mer peptides (SEVENVSVNVHNPTG, TSGSDSDEELVTTER, and DSDEELVTTERKTPR) derived from the HCMV pp65-protein that elicit aNK cell memory responses restricted to HCMV. aNK cells displayed memory responses towards HMCV-infected cells and HCMV-seropositive individuals when primed by DCs loaded with each of these peptides and predicted 9-mer versions. Blocking the interaction between HLA-E and the activation NKG2C receptor but not the inhibitory NKG2A receptor abolished these specific recall responses. Interestingly, compared to the HLA-E complex with the leader peptide VMAPRTLIL, HLA-E complexes formed with each of the three identified peptides significantly changed the surface electrostatic potential to highly negative. Furthermore, these peptides do not comprise the classical HLA-E-restriction motifs. Discussion These findings suggest a differential binding to NKG2C compared to HLA-E complexes with classical leader peptides that may result in the specific activation of aNK cells. We then designed six nonameric peptides based on the three discovered peptides that could elicit aNK cell memory responses to HCMV necessary for therapeutic inventions. The results provide novel insights into HLA-E-mediated signaling networks that mediate aNK cell recall responses and maximize their reactivity.
Collapse
Affiliation(s)
- Nerea Martín Almazán
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Tom Resink
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Microbial Pathogenesis Unit, Karolinska Institute, Stockholm, Sweden
- Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and immunology, MediCity Research Laboratory, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Castaño-Núñez ÁL, Montes-Cano MA, García-Lozano JR, Ortego-Centeno N, García-Hernández FJ, Espinosa G, Graña-Gil G, Sánchez-Bursón J, Juliá MR, Solans R, Blanco R, Barnosi-Marín AC, Gómez de la Torre R, Fanlo P, Rodríguez-Carballeira M, Rodríguez-Rodríguez L, Camps T, Castañeda S, Alegre-Sancho JJ, Martín J, González-Escribano MF. The complex HLA-E-nonapeptide in Behçet disease. Front Immunol 2023; 14:1080047. [PMID: 37638008 PMCID: PMC10449640 DOI: 10.3389/fimmu.2023.1080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The knowledge of the aetiology of Behçet disease (BD), an immune-mediated vasculitis, is limited. HLA-B, mainly HLA-B51, and HLA-A molecules are associated with disease, but the ultimate cause of this association remains obscure. There is evidence that NK cells participate in the etiopathology of BD. NK cells have activator and inhibitor surface receptors, like the KIR and the NKG2 families. Classical HLA-class I molecules (A, B and C) are keys in the activity control of the NK because they are KIR ligands. Most NKG2 receptors bind HLA-E, which presents only nonapeptides derived from the signal peptide of other class-I molecules. Objective This study investigates the contribution of the pair HLA-E and ligand, nonapeptide derived from the 3-11 sequence of the signal peptides of class I classical molecules, to the susceptibility to BD. Methods We analyzed the frequency of the HLA-derivated nonapeptide forms in 466 BD patients and 444 controls and an HLA-E functional dimorphism in a subgroup of patients and controls. Results: In B51 negative patients, the frequency of VMAPRTLLL was lower (70.4% versus 80.0% in controls; P=0.006, Pc=0.04, OR=0.60, 95%CI 0.41-0.86), and the frequency of VMAPRTLVL was higher (81.6% versus 71.4% in controls; P=0.004, Pc=0.03, OR=1.78, 95%CI 1.20-2.63). In homozygosity, VMAPRTLLL is protective, and VMAPRTLVL confers risk. The heterozygous condition is neutral. There were no significant differences in the distribution of the HLA-E dimorphism. Discussion Our results explain the association of BD with diverse HLA-A molecules, reinforce the hypothesis of the involvement of the NK cells in the disease and do not suggest a significant contribution of the HLA-E polymorphism to disease susceptibility.
Collapse
Affiliation(s)
- Ángel Luís Castaño-Núñez
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, Spain
| | | | - José-Raúl García-Lozano
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, Spain
| | | | | | - Gerard Espinosa
- Department Autoimmune Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | - Genaro Graña-Gil
- Department of Rheumatology, Complejo Hospitalario Universitario A Coruña, Coruña, Spain
| | | | - María Rosa Juliá
- Department of Immunology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Roser Solans
- Department of Internal Medicine, Autoimmune Systemic Diseases Unit, Hospital Vall d’Hebron, Universidad Autonoma de Barcelona, Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | - Patricia Fanlo
- Department of Internal Medicine, Hospital Virgen del Camino, Pamplona, Spain
| | | | | | - Teresa Camps
- Department of Internal Medicine, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital de la Princesa, IIS-Princesa, Madrid, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, PTS Granada, Granada, Spain
| | | |
Collapse
|
8
|
Huisman BD, Guan N, Rückert T, Garner L, Singh NK, McMichael AJ, Gillespie GM, Romagnani C, Birnbaum ME. High-throughput characterization of HLA-E-presented CD94/NKG2x ligands reveals peptides which modulate NK cell activation. Nat Commun 2023; 14:4809. [PMID: 37558657 PMCID: PMC10412585 DOI: 10.1038/s41467-023-40220-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
HLA-E is a non-classical class I MHC protein involved in innate and adaptive immune recognition. While recent studies have shown HLA-E can present diverse peptides to NK cells and T cells, the HLA-E repertoire recognized by CD94/NKG2x has remained poorly defined, with only a limited number of peptide ligands identified. Here we screen a yeast-displayed peptide library in the context of HLA-E to identify 500 high-confidence unique peptides that bind both HLA-E and CD94/NKG2A or CD94/NKG2C. Utilizing the sequences identified via yeast display selections, we train prediction algorithms and identify human and cytomegalovirus (CMV) proteome-derived, HLA-E-presented peptides capable of binding and signaling through both CD94/NKG2A and CD94/NKG2C. In addition, we identify peptides which selectively activate NKG2C+ NK cells. Taken together, characterization of the HLA-E-binding peptide repertoire and identification of NK activity-modulating peptides present opportunities for studies of NK cell regulation in health and disease, in addition to vaccine and therapeutic design.
Collapse
Affiliation(s)
- Brooke D Huisman
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Ning Guan
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Timo Rückert
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
| | - Lee Garner
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nishant K Singh
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
He W, Gea-Mallorquí E, Colin-York H, Fritzsche M, Gillespie GM, Brackenridge S, Borrow P, McMichael AJ. Intracellular trafficking of HLA-E and its regulation. J Exp Med 2023; 220:214089. [PMID: 37140910 PMCID: PMC10165540 DOI: 10.1084/jem.20221941] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Interest in MHC-E-restricted CD8+ T cell responses has been aroused by the discovery of their efficacy in controlling simian immunodeficiency virus (SIV) infection in a vaccine model. The development of vaccines and immunotherapies utilizing human MHC-E (HLA-E)-restricted CD8+ T cell response requires an understanding of the pathway(s) of HLA-E transport and antigen presentation, which have not been clearly defined previously. We show here that, unlike classical HLA class I, which rapidly exits the endoplasmic reticulum (ER) after synthesis, HLA-E is largely retained because of a limited supply of high-affinity peptides, with further fine-tuning by its cytoplasmic tail. Once at the cell surface, HLA-E is unstable and is rapidly internalized. The cytoplasmic tail plays a crucial role in facilitating HLA-E internalization, which results in its enrichment in late and recycling endosomes. Our data reveal distinctive transport patterns and delicate regulatory mechanisms of HLA-E, which help to explain its unusual immunological functions.
Collapse
Affiliation(s)
- Wanlin He
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Ester Gea-Mallorquí
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Saunders PM, Brooks AG, Rossjohn J. Oyez, Oyez, Oyez! Nat Immunol 2023:10.1038/s41590-023-01541-x. [PMID: 37308666 DOI: 10.1038/s41590-023-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
11
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
12
|
Do variations in the HLA-E ligand encoded by UL40 distinguish individuals susceptible to HCMV disease? Hum Immunol 2023; 84:75-79. [PMID: 36456304 DOI: 10.1016/j.humimm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
Human cytomegalovirus (HCMV) is carried lifelong by ∼80 % of adults worldwide, generating distinct disease syndromes in transplant recipients, people with HIV (PWH) and neonates. Amino acids 15-23 encoded by the HCMV gene UL40 match positions 3-11 of HLA-A and HLA-C, and constitute a "signal peptide" able to stabilise cell surface HLA-E as a restriction element and a ligand of NKG2A and NKG2C. We present next generation sequencing of UL40 amplified from 15 Australian renal transplant recipients (RTR), six healthy adults and four neonates, and 21 Indonesian PWH. We found no groupwise associations between the presence of multiple sequences and HCMV burden (highest in PWH) or HCMV-associated symptoms in neonates. Homology between UL40 and corresponding HLA-C and HLA-A peptides in 11 RTR revealed perfect matches with HLA-C in three individuals, all carrying HCMV encoding only VMAPRTLIL - a peptide previously associated with viremia. However indices of the burden of HCMV did not segregate in our cohort.
Collapse
|
13
|
Kim SJ, Karamooz E. MR1- and HLA-E-Dependent Antigen Presentation of Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms232214412. [PMID: 36430890 PMCID: PMC9693577 DOI: 10.3390/ijms232214412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
MR1 and HLA-E are highly conserved nonclassical antigen-presenting molecules. They can present antigens derived from Mycobacterium tuberculosis to a distinct subset of MR1-restricted or HLA-restricted CD8+ T cells. MR1 presents small microbial metabolites, and HLA-E presents peptides and glycopeptides. In this review, we will discuss the current understanding of MR1 and HLA-E antigen presentation in the context of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Se-Jin Kim
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
14
|
Prašnikar E, Perdih A, Borišek J. What a Difference an Amino Acid Makes: An All-Atom Simulation Study of Nonameric Peptides in Inhibitory HLA-E/NKG2A/CD94 Immune Complexes. Front Pharmacol 2022; 13:925427. [PMID: 35991867 PMCID: PMC9385950 DOI: 10.3389/fphar.2022.925427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I antigen E (HLA-E), a ligand for the inhibitory NKG2A/CD94 receptor of the immune system, is responsible for evading the immune surveillance in several settings, including senescent cell accumulation and tumor persistence. The formation of this ligand-receptor interaction promotes the inhibition of the cytolytic action of immune system natural killer (NK) cells and CD8+ T-cells expressing this receptor. The final outcome of the HLA-E/NKG2A/CD94 interaction on target cells is also highly dependent on the identity of the nonameric peptide incorporated into the HLA-E ligand. To better understand the role played by a nonameric peptide in these immune complexes, we performed a series of multi-microsecond all-atom molecular dynamics simulations. We generated natural and alternative variants of the nonameric peptide bound to the HLA-E ligand alone or in the HLA-E/NKG2A/CD94 complexes. A systematic study of molecular recognition between HLA-E and peptides led to the development of new variants that differ at the strategic 6th position (P6) of the peptide and have favorable in silico properties comparable to those of natural binding peptides. Further examination of a selected subset of peptides in full complexes revealed a new variant that, according to our previously derived atomistic model, can interfere with the signal transduction via HLA-E/NKG2A/CD94 and thus prevent the target cell from evading immune clearance by NK and CD8+ T-cells. These simulations provide an atomistic picture of how a small change in amino acid sequence can lead to a profound effect on binding and molecular recognition. Furthermore, our study also provides new data on the peptide interaction motifs as well as the energetic and conformational properties of the binding interface, laying the structure-based foundation for future development of potential therapeutic peptides, peptidomimetics, or even small molecules that would bind to the HLA-E ligand and abrogate NKG2A/CD94 recognition. Such external intervention would be useful in the emerging field of targeting senescent cells in a variety of age-related diseases, as well as in novel cancer immunotherapies.
Collapse
Affiliation(s)
- Eva Prašnikar
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Medicine, Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| | - Jure Borišek
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| |
Collapse
|
15
|
Walters LC, Rozbesky D, Harlos K, Quastel M, Sun H, Springer S, Rambo RP, Mohammed F, Jones EY, McMichael AJ, Gillespie GM. Primary and secondary functions of HLA-E are determined by stability and conformation of the peptide-bound complexes. Cell Rep 2022; 39:110959. [PMID: 35705051 PMCID: PMC9380258 DOI: 10.1016/j.celrep.2022.110959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Daniel Rozbesky
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Max Quastel
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Hong Sun
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Robert P Rambo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
16
|
Barber C, De Souza VA, Paterson RL, Martin‐Urdiroz M, Mulakkal NC, Srikannathasan V, Connolly M, Phillips G, Foong‐Leong T, Pengelly R, Karuppiah V, Grant T, Dembek M, Verma A, Gibbs‐Howe D, Blicher TH, Knox A, Robinson RA, Cole DK, Leonard S. Structure-guided stabilization of pathogen-derived peptide-HLA-E complexes using non-natural amino acids conserves native TCR recognition. Eur J Immunol 2022; 52:618-632. [PMID: 35108401 PMCID: PMC9306587 DOI: 10.1002/eji.202149745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022]
Abstract
The nonpolymorphic class Ib molecule, HLA-E, primarily presents peptides from HLA class Ia leader peptides, providing an inhibitory signal to NK cells via CD94/NKG2 interactions. Although peptides of pathogenic origin can also be presented by HLA-E to T cells, the molecular basis underpinning their role in antigen surveillance is largely unknown. Here, we solved a co-complex crystal structure of a TCR with an HLA-E presented peptide (pHLA-E) from bacterial (Mycobacterium tuberculosis) origin, and the first TCR-pHLA-E complex with a noncanonically presented peptide from viral (HIV) origin. The structures provided a molecular foundation to develop a novel method to introduce cysteine traps using non-natural amino acid chemistry that stabilized pHLA-E complexes while maintaining native interface contacts between the TCRs and different pHLA-E complexes. These pHLA-E monomers could be used to isolate pHLA-E-specific T cells, with obvious utility for studying pHLA-E restricted T cells, and for the identification of putative therapeutic TCRs.
Collapse
|
17
|
Li D, Brackenridge S, Walters LC, Swanson O, Harlos K, Rozbesky D, Cain DW, Wiehe K, Scearce RM, Barr M, Mu Z, Parks R, Quastel M, Edwards RJ, Wang Y, Rountree W, Saunders KO, Ferrari G, Borrow P, Jones EY, Alam SM, Azoitei ML, Gillespie GM, McMichael AJ, Haynes BF. Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity. Commun Biol 2022; 5:271. [PMID: 35347236 PMCID: PMC8960791 DOI: 10.1038/s42003-022-03183-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
The non-classical class Ib molecule human leukocyte antigen E (HLA-E) has limited polymorphism and can bind HLA class Ia leader peptides (VL9). HLA-E-VL9 complexes interact with the natural killer (NK) cell receptors NKG2A-C/CD94 and regulate NK cell-mediated cytotoxicity. Here we report the isolation of 3H4, a murine HLA-E-VL9-specific IgM antibody that enhances killing of HLA-E-VL9-expressing cells by an NKG2A+ NK cell line. Structural analysis reveal that 3H4 acts by preventing CD94/NKG2A docking on HLA-E-VL9. Upon in vitro maturation, an affinity-optimized IgG form of 3H4 showes enhanced NK killing of HLA-E-VL9-expressing cells. HLA-E-VL9-specific IgM antibodies similar in function to 3H4 are also isolated from naïve B cells of cytomegalovirus (CMV)-negative, healthy humans. Thus, HLA-E-VL9-targeting mouse and human antibodies isolated from the naïve B cell antibody pool have the capacity to enhance NK cell cytotoxicity.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Lucy C Walters
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Olivia Swanson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Cell Biology, Charles University, Prague, 12800, Czech Republic
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zekun Mu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Max Quastel
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Geraldine M Gillespie
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Voogd L, Ruibal P, Ottenhoff TH, Joosten SA. Antigen presentation by MHC-E: a putative target for vaccination? Trends Immunol 2022; 43:355-365. [PMID: 35370095 PMCID: PMC9058203 DOI: 10.1016/j.it.2022.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022]
Abstract
The essentially monomorphic human antigen presentation molecule HLA-E is an interesting candidate target to enable vaccination irrespective of genetic diversity. Predictive HLA-E peptide-binding motifs have been refined to facilitate HLA-E peptide discovery. HLA-E can accommodate structurally divergent peptides of both self and microbial origin. Intracellular processing and presentation pathways for peptides by HLA-E for T cell receptor (TCR) recognition remain to be elucidated. Recent studies show that, unlike canonical peptides, inhibition of the transporter associated with antigen presentation (TAP) is essential to allow HLA-E antigen presentation in cytomegalovirus (CMV) infection and possibly also of other non-canonical peptides. We propose three alternative and TAP-independent MHC-E antigen-presentation pathways, including for Mycobacterium tuberculosis infections. These insights may help in designing potential HLA-E targeting vaccines against tumors and pathogens.
Collapse
|
19
|
Xu YF, Du XF, Li ZY, Fang ZP, Zhang FB. Lesion human leukocyte antigen-E is associated with favourable prognosis for patients with oesophageal squamous cell carcinoma. J Int Med Res 2021; 49:3000605211047278. [PMID: 34617814 PMCID: PMC8504691 DOI: 10.1177/03000605211047278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the clinical significance of human leukocyte antigen (HLA)-E levels in oesophageal squamous cell carcinoma (ESCC). Methods The levels of HLA-E immunostaining in ESCC lesions and 47 corresponding adjacent normal tissues were measured using immunohistochemistry. The correlation between the levels of immunostaining and clinical parameters was analysed. Results This study analysed 110 paraffin-embedded primary tumour lesions and 47 case–controlled paracancerous tissues that were surgically resected from 110 patients with ESCC. Positive immunostaining for HLA-E was observed in 88.2% (97 of 110) of ESCC lesions and 29.8% (14 of 47) of normal oesophageal tissues. There was no correlation between HLA-E immunostaining in ESCC lesions and clinicopathological characteristics such as lymph node metastasis, tumour–node–metastasis stage and differentiation grade. Kaplan–Meier survival analysis revealed a significantly better prognosis in patients with higher levels of HLA-E immunostaining than in those with lower levels of HLA-E immunostaining; overall survival was 28.6 months (95% confidence interval [CI], 23.2, 34.0) versus 15.3 months (95% CI, 11.5, 19.1), respectively. Furthermore, multivariate analysis showed that the HLA-E level was an independent prognostic factor in patients with ESCC. Conclusion A higher level of HLA-E immunostaining was associated with favourable survival in patients with ESCC.
Collapse
Affiliation(s)
- Yong-Fu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Xue-Feng Du
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Zhen-Yu Li
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Zhe-Ping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Fa-Biao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| |
Collapse
|
20
|
Neuchel C, Fürst D, Tsamadou C, Schrezenmeier H, Mytilineos J. Extended loci histocompatibility matching in HSCT-Going beyond classical HLA. Int J Immunogenet 2021; 48:299-316. [PMID: 34109752 DOI: 10.1111/iji.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Unrelated haematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in a variety of haematologic malignancies. The continuous refinement of treatment protocols and supportive care paired with ongoing achievements in the technological field of histocompatibility testing enabled this transformation. Without a doubt, HLA matching is still the foremost criterion for donor selection in unrelated HSCT. However, HSCT-related treatment complications still occur frequently, often resulting in patients suffering severely or even dying as a consequence of such complications. Current literature indicates that other immune system modulating factors may play a role in the setting of HSCT. In this review, we discuss the current clinical evidence of a possible influence of nonclassical HLA antigens HLA-E, HLA-F, and HLA-G as well as the HLA-like molecules MICA and MICB, in HSCT.
Collapse
Affiliation(s)
- Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- ZKRD - Zentrales Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Ulm, Germany
| |
Collapse
|
21
|
Vietzen H, Rückert T, Hartenberger S, Honsig C, Jaksch P, Geleff S, Hammer Q, Romagnani C, Segura-Wang M, Puchhammer-Stöckl E. Extent of Cytomegalovirus Replication in the Human Host Depends on Variations of the HLA-E/UL40 Axis. mBio 2021; 12:e02996-20. [PMID: 33727352 PMCID: PMC8092275 DOI: 10.1128/mbio.02996-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 02/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) may cause severe infections in lung transplant recipients (LTRs). In response to HCMV infections, a subset of NKG2C+ NK cells expands, which limits HCMV replication and is characterized by high expression of the activating NKG2C/CD94 and absence of the inhibitory NKG2A/CD94 receptor. Both receptors bind to HLA-E, which is stabilized by HCMV-encoded UL40 peptides. HLA-E and UL40 occur as different genetic variants. In this study, we investigated the interplay between the human NK cell response and the infecting HCMV-UL40 strain, and we assessed the impact of HCMV-UL40 and of donor- and recipient-encoded HLA-E*0101/0103 variants on HCMV replication after lung transplantation. We included 137 LTRs displaying either no or low- or high-level (>1,000 copies/ml plasma) viremia. HCMV-UL40 and HLA-E*0101/0103 variants were determined. UL40 diversity was investigated by next-generation sequencing. UL40 peptide-dependent NK cell cytotoxicity was assessed by flow cytometry. Donor-encoded HLA-E*0101/0103 was significantly associated with development of high-level viremia after transplantation (P = 0.007). The HCMV-UL40 variant VMAPRTLIL occurred significantly more frequently in highly viremic LTRs, and the variant VMTPRTLIL occurred significantly more frequently in low-viremic LTRs (P = 0.004). This difference was associated with a better inhibition of NKG2A+ NKG2C- NK cells by VMAPRTLIL (P < 0.001). In LTRs with repeated high-level viremic episodes, HCMV strains with UL40 variants displaying low affinity to the patients' HLA-E variant emerged over time. The HLA-E-UL40 axis has a substantial impact on the level of HCMV replication in LTRs. The interplay between UL40 peptide variants, the recipient HLA-E status, and the activation of inhibitory NKG2A+ NKG2C- cells is of major importance for development of high-level viremia after lung transplantation.IMPORTANCE Infection with human cytomegalovirus (HCMV) is associated with substantial morbidity in immunosuppressed patients and after congenital infections. Therefore, development of a vaccine against HCMV is a main public health priority. Revealing the complex interaction between HCMV and host responses, is of utmost importance for understanding viral pathogenesis and for vaccine design. The present data contribute to the understanding of HCMV-specific host immune responses and reveal specifically the interaction between HLA-E and the virus-encoded UL40 peptide, which further leads to a potent NK cell response. We demonstrate that this interaction is a key factor for reduction of virus replication in immunosuppressed patients. We further show that distinct naturally occurring HCMV-UL40 variants reduce the activation of a specific subpopulation of host NK cells and thereby are associated with high-level viremia in the patients. These findings will allow the characterization of patients at risk for severe HCMV infection and contribute to strategies for HCMV vaccine development.
Collapse
Affiliation(s)
- Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany
| | | | - Claudia Honsig
- Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Silvana Geleff
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Quirin Hammer
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany
| | - Maia Segura-Wang
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
22
|
Szeto C, Chatzileontiadou DS, Nguyen AT, Sloane H, Lobos CA, Jayasinghe D, Halim H, Smith C, Riboldi-Tunnicliffe A, Grant EJ, Gras S. The presentation of SARS-CoV-2 peptides by the common HLA-A ∗02:01 molecule. iScience 2021; 24:102096. [PMID: 33521593 PMCID: PMC7825995 DOI: 10.1016/j.isci.2021.102096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cells are crucial for anti-viral immunity; however, understanding T cell responses requires the identification of epitopes presented by human leukocyte antigens (HLA). To date, few SARS-CoV-2-specific CD8+ T cell epitopes have been described. Internal viral proteins are typically more conserved than surface proteins and are often the target of CD8+ T cells. Therefore, we have characterized eight peptides derived from the internal SARS-CoV-2 nucleocapsid protein predicted to bind HLA-A∗02:01, the most common HLA molecule in the global population. We determined not all peptides could form a complex with HLA-A∗02:01, and the six crystal structures determined revealed that some peptides adopted a mobile conformation. We therefore provide a molecular understanding of SARS-CoV-2 CD8+ T cell epitopes. Furthermore, we show that there is limited pre-existing CD8+ T cell response toward these epitopes in unexposed individuals. Together, these data show that SARS-CoV-2 nucleocapsid might not contain potent epitopes restricted to HLA-A∗02:01. HLA-A∗02:01 individuals have limited pre-existing immunity to SARS-CoV-2 nucleocapsid High-resolution crystal structures of HLA-A∗02:01 presenting SARS-CoV-2 peptides Structural analysis of pHLA shows stability influences peptide immunogenicity
Collapse
Affiliation(s)
- Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Demetra S.M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Christian A. Lobos
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hanim Halim
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Corresponding author
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
- Corresponding author
| |
Collapse
|
23
|
Wilson IA, Stanfield RL. 50 Years of structural immunology. J Biol Chem 2021; 296:100745. [PMID: 33957119 PMCID: PMC8163984 DOI: 10.1016/j.jbc.2021.100745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Fifty years ago, the first landmark structures of antibodies heralded the dawn of structural immunology. Momentum then started to build toward understanding how antibodies could recognize the vast universe of potential antigens and how antibody-combining sites could be tailored to engage antigens with high specificity and affinity through recombination of germline genes (V, D, J) and somatic mutation. Equivalent groundbreaking structures in the cellular immune system appeared some 15 to 20 years later and illustrated how processed protein antigens in the form of peptides are presented by MHC molecules to T cell receptors. Structures of antigen receptors in the innate immune system then explained their inherent specificity for particular microbial antigens including lipids, carbohydrates, nucleic acids, small molecules, and specific proteins. These two sides of the immune system act immediately (innate) to particular microbial antigens or evolve (adaptive) to attain high specificity and affinity to a much wider range of antigens. We also include examples of other key receptors in the immune system (cytokine receptors) that regulate immunity and inflammation. Furthermore, these antigen receptors use a limited set of protein folds to accomplish their various immunological roles. The other main players are the antigens themselves. We focus on surface glycoproteins in enveloped viruses including SARS-CoV-2 that enable entry and egress into host cells and are targets for the antibody response. This review covers what we have learned over the past half century about the structural basis of the immune response to microbial pathogens and how that information can be utilized to design vaccines and therapeutics.
Collapse
MESH Headings
- Adaptive Immunity
- Allergy and Immunology/history
- Animals
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibody Specificity
- Antigen Presentation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COVID-19/immunology
- COVID-19/virology
- Crystallography/history
- Crystallography/methods
- History, 20th Century
- History, 21st Century
- Humans
- Immunity, Innate
- Protein Folding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- V(D)J Recombination
Collapse
Affiliation(s)
- Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
24
|
Walters LC, McMichael AJ, Gillespie GM. Detailed and atypical HLA-E peptide binding motifs revealed by a novel peptide exchange binding assay. Eur J Immunol 2020; 50:2075-2091. [PMID: 32716529 DOI: 10.1002/eji.202048719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022]
Abstract
Diverse SIV and HIV epitopes that bind the rhesus homolog of HLA-E, Mamu-E, have recently been identified in SIVvaccine studies using a recombinant Rhesus cytomegalovirus (RhCMV 68-1) vector, where unprecedented protection against SIV challenge was achieved. Additionally, several Mycobacterial peptides identified both algorithmically and following elution from infected cells, are presented to CD8+ T cells by HLA-E in humans. Yet, a comparative and comprehensive analysis of relative HLA-E peptide binding strength via a reliable, high throughput in vitro assay is currently lacking. To address this, we developed and optimized a novel, highly sensitive peptide exchange ELISA-based assay that relatively quantitates peptide binding to HLA-E. Using this approach, we screened multiple peptides, including peptide panels derived from HIV, SIV, and Mtb predicted to bind HLA-E. Our results indicate that although HLA-E preferentially accommodates canonical MHC class I leader peptides, many non-canonical, sequence diverse, pathogen-derived peptides also bind HLA-E, albeit generally with lower relative binding strength. Additionally, our screens demonstrate that the majority of peptides tested, including some key Mtb and SIV epitopes that have been shown to elicit strong Mamu-E-restricted T cell responses, either bind HLA-E extremely weakly or give signals that are indistinguishable from the negative, peptide-free controls.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Ruibal P, Franken KLMC, van Meijgaarden KE, van Loon JJF, van der Steen D, Heemskerk MHM, Ottenhoff THM, Joosten SA. Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2861-2872. [PMID: 33020145 PMCID: PMC7653511 DOI: 10.4049/jimmunol.2000810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Ag presentation via the nonclassical MHC class Ib molecule HLA-E, with nearly complete identity between the two alleles expressed in humans, HLA-E*01:01 and HLA-E*01:03, can lead to the activation of unconventional T cells in humans. Despite this virtual genetic monomorphism, differences in peptide repertoires binding to the two allelic variants have been reported. To further dissect and compare peptide binding to HLA-E*01:01 and HLA-E*01:03, we used an UV-mediated peptide exchange binding assay and an HPLC-based competition binding assay. In addition, we investigated binding of these same peptides to Mamu-E, the nonhuman primate homologue of human HLA-E, and to the HLA-E-like molecule Qa-1b in mice. We next exploited the differences and homologies in the peptide binding pockets of these four molecules to identify allele specific as well as common features of peptide binding motifs across species. Our results reveal differences in peptide binding preferences and intensities for each human HLA-E variant compared with Mamu-E and Qa-1b Using extended peptide libraries, we identified and refined the peptide binding motifs for each of the four molecules and found that they share main anchor positions, evidenced by conserved amino acid preferences across the four HLA-E molecules studied. In addition, we also identified differences in peptide binding motifs, which could explain the observed variations in peptide binding preferences and affinities for each of the four HLA-E-like molecules. Our results could help with guiding the selection of candidate pathogen-derived peptides with the capacity to target HLA-E-restricted T cells that could be mobilized in vaccination and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Krista E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Joeri J F van Loon
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Dirk van der Steen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| |
Collapse
|
26
|
Borst L, van der Burg SH, van Hall T. The NKG2A-HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clin Cancer Res 2020; 26:5549-5556. [PMID: 32409305 DOI: 10.1158/1078-0432.ccr-19-2095] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022]
Abstract
The success of checkpoint blockade therapy revolutionized cancer treatment. However, we need to increase the fraction of responding patients and overcome acquired resistance to these therapies. Recently, the inhibitory receptor NKG2A received attention as a new kid on the block of immune checkpoints. This receptor is selectively expressed on cytotoxic lymphocytes, including natural killer cells and CD8 T cells, and NKG2A+ T cells are preferentially residing in tissues, like the tumor microenvironment. Its ligand, histocompatibility leucocyte antigen E (HLA-E), is a conserved nonclassical HLA class I molecule that binds a limited peptide repertoire and its expression is commonly detected in human cancer. NKG2A blockade as a standalone therapy appears poorly effective in mouse tumor models, however, in the presence of activated T cells, for example, induced by PD-1/PD-L1 blockade or cancer vaccines, exerts strongly enhanced efficacy. Clinical trials demonstrated safety of the humanized NKG2A-blocking antibody, monalizumab, and first results of phase II trials demonstrate encouraging durable response rates. Further development of this axis is clearly warranted.
Collapse
Affiliation(s)
- Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
27
|
Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role of HLA-E: The road less traveled. Mol Immunol 2020; 120:101-112. [PMID: 32113130 DOI: 10.1016/j.molimm.2020.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
28
|
van Hall T, André P, Horowitz A, Ruan DF, Borst L, Zerbib R, Narni-Mancinelli E, van der Burg SH, Vivier E. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer 2019; 7:263. [PMID: 31623687 PMCID: PMC6798508 DOI: 10.1186/s40425-019-0761-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
The implementation of immune checkpoint inhibitors to the oncology clinic signified a new era in cancer treatment. After the first indication of melanoma, an increasing list of additional cancer types are now treated with immune system targeting antibodies to PD-1, PD-L1 and CTLA-4, alleviating inhibition signals on T cells. Recently, we published proof-of-concept results on a novel checkpoint inhibitor, NKG2A. This receptor is expressed on cytotoxic lymphocytes, including NK cells and subsets of activated CD8+ T cells. Blocking antibodies to NKG2A unleashed the reactivity of these effector cells resulting in tumor control in multiple mouse models and an early clinical trial. Monalizumab is inhibiting this checkpoint in human beings and future clinical trials will have to reveal its potency in combination with other cancer treatment options.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Disease Models, Animal
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- NK Cell Lectin-Like Receptor Subfamily C/antagonists & inhibitors
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Neoplasms/drug therapy
- Neoplasms/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands.
| | - Pascale André
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dan Fu Ruan
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Robert Zerbib
- Innate Pharma Research Labs, Innate Pharma, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333, ZA, Leiden, the Netherlands
| | - Eric Vivier
- Innate Pharma Research Labs, Innate Pharma, Marseille, France.
- Aix Marseille Université, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
29
|
Yu KKQ, Wilburn DB, Hackney JA, Darrah PA, Foulds KE, James CA, Smith MT, Jing L, Seder RA, Roederer M, Koelle DM, Swanson WJ, Seshadri C. Conservation of molecular and cellular phenotypes of invariant NKT cells between humans and non-human primates. Immunogenetics 2019; 71:465-478. [PMID: 31123763 PMCID: PMC6647187 DOI: 10.1007/s00251-019-01118-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 10/27/2022]
Abstract
Invariant NKT (iNKT) cells in both humans and non-human primates are activated by the glycolipid antigen, α-galactosylceramide (α-GalCer). However, the extent to which the molecular mechanisms of antigen recognition and in vivo phenotypes of iNKT cells are conserved among primate species has not been determined. Using an evolutionary genetic approach, we found a lack of diversifying selection in CD1 genes over 45 million years of evolution, which stands in stark contrast to the history of the MHC system for presenting peptide antigens to T cells. The invariant T cell receptor (TCR)-α chain was strictly conserved across all seven primate clades. Invariant NKT cells from rhesus macaques (Macaca mulatta) bind human CD1D-α-GalCer tetramer and are activated by α-GalCer-loaded human CD1D transfectants. The dominant TCR-β chain cloned from a rhesus-derived iNKT cell line is nearly identical to that found in the human iNKT TCR, and transduction of the rhesus iNKT TCR into human Jurkat cells show that it is sufficient for binding human CD1D-α-GalCer tetramer. Finally, we used a 20-color flow cytometry panel to probe tissue phenotypes of iNKT cells in a cohort of rhesus macaques. We discovered several tissue-resident iNKT populations that have not been previously described in non-human primates but are known in humans, such as TCR-γδ iNKTs. These data reveal a diversity of iNKT cell phenotypes despite convergent evolution of the genes required for lipid antigen presentation and recognition in humans and non-human primates.
Collapse
Affiliation(s)
- Krystle K Q Yu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Damien B Wilburn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Joshua A Hackney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte A James
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Malisa T Smith
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Tuberculosis Research & Training Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
31
|
Sharpe HR, Bowyer G, Brackenridge S, Lambe T. HLA-E: exploiting pathogen-host interactions for vaccine development. Clin Exp Immunol 2019; 196:167-177. [PMID: 30968409 PMCID: PMC6468186 DOI: 10.1111/cei.13292] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses, when used as vectors for vaccine antigen delivery, can induce strong cellular and humoral responses against target epitopes. Recent work by Hansen et al. describes the use of a cytomegalovirus‐vectored vaccine, which is able to generate a stable effector‐memory T cell population at the sites of vaccination in rhesus macaques. This vaccine, targeted towards multiple epitopes in simian immunodeficiency virus (SIV), did not induce classical CD8+ T cells. However, non‐canonical CD8+ T cell induction occurred via major histocompatibility complex (MHC) class II and MHC‐E. The MHC‐E‐restricted T cells could recognize broad epitopes across the SIV peptides, and conferred protection against viral challenge to 55% of vaccinated macaques. The human homologue, human leucocyte antigen (HLA)‐E, is now being targeted as a new avenue for vaccine development. In humans, HLA‐E is an unusually oligomorphic class Ib MHC molecule, in comparison to highly polymorphic MHC class Ia. Whereas MHC class Ia presents peptides derived from pathogens to T cells, HLA‐E classically binds defined leader peptides from class Ia MHC peptides and down‐regulates NK cell cytolytic activity when presented on the cell surface. HLA‐E can also restrict non‐canonical CD8+ T cells during natural infection with various pathogens, although the extent to which they are involved in pathogen control is mostly unknown. In this review, an overview is provided of HLA‐E and its ability to interact with NK cells and non‐canonical T cells. Also discussed are the unforeseen beneficial effects of vaccination, including trained immunity of NK cells from bacille Calmette–Guérin (BCG) vaccination, and the broad restriction of non‐canonical CD8+ T cells by cytomegalovirus (CMV)‐vectored vaccines in pre‐clinical trials.
Collapse
Affiliation(s)
- H R Sharpe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - G Bowyer
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - S Brackenridge
- Nuffield Department of Medicine, NDM Research Building, University of Oxford, Oxford, UK
| | - T Lambe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Ravindranath MH, Filippone EJ, Devarajan A, Asgharzadeh S. Enhancing Natural Killer and CD8 + T Cell-Mediated Anticancer Cytotoxicity and Proliferation of CD8 + T Cells with HLA-E Monospecific Monoclonal Antibodies. Monoclon Antib Immunodiagn Immunother 2019; 38:38-59. [PMID: 31009335 PMCID: PMC6634170 DOI: 10.1089/mab.2018.0043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cytotoxic NK/CD8+ T cells interact with MHC-I ligands on tumor cells through either activating or inhibiting receptors. One of the inhibitory receptors is CD94/NKG2A. The NK/CD8+ T cell cytotoxic capability is lost when tumor-associated human leukocyte antigen, HLA-E, binds the CD94/NKG2A receptor, resulting in tumor progression and reduced survival. Failure of cancer patients to respond to natural killer (NK) cell therapies could be due to HLA-E overexpression in tumor tissues. Preventing the inhibitory receptor-ligand interaction by either receptor- or ligand-specific monoclonal antibodies (mAbs) is an innovative passive immunotherapeutic strategy for cancer. Since receptors and ligands can be monomeric or homo- or heterodimeric proteins, the efficacy of mAbs may rely on their ability to distinguish monospecific (private) functional epitopes from nonfunctional common (public) epitopes. We developed monospecific anti-HLA-E mAbs (e.g., TFL-033) that recognize only HLA-E-specific epitopes, but not epitopes shared with other HLA class-I loci as occurs with currently available polyreactive anti-HLA-E mAbs. Interestingly the amino acid sequences in the α1 and α2 helices of HLA-E, critical for the recognition of the mAb TFL-033, are strikingly the same sequences recognized by the CD94/NKG2A inhibitory receptors on NK/CD8+ cells. Such monospecific mAbs can block the CD94/NKG2A interaction with HLA-E to restore NK cell and CD8+ anticancer cell cytotoxicity. Furthermore, the HLA-E monospecific mAbs significantly promoted the proliferation of the CD4-/CD8+ T cells. These monospecific mAbs are also invaluable for the specific demonstration of HLA-E on tumor biopsies, potentially indicating those tumors most likely to respond to such therapy. Thus, they can be used to enhance passive immunotherapy once phased preclinical studies and clinical trials are completed. On principle, we postulate that NK cell passive immunotherapy should capitalize on both of these features of monospecific HLA-E mAbs, that is, the specific determination HLA-E expression on a particular tumor and the enhancement of NK cell/CD8+ cytotoxicity if HLA-E positive.
Collapse
Affiliation(s)
| | - Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Asokan Devarajan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Shahab Asgharzadeh
- Department of Pediatrics and Pathology, Children's Hospital, Keck School of Medicine, USC, Los Angeles, California
| |
Collapse
|
33
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
34
|
van Montfoort N, Borst L, Korrer MJ, Sluijter M, Marijt KA, Santegoets SJ, van Ham VJ, Ehsan I, Charoentong P, André P, Wagtmann N, Welters MJP, Kim YJ, Piersma SJ, van der Burg SH, van Hall T. NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines. Cell 2018; 175:1744-1755.e15. [PMID: 30503208 PMCID: PMC6354585 DOI: 10.1016/j.cell.2018.10.028] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/14/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023]
Abstract
Tumor-infiltrating CD8 T cells were found to frequently express the inhibitory receptor NKG2A, particularly in immune-reactive environments and after therapeutic cancer vaccination. High-dimensional cluster analysis demonstrated that NKG2A marks a unique immune effector subset preferentially co-expressing the tissue-resident CD103 molecule, but not immune checkpoint inhibitors. To examine whether NKG2A represented an adaptive resistance mechanism to cancer vaccination, we blocked the receptor with an antibody and knocked out its ligand Qa-1b, the conserved ortholog of HLA-E, in four mouse tumor models. The impact of therapeutic vaccines was greatly potentiated by disruption of the NKG2A/Qa-1b axis even in a PD-1 refractory mouse model. NKG2A blockade therapy operated through CD8 T cells, but not NK cells. These findings indicate that NKG2A-blocking antibodies might improve clinical responses to therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Nadine van Montfoort
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Linda Borst
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Michael J Korrer
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Koen A Marijt
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Vanessa J van Ham
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Pornpimol Charoentong
- Department of Medical Oncology, National Center for Tumor diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | | | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Young J Kim
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
35
|
Rölle A, Jäger D, Momburg F. HLA-E Peptide Repertoire and Dimorphism-Centerpieces in the Adaptive NK Cell Puzzle? Front Immunol 2018; 9:2410. [PMID: 30386347 PMCID: PMC6199380 DOI: 10.3389/fimmu.2018.02410] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Adaptive Natural Killer (NK) cells, a heterogenous subpopulation of human NK cells with a unique phenotypic and functional signature, became arguably one of the central areas of interest in the field. While their existence seems closely associated with prior exposure to human cytomegalovirus (HCMV), many questions regarding their origin and regulation remain unanswered. However, a common denominator for the majority of adaptive NK cells is the expression of the activating heterodimeric receptor CD94/NKG2C that binds to HLA-E, a non-classical HLA molecule, that displays a comparably restricted expression pattern, very limited polymorphism and presents a distinct set of peptides. Recent studies suggest that-in analogy to T cell responses-peptides presented on HLA-E could play an unexpectedly decisive role for the biology of adaptive NK cells. Here, we discuss how this perspective on the CD94/NKG2C-HLA-E axis aligns with the existing literature and speculate about possible translational implication.
Collapse
Affiliation(s)
- Alexander Rölle
- Department of Medical Oncology, National Center for Tumor Diseasesm, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity (D120), German Cancer Research Center, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseasesm, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity (D120), German Cancer Research Center, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Hannoun Z, Lin Z, Brackenridge S, Kuse N, Akahoshi T, Borthwick N, McMichael A, Murakoshi H, Takiguchi M, Hanke T. Identification of novel HIV-1-derived HLA-E-binding peptides. Immunol Lett 2018; 202:65-72. [PMID: 30172717 PMCID: PMC6291738 DOI: 10.1016/j.imlet.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023]
Abstract
Non-classical class Ib MHC-E molecule is becoming an increasingly interesting component of the immune response. It is involved in both the adaptive and innate immune responses to several chronic infections including HIV-1 and, under very specific circumstances, likely mediated a unique vaccine protection of rhesus macaques against pathogenic SIV challenge. Despite being recently in the spotlight for HIV-1 vaccine development, to date there is only one reported human leukocyte antigen (HLA)-E-binding peptide derived from HIV-1. In an effort to help start understanding the possible functions of HLA-E in HIV-1 infection, we determined novel HLA-E binding peptides derived from HIV-1 Gag, Pol and Vif proteins. These peptides were identified in three independent assays, all quantifying cell-surface stabilization of HLA-E*01:01 or HLA-E*01:03 molecules upon peptide binding, which was detected by HLA-E-specific monoclonal antibody and flow cytometry. Thus, following initial screen of over 400 HIV-1-derived 15-mer peptides, 4 novel 9-mer peptides PM9, RL9, RV9 and TP9 derived from 15-mer binders specifically stabilized surface expression of HLA-E*01:03 on the cell surface in two separate assays and 5 other binding candidates EI9, MD9, NR9, QF9 and YG9 gave a binding signal in only one of the two assays, but not both. Overall, we have expanded the current knowledge of HIV-1-derived target peptides stabilizing HLA-E cell-surface expression from 1 to 5, thus broadening inroads for future studies. This is a small, but significant contribution towards studying the fine mechanisms behind HLA-E actions and their possible use in development of a new kind of vaccines.
Collapse
Affiliation(s)
- Zara Hannoun
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zhansong Lin
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
37
|
Walters LC, Harlos K, Brackenridge S, Rozbesky D, Barrett JR, Jain V, Walter TS, O'Callaghan CA, Borrow P, Toebes M, Hansen SG, Sacha JB, Abdulhaqq S, Greene JM, Früh K, Marshall E, Picker LJ, Jones EY, McMichael AJ, Gillespie GM. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat Commun 2018; 9:3137. [PMID: 30087334 PMCID: PMC6081459 DOI: 10.1038/s41467-018-05459-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022] Open
Abstract
Through major histocompatibility complex class Ia leader sequence-derived (VL9) peptide binding and CD94/NKG2 receptor engagement, human leucocyte antigen E (HLA-E) reports cellular health to NK cells. Previous studies demonstrated a strong bias for VL9 binding by HLA-E, a preference subsequently supported by structural analyses. However, Mycobacteria tuberculosis (Mtb) infection and Rhesus cytomegalovirus-vectored SIV vaccinations revealed contexts where HLA-E and the rhesus homologue, Mamu-E, presented diverse pathogen-derived peptides to CD8+ T cells, respectively. Here we present crystal structures of HLA-E in complex with HIV and Mtb-derived peptides. We show that despite the presence of preferred primary anchor residues, HLA-E-bound peptides can adopt alternative conformations within the peptide binding groove. Furthermore, combined structural and mutagenesis analyses illustrate a greater tolerance for hydrophobic and polar residues in the primary pockets than previously appreciated. Finally, biochemical studies reveal HLA-E peptide binding and exchange characteristics with potential relevance to its alternative antigen presenting function in vivo.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Jordan R Barrett
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Thomas S Walter
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Chris A O'Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, OX3 7BN, UK
| | - Persephone Borrow
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Mireille Toebes
- Department Molecular Oncology and Immunology, B6 Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Justin M Greene
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Emily Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
38
|
Doorduijn EM, Sluijter M, Querido BJ, Seidel UJE, Oliveira CC, van der Burg SH, van Hall T. T Cells Engaging the Conserved MHC Class Ib Molecule Qa-1 b with TAP-Independent Peptides Are Semi-Invariant Lymphocytes. Front Immunol 2018; 9:60. [PMID: 29422902 PMCID: PMC5788890 DOI: 10.3389/fimmu.2018.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The HLA-E homolog in the mouse (Qa-1b) is a conserved MHC class Ib molecule presenting monomorphic peptides to germline-encoded natural killer receptor CD94/NKG2A. Previously, we demonstrated the replacement of this canonical peptide by a diverse peptidome upon deficiency of the TAP peptide transporter. Analysis of this Qa-1b-restricted T cell repertoire against these non-mutated neoantigens revealed characteristics of conventional hypervariable CD8+ T cells, but also of invariant T cell receptor (TCR)αβ T cells. A shared TCR Vα chain was used by this subset in combination with a variety of Vβ chains. The TCRs target peptide ligands that are conserved between mouse and man, like the identified peptide derived from the transcriptional cofactor Med15. The thymus selection was studied in a TCR-transgenic mouse and emerging naïve CD8+ T cells displayed a slightly activated phenotype, as witnessed by higher CD122 and Ly6C expression. Moreover, the Qa-1b protein was dispensable for thymus selection. Importantly, no self-reactivity was observed as reported for other MHC class Ib-restricted subsets. Naïve Qa-1b restricted T cells expanded, contracted, and formed memory cells in vivo upon peptide vaccination in a similar manner as conventional CD8+ T cells. Based on these data, the Qa-1b restricted T cell subset might be positioned closest to conventional CD8+ T cells of all MHC class Ib populations.
Collapse
Affiliation(s)
- Elien M Doorduijn
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Bianca J Querido
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Ursula J E Seidel
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Claudia C Oliveira
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
39
|
Sullivan LC, Walpole NG, Farenc C, Pietra G, Sum MJW, Clements CS, Lee EJ, Beddoe T, Falco M, Mingari MC, Moretta L, Gras S, Rossjohn J, Brooks AG. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. J Biol Chem 2017; 292:21149-21158. [PMID: 28972140 PMCID: PMC5743087 DOI: 10.1074/jbc.m117.807719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
αβ T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells
- Conserved Sequence
- Crystallography, X-Ray
- Energy Metabolism
- Epitope Mapping
- Epitopes, T-Lymphocyte
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Mutation
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Nicholas G Walpole
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matthew J W Sum
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Craig S Clements
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Eleanor J Lee
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Travis Beddoe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Michela Falco
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia,
| |
Collapse
|
40
|
Ramalho J, Veiga-Castelli LC, Donadi EA, Mendes-Junior CT, Castelli EC. HLA-E regulatory and coding region variability and haplotypes in a Brazilian population sample. Mol Immunol 2017; 91:173-184. [PMID: 28946074 DOI: 10.1016/j.molimm.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022]
Abstract
The HLA-E gene is characterized by low but wide expression on different tissues. HLA-E is considered a conserved gene, being one of the least polymorphic class I HLA genes. The HLA-E molecule interacts with Natural Killer cell receptors and T lymphocytes receptors, and might activate or inhibit immune responses depending on the peptide associated with HLA-E and with which receptors HLA-E interacts to. Variable sites within the HLA-E regulatory and coding segments may influence the gene function by modifying its expression pattern or encoded molecule, thus, influencing its interaction with receptors and the peptide. Here we propose an approach to evaluate the gene structure, haplotype pattern and the complete HLA-E variability, including regulatory (promoter and 3'UTR) and coding segments (with introns), by using massively parallel sequencing. We investigated the variability of 420 samples from a very admixed population such as Brazilians by using this approach. Considering a segment of about 7kb, 63 variable sites were detected, arranged into 75 extended haplotypes. We detected 37 different promoter sequences (but few frequent ones), 27 different coding sequences (15 representing new HLA-E alleles) and 12 haplotypes at the 3'UTR segment, two of them presenting a summed frequency of 90%. Despite the number of coding alleles, they encode mainly two different full-length molecules, known as E*01:01 and E*01:03, which corresponds to about 90% of all. In addition, differently from what has been previously observed for other non classical HLA genes, the relationship among the HLA-E promoter, coding and 3'UTR haplotypes is not straightforward because the same promoter and 3'UTR haplotypes were many times associated with different HLA-E coding haplotypes. This data reinforces the presence of only two main full-length HLA-E molecules encoded by the many HLA-E alleles detected in our population sample. In addition, this data does indicate that the distal HLA-E promoter is by far the most variable segment. Further analyses involving the binding of transcription factors and non-coding RNAs, as well as the HLA-E expression in different tissues, are necessary to evaluate whether these variable sites at regulatory segments (or even at the coding sequence) may influence the gene expression profile.
Collapse
Affiliation(s)
- Jaqueline Ramalho
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil
| | - Luciana C Veiga-Castelli
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, State of São Paulo, Brazil
| | - Eduardo A Donadi
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, State of São Paulo, Brazil
| | - Celso T Mendes-Junior
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Erick C Castelli
- São Paulo State University (UNESP), Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (UNIPEX), School of Medicine, Botucatu, State of São Paulo, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, State of São Paulo, Brazil.
| |
Collapse
|
41
|
Abstract
Evidence is mounting that the major histocompatibility complex (MHC) molecule HLA-F (human leukocyte antigen F) regulates the immune system in pregnancy, infection, and autoimmunity by signaling through NK cell receptors (NKRs). We present structural, biochemical, and evolutionary analyses demonstrating that HLA-F presents peptides of unconventional length dictated by a newly arisen mutation (R62W) that has produced an open-ended groove accommodating particularly long peptides. Compared to empty HLA-F open conformers (OCs), HLA-F tetramers bound with human-derived peptides differentially stained leukocytes, suggesting peptide-dependent engagement. Our in vitro studies confirm that NKRs differentiate between peptide-bound and peptide-free HLA-F. The complex structure of peptide-loaded β2m-HLA-F bound to the inhibitory LIR1 revealed similarities to high-affinity recognition of the viral MHC-I mimic UL18 and a docking strategy that relies on contacts with HLA-F as well as β2m, thus precluding binding to HLA-F OCs. These findings provide a biochemical framework to understand how HLA-F could regulate immunity via interactions with NKRs.
Collapse
|
42
|
McMichael AJ, Picker LJ. Unusual antigen presentation offers new insight into HIV vaccine design. Curr Opin Immunol 2017; 46:75-81. [PMID: 28505602 DOI: 10.1016/j.coi.2017.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022]
Abstract
Recent findings with a rhesus monkey cytomegalovirus based simian immunodeficiency virus vaccine have identified strong CD8+ T cell responses that are restricted by MHC-E. Also mycobacteria specific CD8+ T cells, that are MHC-E restricted, have been identified. MHC-E therefore can present a wide range of epitope peptides to CD8+ T cells, alongside its well defined role in presenting a conserved MHC-class I signal peptide to the NKG2A/C-CD94 receptor on natural killer cells. Here we explore the antigen processing pathways involved in these atypical T cell responses.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Deparment of Medicine, Oxford University, Old Road Campus, Oxford OX37FZ, UK.
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3448, United States
| |
Collapse
|
43
|
Abstract
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University , Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University , Clayton, Victoria 3800, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research , Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne , Parkville, Victoria 3052, Australia
| |
Collapse
|
44
|
Gavlovsky PJ, Tonnerre P, Guitton C, Charreau B. Expression of MHC class I-related molecules MICA, HLA-E and EPCR shape endothelial cells with unique functions in innate and adaptive immunity. Hum Immunol 2016; 77:1084-1091. [PMID: 26916837 DOI: 10.1016/j.humimm.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
Abstract
Endothelial cells (ECs) located at the interface of blood and tissues display regulatory activities toward coagulation, inflammation and vascular homeostasis. By expressing MHC class I and II antigens, ECs also contribute to immune responses. In transplantation, graft ECs are both trigger and target of alloimmune responses. ECs express a set of MHC class I-like or structural related molecules such as HLA-E, MHC class I related chain A (MICA) and the endothelial protein C receptor (EPCR) that provide multiple and unique functions to ECs. HLA-E is a low polymorphic ligand for the CD94/NKG2A/C receptors, and triggers HLA-E-restricted CD8+αβT cell responses against viral and bacterial peptides. MICA is a highly polymorphic ligand for NKG2D activating NK and costimulating CD8+T cells and a ligand for tissue-resident Vδ1 γδ T subsets. More intriguing is the role of EPCR, a key regulator of coagulation, as a ligand for a circulating subset of Vδ2- γδ T cells. Coexpression of this set of MHC class I-related molecules that allow ECs to activate a subtle array of immune responses upon stress and infection may also influence transplant outcome. Here, the respective structure, expression, and functions of HLA-E, MICA and EPCR as well as the impact of their polymorphism are reviewed.
Collapse
Affiliation(s)
- Pierre-Jean Gavlovsky
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France; IHU-CESTI, Nantes F44000, France
| | - Pierre Tonnerre
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Christophe Guitton
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France
| | - Béatrice Charreau
- INSERM, UMR1064, LabEx Transplantex, Nantes F44000, France; CHU Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, ITUN, Nantes F44000, France; LUNAM Université de Nantes, Faculté de Médecine, Nantes F44000, France.
| |
Collapse
|
45
|
Joosten SA, Sullivan LC, Ottenhoff THM. Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. J Immunol Res 2016; 2016:2695396. [PMID: 27699181 PMCID: PMC5028793 DOI: 10.1155/2016/2695396] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
Human HLA-E can, in addition to self-antigens, also present pathogen-derived sequences, which elicit specific T-cell responses. T-cells recognize their antigen presented by HLA-E highly specifically and have unique functional and phenotypical properties. Pathogen specific HLA-E restricted CD8+ T-cells are an interesting new player in the field of immunology. Future work should address their exact roles and relative contributions in the immune response against infectious diseases.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
46
|
Sullivan LC, Berry R, Sosnin N, Widjaja JML, Deuss FA, Balaji GR, LaGruta NL, Mirams M, Trapani JA, Rossjohn J, Brooks AG, Andrews DM. Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C. J Biol Chem 2016; 291:18740-52. [PMID: 27385590 DOI: 10.1074/jbc.m116.737130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 01/15/2023] Open
Abstract
Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard Berry
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Natasha Sosnin
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jacqueline M L Widjaja
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Felix A Deuss
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Gautham R Balaji
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L LaGruta
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia, the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Michiko Mirams
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph A Trapani
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jamie Rossjohn
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom, and
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia,
| | - Daniel M Andrews
- the Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
47
|
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev 2016; 267:259-82. [PMID: 26284483 DOI: 10.1111/imr.12326] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.
Collapse
Affiliation(s)
- Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J Norman
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hugo G Hilton
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
48
|
Saunders PM, Vivian JP, O'Connor GM, Sullivan LC, Pymm P, Rossjohn J, Brooks AG. A bird's eye view of NK cell receptor interactions with their MHC class I ligands. Immunol Rev 2016; 267:148-66. [PMID: 26284476 DOI: 10.1111/imr.12319] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The surveillance of target cells by natural killer (NK) cells utilizes an ensemble of inhibitory and activating receptors, many of which interact with major histocompatibility complex (MHC) class I molecules. NK cell recognition of MHC class I proteins is important developmentally for the acquisition of full NK cell effector capacity and during target cell recognition, where the engagement of inhibitory receptors and MHC class I molecules attenuates NK cell activation. Human NK cells have evolved two broad strategies for recognition of human leukocyte antigen (HLA) class I molecules: (i) direct recognition of polymorphic classical HLA class I proteins by diverse receptor families such as the killer cell immunoglobulin-like receptors (KIRs), and (ii) indirect recognition of conserved sets of HLA class I-derived peptides displayed on the non-classical HLA-E for recognition by CD94-NKG2 receptors. In this review, we assess the structural basis for the interaction between these NK receptors and their HLA class I ligands and, using the suite of published KIR and CD94-NKG2 ternary complexes, highlight the features that allow NK cells to orchestrate the recognition of a range of different HLA class I proteins.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Geraldine M O'Connor
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Phillip Pymm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
49
|
de Groot NG, Blokhuis JH, Otting N, Doxiadis GGM, Bontrop RE. Co-evolution of the MHC class I and KIR gene families in rhesus macaques: ancestry and plasticity. Immunol Rev 2016; 267:228-45. [PMID: 26284481 PMCID: PMC4544828 DOI: 10.1111/imr.12313] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Researchers dealing with the human leukocyte antigen (HLA) class I and killer immunoglobulin receptor (KIR) multi‐gene families in humans are often wary of the complex and seemingly different situation that is encountered regarding these gene families in Old World monkeys. For the sake of comparison, the well‐defined and thoroughly studied situation in humans has been taken as a reference. In macaques, both the major histocompatibility complex class I and KIR gene families are plastic entities that have experienced various rounds of expansion, contraction, and subsequent recombination processes. As a consequence, haplotypes in macaques display substantial diversity with regard to gene copy number variation. Additionally, for both multi‐gene families, differential levels of polymorphism (allelic variation), and expression are observed as well. A comparative genetic approach has allowed us to answer questions related to ancestry, to shed light on unique adaptations of the species’ immune system, and to provide insights into the genetic events and selective pressures that have shaped the range of these gene families.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Jeroen H Blokhuis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Nel Otting
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics & Refinement, BPRC, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Zidi I, Laaribi AB, Bortolotti D, Belhadj M, Mehri A, Yahia HB, Babay W, Chaouch H, Zidi N, Letaief A, Yacoub S, Boukadida J, Di Luca D, Hannachi N, Rizzo R. HLA-E polymorphism and soluble HLA-E plasma levels in chronic hepatitis B patients. HLA 2016; 87:153-9. [PMID: 26956431 DOI: 10.1111/tan.12767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis B virus (HBV) infection occurs in association to a deregulation of immune system. Human leukocyte antigen E (HLA-E) is an immune-tolerant nonclassical HLA class I molecule that could be involved in HBV progression. To measure soluble (s) HLA-E in patients with chronic HBV hepatitis (CHB). We tested the potential association of HLA-E*01:01/01:03 A > G gene polymorphism to CHB. Our cohort consisted of 93 Tunisian CHB patients (stratified in CHB with high HBV DNA levels and CHB with low HBV DNA levels) and 245 healthy donors. Plasma sHLA-E was determined using enzyme-linked immunosorbent assay (ELISA). Genotyping was performed using polymerase chain reaction sequence-specific primer. No association between HLA-E*01:01/01:03 A > G polymorphism and HBV DNA levels in CHB patients was found. G/G genotype is less frequent in CHB patients without significance. sHLA-E is significantly enhanced in CHB patients compared with healthy controls (P = 0.0017). Stratification according to HBV DNA levels showed that CHB patients with low HBV DNA levels have higher sHLA-E levels compared with CHB patients with high HBV DNA levels. CHB patients with G/G genotype have enhanced sHLA-E levels compared with other genotypes (P = 0.037). This significant difference is maintained only for CHB women concerning G/G genotypes (P = 0.042). Finally, we reported enhanced sHLA-E in CHB patients with advanced stages of fibrosis (P = 0.032). We demonstrate, for the first time, the association of sHLA-E to CHB. Owing to the positive correlation of HLA-E*01:01/01:03 A > G polymorphism and the association of sHLA-E to advanced fibrosis stages, HLA-E could be a powerful predictor for CHB progression. Further investigations will be required to substantiate HLA-E role as a putative clinical biomarker of CHB.
Collapse
Affiliation(s)
- I Zidi
- Laboratory Microorganismes et Biomolécules Actives, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - A B Laaribi
- Laboratory Microorganismes et Biomolécules Actives, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - D Bortolotti
- Department of Experimental and Diagnostic Medicine, Section Microbiology, University of Ferrara, Ferrara, Italy
| | - M Belhadj
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - A Mehri
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - H B Yahia
- Laboratory Microorganismes et Biomolécules Actives, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - W Babay
- Laboratory Microorganismes et Biomolécules Actives, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - H Chaouch
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - N Zidi
- Faculty of Medicine Ibn Al Jazzar, University of Sousse, Sousse, Tunisia
| | - A Letaief
- Department of Internal Medicine and Infectious Diseases, University Hospital Farhat Hached, Sousse, Tunisia
| | - S Yacoub
- Regional Center of Blood Transfusion, University Hospital Farhat Hached, Sousse, Tunisia
| | - J Boukadida
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - D Di Luca
- Department of Experimental and Diagnostic Medicine, Section Microbiology, University of Ferrara, Ferrara, Italy
| | - N Hannachi
- Laboratory of Microbiology and Immunology, UR12SP34, University Hospital Farhat Hached, Sousse, Tunisia
| | - R Rizzo
- Department of Experimental and Diagnostic Medicine, Section Microbiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|