1
|
Hirayama S, Fujii H. δ Opioid Receptor Inverse Agonists and their In Vivo Pharmacological Effects. Curr Top Med Chem 2020; 20:2889-2902. [PMID: 32238139 DOI: 10.2174/1568026620666200402115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
The discovery of δ opioid receptor inverse agonist activity induced by ICI-174,864, which was previously reported as an δ opioid receptor antagonist, opened the door for the investigation of inverse agonism/constitutive activity of the receptors. Various peptidic or non-peptidic δ opioid receptor inverse agonists have since been developed. Compared with the reports dealing with in vitro inverse agonist activities of novel compounds or known compounds as antagonists, there have been almost no publications describing the in vivo pharmacological effects induced by a δ opioid receptor inverse agonist. After the observation of anorectic effects with the δ opioid receptor antagonism was discussed in the early 2000s, the short-term memory improving effects and antitussive effects have been very recently reported as possible pharmacological effects induced by a δ opioid receptor inverse agonist. In this review, we will survey the developed δ opioid receptor inverse agonists and summarize the possible in vivo pharmacological effects by δ opioid receptor inverse agonists. Moreover, we will discuss important issues involved in the investigation of the in vivo pharmacological effects produced by a δ opioid receptor inverse agonist.
Collapse
Affiliation(s)
- Shigeto Hirayama
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
2
|
Van der Poorten O, Knuhtsen A, Sejer Pedersen D, Ballet S, Tourwé D. Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design. J Med Chem 2016; 59:10865-10890. [PMID: 27690430 DOI: 10.1021/acs.jmedchem.6b01029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected to the peptide backbone to provide control of χ1- and χ2-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors.
Collapse
Affiliation(s)
- Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Astrid Knuhtsen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen , Jagtvej 162, 2100 Copenhagen, Denmark
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bio-Engineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Lee YS, Qu H, Davis P, Ma SW, Vardanyan R, Lai J, Porreca F, Hruby VJ. Chiral Effect of a Phe Residue in Position 3 of the Dmt 1-L(or D)-Tic 2 Analogues on Opioid Functional Activities. ACS Med Chem Lett 2013; 4:656-659. [PMID: 24648867 DOI: 10.1021/ml400115n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this letter, we describe a structure-activity relationships study, specifically related to the chirality of third amino acid residue in our H-Dmt-L(or D)-Tic analogues, of which C-terminus is attached to a piperidinyl moiety. Observed selectivities and functional activities of these analogues demonstrated that the chiralities of the second and third position residues are crucial for determining whether these ligands act as antagonists or agonists at the δ opioid receptor, but not at the μ opioid receptor.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - HongChang Qu
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Peg Davis
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Shou-Wu Ma
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Ruben Vardanyan
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Josephine Lai
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Frank Porreca
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| | - Victor J. Hruby
- Department
of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Arizona, Tucson, Arizona 85721, United
States
| |
Collapse
|
4
|
Developmental potential for endomorphin opioidmimetic drugs. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2012; 2012:715123. [PMID: 25954530 PMCID: PMC4411882 DOI: 10.1155/2012/715123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/27/2012] [Indexed: 11/27/2022]
Abstract
Morphine, which is agonist for μ-opioid receptors, has been used as an anti-pain drug for millennia. The opiate antagonists, naloxone and naltrexone, derived from morphine, were employed for drug addiction and alcohol abuse. However, these exogenous agonists and antagonists exhibit numerous and unacceptable side effects. Of the endogenous opioid peptides, endomorphin(EM)-1 and endomorphin(EM)-2 with their high μ-receptor affinity and exceptionally high selectivity relative to δ- and κ-receptors in vitro and in vivo provided a sufficiently sequence-flexible entity in order to prepare opioid-based drugs. We took advantage of this unique feature of the endomorphins by exchanging the N-terminal residue Tyr1 with 2′,6′-dimethyl-l-tyrosine (Dmt) to increase their stability and the spectrum of bioactivity. We systematically altered specific residues of [Dmt1]EM-1 and [Dmt1]EM-2 to produce various analogues. Of these analogues, [N-allyl-Dmt1]EM-1 (47) and [N-allyl-Dmt1]EM-2 (48) exhibited potent and selective antagonism to μ-receptors: they completely inhibited naloxone- and naltrexone-induced withdrawal from following acute morphine dependency in mice and reversed the alcohol-induced changes observed in sIPSC in hippocampal slices. Overall, we developed novel and efficacious opioid drugs without deleterious side effects that were able to resist enzymatic degradation and were readily transported intact through epithelial membranes in the gastrointestinal tract and the blood-brain-barrier.
Collapse
|
5
|
Abstract
INTRODUCTION Although endomorphins-1 (EM-1; H-Tyr-Pro-Phe-Trp-NH(2)) and -2 (EM-2; H-Tyr-Pro-Phe-Phe-NH(2)) are primarily considered agonists for the μ-opioid receptor (MOR), systematic alterations to specific residues provided antagonists and ligands with mixed μ/δ-opioid properties, suitable for application to health-related topics. While the application of endomorphins as antinociceptive agents and numerous biological endpoints were experimentally delineated in laboratory animals and in vitro, clinical use is currently absent. However, structural alterations provide enhanced stability; formation of MOR antagonists or mixed and dual μ/δ-acting ligands could find considerable therapeutic potential. AREAS COVERED This review attempts to succinctly provide insight on the development and bioactivity of endomorphin analogues during the past decade. Rational design approaches will focus on the engineering of endomorphin agonists, antagonists and mixed ligands for their application as a multi-target ligand. EXPERT OPINION Aside from alleviating pain, EM analogues open new horizons in the treatment of medical syndromes involving neural reward mechanisms and extraneural regulation effects on homeostasis. Highly selective MOR antagonists may be promising to reduce inflammation, attenuate addiction to drugs and excess consumption of high-caloric food, ameliorate alcoholism, affect the immune system and combat opioid bowel dysfunction.
Collapse
Affiliation(s)
- Lawrence H Lazarus
- National Institute of Environmental Health Sciences, Laboratory of Toxicology and Pharmacology, 111 South TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
6
|
Tetrahydroisoquinoline-Based Spirocyclic Lactam as a Type II′ β-Turn Inducing Peptide Mimetic. J Org Chem 2009; 74:8098-105. [DOI: 10.1021/jo901480d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
New cyclic somatostatin analogues containing a pyrazinone ring: importance of Tyr for antiproliferative activity. Bioorg Med Chem Lett 2008; 18:6199-201. [PMID: 18930401 DOI: 10.1016/j.bmcl.2008.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/19/2008] [Accepted: 10/01/2008] [Indexed: 11/24/2022]
Abstract
Novel somatostatin analogues containing a pyrazinone ring, compounds 1 and 2, exhibited good antiproliferative activity on A431 tumor cells. To increase antitumor activity and binding affinity on somatostatin receptors (SSTRs), we substituted Tyr in the critical sequence, Tyr-D-Trp-Lys, with more hydrophobic aromatic residue. The substituted compounds dramatically lost antitumor activity, indicating that Tyr residue was an essential residue.
Collapse
|
8
|
Lesma G, Meschini E, Recca T, Sacchetti A, Silvani A. Synthesis of tetrahydroisoquinoline-based pseudopeptides and their characterization as suitable reverse turn mimetics. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Li T, Shiotani K, Miyazaki A, Tsuda Y, Ambo A, Sasaki Y, Jinsmaa Y, Marczak E, Bryant SD, Lazarus LH, Okada Y. Bifunctional [2',6'-dimethyl-L-tyrosine1]endomorphin-2 analogues substituted at position 3 with alkylated phenylalanine derivatives yield potent mixed mu-agonist/delta-antagonist and dual mu-agonist/delta-agonist opioid ligands. J Med Chem 2007; 50:2753-66. [PMID: 17497839 PMCID: PMC2669435 DOI: 10.1021/jm061238m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH2) and [Dmt1]EM-2 (Dmt = 2',6'-dimethyl-l-tyrosine) analogues, containing alkylated Phe3 derivatives, 2'-monomethyl (2, 2'), 3',5'- and 2',6'-dimethyl (3, 3', and 4', respectively), 2',4',6'-trimethyl (6, 6'), 2'-ethyl-6'-methyl (7, 7'), and 2'-isopropyl-6'-methyl (8, 8') groups or Dmt (5, 5'), had the following characteristics: (i) [Xaa3]EM-2 analogues exhibited improved mu- and delta-opioid receptor affinities. The latter, however, were inconsequential (Kidelta = 491-3451 nM). (ii) [Dmt1,Xaa3]EM-2 analogues enhanced mu- and delta-opioid receptor affinities (Kimu = 0.069-0.32 nM; Kidelta = 1.83-99.8 nM) without kappa-opioid receptor interaction. (iii) There were elevated mu-bioactivity (IC50 = 0.12-14.4 nM) and abolished delta-agonism (IC50 > 10 muM in 2', 3', 4', 5', 6'), although 4' and 6' demonstrated a potent mixed mu-agonism/delta-antagonism (for 4', IC50mu = 0.12 and pA2 = 8.15; for 6', IC50mu = 0.21 nM and pA2 = 9.05) and 7' was a dual mu-agonist/delta-agonist (IC50mu = 0.17 nM; IC50delta = 0.51 nM).
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Brain/metabolism
- Guinea Pigs
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Myenteric Plexus/physiology
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Structure-Activity Relationship
- Synaptosomes/metabolism
- Tyrosine/analogs & derivatives
- Tyrosine/chemical synthesis
- Tyrosine/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Kimitaka Shiotani
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Anna Miyazaki
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Yuko Tsuda
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Akihiro Ambo
- Department of Biochemistry, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan
| | - Yusuke Sasaki
- Department of Biochemistry, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan
| | - Yunden Jinsmaa
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Ewa Marczak
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Sharon D. Bryant
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
- Corresponding authors: Y. Okada: Tel: +81-78-974-1551, fax: +81-78-974-5689., E-mail: . L. H. Lazarus: Tel: +1-919-541-3238, fax: + 1-919-541-5737. E-mail:
| | - Yoshio Okada
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Corresponding authors: Y. Okada: Tel: +81-78-974-1551, fax: +81-78-974-5689., E-mail: . L. H. Lazarus: Tel: +1-919-541-3238, fax: + 1-919-541-5737. E-mail:
| |
Collapse
|
10
|
Balboni G, Onnis V, Congiu C, Zotti M, Sasaki Y, Ambo A, Bryant SD, Jinsmaa Y, Lazarus LH, Trapella C, Salvadori S. Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore. J Med Chem 2006; 49:5610-7. [PMID: 16942034 PMCID: PMC2533050 DOI: 10.1021/jm060741w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substitution of Gly with side-chain-protected or unprotected Lys in lead compounds containing the opioid pharmacophore Dmt-Tic [H-Dmt-Tic-Gly-NH-CH(2)-Ph, mu agonist/delta antagonist; H-Dmt-Tic-Gly-NH-Ph, mu agonist/delta agonist; and H-Dmt-Tic-NH-CH(2)-Bid, delta agonist (Bid = 1H-benzimidazole-2-yl)] yielded a new series of compounds endowed with distinct pharmacological activities. Compounds (1-10) included high delta- (Ki(delta) = 0.068-0.64 nM) and mu-opioid affinities (Ki(mu) = 0.13-5.50 nM), with a bioactivity that ranged from mu-opioid agonism {10, H-Dmt-Tic-NH-CH[(CH2)4-NH2]-Bid (IC50 GPI = 39.7 nM)} to a selective mu-opioid antagonist [3, H-Dmt-Tic-Lys-NH-CH2-Ph (pA2(mu) = 7.96)] and a selective delta-opioid antagonist [5, H-Dmt-Tic-Lys(Ac)-NH-Ph (pA2(delta) = 12.0)]. The presence of a Lys linker provides new lead compounds in the formation of opioid peptidomimetics containing the Dmt-Tic pharmacophore with distinct agonist and/or antagonist properties.
Collapse
MESH Headings
- Animals
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Electric Stimulation
- Guinea Pigs
- Ileum/drug effects
- Ileum/physiology
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Structure-Activity Relationship
- Tetrahydroisoquinolines/chemical synthesis
- Tetrahydroisoquinolines/chemistry
- Tetrahydroisoquinolines/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09124, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cain JP, Mayorov AV, Cai M, Wang H, Tan B, Chandler K, Lee Y, Petrov RR, Trivedi D, Hruby VJ. Design, synthesis, and biological evaluation of a new class of small molecule peptide mimetics targeting the melanocortin receptors. Bioorg Med Chem Lett 2006; 16:5462-7. [PMID: 16931008 PMCID: PMC1810397 DOI: 10.1016/j.bmcl.2006.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/23/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
A new bicyclic template has been developed for the synthesis of peptide mimetics. Straightforward synthetic steps, starting from amino acids, allow the facile construction of a wide range of analogs. This system was designed to target the melanocortin receptors (MCRs), with functional group selection based on a known pharmacophore and guidance from molecular modeling to rationally identify positional and stereochemical isomers likely to be active. The functions of hMCRs are critical to myriad biological activities, including pigmentation, steroidogenesis, energy homeostasis, erectile activity, and inflammation. These G-protein-coupled receptors (GPCRs) are targets for drug discovery in a number of areas, including cancer, pain, and obesity therapeutics. All compounds from this series tested to date are antagonists which bind with high affinity. Importantly, many are highly selective for a particular MCR subtype, including some of the first completely hMC5R-selective antagonists reported.
Collapse
Affiliation(s)
- James P Cain
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fichna J, Piestrzeniewicz M, Gach K, Poels J, Burgeon E, Vanden Broeck J, Janecka A. [d-1-Nal4]endomorphin-2 is a potent μ-opioid receptor antagonist in the aequorin luminescence-based calcium assay. Life Sci 2006; 79:1094-9. [PMID: 16624333 DOI: 10.1016/j.lfs.2006.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 03/08/2006] [Indexed: 11/30/2022]
Abstract
A functional assay, based on aequorin-derived luminescence triggered by receptor-mediated changes in Ca(2+) levels, was used to examine relative potency and efficacy of the micro-opioid receptor antagonists. A series of position 3- and 4-substituted endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2)) analogues containing D-3-(1-naphthyl)-alanine (D-1-Nal) or D-3-(2-naphthyl)-alanine (D-2-Nal), which were previously shown to reverse antinociception induced by endomorphin-2 in the in vivo hot-plate test in mice, was tested in the aequorin luminescence-based calcium assay to examine their micro-opioid antagonist potency in vitro. A recombinant mammalian cell line expressing the micro-opioid receptor together with a luminescent reporter protein, apoaequorin, was used in the study. The results obtained in this functional assay indicated that analogues with D-1-Nal or D-2-Nal substitutions in position 4 of endomorphin-2 are strong micro-opioid receptor antagonists, while those substituted in position 3 are partial agonists. Exceptional antagonist potency in the calcium assay was observed for [D-1-Nal(4)]endomorphin-2. The pA(2) value for this analogue was 7.95, compared to the value of 8.68 obtained for the universal, non-selective opioid antagonist of the alkaloid structure, naloxone. The obtained results were compared with the data from the hot-plate test in mice. In that in vivo assay [D-1-Nal(4)]endomorphin-2 was also the most potent analogue of the series.
Collapse
Affiliation(s)
- Jakub Fichna
- Laboratory of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
13
|
Li T, Tsuda Y, Minoura K, In Y, Ishida T, Lazarus LH, Okada Y. Enantioselective Synthesis of a Phenylalanine Library Containing Alkyl Groups on the Aromatic Moiety: Confirmation of Stereostructure by X-Ray Analysis. Chem Pharm Bull (Tokyo) 2006; 54:873-7. [PMID: 16755061 DOI: 10.1248/cpb.54.873] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Six phenylalanine analogues containing 2'-methyl-, 2',6'-dimethyl-, 2'-ethyl-6'-methyl-, 2'-isopropyl-6'-methyl-, 2',4',6'-trimethyl-, and 3',5'-dimethyl-L-phenylalanine were synthesized enantioselectively through asymmetric hydrogenation of acetamidoacrylate derivatives. Enzymatic digestion and X-ray analysis supported the L-configuration of the phenylalanine derivatives obtained.
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences and Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Li T, Fujita Y, Shiotani K, Miyazaki A, Tsuda Y, Ambo A, Sasaki Y, Jinsmaa Y, Marczak E, Bryant SD, Salvadori S, Lazarus LH, Okada Y. Potent Dmt-Tic Pharmacophoric δ- and μ-Opioid Receptor Antagonists. J Med Chem 2005; 48:8035-44. [PMID: 16335927 DOI: 10.1021/jm050377l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dimeric Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) analogues (8-14, 18-22) were covalently linked through diaminoalkane and symmetric or asymmetric 3,6-diaminoalkyl-2(1H)-pyrazinone moieties. All the compounds exhibited high affinity for both delta-opioid receptors [Ki(delta) = 0.06-1.53 nM] and mu-opioid receptors [Ki(mu) = 1.37-5.72 nM], resulting in moderate delta-receptor selectivity [Ki(mu)/Ki(delta) = 3-46]. Regardless of the type of linker between the Dmt-Tic pharmacophores, delta-opioid-mediated antagonism was extraordinarily high in all analogues (pA2 = 10.42-11.28), while in vitro agonism (MVD and GPI bioassays) was essentially absent (ca. 3 to >10 microM). While an unmodified N-terminus (9, 13, 18) revealed weak mu-opioid antagonism (pA2 = 6.78-6.99), N,N'-dimethylation (21, 22), which negatively impacts on mu-opioid-associated agonism (Balboni et al., Bioorg. Med. Chem. 2003, 11, 5435-5441), markedly enhanced mu-opioid antagonism (pA2 = 8.34 and 7.71 for 21 and 22, respectively) without affecting delta-opioid activity. These data are the first evidence that a single dimeric opioid ligand containing the Dmt-Tic pharmacophore exhibits highly potent delta- and mu-opioid antagonist activities.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Brain/metabolism
- Diamines/chemical synthesis
- Diamines/chemistry
- Diamines/pharmacology
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Guinea Pigs
- Ileum/drug effects
- Ileum/physiology
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Pyrazines/chemical synthesis
- Pyrazines/chemistry
- Pyrazines/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Structure-Activity Relationship
- Tetrahydroisoquinolines/chemical synthesis
- Tetrahydroisoquinolines/chemistry
- Tetrahydroisoquinolines/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences and Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li T, Shiotani K, Miyazaki A, Fujita Y, Tsuda Y, Ambo A, Sasaki Y, Jinsmaa Y, Marczak E, Bryant SD, Lazarus LH, Okada Y. New series of potent delta-opioid antagonists containing the H-Dmt-Tic-NH-hexyl-NH-R motif. Bioorg Med Chem Lett 2005; 15:5517-20. [PMID: 16183273 DOI: 10.1016/j.bmcl.2005.08.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/20/2005] [Accepted: 08/26/2005] [Indexed: 11/20/2022]
Abstract
Heterodimeric compounds H-Dmt-Tic-NH-hexyl-NH-R (R=Dmt, Tic, and Phe) exhibited high affinity to delta- (K(i)delta=0.13-0.89nM) and mu-opioid receptors (K(i)mu=0.38-2.81nM) with extraordinary potent delta antagonism (pA(2)=10.2-10.4). These compounds represent the prototype for a new class of structural homologues lacking mu-opioid receptor-associated agonism (IC(50)=1.6-5.8muM) based on the framework of bis-[H-Dmt-NH]-alkyl (Okada, Y.; Tsuda, Y.; Fujita, Y.; Yokoi, T.; Sasaki, Y.; Ambo, A.; Konishi, R.; Nagata, M.; Salvadori, S.; Jinsmaa, Y.; Bryant, S. D.; Lazarus, L. H. J. Med. Chem.2003, 46, 3201), which exhibited both high mu affinity and bioactivity.
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Van den Eynde I, Laus G, Schiller PW, Kosson P, Chung NN, Lipkowski AW, Tourwé D. A new structural motif for mu-opioid antagonists. J Med Chem 2005; 48:3644-8. [PMID: 15887972 DOI: 10.1021/jm0491795] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of the structural features of the Dmt-Tic pharmacophore, a new motif leading to a fairly potent mu-opioid antagonist is described. This motif contains the 4-amino-1,2,4,5-tetrahydro-2-benzazepine-3-one skeleton as a substitute for the Tic residue, which provides the conformational constraint compatible with the mu-opioid receptor. The stereoselective synthesis of four stereoisomers is performed starting from homochiral 2',6'-dimethyltyrosine (Dmt) and o-aminomethylphenylalanine.
Collapse
Affiliation(s)
- Isabelle Van den Eynde
- Eenheid Organische Chemie, Vrije Universiteit Brussel, 2, Pleinlaan, B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Li T, Fujita Y, Tsuda Y, Miyazaki A, Ambo A, Sasaki Y, Jinsmaa Y, Bryant SD, Lazarus LH, Okada Y. Development of Potent μ-Opioid Receptor Ligands Using Unique Tyrosine Analogues of Endomorphin-2. J Med Chem 2005; 48:586-92. [PMID: 15658871 DOI: 10.1021/jm049384k] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six analogues of tyrosine, which contained alkyl groups at positions 2', 3', and 6', either singly or in combination on the tyramine ring, were investigated for their effect on the opioid activity of [Xaa(1)]endomorphin-2 (EM-2). The opioid analogues displayed the following characteristics: (i) high mu-opioid receptor affinity [K(i)(mu) = 0.063-2.29 nM] with selectivity [K(i)(delta)/K(i)(mu)] ranging from 46 to 5347; (ii) potent functional mu-opioid agonism [GPI assay (IC(50) = 0.623-0.924 nM)] and with a correlation between delta-opioid receptor affinities and functional bioactivity using MVD; (iii) intracerebroventricular administration of [Dmt(1)]- (14) and [Det(1)]EM-2 (10) produced a dose-response antinociception in mice, with the former analogue more active than the latter; and (iv) a marked shift occurred from the trans-orientation at the Tyr(1)-Pro(2) bond to a cis-conformer compared to that observed previously with [Dmt(1)]EM-2 (14) (Okada et al. Bioorg. Med. Chem. 2003, 11, 1983-1984) except [Mmt(1)]EM-2 (7). The active profile of the [Xaa(1)]EM-2 analogues indicated that significant modifications on the tyramine ring are possible while high biological activity is maintained.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Binding, Competitive
- Brain/metabolism
- Guinea Pigs
- Ileum/drug effects
- Ileum/innervation
- Ileum/physiology
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Stereoisomerism
- Structure-Activity Relationship
- Tyrosine/analogs & derivatives
- Tyrosine/chemical synthesis
- Tyrosine/chemistry
- Tyrosine/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences, Faculty of Pharmaceutical Sciences, and High Technology Research Center, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Balboni G, Salvadori S, Guerrini R, Negri L, Giannini E, Bryant SD, Jinsmaa Y, Lazarus LH. Synthesis and opioid activity of N,N-dimethyl-Dmt-Tic-NH-CH(R)-R' analogues: acquisition of potent delta antagonism. Bioorg Med Chem 2004; 11:5435-41. [PMID: 14642588 DOI: 10.1016/j.bmc.2003.09.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N,N-Dimethylation of the H-Dmt-Tic-NH-CH(R)-R' series of compounds produced no significant affect on the high delta-opioid receptor affinity (K(i)=0.035-0.454 nM), but dramatically decreased that for the micro-opioid receptor. The effect of N-methylation was independent of the length of the linker (R); however, the bioactivities were affected by the chemical composition of the third aromatic group (R'): phenyl (Ph) (5'-8') elicited a greater reduction in micro-affinity (40-70-fold) compared to analogues containing 1H-benzimidazole-2-yl (Bid) (9-fold). The major consequences of N,N-dimethylation on in vitro bioactivity were: (i). a loss of delta-agonism coupled with the appearance of potent delta antagonism (4'-7') (pA(2)=8.14-9.47), while 1 exhibited only a 160-fold decreased delta agonism (1') and the delta antagonism of 8 enhanced >10-fold (pA(2)=10.62, 8'); and (ii). a consistent loss of micro-affinity resulted in enhanced delta-opioid receptor selectivity. With the exception of compound 1', the change in the hydrophobic environment at the N-terminus and formation of a tertiary amine by N,N-dimethylation in analogues of the Dmt-Tic pharmacophore produced potent delta-selective antagonists.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I-09126, Cagliary, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fujita Y, Tsuda Y, Li T, Motoyama T, Takahashi M, Shimizu Y, Yokoi T, Sasaki Y, Ambo A, Kita A, Jinsmaa Y, Bryant SD, Lazarus LH, Okada Y. Development of potent bifunctional endomorphin-2 analogues with mixed mu-/delta-opioid agonist and delta-opioid antagonist properties. J Med Chem 2004; 47:3591-9. [PMID: 15214786 DOI: 10.1021/jm030649p] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The C terminus of endomorphin-2 (EM-2) analogues (Tyr-Pro-Phe-NH-X) was modified with aromatic, heteroaromatic, or aliphatic groups (X = phenethyl,benzyl, phenyl, naphthyl, pyridyl, quinolyl, isoquinolyl, tert-butyl, cyclohexyl, or adamantyl; 3-18) to study their effect on opioid activity. Only 9 (1-naphthyl), 11 (5-quinolyl), 16 (cyclohexyl), and 18 (2-adamantyl) exhibited mu-opioid receptor affinity in the nanomolar range (K(i) = 2.41-6.59 nM), which, however, was 3- to 10-fold less than the parent peptide. Replacement of Tyr(1) by Dmt (2',6'-dimethyl-l-tyrosine) (19-32) exerted profound effects: (i) acquisition of high mu-opioid receptor affinity (K(i) = 0.11-0.52 nM) except 23 (Ph); (ii) presence of potent functional mu-opioid receptor agonism (IC(50) < 1 nM) for 19 ([Dmt(1)]EM-2), 27 (1-naphthyl), 29 (5-quinolyl), and 32 (5-isolquinolyl); (iii) association of weak delta-opioid antagonist activity (pA(2) = 5.41-7.18) except 19 ([Dmt(1)]EM-2), 20 (H), 27 (1-naphthyl), and in particular 29 (5-quinolyl) with its potent delta-agonism (IC(50) = 0.62 nM, pA(2) = 5.88); (iv) production of antinociception after ic administration of 32 (5-isoquinolyl) in mice, a bioactivity absent in the corresponding Tyr(1) analogue (14); and (v) preferential cis orientation (cis/trans = 3:2 to 7:3) at the Dmt-Pro amide bond, in contrast to the Tyr-Pro amide trans orientation (cis/trans = 1:2 to 1:3). Thus, [Dmt(1)]EM-2 analogues with hydrophobic C-terminal extensions provide model compounds with potent mu-opioid receptor bioactivity and dual functional agonism.
Collapse
MESH Headings
- Analgesics/chemical synthesis
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Guinea Pigs
- Ileum/drug effects
- Ileum/innervation
- Ileum/physiology
- In Vitro Techniques
- Male
- Mice
- Models, Molecular
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Pain Measurement
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Stereoisomerism
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Yoshio Fujita
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bryant SD, Jinsmaa Y, Salvadori S, Okada Y, Lazarus LH. Dmt and opioid peptides: a potent alliance. Biopolymers 2004; 71:86-102. [PMID: 12767112 DOI: 10.1002/bip.10399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance.
Collapse
Affiliation(s)
- Sharon D Bryant
- Peptide Neurochemistry, LCBRA, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
21
|
Pagé D, Nguyen N, Bernard S, Coupal M, Gosselin M, Lepage J, Adam L, Brown W. New scaffolds in the development of mu opioid-receptor ligands. Bioorg Med Chem Lett 2003; 13:1585-9. [PMID: 12699761 DOI: 10.1016/s0960-894x(03)00194-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A new class of mu selective receptor antagonists has been developed using a combinatorial approach based on previously reported Dmt-Tic dipeptide ligands. Modified tetrahydroisoquinoline (Tiq) residues were reacted with different electrophiles in order to create novel molecules that would mimic the original dipeptide. A specific class of thioureas bearing basic pyrrolidine residues were shown to give good binding affinities. Further alkylation of the pyrrolidine ring with benzyl derivatives also proved to increase the mu binding affinity. In addition, it was demonstrated that mu binding was enhanced by the presence of polar groups around the benzyl ring having hydrogen-bonding character (donor/acceptor). This new class of ligands represents a novel scaffold in the development of opioid analogues.
Collapse
Affiliation(s)
- Daniel Pagé
- Department of Chemistry, AstraZeneca R&D Montreal, 7171 Frederick-Banting, Saint-Laurent, Quebec, Canada H4S 1Z9.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Okada Y, Fujita Y, Motoyama T, Tsuda Y, Yokoi T, Li T, Sasaki Y, Ambo A, Jinsmaa Y, Bryant SD, Lazarus LH. Structural studies of [2',6'-dimethyl-L-tyrosine1]endomorphin-2 analogues: enhanced activity and cis orientation of the Dmt-Pro amide bond. Bioorg Med Chem 2003; 11:1983-94. [PMID: 12670649 DOI: 10.1016/s0968-0896(03)00068-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Analogues of endomorphin-2 (EM-2: Tyr-Pro-Phe-Phe-NH(2)) (1) were designed to examine the importance of each residue on mu-opioid receptor interaction. Replacement of Tyr(1) by 2',6'-dimethyl-L-tyrosine (Dmt) (9-12) exerted profound effects: [Dmt(1)]EM-2 (9) elevated mu-opioid affinity 4.6-fold (K(i mu=0.15 nM) yet selectivity fell 330-fold as delta-affinity rose (K(i)delta=28.2 nM). This simultaneous increased mu- and delta-receptor bioactivities resulted in dual agonism (IC(50)=0.07 and 1.87 nM, respectively). While substitution of Phe(4) by a phenethyl group (4) decreased mu affinity (K(i)mu=13.3 nM), the same derivative containing Dmt (12) was comparable to EM-2 but also acquired weak delta antagonism (pA(2)=7.05). 1H NMR spectroscopy revealed a trans configuration (1:2 to 1:3, cis/trans) in the Tyr-Pro amide bond, but a cis configuration (5:3 to 13:7, cis/trans) with Dmt-Pro analogues.
Collapse
Affiliation(s)
- Yoshio Okada
- Faculty of Pharmaceutical Sciences, Department of Medicinal Chemistry, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The building block approach was identified as a useful alternative to the commonly used Bücherer-Berg method for the preparation of cyclic unusual alpha-amino acid derivatives. The symmetrical building blocks were prepared by dialkylation of ethyl isocyanoacetate under solid-liquid phase transfer catalysis conditions while the unsymmetrical building blocks were prepared by a stepwise alkylation of the O'Donnell Schiff base. Metathesis reactions, Suzuki couplings, and cycloaddition reactions were utilized to assemble the building blocks.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India.
| |
Collapse
|
24
|
Okada Y, Tsuda Y, Bryant SD, Lazarus LH. Endomorphins and related opioid peptides. VITAMINS AND HORMONES 2003; 65:257-79. [PMID: 12481550 DOI: 10.1016/s0083-6729(02)65067-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Opioid peptides and their G-protein-coupled receptors (delta, kappa, mu) are located in the central nervous system and peripheral tissues. The opioid system has been studied to determine the intrinsic mechanism of modulation of pain and to develop uniquely effective pain-control substances with minimal abuse potential and side effects. Two types of endogenous opioid peptides exist, one containing Try-Gly-Gly-Phe as the message domain (enkephalins, endorphins, dynorphins) and the other containing the Tyr-Pro-Phe/Trp sequence (endomorphins-1 and -2). Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has high mu receptor affinity (Ki = 0.36 nM) and remarkable selectivity (4000- and 15,000-fold preference over the delta and kappa receptors, respectively), was isolated from bovine and human brain. In addition, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), isolated from the same sources, exhibited high mu receptor affinity (Ki = 0.69 nM) and very high selectivity (13,000- and 7500-fold preference relative to delta and kappa receptors, respectively). Both opioids bind to mu-opioid receptors, thereby activating G-proteins, resulting in regulation of gastrointestinal motility, manifestation of antinociception, and effects on the vascular systems and memory. To develop novel analgesics with less addictive properties, evaluation of the structure-activity relationships of the endomorphins led to the design of more potent and stable analgesics. Opioidmimetics and opioid peptides containing the amino acid sequence of the message domain of endomorphins, Tyr-Pro-Phe/Trp, could exhibit unique binding activity and lead to the development of new therapeutic drugs for controlling pain.
Collapse
Affiliation(s)
- Yoshio Okada
- Faculty of Pharmaceutical Sciences, High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | | | |
Collapse
|
25
|
Balboni G, Salvadori S, Guerrini R, Negri L, Giannini E, Jinsmaa Y, Bryant SD, Lazarus LH. Potent delta-opioid receptor agonists containing the Dmt-Tic pharmacophore. J Med Chem 2002; 45:5556-63. [PMID: 12459023 DOI: 10.1021/jm020336e] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conversion of delta-opioid receptor antagonists containing the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore into potent delta-agonists required a third heteroaromatic nucleus, such as 1H-benzimidazole-2-yl (Bid) and a linker of specified length both located C-terminally to Tic in the general formula H-Dmt-Tic-NH-CH(R)-R'. The distance between Tic and Bid is a determining factor responsible for the acquisition of delta agonism (2, 2', 3, 4, 6) or delta antagonism (8). Compounds containing a C-terminal Ala (1, 1'), Asp (5), or Asn (7) with an amide (1, 1', 5) or free acid group (7) served as delta-antagonist controls lacking the third heteroaromatic ring. A change in chirality of the spacer (2, 2') or inclusion of a negative charge via derivatives of Asp (4, 6) resulted in potent delta agonism and moderate mu agonism, although delta-receptor affinity decreased about 10-fold for 4 while mu affinity fell by over 2 orders of magnitude. Repositioning of the negative charge in the linker altered activity: H-Dmt-Tic-NH-CH(CH(2)-Bid)COOH (6) maintained high delta affinity (K(i) = 0.042 nM) and delta agonism (IC(50) = 0.015 nM), but attachment of the free acid group to Bid [H-Dmt-Tic-NH-CH(2)-Bid(CH(2)-COOH) (9)] reconstituted delta antagonism (K(e) = 0.27 nM). The data demonstrate that a linker separating the Dmt-Tic pharmacophore and Bid, regardless of the presence of a negative charge, is important in the acquisition of opioids exhibiting potent delta agonism and weak mu agonism from a parent delta antagonist.
Collapse
MESH Headings
- Animals
- Benzimidazoles/chemical synthesis
- Benzimidazoles/chemistry
- Benzimidazoles/pharmacology
- Binding, Competitive
- Brain/metabolism
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Electric Stimulation
- Guinea Pigs
- In Vitro Techniques
- Intestine, Small/innervation
- Models, Molecular
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Myenteric Plexus/drug effects
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Radioligand Assay
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
- Tetrahydroisoquinolines
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09126 Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bryant SD, George C, Flippen-Anderson JL, Deschamps JR, Salvadori S, Balboni G, Guerrini R, Lazarus LH. Crystal structures of dipeptides containing the Dmt-Tic pharmacophore. J Med Chem 2002; 45:5506-13. [PMID: 12459018 DOI: 10.1021/jm020330p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crystal structures of three analogues of the potent delta-opioid receptor antagonist H-Dmt-Tic-OH (2',6'-dimethyl-L-tyrosine-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylate), N,N (CH(3))(2)-Dmt-Tic-OH (1), H-Dmt-Tic-NH-1-adamantane (2), and N,N(CH(3))(2)-Dmt-Tic-NH-1-adamantane (3) were determined by X-ray single-crystal analysis. Crystals of 1 were grown by slow evaporation, while those of 2 and 3 were grown by vapor diffusion. Compounds 1 and 3 crystallized in the monoclinic space group P2(1), and 2 crystallized in the tetragonal space group P4(3). Common backbone atom superimpositions of structures derived from X-ray diffraction studies resulted in root-mean-square (rms) deviations of 0.2-0.5 A, while all-atom superimpositions gave higher rms deviations from 0.8 to 1.2 A. Intramolecular distances between the aromatic ring centers of Dmt and Tic were 5.1 A in 1, 6.3 A in 2, and 6.5 A in 3. The orientation of the C-terminal substituent 1-adamantane in 2 and 3 was affected by differences in the psi torsion angles and strong hydrogen bonds with adjacent molecules. Despite the high delta-opioid receptor affinity exhibited by each analogue (K(i) < 0.3 nM), high mu receptor affinity (K(i) < 1 nM) was manifested only with the bulky C-terminal 1-adamantane analogues 2 and 3. Furthermore, the bioactivity of both 2 and 3 exhibited mu-agonism, while 3 also had potent delta-antagonist activity. Those data demonstrated that a C-terminal hydrophobic group was an important determinant for eliciting mu-agonism, whereas N-methylation maintained delta-antagonism. Furthermore, the structural results support the hypothesis that expanded dimensions between aromatic nuclei is important for acquiring mu-agonism.
Collapse
Affiliation(s)
- Sharon D Bryant
- Peptide Neurochemistry, LCBRA, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop C3-04, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Balboni G, Guerrini R, Salvadori S, Bianchi C, Rizzi D, Bryant SD, Lazarus LH. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. J Med Chem 2002; 45:713-20. [PMID: 11806723 DOI: 10.1021/jm010449i] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I09126 Cagliary, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Pagé D, Naismith A, Schmidt R, Coupal M, Labarre M, Gosselin M, Bellemare D, Payza K, Brown W. Novel C-terminus modifications of the Dmt-Tic motif: a new class of dipeptide analogues showing altered pharmacological profiles toward the opioid receptors. J Med Chem 2001; 44:2387-90. [PMID: 11448220 DOI: 10.1021/jm015532k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design, synthesis and pharmacological evaluation of a novel class of Dmt-Tic dipeptide analogues are described. These resulting analogues bearing different C-terminal functionalities were found to bind to the human delta receptor with high affinity. One specific class of dipeptides bearing urea/thiourea functionalities showed partial to full activation of the delta receptor. Several dipeptides also showed good binding affinities with full activation of the human kappa receptor, a novel property for those ligands.
Collapse
MESH Headings
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/metabolism
- Humans
- Isoquinolines/chemistry
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Tetrahydroisoquinolines
- Tyrosine/analogs & derivatives
- Tyrosine/chemistry
Collapse
Affiliation(s)
- D Pagé
- Departments of Chemistry and Pharmacology, AstraZeneca R&D Montreal, 7171 Frederick-Banting, Saint-Laurent, Quebec, Canada H4S 1Z9.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Santagada V, Balboni G, Caliendo G, Guerrini R, Salvadori S, Bianchi C, Bryant SD, Lazarus LH. Assessment of substitution in the second pharmacophore of Dmt-Tic analogues. Bioorg Med Chem Lett 2000; 10:2745-8. [PMID: 11133082 DOI: 10.1016/s0960-894x(00)00569-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Dmt-Tic pharmacophore exhibits potent delta-opioid receptor antagonism. Analogues with substitutions in the second pharmacophore with (1, 1') or without a COOH function (2-9) were synthesized: several had high delta affinity (1', 2, 7, and 9), but exhibited low to non-selectivity toward mu receptors similar to H-Dmt-Tic-amide and H-Dmt-Tic-ol. Functional bioactivity indicated high delta antagonism (pA2 7.4-7.9) (1', 2, and 9) and modest mu agonism, pEC50 (6.1-6.3) (1', 2, 8, and 9), but with Emax values analogous to dermorphin. These Dmt-Tic analogues with mixed delta antagonist/mu agonist properties would appear to be better candidates as analgesics than pure mu agonists.
Collapse
Affiliation(s)
- V Santagada
- Medicinal Chemistry and Toxicology, University of Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Balboni G, Salvadori S, Guerrini R, Bianchi C, Santagada V, Calliendo G, Bryant SD, Lazarus LH. Opioid pseudopeptides containing heteroaromatic or heteroaliphatic nuclei. Peptides 2000; 21:1663-71. [PMID: 11090920 DOI: 10.1016/s0196-9781(00)00315-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In lieu of H-Dmt-Tic-OH, H-Dmt-analogues included 2-amino-3(1H-benzoimidazol-2-yl)-propionic acid, N(Bzl)Gly, L-octahydroindole-2-carboxylic acid, [3S-(3alpha,4abeta, 8abeta)]-decahydro-3-isoquinoline carboxylic acid, benzimidazole-, pyridoindole- or spiroinden-derivatives, or C-terminally modified. L- or D-Ala, Sar, or Pro were spacers between aromatic nuclei. Only H-Dmt-(Xaa-)-pyridoindole exhibited high affinities with delta and mu antagonism. The peptides competed equally against [3H]DPDPE (delta agonist) or [3H]N,N(CH3)2-Dmt-Tic-OH (delta antagonist) signaling a single delta binding site. The data confirm the importance of Tic for delta affinity and antagonism, while heterocyclic or heteroaliphatic nuclei, or spacer exert effects on mu- and delta-receptor properties.
Collapse
MESH Headings
- Alanine/chemistry
- Benzimidazoles/chemistry
- Binding Sites
- Carbolines/chemistry
- Carboxylic Acids/chemistry
- Dipeptides/chemistry
- Isoquinolines/chemistry
- Kinetics
- Ligands
- Peptides/chemical synthesis
- Peptides/chemistry
- Proline/chemistry
- Propionates/chemistry
- Protein Conformation
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Serine/chemistry
- Tetrahydroisoquinolines
- Tyrosine/analogs & derivatives
- Tyrosine/chemistry
Collapse
Affiliation(s)
- G Balboni
- Department of Toxicology, University of Cagliari, I-09126, Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Labarre M, Butterworth J, St-Onge S, Payza K, Schmidhammer H, Salvadori S, Balboni G, Guerrini R, Bryant SD, Lazarus LH. Inverse agonism by Dmt-Tic analogues and HS 378, a naltrindole analogue. Eur J Pharmacol 2000; 406:R1-3. [PMID: 11011049 DOI: 10.1016/s0014-2999(00)00636-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The potent delta-opioid receptor antagonist H-2',6-L-tyrosine(Dmt)-1, 2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic-OH) exhibited partial inverse agonism (EC(50)=6.35 nM, E(max)=-18.87%) for [35S]GTPgammaS binding and H-Dmt-Tic-NH(2) was a neutral antagonist (no effect up to 30 microM). In contrast N,N(CH(3))(2)-Dmt-Tic-NH(2) was a full inverse agonist (EC(50)=2.66 nM, E(max)=-35.95%) similar to ICI 174864 ([N,N-diallyl-Tyr(1),Aib(2,3),Leu(5)]enkephaline) but with a 3.5-fold higher EC(50). In comparison, naltrindole was a neutral antagonist while its analogue HS 378 was a partial inverse agonist (E(max)=-12.99%).
Collapse
MESH Headings
- Benzamides/pharmacology
- Benzeneacetamides
- Binding, Competitive/drug effects
- Cell Line
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Isoquinolines/chemistry
- Isoquinolines/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/chemistry
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Piperazines/pharmacology
- Pyrrolidines/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Sulfur Radioisotopes
- Tetrahydroisoquinolines
Collapse
Affiliation(s)
- M Labarre
- Department of Pharmacology, AstraZeneca R&D Montreal, Quebec, H4S 1Z9, St-Laurent, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pagé D, McClory A, Mischki T, Schmidt R, Butterworth J, St-Onge S, Labarre M, Payza K, Brown W. Novel Dmt-Tic dipeptide analogues as selective delta-opioid receptor antagonists. Bioorg Med Chem Lett 2000; 10:167-70. [PMID: 10673103 DOI: 10.1016/s0960-894x(99)00652-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of Dmt-Tic analogues with substitution on the Tic aromatic ring has been synthesized and evaluated for opioid receptor affinity and activation. Incorporation of large hydrophobic groups at position 7 of Tic did not greatly alter the delta opioid receptor binding affinities of the dipeptides whereas substitution at position 6 substantially diminished their affinity. These modified Dmt-Tic peptides showed binding affinities as low as 2.5 nM with up to 500-fold selectivity for the delta versus mu opioid receptor and proved to be delta receptor antagonists.
Collapse
Affiliation(s)
- D Pagé
- Department of Chemistry, AstraZeneca R&D Montréal, Saint-Laurent, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.
Collapse
Affiliation(s)
- L H Lazarus
- Peptide Neurochemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|