1
|
Cai L, Fan Q, Pang R, Chen C, Zhang Y, Xie H, Huang J, Wang Y, Li P, Huang D, Jin X, Zhou Y, Li Y. Microglia programmed cell death in neurodegenerative diseases and CNS injury. Apoptosis 2025; 30:446-465. [PMID: 39656359 PMCID: PMC11799081 DOI: 10.1007/s10495-024-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 02/06/2025]
Abstract
Programmed cell death (PCD) has emerged as a critical regulatory mechanism in the initiation and progression of various pathological conditions. PCD in microglia, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, occurs in a variety of central nervous system (CNS) diseases. Dysregulation of microglia can lead to excessive tissue damage or neuronal death in CNS injury. Various injury stimuli trigger aberrant activation of the PCD pathway of microglia, which then further leads to inflammatory cascades that exacerbates CNS pathology in a vicious cycle. Therefore, targeting PCD in microglia is considered an important avenue for the treatment of various neurodegenerative diseases and CNS injury. In this review, we summarize the major and recent findings focusing on the mechanisms of PCD in microglia modulating functions in neurodegenerative diseases and CNS injury and provide a systematic overview of the current inhibitors targeting various PCD pathways, which may provide important therapeutic targets that merit further investigation.
Collapse
Affiliation(s)
- Ling Cai
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyi Xie
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuxi Zhou
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G, Chen X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med 2025; 13:10-32. [PMID: 40115032 PMCID: PMC11921819 DOI: 10.1515/jtim-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yuming Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Furong Zeng
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
3
|
Du T, Su H, Cao D, Meng Q, Zhang M, Liu Z, Li H. Mitochondria-targeted antioxidant mitoquinone mitigates vitrification-induced damage in mouse ovarian tissue by maintaining mitochondrial homeostasis via the p38 MAPK pathway. Eur J Med Res 2024; 29:593. [PMID: 39696534 DOI: 10.1186/s40001-024-02181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Ovarian tissue cryopreservation has become a promising alternative for fertility preservation in cancer patients, allowing ovarian tissue to be stored for future autotransplantation. Oxidative stress damage occurring during the cryopreservation process may impact tissue quality and function. This study aims to investigate the protective effects and potential mechanisms of Mitoquinone (MitoQ), a mitochondria-targeted derivative of the antioxidant ubiquinone, during the vitrification of ovarian tissue in mice. METHODS KGN cells were treated with various concentrations (0.1, 1, 10, and 50 μM) of MitoQ to determine the optimal concentration. Female ICR mice were divided into three groups: control, conventional vitrification, and MitoQ-supplemented vitrification. Ovarian samples were cryopreserved, thawed, and assessed for tissue morphology using Hematoxylin and Eosin (H&E) staining, and mitochondrial changes using immunofluorescence, transmission electron microscopy, and Western blot analysis. RNA sequencing (RNA-seq) was employed to explore potential protective mechanisms. Autotransplantation experiments were conducted, and the long-term effects of MitoQ on ovarian function were evaluated by counting follicle numbers through H&E staining and measuring serum estradiol and AMH levels using ELISA. RESULTS MitoQ at 1 μM was found to be the optimal concentration for maintaining follicular morphology after vitrification. It effectively reduced mitochondrial oxidative damage, preserved mitochondrial morphology, and regulated the expression of mitochondrial dynamics proteins (Drp1 and Mfn2). RNA-seq and Western blot analyses revealed that MitoQ inhibited the p38 MAPK pathway, thereby reducing apoptosis. Additionally, autotransplantation experiments showed that MitoQ treatment significantly increased follicle counts, estradiol (E2), and anti-Müllerian hormone (AMH) levels compared to conventional vitrification. CONCLUSIONS MitoQ effectively mitigates vitrification-induced oxidative damage, maintains mitochondrial homeostasis, and preserves both follicular reserve and endocrine function. These findings suggest that MitoQ is a valuable adjunct in ovarian tissue cryopreservation and could significantly improve fertility preservation outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianqi Du
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Han Su
- Key Laboratory of Reproductive Medicine and Offspring Health, Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhouing, China
- Obstetrics and Gynecology Department, BENQ Medical Center, Nanjing, China
| | - Dan Cao
- Department of Pathology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhouing, China
| | - Qingxia Meng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Ming Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
- Key Laboratory of Reproductive Medicine and Offspring Health, Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhouing, China
| | - Zhenxing Liu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China.
| |
Collapse
|
4
|
Romdhani I, Venditti M, Gallo A, Abelouah MR, Gaaied S, Boni R, Alla AA, Minucci S, Banni M. Environmental microplastics compromise reproduction of the marine invertebrate Mytilus galloprovincialis: A holistic approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136219. [PMID: 39454337 DOI: 10.1016/j.jhazmat.2024.136219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
The extensive presence of microplastics (MPs) in marine ecosystems constitutes a major threat to aquatic environments. The gametes of the marine invertebrate Mytilus galloprovincialis, which is essential for coastal ecosystems, are released directly into the water, potentially exposing them to environmental microplastics (EMPs). This study examined the effects of exposing M. galloprovincialis gametes to 50 or 100 µg/L EMP for 1 h on fertilization rates, larval quality, and the molecular mechanisms underlying the induction of apoptosis and shell growth. Our findings show that increased EMP concentrations correlate with reduced fertilization success and higher rates of larval malformations, indicating negative impacts on embryonic development. Additionally, DNA degradation in larvae is related to the EMP concentration. The apoptosis-associated proteins Bax, P53, and Cas-3 are upregulated, whereas Bcl-2 and DNA-ligase are downregulated with increasing EMP concentrations. Prothymosin-ɑ (PTMA), which is crucial for cell proliferation, also decreases with increasing EMP concentrations, contributing to impaired cell proliferation and growth imbalances. Reduced HRG gene expression is correlated with decreased shell growth and larval malformations. This study underscores the detrimental impact of EMPs on bivalve gametes, which impacts fertilization success and larval quality and highlights the potential risks to species survival and marine ecosystem stability.
Collapse
Affiliation(s)
- Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia; Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 16, Napoli 80138, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 16, Napoli 80138, Italy
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy.
| | - Mohamed Rida Abelouah
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia; Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Raffaele Boni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy; Department of Basic and Applied Sciences (DiSBA), University of Basilicata, Viale dell'Ateneo Lucano, 10, Potenza, PZ 85100, Italy
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Sergio Minucci
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 16, Napoli 80138, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| |
Collapse
|
5
|
Li H, Du L, Li J, Huang Y, Lu C, Deng T, Yan Y, Jin Y, Wu W, Gu J, Zhou J. A previously unidentified circRNA inhibits virus replication by regulating the miR-24-3p/KEAP1 axis. PLoS Pathog 2024; 20:e1012712. [PMID: 39689152 DOI: 10.1371/journal.ppat.1012712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024] Open
Abstract
Circular RNAs (circRNAs) exert diverse biological functions in different processes. However, the role of circRNAs during virus infection is mostly unknown. Herein, we explored the characteristics of host circRNAs using alphaherpesvirus pseudorabies virus (PRV) as a model. PRV infection upregulated the expression of circRNA circ29164, which does not encode a protein. RNA pulldown assays identified that circ29164 interacts with the microRNA ssc-miRNA-24-3p. Further analysis indicated that ssc-miR-24-3p targets the mRNA encoding kelch-like ECH-associated protein 1 (KEAP1), and circ29164 competitively binds to ssc-miR-24-3p to prevent it binding to Keap1. Apoptosis detection demonstrated that circ29164 or Keap1 overexpression, but not knockdown, induced caspase 3 activity and the release of cytochrome C from mitochondria, and inhibited PRV replication. Taken together, these data identified a previously undiscovered circRNA, circ29164, which inhibits PRV replication by competitively binding to ssc-24-3p to maintain KEAP1 levels.
Collapse
Affiliation(s)
- Haimin Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Juan Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yanming Huang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Chenhe Lu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Tingjuan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Wei Wu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ishtiaq A, Mushtaq I, Rehman H, Mushtaq I, Mushtaq I, Abbasi SW, Liaqat F, Rasheed A, Ahmad S, Akhtar Z, Murtaza I. Tetra aniline-based polymers ameliorate BPA-induced cardiotoxicity in Sprague Dawley rats, in silico and in vivo analysis. Life Sci 2024; 358:123104. [PMID: 39366552 DOI: 10.1016/j.lfs.2024.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
AIMS Bisphenol A (BPA), xenoestrogen, is an environmental toxicant, that generates oxidative stress leading to cardiotoxicity. The oxidative stress can be neutralized by natural and synthetic antioxidants. The present study elucidates the highly selective antioxidative potential of synthetic tetra aniline polymers Es-37 and L-37 against Bisphenol A-induced cardiac cellular impairments and the role of miRNA-15a-5p in the regulation of different apoptotic proteins. MATERIALS AND METHODS The molecular docking of L-37 and Es-37 with three proteins (p53, Cytochrome c, and Bcl-2) were performed. The dose of 1 mg/kg BW of BPA, 1 mg/kg BW Es-37 and L-37 and 50 mg/kg BW N-acetyl cysteine (NAC) was administered to Sprague Dawley rats. The miRNA and target gene expression were confirmed by qRt-PCR and Immunoblotting. KEY FINDINGS In our results, BPA administration significantly elevated the reactive oxygen species (ROS), p53, cytochrome c, and particularly miRNA-15a-5p expression; however: these changes were notably reversed by Es-37 and L-37 treatment. Additionally, molecular docking of synthetic polymers validated that L-37 has a greater binding affinity with the target proteins compared to Es-37, with the highest binding values reported for the enzymatic protein cytochrome c. SIGNIFICANCE These results suggest that both synthetic polymers Es-37 and L-37 have the potential to scavenge free radicals, boost-up antioxidant enzyme activities, and avert (BPA-induced) toxicity, thus, may serve as cardioprotective agents. Moreover, this study first time proposes that miRNA-15a-5p overexpression is associated with oxidative stress and coincides with BPA induced cardiotoxicity, thus may serve as potential therapeutic target in future.
Collapse
Affiliation(s)
- Ayesha Ishtiaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Irrum Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Hina Rehman
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iqra Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Iram Mushtaq
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, 46000 Rawalpindi, Pakistan
| | - Faroha Liaqat
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Ammarah Rasheed
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Zareen Akhtar
- Department of Chemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Iram Murtaza
- Signal Transduction Laboratory, Department of Biochemistry, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
7
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Sun Y, Liu K. Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies. Vet Sci 2024; 11:555. [PMID: 39591329 PMCID: PMC11598850 DOI: 10.3390/vetsci11110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, contributing to both viral clearance and pathogenesis-related tissue damage. This review comprehensively explores the molecular mechanisms underlying these cell death processes in influenza infection. We highlight the roles of key regulatory proteins, such as ZBP1 (Z-DNA binding protein 1) and RIPK3 (receptor-interacting protein kinase 3), in orchestrating these responses, emphasizing the dual roles of cell death in both antiviral defense and tissue injury. Furthermore, we discuss emerging therapeutic strategies targeting these pathways, aiming to enhance antiviral efficacy while minimizing collateral tissue damage. Future research should focus on targeted approaches to modulate cell death mechanisms, aiming to reduce tissue damage and improve clinical outcomes for patients with severe influenza.
Collapse
Affiliation(s)
- Yuling Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Yan HW, Feng YD, Tang N, Cao FC, Lei YF, Cao W, Li XQ. Viral myocarditis: From molecular mechanisms to therapeutic prospects. Eur J Pharmacol 2024; 982:176935. [PMID: 39182550 DOI: 10.1016/j.ejphar.2024.176935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Myocarditis is characterized as local or diffuse inflammatory lesions in the myocardium, primarily caused by viruses and other infections. It is a common cause of sudden cardiac death and dilated cardiomyopathy. In recent years, the global prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the widespread vaccination have coincided with a notable increase in the number of reported cases of myocarditis. In light of the potential threat that myocarditis poses to global public health, numerous studies have sought to elucidate the pathogenesis of this condition. However, despite these efforts, effective treatment strategies remain elusive. To collate the current research advances in myocarditis, and thereby provide possible directions for further research, this review summarizes the mechanisms involved in viral invasion of the organism and primarily focuses on how viruses trigger excessive inflammatory responses and in result in different types of cell death. Furthermore, this article outlines existing therapeutic approaches and potential therapeutic targets for the acute phase of myocarditis. In particular, immunomodulatory treatments are emphasized and suggested as the most extensively studied and clinically promising therapeutic options.
Collapse
Affiliation(s)
- Han-Wei Yan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng-Chuan Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
10
|
Wu M, Chen Y, Yuan Z, Xu H, Sun L. CRADD and cIAP1 antagonistically regulate caspase-9-mediated apoptosis in teleost. Int J Biol Macromol 2024; 279:135265. [PMID: 39233177 DOI: 10.1016/j.ijbiomac.2024.135265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Caspase 9 (CASP9) is a well-known initiator caspase of intrinsic apoptosis. In humans, cIAP1 binds and induces degradation of the activated form of CASP9, but not pro-CASP9. In fish, the activity and regulation of CASP9 remain unknown. In this work, using flounder Paralichthys olivaceus as a representative species, we examined the regulatory mechanism of CASP9 in teleost. P. olivaceus CASP9 (PoCASP9) induced robust apoptosis, which was inhibited by P. olivaceus cIAP1 (PocIAP1). Unlike human cIAP1, PocIAP1 bound both pro- and active PoCASP9 and induced their degradation via the RING domain-involved proteasome pathway. In humans, the adaptor molecule CRADD cannot interact with CASP9. In contrast, P. olivaceus CRADD (PoCRADD) bound both pro- and active PoCASP9 via CARD-CARD interaction and enhanced apoptosis by promoting the cellular levels of pro- and active PoCASP9. Furthermore, PoCRADD abrogated the inhibition of PoCASP9 by PocIAP1 by preventing PocIAP1-PoCASP9 interaction. Together these results reveal a CASP9 regulation mechanism in teleost that differs from that in humans and demonstrate that teleost CASP9 is tightly and directly controlled by both negative and positive regulators that exert a regulation effect both before and after CASP9 activation. These findings advance our understanding of the regulation of CASP9-mediated apoptosis in vertebrates.
Collapse
Affiliation(s)
- Meng Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
11
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
12
|
Ge J, Wang Y, Li X, Lu Q, Yu H, Liu H, Ma K, Deng X, Luo ZQ, Liu X, Qiu J. Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death. Nat Commun 2024; 15:8464. [PMID: 39349471 PMCID: PMC11442631 DOI: 10.1038/s41467-024-52817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm system to translocate over 330 effectors into the host cytosol. These virulence factors modify a variety of cell processes, including pathways involved in cell death and survival, to promote bacterial proliferation. Here, we show that the effector LegK3 is a eukaryotic-like Ser/Thr kinase that functions to suppress host apoptosis. Mechanistically, LegK3 directly phosphorylates multiple caspases involved in apoptosis signaling, including Caspase-3, Caspase-7, and Caspase-9. LegK3-induced phosphorylation of these caspases occurs at serine (Ser29 in Caspase-3 and Ser199 in Caspase-7) or threonine (Thr102 in Caspase-9) residues located in the prodomain or interdomain linkers. These modifications interfere with the suitability of the caspases as the substrates of initiator caspases or upstream regulators without impacting their proteolytic activity. Collectively, our study reveals a novel strategy used by L. pneumophila to maintain the integrity of infected cells for its intracellular growth.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xueyu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hangqian Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
13
|
Yuan M, Liu T, Cai A, Zhan Z, Cheng Y, Wang Q, Xia Y, Shen N, Huang P, Zou X. Emerging connectivity of programmed cell death pathways and pulmonary vascular remodelling during pulmonary hypertension. J Cell Mol Med 2024; 28:e70003. [PMID: 39153207 PMCID: PMC11330287 DOI: 10.1111/jcmm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.
Collapse
Affiliation(s)
- Meng‐nan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - An‐qi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Zibo Zhan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yi‐li Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Qi‐yue Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Yu‐xuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Nong‐er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Xiao‐zhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| |
Collapse
|
14
|
Xie X, Liu J, Gao J, Shang C, Jiang Y, Chen L, Qian Z, Liu L, Wu D, Zhang Y, Ru Z, Zhang Y. The crosstalk between cell death and pregnancy related diseases: A narrative review. Biomed Pharmacother 2024; 176:116815. [PMID: 38788598 DOI: 10.1016/j.biopha.2024.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Programmed cell death is intricately linked to various physiological phenomena such as growth, development, and metabolism, as well as the proper function of the pancreatic β cell and the migration and invasion of trophoblast cells in the placenta during pregnancy. Traditional and recently identified programmed cell death include apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis. In addition to cancer and degenerative diseases, abnormal activation of cell death has also been implicated in pregnancy related diseases like preeclampsia, gestational diabetes mellitus, intrahepatic cholestasis of pregnancy, fetal growth restriction, and recurrent miscarriage. Excessive or insufficient cell death and pregnancy related diseases may be mutually determined, ultimately resulting in adverse pregnancy outcomes. In this review, we systematically describe the characteristics and mechanisms underlying several types of cell death and their roles in pregnancy related diseases. Moreover, we discuss potential therapeutic strategies that target cell death signaling pathways for pregnancy related diseases, hoping that more meaningful treatments will be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Xiaowen Xie
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Jingyi Gao
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenwei Shang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China
| | - Lu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Danping Wu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Yun Zhang
- Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China.
| | - Zhu Ru
- Anqing Medical College Clinical Research Center, Anqing Municipal Hospital, Anqing 246003, Anhui, China.
| | - Yan Zhang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, Wuxi, Jiangsu 214002, China; Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214002, China.
| |
Collapse
|
15
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
16
|
Zotta A, O'Neill LAJ, Yin M. Unlocking potential: the role of the electron transport chain in immunometabolism. Trends Immunol 2024; 45:259-273. [PMID: 38503657 DOI: 10.1016/j.it.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The electron transport chain (ETC) couples electron transfer with proton pumping to generate ATP and it also regulates particular innate and adaptive immune cell function. While NLRP3 inflammasome activation was initially linked to reactive oxygen species (ROS) produced from Complexes I and III, recent research suggests that an intact ETC fueling ATP is needed. Complex II may be responsible for Th1 cell proliferation and in some cases, effector cytokine production. Complex III is required for regulatory T (Treg) cell function, while oxidative phosphorylation (OXPHOS) and Complexes I, IV, and V sustain proliferation and antibody production in B lymphocytes, with OXPHOS also being required for B regulatory (Breg) cell function. Despite challenges, the ETC shows therapeutic targeting potential for immune-related diseases and in immuno-oncology.
Collapse
Affiliation(s)
- Alessia Zotta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Maureen Yin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
17
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
18
|
Shkarina K, Broz P. Selective induction of programmed cell death using synthetic biology tools. Semin Cell Dev Biol 2024; 156:74-92. [PMID: 37598045 DOI: 10.1016/j.semcdb.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
Collapse
Affiliation(s)
- Kateryna Shkarina
- Institute of Innate Immunity, University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Switzerland.
| |
Collapse
|
19
|
Gama AR, Miller T, Venkatesan S, Lange JJ, Wu J, Song X, Bradford D, Unruh JR, Halfmann R. Protein supersaturation powers innate immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.20.533581. [PMID: 36993308 PMCID: PMC10055258 DOI: 10.1101/2023.03.20.533581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Innate immunity protects us in youth but turns against us as we age. The reason for this tradeoff is unclear. Seeking a thermodynamic basis, we focused on death fold domains (DFDs), whose ordered polymerization has been stoichiometrically linked to innate immune signal amplification. We hypothesized that soluble ensembles of DFDs function as phase change batteries that store energy via supersaturation and subsequently release it through nucleated polymerization. Using imaging and FRET-based cytometry to characterize the phase behaviors of all 109 human DFDs, we found that the hubs of innate immune signaling networks encode large nucleation barriers that are intrinsically insulated from cross-pathway activation. We showed via optogenetics that supersaturation drives signal amplification and that the inflammasome is constitutively supersaturated in vivo. Our findings reveal that the soluble "inactive" states of adaptor DFDs function as essential, yet impermanent, kinetic barriers to inflammatory cell death, suggesting a thermodynamic driving force for aging.
Collapse
Affiliation(s)
| | - Tayla Miller
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | - Jianzheng Wu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Xiaoqing Song
- Stowers Institute for Medical Research, Kansas City, MO
| | - Dan Bradford
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Wang W, Su Y, Qi R, Li H, Jiang H, Li F, Li B, Sun H. Indoxacarb triggers autophagy and apoptosis through ROS accumulation mediated by oxidative phosphorylation in the midgut of Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105812. [PMID: 38582584 DOI: 10.1016/j.pestbp.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 04/08/2024]
Abstract
Indoxacarb has been widely utilized in agricultural pest management, posing a significant ecological threat to Bombyx mori, a non-target economic insect. In the present study, short-term exposure to low concentration of indoxacarb significantly suppressed the oxidative phosphorylation pathway, and resulted in an accumulation of reactive oxygen species (ROS) in the midgut of B. mori. While, the ATP content exhibited a declining trend but there was no significant change. Moreover, indoxacarb also significantly altered the transcription levels of six autophagy-related genes, and the transcription levels of ATG2, ATG8 and ATG9 were significantly up-regulated by 2.56-, 1.90-, and 3.36-fold, respectively. The protein levels of ATG8-I and ATG8-II and MDC-stained frozen sections further suggested an increase in autophagy. Furthermore, the protein level and enzyme activity of CASP4 showed a significant increase in accordance with the transcription levels of apoptosis-related genes, indicating the activation of the apoptotic signaling pathway. Meanwhile, the induction of apoptosis signals in the midgut cells triggered by indoxacarb was confirmed through TUNEL staining. These findings suggest that indoxacarb can promote the accumulation of ROS by inhibiting the oxidative phosphorylation pathway, thereby inducing autophagy and apoptosis in the midgut cells of B. mori.
Collapse
Affiliation(s)
- Wanwan Wang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yue Su
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Ruinan Qi
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hao Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hongrui Jiang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Yizhou, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Yizhou, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Haina Sun
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, PR China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Yizhou, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
21
|
Umargamwala R, Manning J, Dorstyn L, Denton D, Kumar S. Understanding Developmental Cell Death Using Drosophila as a Model System. Cells 2024; 13:347. [PMID: 38391960 PMCID: PMC10886741 DOI: 10.3390/cells13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cell death plays an essential function in organismal development, wellbeing, and ageing. Many types of cell deaths have been described in the past 30 years. Among these, apoptosis remains the most conserved type of cell death in metazoans and the most common mechanism for deleting unwanted cells. Other types of cell deaths that often play roles in specific contexts or upon pathological insults can be classed under variant forms of cell death and programmed necrosis. Studies in Drosophila have contributed significantly to the understanding and regulation of apoptosis pathways. In addition to this, Drosophila has also served as an essential model to study the genetic basis of autophagy-dependent cell death (ADCD) and other relatively rare types of context-dependent cell deaths. Here, we summarise what is known about apoptosis, ADCD, and other context-specific variant cell death pathways in Drosophila, with a focus on developmental cell death.
Collapse
Affiliation(s)
- Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Jantina Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Loretta Dorstyn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
23
|
Zhang T, Wang X, Zhang Q, Li K, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Yuan X, Zhao J. Intrinsic and extrinsic pathways of apoptosis induced by multiple antibiotics residues and ocean acidification in hemocytes of scallop Argopecten irradians irradians: An interactionist perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115806. [PMID: 38091672 DOI: 10.1016/j.ecoenv.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The increasing prevalence of antibiotics in seawater across global coastal areas, coupled with the ocean acidification induced by climate change, present a multifaceted challenge to marine ecosystems, particularly impacting the key physiological processes of marine organisms. Apoptosis is a critical adaptive response essential for maintaining cellular homeostasis and defending against environmental threats. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on apoptosis and the underlying mechanisms in hemocytes of A. irradians irradians were determined through flow cytometry analysis, comet assay, oxidative stress biomarkers analysis, and transcriptome analysis. Results showed that apoptosis could be triggered by either AM exposure or OA exposure, but through different pathways. Exposure to AM leads to mitochondrial dysfunction and oxidative damage, which in turn triggers apoptosis via a series of cellular events in both intrinsic and extrinsic pathways. Conversely, while OA exposure similarly induced apoptosis, its effects are comparatively subdued and are predominantly mediated through the intrinsic pathway. Additionally, the synergistic effects of AM and OA exposure induced pronounced mitochondrial dysfunction and oxidative damages in the hemocytes of A. irradians irradians. Despite the evident cellular distress and the potential initiation of apoptotic pathways, the actual execution of apoptosis appears to be restrained, which might be attributed to an energy deficit within the hemocytes. Our findings underscore the constrained tolerance capacity of A. irradians irradians when faced with multiple environmental stressors, and shed light on the ecotoxicity of antibiotic pollution in the ocean under prospective climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Ke Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiutang Yuan
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
24
|
Sever AIM, Alderson TR, Rennella E, Aramini JM, Liu ZH, Harkness RW, Kay LE. Activation of caspase-9 on the apoptosome as studied by methyl-TROSY NMR. Proc Natl Acad Sci U S A 2023; 120:e2310944120. [PMID: 38085782 PMCID: PMC10743466 DOI: 10.1073/pnas.2310944120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins. Failure to activate caspase-9 enables the evasion of programmed cell death, which occurs in various forms of cancer. Despite the critical apoptotic function of caspase-9, the structural mechanism by which it is activated on the apoptosome has remained elusive. Here, we used a combination of methyl-transverse relaxation-optimized NMR spectroscopy, protein engineering, and biochemical assays to study the activation of caspase-9 bound to the apoptosome. In the absence of peptide substrate, we observed that both caspase-9 and its isolated protease domain (PD) only very weakly dimerize with dissociation constants in the millimolar range. Methyl-NMR spectra of isotope-labeled caspase-9, within the 1.3-MDa native apoptosome complex or an engineered 480-kDa apoptosome mimic, reveal that the caspase-9 PD remains monomeric after recruitment to the scaffold. Binding to the apoptosome, therefore, organizes caspase-9 PDs so that they can rapidly and extensively dimerize only when substrate is present, providing an important layer in the regulation of caspase-9 activation. Our work highlights the unique role of NMR spectroscopy to structurally characterize protein domains that are flexibly tethered to large scaffolds, even in cases where the molecular targets are in excess of 1 MDa, as in the present example.
Collapse
Affiliation(s)
- Alexander I. M. Sever
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| | - T. Reid Alderson
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Enrico Rennella
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - James M. Aramini
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Zi Hao Liu
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Robert W. Harkness
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Lewis E. Kay
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
25
|
Cai H, Lv M, Wang T. PANoptosis in cancer, the triangle of cell death. Cancer Med 2023; 12:22206-22223. [PMID: 38069556 PMCID: PMC10757109 DOI: 10.1002/cam4.6803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND PANoptosis is a novel form of programmed cell death (PCD) found in 2019 that is regulated by the PANoptosome. PANoptosis combines essential features of pyroptosis, apoptosis, and necroptosis, forming a "death triangle" of cells. While apoptosis, pyroptosis, and necroptosis have been extensively studied for their roles in human inflammatory diseases and many other clinical conditions, historically they were considered as independent processes. However, emerging evidence indicates that these PCDs exhibit cross talk and interactions, resulting in the development of the concept of PANoptosis. METHODS In this review, we offer a concise summary of the fundamental mechanisms of apoptosis, pyroptosis, and necroptosis. We subsequently introduce the notion of PANoptosis and detail the assembly mechanism of the PANoptosome complex which is responsible for inducing cell death. We also describe some regulatory networks of PANoptosis. RESULTS PANoptosis now has been associated with various human diseases including cancer. Although the exact function of PANoptosis in each tumor is not fully understood, it represents a prospective avenue for cancer therapy, offering promise for advancements in cancer therapy. CONCLUSIONS In the future, in-depth study of PANoptosis will continue to help us in understanding the fundamental processes underlying cell death and provide scientific support for cancer research.
Collapse
Affiliation(s)
- Hantao Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Zhu M, Liu D, Liu G, Zhang M, Pan F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023; 13:1715. [PMID: 38136586 PMCID: PMC10741419 DOI: 10.3390/biom13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a complex disease and the cause of one of the highest cancer-related mortalities in men worldwide. Annually, more than 1.2 million new cases are diagnosed globally, accounting for 7% of newly diagnosed cancers in men. Programmed cell death (PCD) plays an essential role in removing infected, functionally dispensable, or potentially neoplastic cells. Apoptosis is the canonical form of PCD with no inflammatory responses elicited, and the close relationship between apoptosis and PCa has been well studied. Necroptosis and pyroptosis are two lytic forms of PCD that result in the release of intracellular contents, which induce inflammatory responses. An increasing number of studies have confirmed that necroptosis and pyroptosis are also closely related to the occurrence and progression of PCa. Recently, a novel form of PCD named PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis, revealed the attached connection among them and may be a promising target for PCa. Apoptosis, necroptosis, pyroptosis, and PANoptosis are good examples to better understand the mechanism underlying PCD in PCa. This review aims to summarize the emerging roles and therapeutic potential of apoptosis, necroptosis, pyroptosis, and PANoptosis in PCa.
Collapse
Affiliation(s)
- Minggang Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Guoqiang Liu
- Urology Department of Guangzhou First People’s Hospital, Guangzhou 510000, China;
| | - Mingrui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| |
Collapse
|
27
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
28
|
Hajibabaie F, Abedpoor N, Mohamadynejad P. Types of Cell Death from a Molecular Perspective. BIOLOGY 2023; 12:1426. [PMID: 37998025 PMCID: PMC10669395 DOI: 10.3390/biology12111426] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The former conventional belief was that cell death resulted from either apoptosis or necrosis; however, in recent years, different pathways through which a cell can undergo cell death have been discovered. Various types of cell death are distinguished by specific morphological alterations in the cell's structure, coupled with numerous biological activation processes. Various diseases, such as cancers, can occur due to the accumulation of damaged cells in the body caused by the dysregulation and failure of cell death. Thus, comprehending these cell death pathways is crucial for formulating effective therapeutic strategies. We focused on providing a comprehensive overview of the existing literature pertaining to various forms of cell death, encompassing apoptosis, anoikis, pyroptosis, NETosis, ferroptosis, autophagy, entosis, methuosis, paraptosis, mitoptosis, parthanatos, necroptosis, and necrosis.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran;
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran;
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| |
Collapse
|
29
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
30
|
Moslehi AH, Hoseinpour F, Saber A, Akhavan Taheri M, Hashemian AH. Fertility-enhancing effects of inositol & vitamin C on cisplatin induced ovarian and uterine toxicity in rats via suppressing oxidative stress and apoptosis. Food Chem Toxicol 2023; 179:113995. [PMID: 37619831 DOI: 10.1016/j.fct.2023.113995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/22/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Cisplatin can lead to infertility due to its negative impact on the uterus and ovaries. This study aimed to explore the effects of Inositol and vitamin C on cisplatin-induced infertility. Forty-eight adult female Wistar rats were divided into eight groups (N = 6) and orally treated for 21 days. The treatments were as follows: negative control (saline), positive control (saline and cisplatin injected into the abdomen on day 15), T1-T3: rats given vitamin C (150 mg/kg), Inositol (420 mg/kg), and vitamin C + Inositol, respectively, along with cisplatin injected into the abdomen on day 15, T4-T6: rats given only vitamin C, Inositol, and vitamin C + Inositol, respectively. Vitamin C and Inositol enhanced cisplatin-induced histopathological improvements in the uterus and ovaries, raising progesterone and estradiol serum levels. Furthermore, the supplements enhanced ESR1 gene expression in the uterus and ovary, reducing uterine and ovarian apoptosis caused by cisplatin through modulation of caspase 3, 8, and Bcl-2 gene levels. These substances decreased ovarian and uterine malondialdehyde levels, boosted total antioxidant capacity and superoxide dismutase, and alleviated oxidative stress. The findings reveal that vitamin C and Inositol shield against cisplatin-related infertility by reducing oxidative stress and apoptosis in the uterus and ovaries.
Collapse
Affiliation(s)
- Amir Hosein Moslehi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Fatemeh Hoseinpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Akhavan Taheri
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Hashemian
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Liu GY, Xie WL, Wang YT, Chen L, Xu ZZ, Lv Y, Wu QP. Calpain: the regulatory point of myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1194402. [PMID: 37456811 PMCID: PMC10346867 DOI: 10.3389/fcvm.2023.1194402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Calpain is a conserved cysteine protease readily expressed in several mammalian tissues, which is usually activated by Ca2+ and with maximum activity at neutral pH. The activity of calpain is tightly regulated because its aberrant activation will nonspecifically cleave various proteins in cells. Abnormally elevation of Ca2+ promotes the abnormal activation of calpain during myocardial ischemia-reperfusion, resulting in myocardial injury and cardiac dysfunction. In this paper, we mainly reviewed the effects of calpain in various programmed cell death (such as apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, and parthanatos) in myocardial ischemia-reperfusion. In addition, we also discussed the abnormal activation of calpain during myocardial ischemia-reperfusion, the effect of calpain on myocardial repair, and the possible future research directions of calpain.
Collapse
Affiliation(s)
- Guo-Yang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Wan-Li Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yan-Ting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhen-Zhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Qing-Ping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
32
|
Yang Y, Mei C, Xian H, Zhang X, Li J, Liang ZX, Zhi Y, Ma Y, Wang HJ. Toosendanin-induced apoptosis of CMT-U27 is mediated through the mitochondrial apoptotic pathway. Vet Comp Oncol 2023; 21:315-326. [PMID: 36809669 DOI: 10.1111/vco.12889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Toosendanin (TSN) is an active compound from the fruit of Melia toosendan Sieb et Zucc. TSN has been shown to have broad-spectrum anti-tumour activities in human cancers. However, there are still many gaps in the knowledge of TSN on canine mammary tumours (CMT). CMT-U27 cells were used to select the optimal acting time and best concentration of TSN to initiate apoptosis. Cell proliferation, cell colony formation, cell migration and cell invasion were analysed. The expression of apoptosis-related genes and proteins were also detected to explore the mechanism of action of TSN. A murine tumour model was established to detect the effect of TSN treatments. The results showed that TSN decreased cell viability of migration and invasion, altered CMT-U27 cell morphology, and inhibited DNA synthesis. TSN-induced cell apoptosis by upregulating BAX, cleaved caspase-3, cleaved caspase-9, p53 and cytochrome C (cytosolic) protein expression, and downregulating Bcl-2 and cytochrome C (mitochondrial) expression. In addition, TSN increased the mRNA transcription levels of cytochrome C, p53 and BAX, and decreased the mRNA expression of Bcl-2. Furthermore, TSN inhibited the growth of CMT xenografts by regulating the expression of genes and proteins activated by the mitochondrial apoptotic pathway. In conclusion, TSN effectively inhibited cell proliferation, migration and invasion activity, as well as induced CMT-U27 cell apoptosis. The study provides a molecular basis for the development of clinical drugs and other therapeutic options.
Collapse
Affiliation(s)
- Yin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hong Xian
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Jun Li
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Zhi-Xuan Liang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yue Ma
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Hong-Jun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| |
Collapse
|
33
|
Pimentel JM, Zhou JY, Wu GS. The Role of TRAIL in Apoptosis and Immunosurveillance in Cancer. Cancers (Basel) 2023; 15:2752. [PMID: 37345089 DOI: 10.3390/cancers15102752] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that selectively induces apoptosis in tumor cells without harming normal cells, making it an attractive agent for cancer therapy. TRAIL induces apoptosis by binding to and activating its death receptors DR4 and DR5. Several TRAIL-based treatments have been developed, including recombinant forms of TRAIL and its death receptor agonist antibodies, but the efficacy of TRAIL-based therapies in clinical trials is modest. In addition to inducing cancer cell apoptosis, TRAIL is expressed in immune cells and plays a critical role in tumor surveillance. Emerging evidence indicates that the TRAIL pathway may interact with immune checkpoint proteins, including programmed death-ligand 1 (PD-L1), to modulate PD-L1-based tumor immunotherapies. Therefore, understanding the interaction between TRAIL and the immune checkpoint PD-L1 will lead to the development of new strategies to improve TRAIL- and PD-L1-based therapies. This review discusses recent findings on TRAIL-based therapy, resistance, and its involvement in tumor immunosurveillance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jun-Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Cancer Biology Program, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
34
|
Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 2023; 46:491-508. [PMID: 36596930 PMCID: PMC9811056 DOI: 10.1007/s10753-022-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
Collapse
Affiliation(s)
| | | | - Sumeet Solanki
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | | | - Yatrik M Shah
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
35
|
Lv C, Huang Y, Wang Q, Wang C, Hu H, Zhang H, Lu D, Jiang H, Shen R, Zhang W, Liu S. Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem Biol 2023; 30:295-307.e5. [PMID: 36889312 DOI: 10.1016/j.chembiol.2023.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
The peroxiredoxin (PRDX) family is a class of antioxidant enzymes with peroxidase activity. Human PRDXs currently have six members (PRDX1-6), which are gradually becoming potential therapeutic targets for major diseases such as cancer. In this study, we reported ainsliadimer A (AIN), a sesquiterpene lactone dimer with antitumor activity. We found that AIN directly targets Cys173 of PRDX1 and Cys172 of PRDX2 and then inhibits their peroxidase activities. As a result, the level of intracellular ROS increases, causing oxidative stress damage in mitochondria, inhibiting mitochondrial respiration, and significantly inhibiting ATP production. AIN inhibits the proliferation and induces apoptosis of colorectal cancer cells. Additionally, it inhibits tumor growth in mice and the growth of tumor organoid models. Therefore, AIN can be one of the natural compounds targeting PRDX1 and PRDX2 in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chao Lv
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Huang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qun Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengji Wang
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Hongmei Hu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongwei Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
36
|
Yurube T, Takeoka Y, Kanda Y, Ryosuke K, Kakutani K. Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2023; 14:100210. [PMID: 37090223 PMCID: PMC10113901 DOI: 10.1016/j.xnsj.2023.100210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Background Degenerative disc disease, a major cause of low back pain and associated neurological symptoms, is a global health problem with the high morbidity, workforce loss, and socioeconomic burden. The present surgical strategy of disc resection and/or spinal fusion results in the functional loss of load, shock absorption, and movement; therefore, the development of new biological therapies is demanded. This achievement requires the understanding of intervertebral disc cell fate during aging and degeneration. Methods Literature review was performed to clarify the current concepts and future perspectives of disc cell fate, focused on apoptosis, senescence, and autophagy. Results The intervertebral disc has a complex structure with the nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplates. While the AF arises from the mesenchyme, the NP originates from the notochord. Human disc NP notochordal phenotype disappears in adolescence, accompanied with cell death induction and chondrocyte proliferation. Discs morphologically and biochemically degenerate from early childhood as well, thereby suggesting a possible involvement of cell fate including age-related phenotypic changes in the disease process. As the disc is the largest avascular organ in the body, nutrient deprivation is a suspected contributor to degeneration. During aging and degeneration, disc cells undergo senescence, irreversible growth arrest, producing proinflammatory cytokines and matrix-degradative enzymes. Excessive stress ultimately leads to programmed cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis. Autophagy, the intracellular degradation and recycling system, plays a role in maintaining cell homeostasis. While the incidence of apoptosis and senescence increases with age and degeneration severity, autophagy can be activated earlier, in response to limited nutrition and inflammation, but impaired in aged, degenerated discs. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is a signal integrator to determine disc cell fate. Conclusions Cell fate and microenvironmental regulation by modulating PI3K/Akt/mTOR signaling is a potential biological treatment for degenerative disc disease.
Collapse
|
37
|
Wu J, Xiao D, Yu K, Shalamu K, He B, Zhang M. The protective effect of the mitochondrial-derived peptide MOTS-c on LPS-induced septic cardiomyopathy. Acta Biochim Biophys Sin (Shanghai) 2023; 55:285-294. [PMID: 36786072 PMCID: PMC10157545 DOI: 10.3724/abbs.2023006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
<p indent="0mm">Septic cardiomyopathy is associated with mechanisms such as excessive inflammation, oxidative stress, regulation of calcium homeostasis, endothelial dysfunction, mitochondrial dysfunction, and cardiomyocyte death, and there is no effective treatment at present. MOTS-c is a mitochondria-derived peptide (MDP) encoded by mitochondrial DNA (mtDNA) that protects cells from stresses in an AMPK-dependent manner. In the present study, we aim to explore the protective effect of MOTS-c on lipopolysaccharide (LPS)-induced septic cardiomyopathy. LPS is used to establish a model of septic cardiomyopathy. Our results demonstrate that MOTS-c treatment reduces the mRNA levels of inflammatory cytokines ( <italic>IL-1β</italic>, <italic>IL-4</italic>, <italic>IL-6</italic>, and <italic>TNFα</italic>) in cardiomyocytes and the levels of circulating myocardial injury markers, such as CK-MB and TnT, alleviates cardiomyocyte mitochondrial dysfunction and oxidative stress, reduces cardiomyocyte apoptosis, activates cardioprotection-related signaling pathways, including AMPK, AKT, and ERK, and inhibits the inflammation-related signaling pathways JNK and STAT3. However, treatment with the AMPK pathway inhibitor compound C (CC) abolishes the positive effect of MOTS-c on LPS stress. Collectively, our research suggests that MOTS-c may attenuate myocardial injury in septic cardiomyopathy by activating AMPK and provides a new idea for therapeutic strategies in septic cardiomyopathy. </p>.
Collapse
|
38
|
Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL. Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Front Immunol 2023; 14:1120034. [PMID: 36845112 PMCID: PMC9948402 DOI: 10.3389/fimmu.2023.1120034] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.
Collapse
Affiliation(s)
- Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Shi-Jin Li
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lei Fan
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
39
|
Kumar N. Sperm Mitochondria, the Driving Force Behind Human Spermatozoa Activities: Its Functions and Dysfunctions - A Narrative Review. Curr Mol Med 2023; 23:332-340. [PMID: 35400342 DOI: 10.2174/1566524022666220408104047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Male infertility is a major issue, and numerous factors contribute to it. One of the important organelles involved in the functioning of human spermatozoa is mitochondria. There are 50-75 mitochondria helically arranged in mid-piece bearing one mitochondrial DNA each. Sperm mitochondria play a crucial role in sperm functions, including the energy production required for sperm motility and the production of reactive oxygen species, which in the physiological range helps in sperm maturation, capacitation, and acrosome reaction. It also plays a role in calcium signaling cascades, intrinsic apoptosis, and sperm hyperactivation. Any structural or functional dysfunction of sperm mitochondria results in increased production of reactive oxygen species and, a state of oxidative stress, decreased energy production, all leading to sperm DNA damage, impaired sperm motility and semen parameters, and reduced male fertility. Furthermore, human sperm mitochondrial DNA mutations can result in impaired sperm motility and parameters leading to male infertility. Numerous types of point mutations, deletions, and missense mutations have been identified in mtDNA that are linked with male infertility. Methods: Recent literature was searched from English language peer-reviewed journals from databases including PubMed, Scopus, EMBASE, Scholar, and Web of Science till September 2021. Search terms used were "Sperm mitochondria and male fertility", "Bioenergetics of sperm", "Sperm mitochondria and reactive oxygen species", "Sperm mitochondrial mutations and infertility". Conclusion: Sperm mitochondria is an important organelle involved in various functions of human spermatozoa and sperm mitochondrial DNA has emerged as one of the potent biomarkers of sperm quality and male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar-508126, Hyderabad Metropolitan Region, Telangana, India
| |
Collapse
|
40
|
Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim 2023; 59:19-30. [PMID: 36790693 DOI: 10.1007/s11626-023-00749-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths in the world. Radiation is widely used for the treatment of lung cancer. However, radioresistance and toxicity limit its effectiveness. Ginsenoside Rg3 (Rg3) is a positive monomer extracted from ginseng and has been shown to the anti-cancer ability on many tumors. The aim of the present study was to ascertain whether Rg3 is able to enhance the radiosensitivity of lung cancer cells and investigate the underlying mechanisms. The effect of Rg3 on cell proliferation was examined by Cell Counting Kit-8 (CCK-8) and radiosensitivity was measured by colony formation assay. Flow cytometry, transwell, and wound healing assay were used to determine apoptosis, cell cycle, and metastasis. Western blot was used to detect the main protein levels of the PI3K/AKT signaling pathway. We found that Rg3 inhibited cell proliferation, promoted apoptosis, and suppressed migration and invasion in radio-induced lung cancer cells. In addition, Rg3 increased the proportion of G2/M phase cells and inhibited the formation of cell colonies. Moreover, Rg3 decreased the expression levels of PI3K, p-AKT, and PDK1 in radio-induced cells. These findings indicate that Rg3 may be able to enhance the radiosensitivity in lung cancer cells by the PI3K/AKT signaling pathway. These results demonstrate the therapeutic potential of Rg3 as a radiosensitizer for lung cancer.
Collapse
|
41
|
Su CC, Lin JW, Chang KY, Wu CT, Liu SH, Chang KC, Liu JM, Lee KI, Fang KM, Chen YW. Involvement of AMPKα and MAPK-ERK/-JNK Signals in Docetaxel-Induced Human Tongue Squamous Cell Carcinoma Cell Apoptosis. Int J Mol Sci 2022; 23:ijms232213857. [PMID: 36430348 PMCID: PMC9696237 DOI: 10.3390/ijms232213857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Cancers of the oral cavity can develop in the anatomic area extending from the lip, gum, tongue, mouth, and to the palate. Histologically, about 85-90% of oral cavity cancers are of the type squamous cells carcinomas (SCCs). The incidence of oral tongue SCC is higher in the tongue than any other anatomic area of the oral cavity. Here, we investigated the therapeutic effects and molecular mechanisms of docetaxel, which is a paclitaxel antitumor agent, on the cell growth of a human tongue SCC-derived SAS cell line. The results showed that docetaxel (10-300 nM) induced cytotoxicity and caspase-3 activity in SAS cells. Moreover, docetaxel (100 nM) promoted the expression of apoptosis-related signaling molecules, including the cleavages of caspase-3, caspase-7, and poly (ADP-ribose) polymerase (PARP). In mitochondria, docetaxel (100 nM) decreased the mitochondrial membrane potential (MMP) and Bcl-2 mRNA and protein expression and increased cytosolic cytochrome c protein expression and Bax mRNA and protein expression. In terms of mitogen-activated protein kinase (MAPK) and adenosine monophosphate-activated protein kinase (AMPK) signaling, docetaxel increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-c-Jun N-terminal kinase (JNK), and p-AMPKα protein expression but not p-p38 protein expression. Moreover, the increase in caspase-3/-7 activity and Bax protein expression and decreased Bcl-2 protein expression and MMP depolarization observed in docetaxel-treated SAS cells could be reversed by treatment with either SP600125 (a JNK inhibitor), PD98059 (an MEK1/2 (mitogen-activated protein kinase kinase 1/2) inhibitor), or compound c (an AMPK inhibitor). The docetaxel-induced increases in p-JNK, p-ERK, and p-AMPKα protein expression could also be reversed by treatment with either SP600125, PD98059, or compound c. These results indicate that docetaxel induces human tongue SCC cell apoptosis via interdependent MAPK-JNK, MAPK-ERK1/2, and AMPKα signaling pathways. Our results show that docetaxel could possibly exert a potent pharmacological effect on human oral tongue SCC cell growth.
Collapse
Affiliation(s)
- Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, Changhua County 500, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Kai-Yao Chang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Correspondence: (K.-M.F.); (Y.-W.C.)
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (K.-M.F.); (Y.-W.C.)
| |
Collapse
|
42
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
43
|
Huang JQ, Jiang YY, Ren FZ, Lei XG. Novel role and mechanism of glutathione peroxidase-4 in nutritional pancreatic atrophy of chicks induced by dietary selenium deficiency. Redox Biol 2022; 57:102482. [PMID: 36162257 PMCID: PMC9516478 DOI: 10.1016/j.redox.2022.102482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Nutritional pancreatic atrophy (NPA) is a classical Se/vitamin E deficiency disease of chicks. To reveal molecular mechanisms of its pathogenesis, we fed day-old chicks a practical, low-Se diet (14 μg Se/kg), and replicated the typical symptoms of NPA including vesiculated mitochondria, cytoplasmic vacuoles, and hyaline bodies in acinar cells of chicks as early as day 18. Target pathway analyses illustrated a > 90% depletion (P < 0.05) of glutathione peroxidase 4 (GPX4) protein and up-regulated apoptotic signaling (cytochrome C/caspase 9/caspase 3) in the pancreas and(or) acinar cells of Se deficient chicks compared with Se-adequate chicks. Subsequently, we overexpressed and suppressed GPX4 expression in the pancreatic acinar cells and observed an inverse (P < 0.05) relationship between the GPX4 production and apoptotic signaling and cell death. Applying pull down and mass spectrometry, we unveiled that GPX4 bound prothymosin alpha (ProTalpha) to inhibit formation of apoptosome in the pancreatic acinar cells. Destroying this novel protein-protein interaction by silencing either gene expression accelerated H2O2-induced apoptosis in the cells. In the end, we applied GPX4 shRNA to silence GPX4 expression in chick embryo and confirmed the physiological relevance of the GPX4 role and mechanism shown ex vivo and in the acinar cells. Altogether, our results indicated that GPX4 depletion in Se-deficient chicks acted as a major contributor to their development of NPA due to the lost binding of GPX4 to ProTalpha and its subsequent inhibition on the cytochrome c/caspase 9/caspase 3 cascade in the acinar cells. Our findings not only provide a novel molecular mechanism for explaining pathogenesis of NPA but also reveal a completely new cellular pathway in regulating apoptosis by selenoproteins.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Yun-Yun Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
44
|
Role of Caspase Family in Intervertebral Disc Degeneration and Its Therapeutic Prospects. Biomolecules 2022; 12:biom12081074. [PMID: 36008968 PMCID: PMC9406018 DOI: 10.3390/biom12081074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common musculoskeletal degenerative disease worldwide, of which the main clinical manifestation is low back pain (LBP); approximately, 80% of people suffer from it in their lifetime. Currently, the pathogenesis of IVDD is unclear, and modern treatments can only alleviate its symptoms but cannot inhibit or reverse its progression. However, in recent years, targeted therapy has led to new therapeutic strategies. Cysteine-containing aspartate proteolytic enzymes (caspases) are a family of proteases present in the cytoplasm. They are evolutionarily conserved and are involved in cell growth, differentiation, and apoptotic death of eukaryotic cells. In recent years, it has been confirmed to be involved in the pathogenesis of various diseases, mainly by regulating cell apoptosis and inflammatory response. With continuous research on the pathogenesis and pathological process of IVDD, an increasing number of studies have shown that caspases are closely related to the IVDD process, especially in the intervertebral disc (IVD) cell apoptosis and inflammatory response. Therefore, herein we study the role of caspases in IVDD with respect to the structure of caspases and the related signaling pathways involved. This would help explore the strategy of regulating the activity of the caspases involved and develop caspase inhibitors to prevent and treat IVDD. The aim of this review was to identify the caspases involved in IVDD which could be potential targets for the treatment of IVDD.
Collapse
|
45
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
46
|
Fares Amer N, Luzzatto Knaan T. Natural Products of Marine Origin for the Treatment of Colorectal and Pancreatic Cancers: Mechanisms and Potential. Int J Mol Sci 2022; 23:ijms23148048. [PMID: 35887399 PMCID: PMC9323154 DOI: 10.3390/ijms23148048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis and high mortality, with 5-year relative survival of approximately 11.5%. Conventional chemotherapy treatments for these cancers are limited due to severe side effects and the development of drug resistance. Therefore, there is an urgent need to develop new and safe drugs for effective treatment of PC and CRC. Historically, natural sources—plants in particular—have played a dominant role in traditional medicine used to treat a wide spectrum of diseases. In recent decades, marine natural products (MNPs) have shown great potential as drugs, but drug leads for treating various types of cancer, including CRC and PC, are scarce. To date, marine-based drugs have been used against leukemia, metastatic breast cancer, soft tissue sarcoma, and ovarian cancer. In this review, we summarized existing studies describing MNPs that were found to have an effect on CRC and PC, and we discussed the potential mechanisms of action of MNPs as well as future prospects for their use in treating these cancers.
Collapse
|
47
|
The role of autophagy and apoptosis in early brain injury after subarachnoid hemorrhage: an updated review. Mol Biol Rep 2022; 49:10775-10782. [PMID: 35819555 DOI: 10.1007/s11033-022-07756-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a worldwide devastating type of stroke with high mortality and morbidity. Accumulating evidence show early brain injury (EBI) as the leading cause of mortality after SAH. The pathological processes involved in EBI include decreased cerebral blood flow, increased intracranial pressure, vasospasm, and disruption of the blood-brain barrier. In addition, neuroinflammation, oxidative stress, apoptosis, and autophagy have also been proposed to contribute to EBI. Among the various processes involved in EBI, neuronal apoptosis has been proven to be a key factor contributing to the poor prognosis of SAH patients. Meanwhile, as another important catabolic process maintaining the cellular and tissue homeostasis, autophagy has been shown to be neuroprotective after SAH. Studies have shown that enhancing autophagy reduced apoptosis, whereas inhibiting autophagy aggravate neuronal apoptosis after SAH. The physiological substrates and mechanisms of neuronal autophagy and apoptosis by which defects in neuronal function are largely unknown. In this review, we summarize and discuss the role of autophagy and apoptosis after SAH and contribute to further study for investigation of the means to control the balance between them.
Collapse
|
48
|
Dorn Ii GW. Neurohormonal Connections with Mitochondria in Cardiomyopathy and Other Diseases. Am J Physiol Cell Physiol 2022; 323:C461-C477. [PMID: 35759434 PMCID: PMC9363002 DOI: 10.1152/ajpcell.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurohormonal signaling and mitochondrial dynamism are seemingly distinct processes that are almost ubiquitous among multicellular organisms. Both of these processes are regulated by GTPases, and disturbances in either can provoke disease. Here, inconspicuous pathophysiological connectivity between neurohormonal signaling and mitochondrial dynamism is reviewed in the context of cardiac and neurological syndromes. For both processes, greater understanding of basic mechanisms has evoked a reversal of conventional pathophysiological concepts. Thus, neurohormonal systems induced in, and previously thought to be critical for, cardiac functioning in heart failure are now pharmaceutically interrupted as modern standard of care. And, mitochondrial abnormalities in neuropathies that were originally attributed to an imbalance between mitochondrial fusion and fission are increasingly recognized as an interruption of axonal mitochondrial transport. The data are presented in a historical context to provided insight into how scientific thought has evolved and to foster an appreciation for how seemingly different areas of investigation can converge. Finally, some theoretical notions are presented to explain how different molecular and functional defects can evoke tissue-specific disease.
Collapse
Affiliation(s)
- Gerald W Dorn Ii
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
49
|
Guo Y, Gan D, Hu F, Cheng Y, Yu J, Lei B, Shu Q, Gu R, Xu G. Intravitreal injection of mitochondrial DNA induces cell damage and retinal dysfunction in rats. Biol Res 2022; 55:22. [PMID: 35659309 PMCID: PMC9164539 DOI: 10.1186/s40659-022-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Retinal neurodegeneration is induced by a variety of environmental insults and stresses, but the exact mechanisms are unclear. In the present study, we explored the involvement of cytosolic mitochondrial DNA (mtDNA), resulting in the cGAS-STING dependent inflammatory response and apoptosis in retinal damage in vivo. Methods Retinal injury was induced with white light or intravitreal injection of lipopolysaccharide (LPS). After light- or LPS-induced injury, the amount of cytosolic mtDNA in the retina was detected by PCR. The mtDNA was isolated and used to transfect retinas in vivo. WB and real-time PCR were used to evaluate the activation of cGAS-STING pathway and the levels of apoptosis-associated protein at different times after mtDNA injection. Retinal cell apoptosis rate was detected by TUNEL staining. Full-field electroretinography (ERG) was used to assess the retinal function. Results Light injury and the intravitreal injection of LPS both caused the leakage of mtDNA into the cytoplasm in retinal tissue. After the transfection of mtDNA in vivo, the levels of cGAS, STING, and IFN-β mRNAs and the protein levels of STING, phosph-TBK1, phospho-IRF3, and IFN-β were upregulated. mtDNA injection also induced the activation of caspase 3 and caspase 9. BAX and BAK were increased at both the mRNA and protein levels. The release of cytochrome c from the mitochondria to the cytosol was increased after mtDNA injection. The wave amplitudes on ERG decreased and retinal cell apoptosis was detected after mtDNA injection. Conclusions Cytosolic mtDNA triggers an inflammatory response. It also promotes apoptosis and the dysfunction of the retina. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00390-6.
Collapse
|
50
|
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X, Liu NF. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis 2022; 13:467. [PMID: 35585052 PMCID: PMC9117271 DOI: 10.1038/s41419-022-04923-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
The concept of cell death has been expanded beyond apoptosis and necrosis to additional forms, including necroptosis, pyroptosis, autophagy, and ferroptosis. These cell death modalities play a critical role in all aspects of life, which are noteworthy for their diverse roles in diseases. Atherosclerosis (AS) and vascular calcification (VC) are major causes for the high morbidity and mortality of cardiovascular disease. Despite considerable advances in understanding the signaling pathways associated with AS and VC, the exact molecular basis remains obscure. In the article, we review the molecular mechanisms that mediate cell death and its implications for AS and VC. A better understanding of the mechanisms underlying cell death in AS and VC may drive the development of promising therapeutic strategies.
Collapse
Affiliation(s)
- Min Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Zhen-Wei Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Li-Juan Fang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Shou-Quan Cheng
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|