1
|
Chan FF, Yuen VWH, Shen J, Chin DWC, Law CT, Wong BPY, Chan CYK, Cheu JWS, Ng IOL, Wong CCL, Wong CM. Inhibition of CAF-1 histone chaperone complex triggers cytosolic DNA and dsRNA sensing pathways and induces intrinsic immunity of hepatocellular carcinoma. Hepatology 2024; 80:295-311. [PMID: 38051950 DOI: 10.1097/hep.0000000000000709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.
Collapse
Affiliation(s)
- For-Fan Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Hin Yuen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jialing Shen
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bowie Po-Yee Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Cerise Yuen-Ki Chan
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jacinth Wing-Sum Cheu
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Fan H, Xu Z, Yao K, Zheng B, Zhang Y, Wang X, Zhang T, Li X, Hu H, Yue B, Hu Z, Zheng H. Osteoclast Cancer Cell Metabolic Cross-talk Confers PARP Inhibitor Resistance in Bone Metastatic Breast Cancer. Cancer Res 2024; 84:449-467. [PMID: 38038966 DOI: 10.1158/0008-5472.can-23-1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
The majority of patients with late-stage breast cancer develop distal bone metastases. The bone microenvironment can affect response to therapy, and uncovering the underlying mechanisms could help identify improved strategies for treating bone metastatic breast cancer. Here, we observed that osteoclasts reduced the sensitivity of breast cancer cells to DNA damaging agents, including cisplatin and the PARP inhibitor (PARPi) olaparib. Metabolic profiling identified elevated glutamine production by osteoclasts. Glutamine supplementation enhanced the survival of breast cancer cells treated with DNA damaging agents, while blocking glutamine uptake increased sensitivity and suppressed bone metastasis. GPX4, the critical enzyme responsible for glutathione oxidation, was upregulated in cancer cells following PARPi treatment through stress-induced ATF4-dependent transcriptional programming. Increased glutamine uptake and GPX4 upregulation concertedly enhanced glutathione metabolism in cancer cells to help neutralize oxidative stress and generate PARPi resistance. Analysis of paired patient samples of primary breast tumors and bone metastases revealed significant induction of GPX4 in bone metastases. Combination therapy utilizing PARPi and zoledronate, which blocks osteoclast activity and thereby reduces the microenvironmental glutamine supply, generated a synergistic effect in reducing bone metastasis. These results identify a role for glutamine production by bone-resident cells in supporting metastatic cancer cells to overcome oxidative stress and develop resistance to DNA-damaging therapies. SIGNIFICANCE Metabolic interaction between osteoclasts and tumor cells contributes to resistance to DNA-damaging agents, which can be blocked by combination treatment with PARP and osteoclast inhibitors to reduce bone metastatic burden.
Collapse
Affiliation(s)
- Huijuan Fan
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhanao Xu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuan Zhang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuxiang Wang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Tengjiang Zhang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuan Li
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haitian Hu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Bao Y, Pan Q, Xu P, Liu Z, Zhang Z, Liu Y, Xu Y, Yu Y, Zhou Z, Wei W. Unbiased interrogation of functional lysine residues in human proteome. Mol Cell 2023; 83:4614-4632.e6. [PMID: 37995688 DOI: 10.1016/j.molcel.2023.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.
Collapse
Affiliation(s)
- Ying Bao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Qian Pan
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiyuan Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
4
|
Chaubal A, Waldern JM, Taylor C, Laederach A, Marzluff WF, Duronio RJ. Coordinated expression of replication-dependent histone genes from multiple loci promotes histone homeostasis in Drosophila. Mol Biol Cell 2023; 34:ar118. [PMID: 37647143 PMCID: PMC10846616 DOI: 10.1091/mbc.e22-11-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA. How all five RD histone genes within these clusters are coordinately regulated such that neither too few nor too many histones are produced, a process referred to as histone homeostasis, is not fully understood. Here, we explored the mechanisms of coordinate regulation between multiple RD histone loci in Drosophila melanogaster and Drosophila virilis. We provide evidence for functional competition between endogenous and ectopic transgenic histone arrays located at different chromosomal locations in D. melanogaster that helps maintain proper histone mRNA levels. Consistent with this model, in both species we found that individual histone gene arrays can independently assemble an HLB that results in active histone transcription. Our findings suggest a role for HLB assembly in coordinating RD histone gene expression to maintain histone homeostasis.
Collapse
Affiliation(s)
- Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Justin M. Waldern
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Colin Taylor
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - William F. Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J. Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Liu CP, Yu Z, Xiong J, Hu J, Song A, Ding D, Yu C, Yang N, Wang M, Yu J, Hou P, Zeng K, Li Z, Zhang Z, Zhang X, Li W, Zhang Z, Zhu B, Li G, Xu RM. Structural insights into histone binding and nucleosome assembly by chromatin assembly factor-1. Science 2023; 381:eadd8673. [PMID: 37616371 PMCID: PMC11186048 DOI: 10.1126/science.add8673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Chromatin inheritance entails de novo nucleosome assembly after DNA replication by chromatin assembly factor-1 (CAF-1). Yet direct knowledge about CAF-1's histone binding mode and nucleosome assembly process is lacking. In this work, we report the crystal structure of human CAF-1 in the absence of histones and the cryo-electron microscopy structure of CAF-1 in complex with histones H3 and H4. One histone H3-H4 heterodimer is bound by one CAF-1 complex mainly through the p60 subunit and the acidic domain of the p150 subunit. We also observed a dimeric CAF-1-H3-H4 supercomplex in which two H3-H4 heterodimers are poised for tetramer assembly and discovered that CAF-1 facilitates right-handed DNA wrapping of H3-H4 tetramers. These findings signify the involvement of DNA in H3-H4 tetramer formation and suggest a right-handed nucleosome precursor in chromatin replication.
Collapse
Affiliation(s)
- Chao-Pei Liu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Hu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongbo Ding
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; Hangzhou, Zhejiang 310024, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin 300353, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Juan Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peini Hou
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kangning Zeng
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Li
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; Hangzhou, Zhejiang 310024, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
McPherson JME, Grossmann LC, Salzler HR, Armstrong RL, Kwon E, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. Genetics 2023; 224:iyad106. [PMID: 37279945 PMCID: PMC10411577 DOI: 10.1093/genetics/iyad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Rosas R, Aguilar RR, Arslanovic N, Seck A, Smith DJ, Tyler JK, Churchill MEA. A novel single alpha-helix DNA-binding domain in CAF-1 promotes gene silencing and DNA damage survival through tetrasome-length DNA selectivity and spacer function. eLife 2023; 12:e83538. [PMID: 37432722 PMCID: PMC10335832 DOI: 10.7554/elife.83538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
The histone chaperone chromatin assembly factor 1 (CAF-1) deposits two nascent histone H3/H4 dimers onto newly replicated DNA forming the central core of the nucleosome known as the tetrasome. How CAF-1 ensures there is sufficient space for the assembly of tetrasomes remains unknown. Structural and biophysical characterization of the lysine/glutamic acid/arginine-rich (KER) region of CAF-1 revealed a 128-Å single alpha-helix (SAH) motif with unprecedented DNA-binding properties. Distinct KER sequence features and length of the SAH drive the selectivity of CAF-1 for tetrasome-length DNA and facilitate function in budding yeast. In vivo, the KER cooperates with the DNA-binding winged helix domain in CAF-1 to overcome DNA damage sensitivity and maintain silencing of gene expression. We propose that the KER SAH links functional domains within CAF-1 with structural precision, acting as a DNA-binding spacer element during chromatin assembly.
Collapse
Affiliation(s)
- Ruben Rosas
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Rhiannon R Aguilar
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
| | - Nina Arslanovic
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Anna Seck
- Department of Biology, New York UniversityNew YorkUnited States
| | - Duncan J Smith
- Department of Biology, New York UniversityNew YorkUnited States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Mair EA Churchill
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
8
|
Ghule PN, Boyd JR, Kabala F, Fritz AJ, Bouffard NA, Gao C, Bright K, Macfarlane J, Seward DJ, Pegoraro G, Misteli T, Lian JB, Frietze S, Stein JL, van Wijnen AJ, Stein GS. Spatiotemporal higher-order chromatin landscape of human histone gene clusters at histone locus bodies during the cell cycle in breast cancer progression. Gene 2023; 872:147441. [PMID: 37094694 PMCID: PMC10370284 DOI: 10.1016/j.gene.2023.147441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Human Histone Locus Bodies (HLBs) are nuclear subdomains comprised of clustered histone genes that are coordinately regulated throughout the cell cycle. We addressed temporal-spatial higher-order genome organization for time-dependent chromatin remodeling at HLBs that supports control of cell proliferation. Proximity distances of specific genomic contacts within histone gene clusters exhibit subtle changes during the G1 phase in MCF10 breast cancer progression model cell lines. This approach directly demonstrates that the two principal histone gene regulatory proteins, HINFP (H4 gene regulator) and NPAT, localize at chromatin loop anchor-points, denoted by CTCF binding, supporting the stringent requirement for histone biosynthesis to package newly replicated DNA as chromatin. We identified a novel enhancer region located ∼ 2 MB distal to histone gene sub-clusters on chromosome 6 that consistently makes genomic contacts with HLB chromatin and is bound by NPAT. During G1 progression the first DNA loops form between one of three histone gene sub-clusters bound by HINFP and the distal enhancer region. Our findings are consistent with a model that the HINFP/NPAT complex controls the formation and dynamic remodeling of higher-order genomic organization of histone gene clusters at HLBs in early to late G1 phase to support transcription of histone mRNAs in S phase.
Collapse
Affiliation(s)
- Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Joseph R Boyd
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Fleur Kabala
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Nicole A Bouffard
- Microscopy Imaging Center, Center for Biomedical Shared Resources at the University of Vermont, 150 Firestone Building, 149 Beaumont Ave, Burlington, VT 05405, USA
| | - Cong Gao
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Kathleen Bright
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jill Macfarlane
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - David J Seward
- Department of Pathology and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes, Center for Cancer Research (CCR), National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Seth Frietze
- Department of Biomedical and Health Sciences and University of Vermont Cancer Center, College of Nursing and Health Sciences, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Andre J van Wijnen
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, Larner College of Medicine at the University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
9
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
McPherson JME, Grossmann LC, Armstrong RL, Kwon E, Salzler HR, Matera AG, McKay DJ, Duronio RJ. Reduced histone gene copy number disrupts Drosophila Polycomb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534544. [PMID: 37034607 PMCID: PMC10081267 DOI: 10.1101/2023.03.28.534544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The chromatin of animal cells contains two types of histones: canonical histones that are expressed during S phase of the cell cycle to package the newly replicated genome, and variant histones with specialized functions that are expressed throughout the cell cycle and in non-proliferating cells. Determining whether and how canonical and variant histones cooperate to regulate genome function is integral to understanding how chromatin-based processes affect normal and pathological development. Here, we demonstrate that variant histone H3.3 is essential for Drosophila development only when canonical histone gene copy number is reduced, suggesting that coordination between canonical H3.2 and variant H3.3 expression is necessary to provide sufficient H3 protein for normal genome function. To identify genes that depend upon, or are involved in, this coordinate regulation we screened for heterozygous chromosome 3 deficiencies that impair development of flies bearing reduced H3.2 and H3.3 gene copy number. We identified two regions of chromosome 3 that conferred this phenotype, one of which contains the Polycomb gene, which is necessary for establishing domains of facultative chromatin that repress master regulator genes during development. We further found that reduction in Polycomb dosage decreases viability of animals with no H3.3 gene copies. Moreover, heterozygous Polycomb mutations result in de-repression of the Polycomb target gene Ubx and cause ectopic sex combs when either canonical or variant H3 gene copy number is also reduced. We conclude that Polycomb-mediated facultative heterochromatin function is compromised when canonical and variant H3 gene copy number falls below a critical threshold.
Collapse
Affiliation(s)
- Jeanne-Marie E. McPherson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lucy C. Grossmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin L. Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Esther Kwon
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Harmony R. Salzler
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Daniel J. McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
11
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
12
|
Antitumoral potential of Chartergellus-CP1 peptide from Chartergellus communis wasp venom in two different breast cancer cell lines (HR+ and triple-negative). Toxicon 2022; 216:148-156. [PMID: 35839869 DOI: 10.1016/j.toxicon.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer represents the most incident cancer in women. Surgery, chemotherapy, radiation therapy, and hormone therapy remain the main treatment for this type of cancer. However, increasing resistance to anti-cancer drugs through poor response for some types of breast cancer to treatments highlights the need to develop new therapeutic agents to fight the disease. In this study, we evaluated the anti-tumor potential of the Chartergellus-CP1 peptide isolated from the wasp venom of Chartergellus communis in human breast cancer cell lines MCF-7 (HR+) and MDA-MB-231 (triple-negative). Cells viability, morphology, cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis were assessed for both cell lines after exposure to Chartergellus-CP1 during 24 and 48h. The results showed that Chartergellus-CP1 led to a significant increase of cells in the S phase in addition to a high generation of ROS (being more evident in the MCF-7 cell line) associated with apoptotic cell death. This work demonstrates, for the first time, the cytotoxic effects of Chatergellus-CP1 on human breast cancer cell lines including cell cycle profile, oxidative stress generation, and cell death mechanisms.
Collapse
|
13
|
López-Jiménez E, González-Aguilera C. Role of Chromatin Replication in Transcriptional Plasticity, Cell Differentiation and Disease. Genes (Basel) 2022; 13:genes13061002. [PMID: 35741764 PMCID: PMC9222293 DOI: 10.3390/genes13061002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Chromatin organization is essential to maintain a correct regulation of gene expression and establish cell identity. However, during cell division, the replication of the genetic material produces a global disorganization of chromatin structure. In this paper, we describe the new scientific breakthroughs that have revealed the nature of the post-replicative chromatin and the mechanisms that facilitate its restoration. Moreover, we highlight the implications of these chromatin alterations in gene expression control and their impact on key biological processes, such as cell differentiation, cell reprogramming or human diseases linked to cell proliferation, such as cancer.
Collapse
Affiliation(s)
- Elena López-Jiménez
- Faculty of Medicine, National Heart and Lung Institute, Margaret Turner Warwick Centre for Fibrosing Lung Disease, Royal Brompton Campus, Imperial College London, London SW3 6LY, UK;
| | - Cristina González-Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
14
|
Cheng X, Murthy SRK, Zhuang T, Ly L, Jones O, Basadonna G, Keidar M, Kanaan Y, Canady J. Canady Helios Cold Plasma Induces Breast Cancer Cell Death by Oxidation of Histone mRNA. Int J Mol Sci 2021; 22:ijms22179578. [PMID: 34502492 PMCID: PMC8430908 DOI: 10.3390/ijms22179578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Its molecular receptor marker status and mutational subtypes complicate clinical therapies. Cold atmospheric plasma is a promising adjuvant therapy to selectively combat many cancers, including breast cancer, but not normal tissue; however, the underlying mechanisms remain unexplored. Here, four breast cancer cell lines with different marker status were treated with Canady Helios Cold Plasma™ (CHCP) at various dosages and their differential progress of apoptosis was monitored. Inhibition of cell proliferation, induction of apoptosis, and disruption of the cell cycle were observed. At least 16 histone mRNA types were oxidized and degraded immediately after CHCP treatment by 8-oxoguanine (8-oxoG) modification. The expression of DNA damage response genes was up-regulated 12 h post-treatment, indicating that 8-oxoG modification and degradation of histone mRNA during the early S phase of the cell cycle, rather than DNA damage, is the primary cause of cancer cell death induced by CHCP. Our report demonstrates for the first time that CHCP effectively induces cell death in breast cancer regardless of subtyping, through histone mRNA oxidation and degradation during the early S phase of the cell cycle.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Saravana R. K. Murthy
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Taisen Zhuang
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Lawan Ly
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Olivia Jones
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Giacomo Basadonna
- School of Medicine, University of Massachusetts, Worcester, MA 01605, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
| | - Yasmine Kanaan
- Microbiology Department, Howard University, Washington, DC 20060, USA;
- Howard University Cancer Center, Howard University, Washington, DC 20060, USA
| | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
- Department of Surgery, Holy Cross Hospital, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-(301)-270-0147
| |
Collapse
|
15
|
Müller M, Pelkmans L, Berry S. High content genome-wide siRNA screen to investigate the coordination of cell size and RNA production. Sci Data 2021; 8:162. [PMID: 34183683 PMCID: PMC8239010 DOI: 10.1038/s41597-021-00944-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
Coordination of RNA abundance and production rate with cell size has been observed in diverse organisms and cell populations. However, how cells achieve such ‘scaling’ of transcription with size is unknown. Here we describe a genome-wide siRNA screen to identify regulators of global RNA production rates in HeLa cells. We quantify the single-cell RNA production rate using metabolic pulse-labelling of RNA and subsequent high-content imaging. Our quantitative, single-cell measurements of DNA, nascent RNA, proliferating cell nuclear antigen (PCNA), and total protein, as well as cell morphology and population-context, capture a detailed cellular phenotype. This allows us to account for changes in cell size and cell-cycle distribution (G1/S/G2) in perturbation conditions, which indirectly affect global RNA production. We also take advantage of the subcellular information to distinguish between nascent RNA localised in the nucleolus and nucleoplasm, to approximate ribosomal and non-ribosomal RNA contributions to perturbation phenotypes. Perturbations uncovered through this screen provide a resource for exploring the mechanisms of regulation of global RNA metabolism and its coordination with cellular states. Measurement(s) | nascent RNA • Image • S phase • nucleolus organization • Cellular Morphology • Cell Cycle Phase | Technology Type(s) | metabolic labelling: 5-ethynyl uridine • spinning-disk confocal microscope • supervised machine learning • Image Processing | Factor Type(s) | gene expression | Sample Characteristic - Organism | HeLa cell | Sample Characteristic - Environment | cell culture |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.14332916
Collapse
Affiliation(s)
- Micha Müller
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland.
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
16
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
17
|
Xu F, Wu H, Xiong J, Peng T. Long Non-coding RNA DLEU2L Targets miR-210-3p to Suppress Gemcitabine Resistance in Pancreatic Cancer Cells via BRCA2 Regulation. Front Mol Biosci 2021; 8:645365. [PMID: 33968986 PMCID: PMC8100451 DOI: 10.3389/fmolb.2021.645365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Gemcitabine (GEM) resistance remains a challenging clinical issue to overcome in chemotherapy against pancreatic cancer. We previously demonstrated that miR-210 derived from pancreatic cancer stem cells enhanced the GEM-resistant properties of pancreatic cancer cells, thus identifying miR-210 as an oncogenic miRNA. Herein, we report the existence of an upstream effector that acts as a competing endogenous RNA (ceRNA) to miR-210. Bioinformatic screening was performed to identify lncRNAs with a binding relationship to miR-210. Overexpression and interference vectors were constructed to demonstrate the effect of ceRNA activity in pancreatic cell behavior, both in vitro and in vivo. DLEU2L (deleted in lymphocytic leukemia 2-like), which is expressed at low levels in pancreatic cancer tissues, was shown to exhibit a binding relationship with miR-210-3p. Overexpression of DLEU2L and silencing of miR-210-3p suppressed the proliferation, migration, and invasion of pancreatic cancer cells while promoting apoptosis. These effects occurred via the inhibition of the Warburg effect (aerobic glycolysis) and AKT/mTOR signaling. In addition, we showed that BRCA2 is a target gene of miR-210-3p, and the downregulation of miR-210-3p by DLEU2L effectively induced an upregulation of BRCA2 via the ceRNA mechanism. In vivo, DLEU2L overexpression and miR-210-3p interference suppressed pancreatic tumor progression, consistent with the results of in vitro studies. The findings of our study establish DLEU2L as a ceRNA to miR-210-3p and reveal the critical role of the DLEU2L/miR-210-3p crosstalk in targeting GEM resistance.
Collapse
Affiliation(s)
- Fei Xu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiongxin Xiong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Pieretti JC, Gonçalves MC, Nakazato G, Santos de Souza AC, Boudier A, Seabra AB. Multifunctional hybrid nanoplatform based on Fe 3O 4@Ag NPs for nitric oxide delivery: development, characterization, therapeutic efficacy, and hemocompatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:23. [PMID: 33675446 PMCID: PMC7936955 DOI: 10.1007/s10856-021-06494-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 05/03/2023]
Abstract
The combination of Fe3O4@Ag superparamagnetic hybrid nanoparticles and nitric oxide (NO) represents an innovative strategy for a localized NO delivery with a simultaneous antibacterial and antitumoral actions. Here, we report the design of Fe3O4@Ag hybrid nanoparticles, coated with a modified and nitrosated chitosan polymer, able to release NO in a biological medium. After their synthesis, physicochemical characterization confirmed the obtention of small NO-functionalized superparamagnetic Fe3O4@Ag NPs. Antibacterial assays demonstrated enhanced effects compared to control. Bacteriostatic effect against Gram-positive strains and bactericidal effect against E. coli were demonstrated. Moreover, NO-functionalized Fe3O4@Ag NPs demonstrated improved ability to reduce cancer cells viability and less cytotoxicity against non-tumoral cells compared to Fe3O4@Ag NPs. These effects were associated to the ability of these NPs act simultaneous as cytotoxic (necrosis inductors) and cytostatic compounds inducing S-phase cell cycle arrest. NPs also demonstrated low hemolysis ratio (<10%) at ideal work range, evidencing their potential for biomedical applications. Targeted and hemocompatible nitric oxide-releasing multi-functional hybrid nanoparticles for antitumor and antimicrobial applications.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | - Gerson Nakazato
- Department of Microbiology, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
19
|
Wang Z, Wu R, Nie Q, Bouchonville KJ, Diasio RB, Offer SM. Chromatin assembly factor 1 suppresses epigenetic reprogramming toward adaptive drug resistance. JOURNAL OF THE NATIONAL CANCER CENTER 2021; 1:15-22. [PMID: 39036786 PMCID: PMC11256593 DOI: 10.1016/j.jncc.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
The long-term effectiveness of targeted cancer therapies is limited by the development of resistance. Although epigenetic reprogramming has been implicated in resistance, the mechanisms remain elusive. Herein, we demonstrate that increased chromatin accessibility is involved in adaptive BRAF inhibitor (BRAFi)-resistance in melanoma cells. We observed loss of chromatin assembly factor 1 (CAF-1) and its related histone H3 lysine 9 trimethylation (H3K9me3) with adaptive BRAFi resistance. We further showed that depletion of CAF-1 provides chromatin plasticity for effective reprogramming by AP1 components to promote BRAFi resistance. Our data suggest that therapeutic approaches to restore H3K9me3 levels may compensate for the loss of CAF-1 and, in turn, suppress resistance to BRAF inhibitors.
Collapse
Affiliation(s)
- Zhiquan Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rentian Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Nie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Kelly J. Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Ishiuchi T, Abe S, Inoue K, Yeung WKA, Miki Y, Ogura A, Sasaki H. Reprogramming of the histone H3.3 landscape in the early mouse embryo. Nat Struct Mol Biol 2020; 28:38-49. [PMID: 33169018 DOI: 10.1038/s41594-020-00521-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic reprogramming of the zygote involves dynamic incorporation of histone variant H3.3. However, the genome-wide distribution and dynamics of H3.3 during early development remain unknown. Here, we delineate the H3.3 landscapes in mouse oocytes and early embryos. We unexpectedly identify a non-canonical H3.3 pattern in mature oocytes and zygotes, in which local enrichment of H3.3 at active chromatin is suppressed and H3.3 is relatively evenly distributed across the genome. Interestingly, although the non-canonical H3.3 pattern forms gradually during oogenesis, it quickly switches to a canonical pattern at the two-cell stage in a transcription-independent and replication-dependent manner. We find that incorporation of H3.1/H3.2 mediated by chromatin assembly factor CAF-1 is a key process for the de novo establishment of the canonical pattern. Our data suggest that the presence of the non-canonical pattern and its timely transition toward a canonical pattern support the developmental program of early embryos.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuka Miki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Fawzy MS, Toraih EA. Analysis of the autoimmune regulator (AIRE) gene variant rs2075876 (G/A) association with breast cancer susceptibility. J Clin Lab Anal 2020; 34:e23365. [PMID: 32426878 PMCID: PMC7521301 DOI: 10.1002/jcla.23365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, unexpected autoimmune regulator (AIRE) implication in the scenario of several cancers, including breast cancer (BC), has emerged. This study aims to explore for the first time the possible association between AIRE gene rs2075876 G>A variant and BC risk in a sample of the Middle East population. METHOD In this case-control study, we genotyped AIRE rs2075876 G>A variant in 200 unrelated patients with BC and 340 cancer-free controls using a real-time allelic discrimination polymerase chain reaction. Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to estimate the strength of association under several genetic models. In silico analysis of AIRE was also executed. RESULTS The minor allele (A) frequency of the specified variant accounted for 0.28 in the controls. G/G homozygote was significantly more frequent among patients (94%) compared to controls (66%) (P < .001). After adjusting confounding variables, individuals with A allele conferred protection against developing BC under allelic model (OR = 0.33, 95% CI = 0.20-0.55), recessive model (OR = 0.25, 95% CI = 0.10-0.60), dominant model (OR = 0.12, 95% CI = 0.05-0.29), and homozygote comparison (OR = 0.20, 95% CI = 0.08-0.50). In silico analysis revealed AIRE enrichment in several cancer-related pathways. Kaplan-Meier plotter for the cancer databases showed association of AIRE expression with prognosis in triple-negative BC (HR = 2.44, 95% CI = 1.44-4.15, log-rank P-value < .001). CONCLUSION The AIRE rs2075876 G>A variant showed association with BC risk in the study population. Further large-scale replication studies in different ethnicity are warranted to confirm the findings.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of BiochemistryFaculty of MedicineNorthern Border UniversityArarSaudi Arabia
- Department of Medical Biochemistry and Molecular BiologyFaculty of MedicineSuez Canal UniversityIsmailiaEgypt
| | - Eman A. Toraih
- Department of SurgerySchool of MedicineTulane UniversityNew OrleansLouisianaUSA
- Genetics UnitDepartment of Histology and Cell BiologyFaculty of MedicineSuez Canal UniversityIsmailiaEgypt
| |
Collapse
|
22
|
Histone chaperone FACT is essential to overcome replication stress in mammalian cells. Oncogene 2020; 39:5124-5137. [PMID: 32533099 PMCID: PMC7343669 DOI: 10.1038/s41388-020-1346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The histone chaperone FACT is upregulated during mammary tumorigenesis and necessary for the viability and growth of breast tumor cells. We established that only proliferating tumor cells are sensitive to FACT knockdown, suggesting that FACT functions during DNA replication in tumor cells but not in normal cells. We hypothesized that the basal level of replication stress defines the FACT dependence of cells. Using genetic and chemical tools, we demonstrated that FACT is needed to overcome replication stress. In the absence of FACT during replication stress, the MCM2-7 helicase dissociates from chromatin, resulting in the absence of ssDNA accumulation, RPA binding, and activation of the ATR/CHK1 checkpoint response. Without this response, stalled replication forks are not stabilized, and new origin firing cannot be prevented, leading to the accumulation of DNA damage and cell death. Thus, we propose a novel role for FACT as a factor preventing helicase dissociation from chromatin during replication stress.
Collapse
|
23
|
Cheng L, Zhang X, Wang Y, Gan H, Xu X, Lv X, Hua X, Que J, Ordog T, Zhang Z. Chromatin Assembly Factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucleic Acids Res 2020; 47:11114-11131. [PMID: 31586391 PMCID: PMC6868363 DOI: 10.1093/nar/gkz858] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Establishment and subsequent maintenance of distinct chromatin domains during embryonic stem cell (ESC) differentiation are crucial for lineage specification and cell fate determination. Here we show that the histone chaperone Chromatin Assembly Factor 1 (CAF-1), which is recruited to DNA replication forks through its interaction with proliferating cell nuclear antigen (PCNA) for nucleosome assembly, participates in the establishment of H3K27me3-mediated silencing during differentiation. Deletion of CAF-1 p150 subunit impairs the silencing of many genes including Oct4, Sox2 and Nanog as well as the establishment of H3K27me3 at these gene promoters during ESC differentiation. Mutations of PCNA residues involved in recruiting CAF-1 to the chromatin also result in defects in differentiation in vitro and impair early embryonic development as p150 deletion. Together, these results reveal that the CAF-1-PCNA nucleosome assembly pathway plays an important role in the establishment of H3K27me3-mediated silencing during cell fate determination.
Collapse
Affiliation(s)
- Liang Cheng
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Xu Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Yan Wang
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiangdong Lv
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
da Cruz RMD, Batista TM, de Sousa TKG, Mangueira VM, Dos Santos JAF, de Abrantes RA, Ferreira RC, Leite FC, Brito MT, Batista LM, Veras RC, Vieira GC, Mendonca FJB, de Araújo RSA, Sobral MV. Coumarin derivative 7-isopentenyloxycoumarin induces in vivo antitumor activity by inhibit angiogenesis via CCL2 chemokine decrease. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1701-1714. [PMID: 32388599 DOI: 10.1007/s00210-020-01884-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Cancer is one of the most urgent problems in medicine. In recent years, cancer is the second leading cause of death globally. In search for more effective and less toxic treatment against cancer, natural products are used as prototypes in the synthesis of new anticancer drugs. The aim of this study was to investigate the in vivo toxicity and the mechanism of antitumor action of 7-isopentenyloxycoumarin (UMB-07), a coumarin derivative with antitumor activity. The toxicity was evaluated in vitro (hemolysis assay), and in vivo (micronucleus and acute toxicity assays). Ehrlich ascites carcinoma model was used to evaluate in vivo antitumor activity of UMB-07 (12.5, 25, or 50 mg/kg, intraperitoneally, i.p.), after 9 days of treatment, as well as toxicity. UMB-07 (2000 μg/mL) induced only 0.8% of hemolysis in peripheral blood erythrocytes of mice. On acute toxicity assay, LD50 (50% lethal dose) was estimated at around 1000 mg/kg (i.p.), and no micronucleated erythrocytes were recorded after UMB-07 (300 mg/kg, i.p.) treatment. UMB-07 (25 and 50 mg/kg) reduced tumor volume and total viable cancer cells. In the mechanism action investigation, no changes were observed on the cell cycle analysis; however, UMB-07 reduced peritumoral microvessels density and CCL2 chemokine levels. In addition, UMB-07 showed weak toxicity on biochemical, hematological, and histological parameters after 9 days of antitumor treatment. The current findings suggest that UMB-07 has low toxicity and exerts antitumor effect by inhibit angiogenesis via CCL2 chemokine decrease.
Collapse
Affiliation(s)
- Ryldene Marques Duarte da Cruz
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Tatianne Mota Batista
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Tatyanna Kelvia Gomes de Sousa
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Vivianne Mendes Mangueira
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Jephesson Alex Floriano Dos Santos
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Renata Albuquerque de Abrantes
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Rafael Carlos Ferreira
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Fagner Carvalho Leite
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Monalisa Taveira Brito
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Leônia Maria Batista
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Robson Cavalcante Veras
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | - Giciane Carvalho Vieira
- Departamento de Morfologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil
| | | | | | - Marianna Vieira Sobral
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil.
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-970, Brazil.
| |
Collapse
|
25
|
Gomes AP, Ilter D, Low V, Rosenzweig A, Shen ZJ, Schild T, Rivas MA, Er EE, McNally DR, Mutvei AP, Han J, Ou YH, Cavaliere P, Mullarky E, Nagiec M, Shin S, Yoon SO, Dephoure N, Massagué J, Melnick AM, Cantley LC, Tyler JK, Blenis J. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell 2019; 36:402-417.e13. [PMID: 31564638 PMCID: PMC6801101 DOI: 10.1016/j.ccell.2019.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/07/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.
Collapse
Affiliation(s)
- Ana P Gomes
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Didem Ilter
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Adam Rosenzweig
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin A Rivas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ekrem E Er
- Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Dylan R McNally
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anders P Mutvei
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julie Han
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yi-Hung Ou
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Paola Cavaliere
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Michal Nagiec
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sejeong Shin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sang-Oh Yoon
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joan Massagué
- Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Ari M Melnick
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
26
|
Chari S, Wilky H, Govindan J, Amodeo AA. Histone concentration regulates the cell cycle and transcription in early development. Development 2019; 146:dev.177402. [PMID: 31511251 DOI: 10.1242/dev.177402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The early embryos of many animals, including flies, fish and frogs, have unusually rapid cell cycles and delayed onset of transcription. These divisions are dependent on maternally supplied RNAs and proteins including histones. Previous work suggests that the pool size of maternally provided histones can alter the timing of zygotic genome activation (ZGA) in frogs and fish. Here, we examine the effects of under- and overexpression of maternal histones in Drosophila embryogenesis. Decreasing histone concentration advances zygotic transcription, cell cycle elongation, Chk1 activation and gastrulation. Conversely, increasing histone concentration delays transcription and results in an additional nuclear cycle before gastrulation. Numerous zygotic transcripts are sensitive to histone concentration, and the promoters of histone-sensitive genes are associated with specific chromatin features linked to increased histone turnover. These include enrichment of the pioneer transcription factor Zelda, and lack of SIN3A and associated histone deacetylases. Our findings uncover a crucial regulatory role for histone concentrations in ZGA of Drosophila.
Collapse
Affiliation(s)
- Sudarshan Chari
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Henry Wilky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jayalakshmi Govindan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amanda A Amodeo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
27
|
Yu R, Sun L, Sun Y, Han X, Qin L, Dang W. Cellular response to moderate chromatin architectural defects promotes longevity. SCIENCE ADVANCES 2019; 5:eaav1165. [PMID: 31309140 PMCID: PMC6620092 DOI: 10.1126/sciadv.aav1165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 05/30/2019] [Indexed: 05/05/2023]
Abstract
Changes in chromatin organization occur during aging. Overexpression of histones partially alleviates these changes and promotes longevity. We report that deletion of the histone H3-H4 minor locus HHT1-HHF1 extended the replicative life span of Saccharomyces cerevisiae. This longevity effect was mediated through TOR signaling inhibition. We present evidence for evolutionarily conserved transcriptional and phenotypic responses to defects in chromatin structure, collectively termed the chromatin architectural defect (CAD) response. Promoters of the CAD response genes were sensitive to histone dosage, with HHT1-HHF1 deletion, nucleosome occupancy was reduced at these promoters allowing transcriptional activation induced by stress response transcription factors Msn2 and Gis1, both of which were required for the life-span extension of hht1-hhf1Δ. Therefore, we conclude that the CAD response induced by moderate chromatin defects promotes longevity.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Sun
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
28
|
Sharma RB, Darko C, Zheng X, Gablaski B, Alonso LC. DNA Damage Does Not Cause BrdU Labeling of Mouse or Human β-Cells. Diabetes 2019; 68:975-987. [PMID: 30833468 PMCID: PMC6477907 DOI: 10.2337/db18-0761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/23/2019] [Indexed: 12/26/2022]
Abstract
Pancreatic β-cell regeneration, the therapeutic expansion of β-cell number to reverse diabetes, is an important goal. Replication of differentiated insulin-producing cells is the major source of new β-cells in adult mice and juvenile humans. Nucleoside analogs such as BrdU, which are incorporated into DNA during S-phase, have been widely used to quantify β-cell proliferation. However, reports of β-cell nuclei labeling with both BrdU and γ-phosphorylated H2A histone family member X (γH2AX), a DNA damage marker, have raised questions about the fidelity of BrdU to label S-phase, especially during conditions when DNA damage is present. We performed experiments to clarify the causes of BrdU-γH2AX double labeling in mouse and human β-cells. BrdU-γH2AX colabeling is neither an age-related phenomenon nor limited to human β-cells. DNA damage suppressed BrdU labeling and BrdU-γH2AX colabeling. In dispersed islet cells, but not in intact islets or in vivo, pro-proliferative conditions promoted both BrdU and γH2AX labeling, which could indicate DNA damage, DNA replication stress, or cell cycle-related intrinsic H2AX phosphorylation. Strategies to increase β-cell number must not only tackle the difficult challenge of enticing a quiescent cell to enter the cell cycle, but also achieve safe completion of the cell division process.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Christine Darko
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Xiaoying Zheng
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Brian Gablaski
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Laura C Alonso
- Diabetes Center of Excellence in the Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
29
|
Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, Mesa KR, Liao W, Quivy JP, Hubert B, Almouzni G, Zuber J, Littman DR. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain Cd4 silencing in cytotoxic T cells. Genes Dev 2019; 33:669-683. [PMID: 30975723 PMCID: PMC6546056 DOI: 10.1101/gad.322024.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
In this study, Ng et al. investigated the maintenance of silent gene states and how the Cd4 gene is stably repressed in CD8+ T cells. Using CRISPR and shRNA screening, they identified the histone chaperone CAF-1 as a critical component for Cd4 repression and propose that the heritable silencing of the Cd4 gene in CD8+ T cells exploits cooperative functions among the DNA methyltransferases, CAF-1, and histone-modifying enzymes. The transcriptional repression of alternative lineage genes is critical for cell fate commitment. Mechanisms by which locus-specific gene silencing is initiated and heritably maintained during cell division are not clearly understood. To study the maintenance of silent gene states, we investigated how the Cd4 gene is stably repressed in CD8+ T cells. Through CRISPR and shRNA screening, we identified the histone chaperone CAF-1 as a critical component for Cd4 repression. We found that the large subunit of CAF-1, Chaf1a, requires the N-terminal KER domain to associate with the histone deacetylases HDAC1/2 and the histone demethylase LSD1, enzymes that also participate in Cd4 silencing. When CAF-1 was lacking, Cd4 derepression was markedly enhanced in the absence of the de novo DNA methyltransferase Dnmt3a but not the maintenance DNA methyltransferase Dnmt1. In contrast to Dnmt1, Dnmt3a deficiency did not significantly alter levels of DNA methylation at the Cd4 locus. Instead, Dnmt3a deficiency sensitized CD8+ T cells to Cd4 derepression mediated by compromised functions of histone-modifying factors, including the enzymes associated with CAF-1. Thus, we propose that the heritable silencing of the Cd4 gene in CD8+ T cells exploits cooperative functions among the DNA methyltransferases, CAF-1, and histone-modifying enzymes.
Collapse
Affiliation(s)
- Charles Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Martin Aichinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Tung Nguyen
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Christy Au
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Tariq Najar
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Lin Wu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Kai R Mesa
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Will Liao
- New York Genome Center, New York, New York 10013, USA
| | - Jean-Pierre Quivy
- UMR3664, Centre National de la Recherche Scientifique, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, PSL Research University, F-75005 Paris, France
| | | | - Genevieve Almouzni
- UMR3664, Centre National de la Recherche Scientifique, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, New York, New York 10016, USA
| |
Collapse
|
30
|
Shindo Y, Amodeo AA. Dynamics of Free and Chromatin-Bound Histone H3 during Early Embryogenesis. Curr Biol 2019; 29:359-366.e4. [DOI: 10.1016/j.cub.2018.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/29/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
|
31
|
Volk A, Liang K, Suraneni P, Li X, Zhao J, Bulic M, Marshall S, Pulakanti K, Malinge S, Taub J, Ge Y, Rao S, Bartom E, Shilatifard A, Crispino JD. A CHAF1B-Dependent Molecular Switch in Hematopoiesis and Leukemia Pathogenesis. Cancer Cell 2018; 34:707-723.e7. [PMID: 30423293 PMCID: PMC6235627 DOI: 10.1016/j.ccell.2018.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/08/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
CHAF1B is the p60 subunit of the chromatin assembly factor (CAF1) complex, which is responsible for assembly of histones H3.1/H4 heterodimers at the replication fork during S phase. Here we report that CHAF1B is required for normal hematopoiesis while its overexpression promotes leukemia. CHAF1B has a pro-leukemia effect by binding chromatin at discrete sites and interfering with occupancy of transcription factors that promote myeloid differentiation, such as CEBPA. Reducing Chaf1b activity by either heterozygous deletion or overexpression of a CAF1 dominant negative allele is sufficient to suppress leukemogenesis in vivo without impairing normal hematopoiesis.
Collapse
Affiliation(s)
- Andrew Volk
- Division of Hematology/Oncology, Northwestern University, 303 East Superior Street, 5-123, Chicago, IL 60611, USA
| | - Kaiwei Liang
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Praveen Suraneni
- Division of Hematology/Oncology, Northwestern University, 303 East Superior Street, 5-123, Chicago, IL 60611, USA
| | - Xinyu Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianyun Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Marinka Bulic
- Division of Hematology/Oncology, Northwestern University, 303 East Superior Street, 5-123, Chicago, IL 60611, USA
| | - Stacy Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | | | | | - Jeffrey Taub
- Department of Oncology and Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yubin Ge
- Department of Oncology and Molecular Therapeutics Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sridhar Rao
- Blood Research Institute, Milwaukee, WI 53226, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, 303 East Superior Street, 5-123, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K, Churchill MEA. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res 2018; 46:9907-9917. [PMID: 30239791 PMCID: PMC6212844 DOI: 10.1093/nar/gky823] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/15/2018] [Indexed: 02/03/2023] Open
Abstract
Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.
Collapse
Affiliation(s)
- Paul V Sauer
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Yajie Gu
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wallace H Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Daniel Panne
- European Molecular Biology Laboratory, 38042 Grenoble, France,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Mair EA Churchill
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,To whom correspondence should be addressed. Tel: +1 303 724 3670;
| |
Collapse
|
33
|
Aliebrahimi S, Kouhsari SM, Arab SS, Shadboorestan A, Ostad SN. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed Pharmacother 2018; 106:1527-1536. [PMID: 30119228 DOI: 10.1016/j.biopha.2018.07.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/04/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are pharmaceutically attractive targets due to their fundamental role in tumor formation. The hallmark of pancreatic cancer is its high mortality rate attributed to the existence of cancer stem cell (CSC) subpopulations which result in therapy resistance and recurrence. c-Met is a known pancreatic CSC marker that belongs to the family of RTKs. To surmount the hurdles related to ligand-independent c-Met activation, we aimed to elucidate the inhibitory mechanisms of withaferin A (WA) and carnosol (CA) as two hit phytochemicals against c-Met kinase domain. Both tested compounds attenuated HGF-mediated proliferation across various established c-Met+ cancer cell lines and altered cell cycle distribution accompanied by apoptosis induction. Scratch assay confirmed the anti-migratory activity of WA and CA in AsPC-1 cells. The blockade of HGF-driven cellular growth and motility was reflected by the suppression of c-Met phosphorylation and its downstream pro-survival pathway Akt. Further studies showed that the administration of WA and CA diminished the sphere-formation and clonogenic potential which was validated by down-regulation of pluripotency maintaining genes (oct-4 and nanog), demonstrating their potentiality to target pancreatic CSCs. As more than 60% of anti-cancer drugs are composed of natural product-derived inhibitors known as fourth generation inhibitors, our present data suggest that WA and CA may hold promise to eradicate CSCs in c-Met-dependent cancers.
Collapse
Affiliation(s)
- Shima Aliebrahimi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Chen D, Fang L, Li H, Jin C. The effects of acetaldehyde exposure on histone modifications and chromatin structure in human lung bronchial epithelial cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:375-385. [PMID: 29569274 PMCID: PMC6031465 DOI: 10.1002/em.22187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
As the primary metabolite of alcohol and the most abundant carcinogen in tobacco smoke, acetaldehyde is linked to a number of human diseases associated with chronic alcohol consumption and smoking including cancers. In addition to direct DNA damage as a result of the formation of acetaldehyde-DNA adducts, acetaldehyde may also indirectly impact proper genome function through the formation of protein adducts. Histone proteins are the major component of the chromatin. Post-translational histone modifications (PTMs) are critically important for the maintenance of genetic and epigenetic stability. However, little is known about how acetaldehyde-histone adducts affect histone modifications and chromatin structure. The results of protein carbonyl assays suggest that acetaldehyde forms adducts with histone proteins in human bronchial epithelial BEAS-2B cells. The level of acetylation for N-terminal tails of cytosolic histones H3 and H4, an important modification for histone nuclear import and chromatin assembly, is significantly downregulated following acetaldehyde exposure in BEAS-2B cells, possibly due to the formation of histone adducts and/or the decrease in the expression of histone acetyltransferases. Notably, the level of nucleosomal histones in the chromatin fraction and at most of the genomic loci we tested are low in acetaldehyde-treated cells as compared with the control cells, which is suggestive of inhibition of chromatin assembly. Moreover, acetaldehyde exposure perturbs chromatin structure as evidenced by the increase in general chromatin accessibility and the decrease in nucleosome occupancy at genomic loci following acetaldehyde treatment. Our results indicate that regulation of histone modifications and chromatin accessibility may play important roles in acetaldehyde-induced pathogenesis. Environ. Mol. Mutagen. 59:375-385, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Danqi Chen
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, Tuxedo, NY, USA
| | - Lei Fang
- Medical School of Nanjing University, Nanjing, China
| | - Hongjie Li
- Department of Pathology, SUNY Downstate Medical Center, New York, NY, USA
| | - Chunyuan Jin
- Department of Environmental Medicine & Biochemistry and Molecular Pharmacology, New York University School of Medicine, Tuxedo, NY, USA
| |
Collapse
|
35
|
Ghule PN, Seward DJ, Fritz AJ, Boyd JR, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Higher order genomic organization and regulatory compartmentalization for cell cycle control at the G1/S-phase transition. J Cell Physiol 2018; 233:6406-6413. [PMID: 29744889 DOI: 10.1002/jcp.26741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/19/2023]
Abstract
Fidelity of histone gene regulation, and ultimately of histone protein biosynthesis, is obligatory for packaging of newly replicated DNA into chromatin. Control of histone gene expression within the 3-dimensional context of nuclear organization is reflected by two well documented observations. DNA replication-dependent histone mRNAs are synthesized at specialized subnuclear domains designated histone locus bodies (HLBs), in response to activation of the growth factor dependent Cyclin E/CDK2/HINFP/NPAT pathway at the G1/S transition in mammalian cells. Complete loss of the histone gene regulatory factors HINFP or NPAT disrupts HLB integrity that is necessary for coordinate control of DNA replication and histone gene transcription. Here we review the molecular histone-related requirements for G1/S-phase progression during the cell cycle. Recently developed experimental strategies, now enable us to explore mechanisms involved in dynamic control of histone gene expression in the context of the temporal (cell cycle) and spatial (HLBs) remodeling of the histone gene loci.
Collapse
Affiliation(s)
- Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - David J Seward
- Department of Pathology, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
36
|
Circulating exosomal microRNAs reveal the mechanism of Fructus Meliae Toosendan-induced liver injury in mice. Sci Rep 2018; 8:2832. [PMID: 29434260 PMCID: PMC5809479 DOI: 10.1038/s41598-018-21113-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
The toxicological mechanisms of liver injury caused by most traditional Chinese medicine (TCM) remain largely unknown. Due to the unique features, exosomal microRNAs (miRNAs) are currently attracting major interests to provide further insights into toxicological mechanisms. Thus, taking Fructus Meliae Toosendan as an example of hepatoxic TCM, this study aimed to elucidate its hepatotoxicity mechanisms through profiling miRNAs in circulating exosomes of Fructus Meliae Toosendan water extract (FMT)-exposed mice. Biological pathway analysis of the 64 differentially expressed exosomal miRNAs (DEMs) showed that hepatic dysfunction induced by FMT likely related to apoptosis, mitochondrial dysfunction, and cell cycle dysregulation. Integrated analysis of serum exosomal DEMs and hepatic differentially expressed mRNAs further enriched oxidative stress and apoptosis related pathways. In vitro validation studies for omics results suggested that FMT-induced DNA damage was mediated by generating intracellular reactive oxygen species, leading to cell apoptosis through p53-dependent mitochondrial damage and S-phase arrest. Nrf2-mediated antioxidant response was activated to protect liver cells. Moreover, serum exosomal miR-370-3p, the most down-regulated miRNA involving in these pathways, might be the momentous event in aggravating cytotoxic effect of FMT by elevating p21 and Cyclin E. In conclusion, circulating exosomal miRNAs profiling could contribute to deepen the understanding of TCM-induced hepatotoxicity.
Collapse
|
37
|
Saavedra F, Rivera C, Rivas E, Merino P, Garrido D, Hernández S, Forné I, Vassias I, Gurard-Levin ZA, Alfaro IE, Imhof A, Almouzni G, Loyola A. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Res 2017; 45:11700-11710. [PMID: 28977641 PMCID: PMC5714232 DOI: 10.1093/nar/gkx775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/24/2017] [Indexed: 11/12/2022] Open
Abstract
Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.
Collapse
Affiliation(s)
| | | | | | - Paola Merino
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | | | | | - Ignasi Forné
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Isabelle Vassias
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Zachary A Gurard-Levin
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Iván E Alfaro
- Fundación Ciencia & Vida, Santiago 7780272, Chile.,Departamento de Biología. Facultad de Ciencias Naturales y Exactas. Universidad de Playa Ancha, Valparaíso, Chile
| | - Axel Imhof
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | | |
Collapse
|
38
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
39
|
Cheloufi S, Hochedlinger K. Emerging roles of the histone chaperone CAF-1 in cellular plasticity. Curr Opin Genet Dev 2017; 46:83-94. [PMID: 28692904 PMCID: PMC5813839 DOI: 10.1016/j.gde.2017.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
Abstract
During embryonic development, cells become progressively restricted in their differentiation potential. This is thought to be regulated by dynamic changes in chromatin structure and associated modifications, which act together to stabilize distinct specialized cell lineages. Remarkably, differentiated cells can be experimentally reprogrammed to a stem cell-like state or to alternative lineages. Thus, cellular reprogramming provides a valuable platform to study the mechanisms that normally safeguard cell identity and uncover factors whose manipulation facilitates cell fate transitions. Recent work has identified the chromatin assembly factor complex CAF-1 as a potent barrier to cellular reprogramming. In addition, CAF-1 has been implicated in the reversion of pluripotent cells to a totipotent-like state and in various lineage conversion paradigms, suggesting that modulation of CAF-1 levels may endow cells with a developmentally more plastic state. Here, we review these exciting results, discuss potential mechanisms and speculate on the possibility of exploiting chromatin assembly pathways to manipulate cell identity.
Collapse
Affiliation(s)
- Sihem Cheloufi
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
40
|
Liu T, Wei J, Jiang C, Wang C, Zhang X, Du Y, Li J, Zhao H. CHAF1A, the largest subunit of the chromatin assembly factor 1 complex, regulates the growth of H1299 human non-small cell lung cancer cells by inducing G0/G1 cell cycle arrest. Exp Ther Med 2017; 14:4681-4686. [PMID: 29201167 PMCID: PMC5704333 DOI: 10.3892/etm.2017.5201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/10/2017] [Indexed: 01/30/2023] Open
Abstract
Chromatin assembly factor 1 subunit A (CHAF1A) is the largest subunit of the chromatin assembly factor 1 (CAF-1) complex that is implicated in the assembly of nucleosomes on newly synthesized DNA. The aim of the present study was to determine its expression and biological function in non-small cell lung cancer (NSCLC). The current study examined the levels of CHAF1A expression in 22 samples of NSCLC and corresponding normal lung tissues. Subsequently, endogenous CHAF1A expression in H1299 NSCLC cells was knocked down via lentiviral delivery of CHAF1A-targeting short hairpin RNA (shRNA), and cell proliferation, colony formation and cell cycle distribution were measured. The results demonstrated that levels of CHAF1A mRNA level were ~3-fold greater in NSCLC samples compared with adjacent normal tissues (P<0.05). shRNA-mediated silencing of CHAF1A significantly inhibited the proliferation and colony formation of H1299 cells, compared wirh the delivery of control shRNA (P<0.05). Furthermore, CHAF1A shRNA-transduced cells exhibited a significant increase in the percentage of S-phase cells and a significant decrease in the percentage of cells at the G0/G1 and G2/M phases, compared with control cells (P<0.05). Additionally, CHAF1A knockdown significantly decreased the expression of cyclin D1, cyclin-dependent kinase 2 and S-phase kinase-associated protein 2, and increased the expression of p21 and p27. This indicates that CHAF1A is upregulated in NSCLC and that its silencing suppresses the proliferation and colony formation of NSCLC cells, potentially by inducing G0/G1 cell cycle arrest. CHAF1A may therefore represent a potential therapeutic target to treat NSCLC.
Collapse
Affiliation(s)
- Tanzhen Liu
- Department of Respiratory Medicine, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jingjing Wei
- Department of Respiratory Medicine, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chao Jiang
- Department of Respiratory Medicine, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chen Wang
- Department of Pathology, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoqin Zhang
- Department of Pathology, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yan Du
- Department of Respiratory Medicine, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jianqiang Li
- Department of Respiratory Medicine, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hui Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
41
|
Mozdoori N, Safarian S, Sheibani N. Augmentation of the cytotoxic effects of zinc oxide nanoparticles by MTCP conjugation: Non-canonical apoptosis and autophagy induction in human adenocarcinoma breast cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:949-959. [PMID: 28576071 PMCID: PMC6018014 DOI: 10.1016/j.msec.2017.03.300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 01/04/2023]
Abstract
Zinc oxide nanoparticles are very toxic, but their agglomeration reduces their lethal cytotoxic effects. Here we tested the hypothesis that conjugation of ZnO nanoparticles via Meso-Tetra (4-Carboxyphenyl) Porphyrin (MTCP) could provide electrostatic or steric stabilization of ZnO nanoparticles and increase their cytotoxic effects. The cytotoxicity and cell death induction were assessed using two human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-468). The MTT results indicated that the toxicity of ZnO nanoparticles was significantly increased upon MTCP conjugation. Annexin/PI and real time RT-PCR results demonstrated that the ZnO-MTCP nanoparticles induced cell death via different non-canonical pathways that are under ca2+ control. Calcium signaling could regulate lysosomal dependent apoptosis and death autophagy, and killing of the two selected types of breast cancer cells.
Collapse
Affiliation(s)
- Najmeh Mozdoori
- Cell and Molecular Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Shahrokh Safarian
- Cell and Molecular Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
42
|
Fritz AJ, Ghule PN, Boyd JR, Tye CE, Page NA, Hong D, Shirley DJ, Weinheimer AS, Barutcu AR, Gerrard DL, Frietze S, van Wijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Intranuclear and higher-order chromatin organization of the major histone gene cluster in breast cancer. J Cell Physiol 2017; 233:1278-1290. [PMID: 28504305 DOI: 10.1002/jcp.25996] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Alterations in nuclear morphology are common in cancer progression. However, the degree to which gross morphological abnormalities translate into compromised higher-order chromatin organization is poorly understood. To explore the functional links between gene expression and chromatin structure in breast cancer, we performed RNA-seq gene expression analysis on the basal breast cancer progression model based on human MCF10A cells. Positional gene enrichment identified the major histone gene cluster at chromosome 6p22 as one of the most significantly upregulated (and not amplified) clusters of genes from the normal-like MCF10A to premalignant MCF10AT1 and metastatic MCF10CA1a cells. This cluster is subdivided into three sub-clusters of histone genes that are organized into hierarchical topologically associating domains (TADs). Interestingly, the sub-clusters of histone genes are located at TAD boundaries and interact more frequently with each other than the regions in-between them, suggesting that the histone sub-clusters form an active chromatin hub. The anchor sites of loops within this hub are occupied by CTCF, a known chromatin organizer. These histone genes are transcribed and processed at a specific sub-nuclear microenvironment termed the major histone locus body (HLB). While the overall chromatin structure of the major HLB is maintained across breast cancer progression, we detected alterations in its structure that may relate to gene expression. Importantly, breast tumor specimens also exhibit a coordinate pattern of upregulation across the major histone gene cluster. Our results provide a novel insight into the connection between the higher-order chromatin organization of the major HLB and its regulation during breast cancer progression.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Prachi N Ghule
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Natalie A Page
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont.,Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David J Shirley
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Adam S Weinheimer
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Ahmet R Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Diana L Gerrard
- Medical Laboratory and Radiation Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, Vermont
| | - Seth Frietze
- Medical Laboratory and Radiation Sciences, University of Vermont College of Nursing and Health Sciences, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| |
Collapse
|
43
|
Alexiadis A, Delidakis C, Kalantidis K. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development. FEBS Lett 2017. [PMID: 28626879 DOI: 10.1002/1873-3468.12719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations.
Collapse
Affiliation(s)
- Anastasios Alexiadis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
44
|
Tiraravesit N, Humbert P, Robin S, Tissot M, Viennet C, Viyoch J. Artocarpin-enriched (Artocarpus altilis) Heartwood Extract Provides Protection Against UVB-induced Mechanical Damage in Dermal Fibroblasts. Photochem Photobiol 2017; 93:1232-1239. [PMID: 28477344 DOI: 10.1111/php.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/08/2017] [Indexed: 01/06/2023]
Abstract
This study aimed to evaluate the protective effect of artocarpin-enriched (Artocarpus altilis) heartwood extract on the mechanical properties of UVB-irradiated fibroblasts. Human skin fibroblasts were pretreated with 50 μg/mL-1 extract and later irradiated with UVB (200 mJ/cm-2 ). They were then cultured within three-dimensional of free-floating and tense collagen lattices. The pretreatment of fibroblasts with the extract prior to UVB radiation showed cells protection against UVB-induced suppression of α-SMA expression, fibroblast migration and contraction. These results reveal that the extract prevents mechanical damages induced by UVB irradiation in fibroblast-embedded collagen lattices, and therefore, has a potential as a natural photo-protectant.
Collapse
Affiliation(s)
- Narisara Tiraravesit
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Philippe Humbert
- Engineering and Cutaneous Biology Laboratory, UMR 1098, University of Bourgogne Franche-Comte, Besançon, France.,Department of Dermatology, University Hospital, Besançon, France
| | | | - Marion Tissot
- Engineering and Cutaneous Biology Laboratory, UMR 1098, University of Bourgogne Franche-Comte, Besançon, France
| | - Céline Viennet
- Engineering and Cutaneous Biology Laboratory, UMR 1098, University of Bourgogne Franche-Comte, Besançon, France
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
45
|
Xia D, Yang X, Liu W, Shen F, Pan J, Lin Y, Du N, Sun Y, Xi X. Over-expression of CHAF1A in Epithelial Ovarian Cancer can promote cell proliferation and inhibit cell apoptosis. Biochem Biophys Res Commun 2017; 486:191-197. [PMID: 28286267 DOI: 10.1016/j.bbrc.2017.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
Abstract
Chromatin Assembly Factor 1, subunit A (CHAF1A) can regulate cell proliferation, DNA repair and epigenetic changes in embryonic stem cells and it has been reported that over-expression of CHAF1A is associated with several human diseases including cancer. However, the expression and function of CHAF1A in Epithelial Ovarian Cancer (EOC) are rarely reported at present. In this study, we found that the positive staining of CHAF1A in EOC was higher than that in normal tissues and over-expression of CHAF1A was strongly associated with cancer stage and lymph node metastasis. Knockdown of CHAF1A by siRNA in EOC inhibited cell proliferation, reduced colony formation, caused G0/G1 phase arrest and promoted cell apoptosis. Taken together, the high expression of CHAF1A promotes cell proliferation and inhibits cell apoptosis and CHAF1A may be developed as a prognosis biomarker and potential therapeutic target of EOC.
Collapse
Affiliation(s)
- Dandan Xia
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Xiaoming Yang
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Wenxue Liu
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Fangqian Shen
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Jufang Pan
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Yu Lin
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Na Du
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated First People's Hospital, 650# XinSongJiang Road, Shanghai, 201600, China.
| |
Collapse
|
46
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
47
|
Alabert C, Jasencakova Z, Groth A. Chromatin Replication and Histone Dynamics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:311-333. [PMID: 29357065 DOI: 10.1007/978-981-10-6955-0_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure to reassemble nucleosomes at replication forks blocks DNA replication progression in higher eukaryotes and leads to genomic instability, we further underline the importance of the mechanistic link between DNA replication and chromatin duplication.
Collapse
Affiliation(s)
- Constance Alabert
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zuzana Jasencakova
- Biotech Research and Innovation Centre (BRIC), Health and Medical Faculty, University of Copenhagen, Copenhagen, Denmark
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), Health and Medical Faculty, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Sokolova M, Turunen M, Mortusewicz O, Kivioja T, Herr P, Vähärautio A, Björklund M, Taipale M, Helleday T, Taipale J. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion. Cell Cycle 2016; 16:189-199. [PMID: 27929715 PMCID: PMC5283814 DOI: 10.1080/15384101.2016.1261765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells. In contrast, depletion of CASP8AP2 in normal cells triggers a response that arrests viable cells in S-phase. The arrest is dependent on p53, and preceded by accumulation of markers of DNA damage, indicating that nucleosome depletion is sensed in normal cells via a DNA-damage -like response that is defective in tumor cells.
Collapse
Affiliation(s)
- Maria Sokolova
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Mikko Turunen
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Oliver Mortusewicz
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Teemu Kivioja
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Patrick Herr
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Anna Vähärautio
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Mikael Björklund
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland
| | - Minna Taipale
- c Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Thomas Helleday
- b Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Jussi Taipale
- a Genome-Scale Biology Program, University of Helsinki , Helsinki , Finland.,c Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
49
|
Ma H, Song T, Wang T, Wang S. Influence of Human p53 on Plant Development. PLoS One 2016; 11:e0162840. [PMID: 27648563 PMCID: PMC5029891 DOI: 10.1371/journal.pone.0162840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Mammalian p53 is a super tumor suppressor and plays a key role in guarding genome from DNA damage. However, p53 has not been found in plants which do not bear cancer although they constantly expose to ionizing radiation of ultraviolet light. Here we introduced p53 into the model plant Arabidopsis and examined p53-conferred phenotype in plant. Most strikingly, p53 caused early senescence and fasciation. In plants, fasciation has been shown as a result of the elevated homologous DNA recombination. Consistently, a reporter with overlapping segments of the GUS gene (1445) showed that the frequency of homologous recombination was highly induced in p53-transgenic plants. In contrast to p53, SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), as a negative regulator of homologous recombination in plants, is not present in mammals. Comet assay and clonogenic survival assay demonstrated that SNI1 inhibited DNA damage repair caused by either ionizing radiation or hydroxyurea in human osteosarcoma U2OS cancer cells. RAD51D is a recombinase in homologous recombination and functions downstream of SNI1 in plants. Interestingly, p53 rendered the sni1 mutants madly branching of inflorescence, a phenotype of fasciation, whereas rad51d mutant fully suppressed the p53-induced phenotype, indicating that human p53 action in plant is mediated by the SNI1-RAD51D signaling pathway. The reciprocal species-swap tests of p53 and SNI1 in human and Arabidopsis manifest that these species-specific proteins play a common role in homologous recombination across kingdoms of animals and plants.
Collapse
Affiliation(s)
- Huimin Ma
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Teng Song
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tianhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- * E-mail:
| |
Collapse
|
50
|
Chen S, Zhang Z, Qing T, Ren Z, Yu D, Couch L, Ning B, Mei N, Shi L, Tolleson WH, Guo L. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch Toxicol 2016; 91:1293-1307. [PMID: 27369375 DOI: 10.1007/s00204-016-1775-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 01/12/2023]
Abstract
Many usnic acid-containing dietary supplements have been marketed as weight loss agents, although severe hepatotoxicity and acute liver failure have been associated with their overuse. Our previous mechanistic studies revealed that autophagy, disturbance of calcium homeostasis, and ER stress are involved in usnic acid-induced toxicity. In this study, we investigated the role of oxidative stress and the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. We found that a 24-h treatment with usnic acid caused DNA damage and S-phase cell cycle arrest in a concentration-dependent manner. Usnic acid also triggered oxidative stress as demonstrated by increased reactive oxygen species generation and glutathione depletion. Short-term treatment (6 h) with usnic acid significantly increased the protein level for Nrf2 (nuclear factor erythroid 2-related factor 2), promoted Nrf2 translocation to the nucleus, up-regulated antioxidant response element (ARE)-luciferase reporter activity, and induced the expression of Nrf2-regulated targets, including glutathione reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 (NQO1). Furthermore, knockdown of Nrf2 with shRNA potentiated usnic acid-induced DNA damage and cytotoxicity. Taken together, our results show that usnic acid causes cell cycle dysregulation, DNA damage, and oxidative stress and that the Nrf2 signaling pathway is activated in usnic acid-induced cytotoxicity.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Zhuhong Zhang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA.,Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tao Qing
- School of Pharmacy, School of Life Sciences, Fudan-Zhangjiang Center for Clinical Genomics and Zhanjiang Center for Translational Medicine, Fudan University, Shanghai, 200438, China
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Dianke Yu
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
| | - Letha Couch
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR, 72079, USA
| | - Leming Shi
- School of Pharmacy, School of Life Sciences, Fudan-Zhangjiang Center for Clinical Genomics and Zhanjiang Center for Translational Medicine, Fudan University, Shanghai, 200438, China
| | - William H Tolleson
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR)/U.S. Food and Drug Administration (FDA), HFT-110, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|