1
|
Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, Zhao B, Xia Z, Wang C. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol 2017; 44:760-770. [PMID: 28394420 DOI: 10.1111/1440-1681.12762] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Ping Jiang
- Department of Cardiovascular Medicine; The People's Hospital of Gongan County; Gongan China
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Deling Zhang
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Hong Qiu
- Department of Laboratory; Dongfeng General Hospital of Hubei Medical University; Shiyan China
| | - Xianqi Yi
- Department of Cardiovascular Medicine; The People's Hospital of Gongan County; Gongan China
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Yingkang Cao
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| | - Bo Zhao
- Department of Anesthesiology; Wuhan University Renmin Hospital; Wuhan China
| | - Zhongyuan Xia
- Department of Anesthesiology; Wuhan University Renmin Hospital; Wuhan China
| | - Changhua Wang
- Department of Pathology & Pathophysiology; Wuhan University School of Basic Medical Sciences; Wuhan China
| |
Collapse
|
2
|
Chang PL, Hsieh YH, Wang CC, Juliana MM, Tsuruta Y, Timares L, Elmets C, Ho KJ. Osteopontin facilitates ultraviolet B-induced squamous cell carcinoma development. J Dermatol Sci 2014; 75:121-32. [PMID: 24888687 PMCID: PMC4128184 DOI: 10.1016/j.jdermsci.2014.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a matricellular glycoprotein that is markedly expressed in cutaneous squamous cell carcinomas (cSCCs) and in actinic keratoses implicating its role in photocarcinogenesis. OBJECTIVE To determine whether OPN facilitates the development of cSCC and its function. METHODS cSCCs development was compared between wild-type (WT) and OPN-null mice subjected to UVB irradiation for 43 weeks. UVB-induced OPN expression was determined by Western blot, immunoprecipitation, ELISA, and semi-quantitative RT-PCR. Epidermal layer and TUNEL analyses assessed if OPN mediates UVB-induced epidermal hyperplasia or suppresses UVB-induced apoptosis of basal keratinocytes, respectively. In vitro experiments determined whether OPN enhances cell survival of UVB-induced apoptosis and its potential mechanisms. Immunohistochemical analyses of epidermis assessed the expression of CD44 and focal adhesion kinase (FAK), molecules that mediate OPN survival function. RESULTS Compared to female WT mice, OPN-null mice did not develop cSCCs. UVB irradiation stimulated OPN protein expression in the dorsal skin by 11h and remains high at 24-48h. OPN did not mediate UVB-induced epidermal hyperplasia; instead, it protected basal keratinocytes from undergoing apoptosis upon UVB exposure. Likewise, the addition of OPN suppressed UVB-induced OPN-null cSCC cell apoptosis, the activation of caspase-9 activity, and increased phosphorylation of FAK at Y397. Furthermore, the expression of CD44 and FAK in WT mice epidermis was greater than that of OPN-null mice prior to and during early acute UVB exposure. CONCLUSION These data support the hypothesis that chronic UVB-induced OPN expression protects the survival of initiated basal keratinocytes and, consequently, facilitates cSCC develop.
Collapse
MESH Headings
- Animals
- Apoptosis/radiation effects
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/prevention & control
- Cell Line
- Cell Survival/radiation effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Epidermis/metabolism
- Epidermis/pathology
- Epidermis/radiation effects
- Female
- Focal Adhesion Kinase 1/metabolism
- Gene Expression Regulation
- Hyaluronan Receptors/metabolism
- Hyperplasia
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Keratinocytes/radiation effects
- Mice, 129 Strain
- Mice, Knockout
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/metabolism
- Neoplasms, Radiation-Induced/pathology
- Neoplasms, Radiation-Induced/prevention & control
- Osteopontin/deficiency
- Osteopontin/genetics
- Osteopontin/metabolism
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/prevention & control
- Time Factors
- Ultraviolet Rays/adverse effects
Collapse
Affiliation(s)
- Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yu-Hua Hsieh
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Cheng Wang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Margaret Juliana
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuko Tsuruta
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura Timares
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kang-Jey Ho
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Hsieh YH, van der Heyde H, Oh ES, Guan JL, Chang PL. Osteopontin mediates tumorigenic transformation of a preneoplastic murine cell line by suppressing anoikis: An Arg-Gly-Asp-dependent-focal adhesion kinase-caspase-8 axis. Mol Carcinog 2013; 54:379-92. [DOI: 10.1002/mc.22108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Yu-Hua Hsieh
- Department of Nutrition Sciences, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
| | | | - Eok-Soo Oh
- Division of Molecular Life Sciences and Center for Cell Signaling Research, Department of Life Sciences; Ewha Woman's University; Seoul Korea
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Department of Internal Medicine; University of Michigan Medical School; Ann Arbor Michigan
| | - Pi-Ling Chang
- Department of Nutrition Sciences, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
- Department of Dermatology, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
- Department of Comprehensive Cancer Center, 1720 2nd Avenue South; University of Alabama at Birmingham; Birmingham Alabama
| |
Collapse
|
4
|
Mooi LY, Yew WT, Hsum YW, Soo KK, Hoon LS, Chieng YC. Suppressive effect of maslinic acid on PMA-induced protein kinase C in human B-lymphoblastoid cells. Asian Pac J Cancer Prev 2012; 13:1177-82. [PMID: 22799301 DOI: 10.7314/apjcp.2012.13.4.1177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H- 7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The IC₅₀ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and 39.29 μM, respectively. Four PKC isoforms, PKC βI, βII, δ, and ζ, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC βI, δ, and ζ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.
Collapse
Affiliation(s)
- Lim Yang Mooi
- Department of Pre-clinical Science, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| | | | | | | | | | | |
Collapse
|
5
|
Establishment and characterization of an osteopontin-null cutaneous squamous cell carcinoma cell line. In Vitro Cell Dev Biol Anim 2011; 46:87-91. [PMID: 19915934 DOI: 10.1007/s11626-009-9248-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 09/30/2009] [Indexed: 02/02/2023]
Abstract
Osteopontin (OPN) is a secreted glycoprotein implicated to function in cancer development and metastasis. Although elevated expression of OPN are observed in cancer cells of various types, in some cases, only the cells in the stromal region surrounding the tumor express OPN, suggesting distinct functional roles for this protein derived from host cells and from cancer cells. To provide a model for addressing the functions and mechanisms of host-derived OPN in cancer progression and metastasis, a cutaneous squamous cell carcinoma cell line (ONSC) that lacks the OPN gene, Spp1, was established. This line of cells was derived from a squamous cell carcinoma that developed in a female, OPN-null mouse subjected to two-stage skin carcinogenesis. Morphologically, ONSC cells resemble epithelial cells, and they express the epithelial markers, K1, K14, and p63, as confirmed by immunohistochemical analyses. Genomic analyses indicate the presence of mutated H-Ras and p53 genes. ONSC cells form colonies in soft agar and, subcutaneously injected into athymic nude mice, develop into squamous cell carcinomas that metastasize to the lungs. Lacking OPN expression, these squamous cell carcinoma cells provide a model to address the function of host OPN in the context of cancer progression and metastasis.
Collapse
|
6
|
Gauer S, Hauser IA, Obermüller N, Holzmann Y, Geiger H, Goppelt-Struebe M. Synergistic induction of osteopontin by aldosterone and inflammatory cytokines in mesangial cells. J Cell Biochem 2008; 103:615-23. [PMID: 17546625 DOI: 10.1002/jcb.21433] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypertensive nephrosclerosis is characterized by activation of the renin-angiotensin-aldosterone system in combination with an inflammatory response characterized by an infiltration of T-cells and mononuclear cells, which release proinflammatory cytokines like IL-1beta/TNFalpha. In various models of experimental hypertensive disease the chemokine osteopontin (OPN) enhances further leukocyte infiltration. Therefore, we investigated the induction of OPN expression in renal mesangial cells (MCs) by aldosterone and the inflammatory cytokines IL-1beta/TNFalpha. Incubation with aldosterone resulted in a time- and concentration-dependent increase in OPN mRNA and protein. OPN mRNA expression followed a biphasic time course with an early increase between 4 and 8 h and the second phase starting at 14 h. The early phase was independent of protein synthesis, indicating a direct effect of aldosterone. Aldosterone-mediated induction of OPN was prevented by spironolactone, indicative of a receptor-mediated aldosterone effect. The mineralocorticoid receptor (MR) was identified in MCs by RT-PCR and immunoprecipitation, and shown to interact with a putative aldosterone-response element of the OPN promoter. The proinflammatory cytokines IL-1beta and TNFalpha only marginally affected OPN expression in MCs. However, coincubation of aldosterone and the cytokines synergistically increased OPN mRNA and protein levels. Since the synergistic effect on OPN mRNA was inhibited by diphenyleneiodonium, we assume an involvement of reactive oxygen species (ROS). We conclude that the chemokine OPN is a target gene of aldosterone in renal MCs, which is activated via the MR, and that proinflammatory cytokines enhance aldosterone-dependent OPN expression. In vivo, this may result in further leukocyte infiltration aggravating hypertensive nephrosclerosis.
Collapse
Affiliation(s)
- Stefan Gauer
- Department of Nephrology, Medical Clinic III, University of Frankfurt/Main, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Osteopontin is a secreted phosphoprotein that has been implicated as an important mediator of tumor metastasis and has been investigated for use as a biomarker for advanced disease and as a potential therapeutic target in the regulation of cancer metastasis. The OPN DNA sequence is highly conserved and the protein contains several important functional domains including alpha(v)beta integrin and CD44 binding sites. High levels of OPN expression correlate with tumor invasion, progression or metastasis in multiple cancer. Studies demonstrate that osteopontin mediates the molecular mechanisms which determine metastatic spread, such as prevention of apoptosis, extracellular matrix proteolysis and remodeling, cell migration, evasion of host-immune cells and neovascularization. Transcriptional regulation of OPN is complex and involves multiple pathways, including AP-1, Myc, v-Src, Runx/CBF, TGF-B/BMPs/Smad/Hox, and Wnt/ss-catenin/APC/GSK-3ss/Tcf-4. The current state of knowledge of OPN biology suggests that it is an attractive target for therapeutic modulation of metastatic disease.
Collapse
|
8
|
Maetzler W, Berg D, Schalamberidze N, Melms A, Schott K, Mueller JC, Liaw L, Gasser T, Nitsch C. Osteopontin is elevated in Parkinson’s disease and its absence leads to reduced neurodegeneration in the MPTP model. Neurobiol Dis 2007; 25:473-82. [PMID: 17188882 DOI: 10.1016/j.nbd.2006.10.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/19/2006] [Accepted: 10/29/2006] [Indexed: 11/16/2022] Open
Abstract
In the pathogenesis of Parkinson's disease (PD), oxidative and nitrosative stress, apoptosis, mitochondrial dysfunction, and excitotoxicity are involved, i.e., processes in which osteopontin (OPN) may also play a role. We have studied in PD patients serum and cerebrospinal fluid (CSF) concentrations of OPN, its immunohistochemical presence in substantia nigra (SN) and tested in OPN-null mice the impact of this protein on MPTP-induced neurodegeneration. PD was accompanied by increased OPN levels in the body fluids. Higher serum levels were associated with more severe motor symptoms. CSF levels were positively associated with concomitant dementia and negatively associated with dopaminergic treatment. In human SN, OPN was expressed in neurons, in their Lewy bodies and in microglia. Loss of tyrosine-hydroxylase-positive cells in the SN and of dopaminergic fibers in the striatum was reduced 3 weeks after MPTP intoxication in OPN-null mice. These data suggest that OPN is involved in PD-associated neurodegeneration.
Collapse
Affiliation(s)
- Walter Maetzler
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hsieh YH, Juliana MM, Hicks PH, Feng G, Elmets C, Liaw L, Chang PL. Papilloma development is delayed in osteopontin-null mice: implicating an antiapoptosis role for osteopontin. Cancer Res 2006; 66:7119-27. [PMID: 16849558 DOI: 10.1158/0008-5472.can-06-1002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteopontin is a secreted, adhesive glycoprotein, whose expression is markedly elevated in several types of cancer and premalignant lesions, implicating its association with carcinogenesis. To test the hypothesis that induced osteopontin is involved in tumor promotion in vivo, osteopontin-null and wild-type (WT) mice were subjected to a two-stage skin chemical carcinogenesis protocol. Mice were initiated with 7,12-dimethylbenz(a)anthracene (DMBA) applied on to the dorsal skin followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate (TPA) for 27 weeks. Osteopontin-null mice showed a marked decrease both in tumor/papilloma incidence and multiplicity compared with WT mice. Osteopontin is minimally expressed in normal epidermis, but on treatment with TPA its expression is highly induced. To determine the possible mechanism(s) by which osteopontin regulates tumor development, we examined cell proliferation and cell survival. Epidermis from osteopontin-null and WT mice treated with TPA thrice or with DMBA followed by TPA for 11 weeks showed a similar increase in epidermal hyperplasia, suggesting that osteopontin does not mediate TPA-induced cell proliferation. Bromodeoxyuridine staining of papillomas and adjacent epidermis showed no difference in cell proliferation between groups. However, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analyses indicated a greater number of apoptotic cells in DMBA-treated skin and papillomas from osteopontin-null versus WT mice. These studies are the first to show that induction of the matricellular protein osteopontin facilitates DMBA/TPA-induced cutaneous carcinogenesis most likely through prevention of apoptosis.
Collapse
Affiliation(s)
- Yu-Hua Hsieh
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35295-3360, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Schapira V, Lazer G, Katzav S. Osteopontin is an oncogenic Vav1- but not wild-type Vav1-responsive gene: implications for fibroblast transformation. Cancer Res 2006; 66:6183-91. [PMID: 16778192 DOI: 10.1158/0008-5472.can-05-3735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mammalian wild-type Vav1 (wtVav1) encodes a specific GDP/GTP nucleotide exchange factor that is exclusively expressed in the hematopoietic system. Despite numerous studies, the mechanism underlying transformation of fibroblasts by oncogenic Vav1 (oncVav1) is not well defined. We identified osteopontin, a marker for tumor aggressiveness, as an oncVav1-inducible gene. Osteopontin is highly expressed in oncVav1-transformed NIH3T3 cells (NIH/oncVav1) but is barely detected in NIH3T3 expressing wtVav1 (NIH/wtVav1) even following epidermal growth factor stimulation, which normally induces osteopontin. Depleting oncVav1 in NIH/oncVav1 using small interfering RNA led to a considerable decrease in osteopontin, whereas reducing osteopontin expression did not affect oncVav1 expression, suggesting that oncVav1 operates upstream of osteopontin. Vav1-depleted NIH/oncVav1 cells, but not osteopontin-depleted NIH/oncVav1 cells, exhibited impaired extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase phosphorylation. Inhibition of ERK phosphorylation in NIH/oncVav1 cells led to a decrease in osteopontin expression, implying that the elevated osteopontin expression in these cells is dependent on ERK phosphorylation. Vav1-depleted or osteopontin-depleted NIH/oncVav1 cells lost their tumorigenic properties as judged by the soft agar and invasion assays, although loss of osteopontin expression had a less dramatic effect. Suppression of Vav1 expression in NIH/oncVav1 cells led to reversion to "normal" morphology, whereas when only osteopontin expression was diminished cells retained their transformed morphology. This work strongly supports a role for oncVav1 as a master oncogene and provides clues to the molecular mechanism underlying oncVav1 transformation.
Collapse
Affiliation(s)
- Vered Schapira
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
11
|
Hsieh TJ, Chen R, Zhang SL, Liu F, Brezniceanu ML, Whiteside CI, Fantus IG, Ingelfinger JR, Hamet P, Chan JSD. Upregulation of osteopontin gene expression in diabetic rat proximal tubular cells revealed by microarray profiling. Kidney Int 2006; 69:1005-15. [PMID: 16528250 DOI: 10.1038/sj.ki.5000206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progression of diabetic nephropathy appears directly related to renal tubulointerstitial injury, but the involved genes are incompletely delineated. To identify such genes, DNA microarray analysis was performed with RNA from renal proximal tubules (RPTs) of streptozotocin-induced diabetic Wistar rats, spontaneously diabetic BioBreeding rats, and rat immortalized renal proximal tubular cells (IRPTCs) exposed to high glucose (25 mM) medium for 2 weeks. Osteopontin (OPN) mRNA expression was quantified by real time-quantitative polymerase chain reaction (RT-qPCR) or conventional reverse transcriptase-polymerase chain reaction (RT-PCR). OPN mRNA expression was upregulated (5-70-fold increase) in diabetic rat RPTs and in IRPTCs chronically exposed to high glucose compared to control RPTs and IRPTCs. High glucose, angiotensin II, phorbol 12-myristate 13-acetate and transforming growth factor-beta 1 (TGF-beta1) stimulated OPN mRNA expression in IRPTCs in a dose- and time-dependent manner. This effect was inhibited by tiron, taurine, diphenylene iodinium, losartan, perindopril, calphostin C, or LY 379196 but not PD123319. IRPTCs overexpressing dominant-negative protein kinase C-beta 1 (PKC-beta1) cDNA or antisense TGF-beta1 cDNA prevented the high glucose effect on OPN mRNA expression. We concluded that high glucose-mediated increases in OPN gene expression in diabetic rat RPTs and IRPTCs are mediated, at least in part, via reactive oxygen species generation, intrarenal rennin-angiotensin system activation, TGF-beta1 expression, and PKC-beta1 signaling.
Collapse
Affiliation(s)
- T-J Hsieh
- Research Centre, Centre hospitalier de l'Université de Montréal-Hôtel-Dieu, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang H, Bailey JS, Coss D, Lin B, Tsutsumi R, Lawson MA, Mellon PL, Webster NJG. Activin modulates the transcriptional response of LbetaT2 cells to gonadotropin-releasing hormone and alters cellular proliferation. Mol Endocrinol 2006; 20:2909-30. [PMID: 16772531 PMCID: PMC2673912 DOI: 10.1210/me.2006-0109] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Both GnRH and activin are crucial for the correct function of pituitary gonadotrope cells. GnRH regulates LH and FSH synthesis and secretion and gonadotrope proliferation, whereas activin is essential for expression of FSH. Little is known, however, about the interplay of signaling downstream of these two hormones. In this study, we undertook expression profiling to determine how activin pretreatment alters the transcriptional response of LbetaT2 gonadotrope cells to GnRH stimulation. Activin treatment alone altered the transcriptional profile of 303 genes including inducing that of the 17beta-hydroxysteroid dehydrogenase B1 gene that converts estrone to 17beta-estradiol, altering the sensitivity of the cells to estrone. Furthermore, activin had a dramatic effect on the response of LbetaT2 cells to GnRH. Hierarchical clustering of 2453 GnRH-responsive genes identified groups of genes the response of which to GnRH was either enhanced or blunted after activin treatment. Mapping of these genes to gene ontology classifications or signaling pathways highlighted significant differences in the classes of altered genes. In the presence of activin, GnRH regulates genes in pathways controlling cell energetics, cytoskeletal rearrangements, organelle organization, and mitosis in the absence of activin, but genes controlling protein processing, cell differentiation, and secretion. Therefore, we demonstrated that activin enhanced GnRH induction of p38MAPK activity, caused GnRH-dependent phosphorylation of p53, and reduced the ability of GnRH to cause G1 arrest. Thus, although activin alone changes a modest number of transcripts, activin pretreatment dramatically alters the response to GnRH from an antiproliferative response to a more differentiated, synthetic response appropriate for a secretory cell.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0673, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang PL, Blair HC, Zhao X, Chien YW, Chen D, Tilden AB, Chang Z, Cao X, Faye-Petersen OM, Hicks P. Comparison of fetal and adult marrow stromal cells in osteogenesis with and without glucocorticoids. Connect Tissue Res 2006; 47:67-76. [PMID: 16754512 DOI: 10.1080/03008200600584074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To better understand the potential use of fetal marrow stromal cells (MSCs) in bone tissue engineering, we compared the ability of these cells with those of adult MSCs with respect to osteoblasts differentiation in the presence or absence of glucocorticoids. Cells were grown for 3-4 weeks in basal medium or supplemented with 100 nM dexamethasone (DEX, a synthetic glucocorticoid analog) or with 50 microM L-ascorbate and 10 mM glycerol-2-phosphate (AS+GP) or with AS+GP+DEX. At various time points in culture, the following parameters were compared between fetal and adult MSCs: cell morphology, cell proliferation, alkaline phosphatase activity, calcium (45Ca) uptake, von Kossa staining, and glucocorticoids receptor expression were analyzed. Compared with adult MSCs, fetal cells showed a less dramatic change to cuboidal morphology in DEX-containing media. Fetal MSCs in all media conditions showed higher proliferation rates and lower alkaline phosphatase activities (p < 0.001) than adult cells. Both fetal and adult MSCs responded similarly in DEX-containing media with respect to suppressing cell proliferation, stimulating alkaline phosphatase activity, and consistently accumulating calcium (usually higher in fetal cells) with subsequent formation of mineralized matrix when compared with cells cultured in AS+GP. Our findings further implicate the requirement of glucocorticoids in osteogenesis. In conclusion, compared with adult MSCs, fetal cells showed greater ability in sustaining cell proliferation and calcium uptake suggesting that they may be useful for bone tissue repair.
Collapse
Affiliation(s)
- Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama, 35294-3360, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Feng G, Ohmori Y, Chang PL. Production of chemokine CXCL1/KC by okadaic acid through the nuclear factor-kappaB pathway. Carcinogenesis 2005; 27:43-52. [PMID: 16000401 DOI: 10.1093/carcin/bgi174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The murine chemokine CXCL1/KC is known as a chemoattractant for neutrophil infiltration and as a promoter of tumor growth. To determine its relevance in tumorigenesis, we first asked whether okadaic acid (OKA), a natural tumor promoter and a potent protein phosphatase 1 and 2A inhibitor, stimulates KC expression and if it does, through what pathway, in a promotable mouse epidermal-like JB6 cell line commonly used for studying molecules related to tumor promotion. We found that OKA stimulated the de novo synthesis of KC mRNA and protein in a dose- and time-dependent manner. To determine the mechanism by which OKA stimulated the expression of KC at the transcriptional level, transient transfection assays using serially deleted sections of KC promoter fused to luciferase reporter gene were performed. These studies showed that transactivation of KC promoter by OKA specifically involved the region between -104 and -59 containing the two nuclear factor-kappaB (NF-kappaB) response elements (kappaB1 and kappaB2). Further analyses using the mutated NF-kappaB response elements kappaB1 and kappaB2 indicated that both regions were required for optimum transactivation of KC by OKA with the former NF-kappaB response element playing a more significant role in regulating KC expression. Gel-shift and supershift analyses demonstrated the involvement of three NF-kappaB subunits, p65, p50 and c-Rel, with p65 as the major subunit in the NF-kappaB dimer complex. Additionally, immunohistochemistry and western blot analyses confirmed the presence of p65 in the nucleus with its transactivation domain phosphorylated at serine 536. In summary, this is the first report to show that the tumor promoter OKA can stimulate the de novo synthesis and secretion of KC, and that this stimulation is mediated through the NF-kappaB pathway in JB6 cells.
Collapse
Affiliation(s)
- Gong Feng
- Department of Nutrition Sciences and Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35294-3360, USA
| | | | | |
Collapse
|
15
|
Gross TS, King KA, Rabaia NA, Pathare P, Srinivasan S. Upregulation of osteopontin by osteocytes deprived of mechanical loading or oxygen. J Bone Miner Res 2005; 20:250-6. [PMID: 15647819 PMCID: PMC1435734 DOI: 10.1359/jbmr.041004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 08/30/2004] [Accepted: 08/30/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED The pathway(s) by which disuse is transduced into locally mediated osteoclastic resorption remain unknown. We found that both acute disuse (in vivo) and direct hypoxia (in vitro) induced rapid upregulation of OPN expression by osteocytes. Within the context of OPN's role in osteoclast migration and attachment, hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced bone resorption. INTRODUCTION We have recently reported that disuse induces osteocyte hypoxia. Because hypoxia upregulates osteopontin (OPN) in nonconnective tissue cells, we hypothesized that both disuse and hypoxia would rapidly elevate expression of OPN by osteocytes. MATERIALS AND METHODS The response of osteocytes to 24 h of disuse was explored by isolating the left ulna diaphysis of adult male turkeys from loading (n = 5). Cortical osteocytes staining positive for OPN were determined using immunohistochemistry and confocal microscopy. In vitro experiments were performed to determine if OPN expression was altered in MLO-Y4 osteocytes by direct hypoxia (3, 6, 24, and 48 h) or hypoxia (3 and 24 h) followed by 24 h of reoxygenation. A final in vitro experiment explored the potential of protein kinase C (PKC) to regulate hypoxia-induced osteocyte OPN mRNA alterations. RESULTS We found that 24 h of disuse significantly elevated osteocyte OPN expression in vivo (145% versus intact bones; p = 0.02). We confirmed this finding in vitro, by observing rapid and significant upregulation of OPN protein expression after 24 and 48 h of hypoxia. Whereas 24 h of reoxygenation after 3 h of hypoxia restored normal osteocyte OPN expression levels, 24 h of reoxygenation after 24 h of hypoxia did not mitigate elevated osteocyte OPN expression. Finally, preliminary inhibitor studies suggested that PKC serves as a potent upstream regulator of hypoxia-induced osteocyte OPN expression. CONCLUSIONS Given the documented roles of OPN as a mediator of environmental stress (e.g., hypoxia), an osteoclast chemotaxant, and a modulator of osteoclastic attachment to bone, we speculate that hypoxia-induced osteocyte OPN expression may serve to mediate disuse-induced osteoclastic resorption. Furthermore, it seems that a brief window of time exists in which reoxygenation (as might be achieved by reloading bone) can serve to inhibit this pathway.
Collapse
Affiliation(s)
- Ted S Gross
- Orthopaedic Science Laboratories, Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98104-2499, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Osteopontin (OPN) is a glyco-phosphoprotein that is expressed and secreted by numerous human cancers. OPN functions in cell adhesion, chemotaxis, macrophage-directed interleukin-10 (IL-10) suppression, stress-dependent angiogenesis, prevention of apoptosis, and anchorage-independent growth of tumor cells by regulating cell-matrix interactions and cellular signaling through binding with integrin and CD44 receptors. While constitutive expression of OPN exists in several cell types, induced expression has been detected in T-lymphocytes, epidermal cells, bone cells, macrophages, and tumor cells in remodeling processes such as inflammation, ischemia-reperfusion, bone resorption, and tumor progression. Recently, substantial evidence has linked OPN with the regulation of metastatic spread by tumor cells. However, the molecular mechanisms that define the role of OPN in tumor metastasis are incompletely understood. Transcriptional regulators that contribute to the induction of OPN expression have received significant attention as potential modulators of the OPN-mediated metastatic phenotype. The following review will discuss the molecular structure of OPN, the evidence for its functional role in tumor cell metastasis, the downstream signals that activate invasive mechanisms, and the recent reports concerning regulation of OPN transcription.
Collapse
Affiliation(s)
- Philip Y Wai
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
17
|
Beck GR, Knecht N. Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 2003; 278:41921-9. [PMID: 12920127 DOI: 10.1074/jbc.m304470200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of inorganic phosphate by alkaline phosphatase during osteoblast differentiation represents an important signaling event, although the molecular and cellular consequences are currently undefined. We have previously described osteopontin as a gene regulated by an increase in inorganic phosphate not only in osteoblasts but also in other cell types. We describe here the identification of specific signaling pathways required for the stimulation of osteopontin expression by inorganic phosphate. We have determined that phosphate selectively activates the extracellular signal-regulated kinase (ERK1/2) signaling pathway but does not activate the other mitogen-activated protein kinase signaling proteins, p38, or the c-Jun N-terminal kinase. In addition, our results suggest that cellular exposure to 10 mm inorganic phosphate causes a biphasic ERK1/2 activation. The second ERK1/2 activation is required for osteopontin regulation, whereas the first is not sufficient. Analysis of common protein kinase families has revealed that phosphate-induced osteopontin expression specifically uses a protein kinase C-dependent signaling pathway. In addition, our results suggest that protein kinase C and ERK1/2 are not part of the same pathway but constitute two distinct pathways. Finally, we have determined that the proteasomal activity is required not only for phosphate-induced expression of osteopontin but also for the induction of osteopontin in response to 12-O-tetradecanoylphorbol 13-acetate and okadaic acid. The data presented here define for the first time the ability of increased inorganic phosphate to stimulate specific signaling pathways resulting in functionally significant changes in gene expression and identify three important signaling pathways in the regulation of osteopontin.
Collapse
Affiliation(s)
- George R Beck
- National Cancer Institute-Frederick, Center for Cancer Research, Basic Research Laboratory, Bldg. 576 Rm. 110, Frederick, MD 21702, USA.
| | | |
Collapse
|
18
|
Weber TJ, Markillie LM. Regulation of activator protein-1 by 8-iso-prostaglandin E2 in a thromboxane A2 receptor-dependent and -independent manner. Mol Pharmacol 2003; 63:1075-81. [PMID: 12695536 DOI: 10.1124/mol.63.5.1075] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thromboxane (TX) A(2) receptor (TP) encompasses two alternatively spliced forms, termed the platelet/placental (TP-P) and endothelial (TP-E) type receptors. Experimental evidence suggests that TP activity may be modulated by novel ligands, termed the isoprostanes, that paradoxically act as TP agonists in smooth muscle and TP antagonists in platelet preparations. Here we have investigated whether prototypical isoprostanes 8-iso-prostaglandin (PG)F(2 alpha) and 8-iso-PGE(2) regulate the activity of TP isoforms expressed in Chinese hamster ovary (CHO) cells using activator protein-1 (AP-1)-luciferase activity as a reporter. AP-1-luciferase activity was increased by a TP agonist [9,11-dideoxy-9 alpha,11 alpha-methanoepoxy PGF(2 alpha) (U46619)] in CHO cells transfected with the human TP-P and TP-E receptors, and this response was fully inhibited by TP antagonists [1S-[1 alpha,2 beta(Z),3 alpha,5 alpha]]-7-[3-[[4-iodophenyl)sulfonyl]amino]-6,6-dimethylbicyclo[3.1.1]hept-2-yl]-5-heptenoic acid (I-SAP) and [1S-[1 alpha,2 alpha(Z),3 alpha,4 alpha]]-7-[[2-[(phenylamino) carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1] hept-2-yl]-5-heptenoic acid (SQ 29,548)]. AP-1-luciferase activity was potently (nanomolar concentrations) increased by 8-iso-PGE(2) in CHO TP-P and TP-E cells, and this response was partially inhibited by cotreatment of cells with TP antagonists, whereas 8-iso-PGF(2 alpha) was without effect. Cyclooxygenase inhibitors did not abolish 8-iso-PGE(2) mediated AP-1-luciferase activity, indicating that this response is not dependent on de novo TXA(2) biosynthesis. Interestingly, 8-iso-PGE(2)-mediated AP-1-luciferase activity was near maximal in naive cells between 1 and 10 nM concentrations, and this response was not inhibited by TP antagonist or reproduced by agonists for TP or EP(1)/EP(3) receptors. These observations 1) support a role for novel ligands in the regulation of TP-dependent signaling, 2) indicate that TP-P and TP-E couple to AP-1, 3) provide further evidence that isoprostanes function as TP agonists in a cell-type specific fashion, and 4) indicate that additional targets regulated by 8-iso-PGE(2) couple to AP-1.
Collapse
Affiliation(s)
- Thomas J Weber
- Cell Biology, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|
19
|
Feng G, Hicks P, Chang PL. DIFFERENTIAL EXPRESSION OF MAMMALIAN OR VIRAL PROMOTER–DRIVEN GENE IN ADHERENT VERSUS SUSPENSION CELLS. ACTA ACUST UNITED AC 2003; 39:420-3. [PMID: 15117232 DOI: 10.1290/1543-706x(2003)039<0420:deomov>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although expression vectors using viral and mammalian promoters constitutively express genes of interest in adherent cells, few studies have examined whether the function of these vectors in suspended cells, such as in over-agar or soft agar assay (an in vitro cell transformation assay), is as robust as when they are in adherent cells. The selection of appropriate expression vector to optimally express genes in suspended cells would be useful in determining whether these genes play a critical role in maintaining colony formation or cell transformation. To compare promoter-driven expression vector function in adherent versus suspension cells, we performed transient transfection assays using viral (simian virus 40 [SV40] and cytomegalovirus [CMV]) and mammalian (beta-actin) promoters fused to luciferase or beta-galactosidase reporter gene. Over-agar assay was used to suspend cells on top of agar, which allowed cell retrieval and analysis. We found that beta-actin and SV40 promoters exhibited suppressed gene expression of 70 and 56%, respectively, in cells suspended on agar compared with those attached on plates. The suppressed response by the exogenous beta-actin promoter in suspension was consistent with the response of the endogenous beta-actin promoter activity because the steady-state level of beta-actin messenger ribonucleic acid in suspended cells was significantly reduced by 50% relative to that expressed in attached cells. In contrast to SV40 promoter, CMV promoter activity was not decreased in cells suspended in over-agar when compared with adherent cells. These studies show that regardless of mammalian or viral vectors, one cannot assume that all expression vectors behave similarly in both suspension and adherent state.
Collapse
Affiliation(s)
- Gong Feng
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-6630, USA
| | | | | |
Collapse
|