1
|
Lima RB, Figueiredo DD. Sex on Steroids: How Brassinosteroids Shape Reproductive Development in Flowering Plants. PLANT & CELL PHYSIOLOGY 2024; 65:1581-1600. [PMID: 38668644 PMCID: PMC11558549 DOI: 10.1093/pcp/pcae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 11/14/2024]
Abstract
Since the discovery of brassinolide in the pollen of rapeseed, brassinosteroids (BRs) have consistently been associated with reproductive traits. However, compared to what is known for how BRs shape vegetative development, the understanding of how these hormones regulate reproductive traits is comparatively still lacking. Nevertheless, there is now considerable evidence that BRs regulate almost all aspects of reproduction, from ovule and pollen formation to seed and fruit development. Here, we review the current body of knowledge on how BRs regulate reproductive processes in plants and what is known about how these pathways are transduced at the molecular level. We also discuss how the manipulation of BR biosynthesis and signaling can be a promising avenue for improving crop traits that rely on efficient reproduction. We thus propose that BRs hold an untapped potential for plant breeding, which could contribute to attaining food security in the coming years.
Collapse
Affiliation(s)
- Rita B Lima
- Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Duarte D Figueiredo
- Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
2
|
Krueger A, Horjales S, Yang C, Blakely WJ, Francia ME, Arrizabalaga G. The essential kinase TgGSK regulates centrosome division and endodyogeny in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615374. [PMID: 39386585 PMCID: PMC11463552 DOI: 10.1101/2024.09.27.615374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Intracellular replication is crucial for the success of apicomplexan parasites, including Toxoplasma gondii. Therefore, essential players in parasite replication present potential targets for drug development. In this study, we have characterized TgGSK, a glycogen synthase kinase homolog that plays an important role in Toxoplasma endodyogeny. We have shown that TgGSK has a dynamic localization that is concurrent with the cell cycle. In non-dividing parasites, this kinase is highly concentrated in the nucleus. However, during division, TgGSK displays a cytosolic localization, with concentration foci at the centrosomes, a key organelle involved in parasite division, and the basal end. Conditional knockdown of TgGSK determined that it is essential for the completion of the lytic cycle and proper parasite division. Parasites lacking endogenous protein levels of TgGSK exhibited defects in division synchronicity and the segregation of the nucleus and apicoplast into forming daughter cells. These phenotypes are associated with defects in centrosome duplication and fission. Global phosphoproteomic analysis determined TgGSK-dependent phosphorylation of RNA-processing, basal end, and centrosome proteins. Consistent with the putative regulation of RNA-processing proteins, global transcriptomic analysis suggests that TgGSK is needed for proper splicing. Finally, we show that TgGSK interacts with GCN5b, a well-characterized acetyltransferase with roles in transcriptional control. Conversely, GCN5b chemical inhibition results in specific degradation of TgGSK. Thus, these studies reveal the involvement of TgGSK in various crucial processes, including endodyogeny and splicing, and identify acetylation as a possible mechanism by which this essential kinase is regulated.
Collapse
Affiliation(s)
- Amanda Krueger
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Sofia Horjales
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - William J. Blakely
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
| |
Collapse
|
3
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
4
|
Kloc Y, Dmochowska-Boguta M, Żebrowska-Różańska P, Łaczmański Ł, Nadolska-Orczyk A, Orczyk W. HvGSK1.1 Controls Salt Tolerance and Yield through the Brassinosteroid Signaling Pathway in Barley. Int J Mol Sci 2024; 25:998. [PMID: 38256072 PMCID: PMC10815662 DOI: 10.3390/ijms25020998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Brassinosteroids (BRs) are a class of plant steroid hormones that are essential for plant growth and development. BRs control important agronomic traits and responses to abiotic stresses. Through the signaling pathway, BRs control the expression of thousands of genes, resulting in a variety of biological responses. The key effectors of the BR pathway are two transcription factors (TFs): BRASSINAZOLE RESISTANT 1 (BZR1) and BRI1-EMSSUPPRESSOR 1 (BES1). Both TFs are phosphorylated and inactivated by the Glycogen synthase kinase 3 BRASSINOSTEROID INSENSITIVE2 (BIN2), which acts as a negative regulator of the BR pathway. In our study, we describe the functional characteristics of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. We generated mutant lines of HvGSK1.1 using CRISPR/Cas9 genome editing technology. Next Generation Sequencing (NGS) of the edited region of the HvGSK1.1 showed a wide variety of mutations. Most of the changes (frameshift, premature stop codon, and translation termination) resulted in the knock-out of the target gene. The molecular and phenotypic characteristics of the mutant lines showed that the knock-out mutation of HvGSK1.1 improved plant growth performance under salt stress conditions and increased the thousand kernel weight of the plants grown under normal conditions. The inactivation of HvGSK1.1 enhanced BR-dependent signaling, as indicated by the results of the leaf inclination assay in the edited lines. The plant traits under investigation are consistent with those known to be regulated by BRs. These results, together with studies of other GSK3 gene members in other plant species, suggest that targeted editing of these genes may be useful in creating plants with improved agricultural traits.
Collapse
Affiliation(s)
- Yuliya Kloc
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Marta Dmochowska-Boguta
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (P.Ż.-R.); (Ł.Ł.)
| | - Łukasz Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (P.Ż.-R.); (Ł.Ł.)
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland; (M.D.-B.); (A.N.-O.); (W.O.)
| |
Collapse
|
5
|
Qiu YM, Guo J, Jiang WZ, Ding JH, Song RF, Zhang JL, Huang X, Yuan HM. HbBIN2 Functions in Plant Cold Stress Resistance through Modulation of HbICE1 Transcriptional Activity and ROS Homeostasis in Hevea brasiliensis. Int J Mol Sci 2023; 24:15778. [PMID: 37958762 PMCID: PMC10649430 DOI: 10.3390/ijms242115778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Cold stress poses significant limitations on the growth, latex yield, and ecological distribution of rubber trees (Hevea brasiliensis). The GSK3-like kinase plays a significant role in helping plants adapt to different biotic and abiotic stresses. However, the functions of GSK3-like kinase BR-INSENSITIVE 2 (BIN2) in Hevea brasiliensis remain elusive. Here, we identified HbBIN2s of Hevea brasiliensis and deciphered their roles in cold stress resistance. The transcript levels of HbBIN2s are upregulated by cold stress. In addition, HbBIN2s are present in both the nucleus and cytoplasm and have the ability to interact with the INDUCER OF CBF EXPRESSION1(HbICE1) transcription factor, a central component in cold signaling. HbBIN2 overexpression in Arabidopsis displays decreased tolerance to chilling stress with a lower survival rate and proline content but a higher level of electrolyte leakage (EL) and malondialdehyde (MDA) than wild type under cold stress. Meanwhile, HbBIN2 transgenic Arabidopsis treated with cold stress exhibits a significant increase in the accumulation of reactive oxygen species (ROS) and a decrease in the activity of antioxidant enzymes. Further investigation reveals that HbBIN2 inhibits the transcriptional activity of HbICE1, thereby attenuating the expression of C-REPEAT BINDING FACTOR (HbCBF1). Consistent with this, overexpression of HbBIN2 represses the expression of CBF pathway cold-regulated genes under cold stress. In conclusion, our findings indicate that HbBIN2 functions as a suppressor of cold stress resistance by modulating HbICE1 transcriptional activity and ROS homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| |
Collapse
|
6
|
Ahmar S, Zolkiewicz K, Gruszka D. Analyses of genes encoding the Glycogen Synthase Kinases in rice and Arabidopsis reveal mechanisms which regulate their expression during development and responses to abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111724. [PMID: 37142096 DOI: 10.1016/j.plantsci.2023.111724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Plant Glycogen Synthase Kinases (GSKs) enable a crosstalk among the brassinosteroid signaling and phytohormonal- and stress-response pathways to regulate various physiological processes. Initial information about regulation of the GSK proteins' activity was obtained, however, mechanisms that modulate expression of the GSK genes during plant development and stress responses remain largely unknown. Taking into account the importance of the GSK proteins, combined with the lack of in-depth knowledge about modulation of their expression, research in this area may provide a significant insight into mechanisms regulating these aspects of plant biology. In the current study, a detailed analysis of the GSK promoters in rice and Arabidopsis was performed, including identification of the CpG/CpNpG islands, tandem repeats, cis-acting regulatory elements, conserved motifs, and transcription factor-binding sites. Moreover, characterization of expression profiles of the GSK genes in different tissues, organs and under various abiotic stress conditions was perfomed. Additionally, protein-protein interactions between products of the GSK genes were predicted. Results of this study provided intriguing information about these aspects and insight into various regulatory mechanisms that influence non-redundant and diverse functions of the GSK genes during development and stress responses.Therefore, they may constitute a reference for future research in other plant species.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Karolina Zolkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
7
|
Silva JCF, Ferreira MA, Carvalho TFM, Silva FF, de A. Silveira S, Brommonschenkel SH, Fontes EPB. RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. Int J Mol Sci 2022; 23:12176. [PMID: 36293031 PMCID: PMC9603095 DOI: 10.3390/ijms232012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.
Collapse
Affiliation(s)
- Jose Cleydson F. Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa 36570-900, Brazil
| | - Marco Aurélio Ferreira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Thales F. M. Carvalho
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Janaúba 39447-814, Brazil
| | - Fabyano F. Silva
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Sabrina de A. Silveira
- Department of Computer Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Elizabeth P. B. Fontes
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| |
Collapse
|
8
|
Han Q, Tan W, Zhao Y, Yang F, Yao X, Lin H, Zhang D. Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance. EMBO J 2022; 41:e110682. [PMID: 35950443 PMCID: PMC9531300 DOI: 10.15252/embj.2022110682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The plant defense hormone, salicylic acid (SA), plays essential roles in immunity and systemic acquired resistance. Salicylic acid induced by the pathogen is perceived by the receptor nonexpressor of pathogenesis-related genes 1 (NPR1), which is recruited by TGA transcription factors to induce the expression of pathogenesis-related (PR) genes. However, the mechanism by which post-translational modifications affect TGA's transcriptional activity by salicylic acid signaling/pathogen infection is not well-established. Here, we report that the loss-of-function mutant of brassinosteroid insensitive2 (BIN2) and its homologs, bin2-3 bil1 bil2, causes impaired pathogen resistance and insensitivity to SA-induced PR gene expression, whereas the gain-of-function mutant, bin2-1, exhibited enhanced SA signaling and immunity against the pathogen. Our results demonstrate that salicylic acid activates BIN2 kinase, which in turn phosphorylates TGA3 at Ser33 to enhance TGA3 DNA binding ability and NPR1-TGA3 complex formation, leading to the activation of PR gene expression. These findings implicate BIN2 as a new component of salicylic acid signaling, functioning as a key node in balancing brassinosteroid-mediated plant growth and SA-induced immunity.
Collapse
Affiliation(s)
- Qing Han
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Wenrong Tan
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| |
Collapse
|
9
|
Li H, Luo L, Wang Y, Zhang J, Huang Y. Genome-Wide Characterization and Phylogenetic Analysis of GSK Genes in Maize and Elucidation of Their General Role in Interaction with BZR1. Int J Mol Sci 2022; 23:8056. [PMID: 35897632 PMCID: PMC9330802 DOI: 10.3390/ijms23158056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a nonreceptor serine/threonine protein kinase that is involved in diverse processes, including cell development, photomorphogenesis, biotic and abiotic stress responses, and hormone signaling. In contrast with the deeply researched GSK family in Arabidopsis and rice, maize GSKs' common bioinformatic features and protein functions are poorly understood. In this study, we identified 11 GSK genes in the maize (Zea mays L.) genome via homologous alignment, which we named Zeama;GSKs (ZmGSKs). The results of ZmGSK protein sequences, conserved motifs, and gene structures showed high similarities with each other. The phylogenetic analyses showed that a total of 11 genes from maize were divided into four clades. Furthermore, semi-quantitative RT-PCR analysis of the GSKs genes showed that ZmGSK1, ZmGSK2, ZmGSK4, ZmGSK5, ZmGSK8, ZmGSK9, ZmGSK10, and ZmGSK11 were expressed in all tissues; ZmGSK3, ZmGSK6, and ZmGSK7 were expressed in a specific organization. In addition, GSK expression profiles under hormone treatments demonstrated that the ZmGSK genes were induced under BR conditions, except for ZmGSK2 and ZmGSK5. ZmGSK genes were regulated under ABA conditions, except for ZmGSK1 and ZmGSK8. Finally, using the yeast two-hybrid and BiFC assay, we determined that clads II (ZmGSK1, ZmGSK4, ZmGSK7, ZmGSK8, and ZmGSK11) could interact with ZmBZR1. The results suggest that clade II of ZmGSKs is important for BR signaling and that ZmGSK1 may play a dominant role in BR signaling as the counterpart to BIN2. This study provides a foundation for the further study of GSK3 functions and could be helpful in devising strategies for improving maize.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yayun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Aziz U, Rehmani MS, Wang L, Xian B, Luo X, Shu K. Repressors: the gatekeepers of phytohormone signaling cascades. PLANT CELL REPORTS 2022; 41:1333-1341. [PMID: 35262769 DOI: 10.1007/s00299-022-02853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Coordinated phytohormone signal transduction, in which repressors are the key players, is essential to balance plant development and stress response. In the absence of phytohormones, repressors interplay to terminate the transcription of phytohormone-responsive genes. For phytohormone signal transduction, degradation or inactivation of the repressors is a prerequisite, a process in which proteasomal degradation or protein modifications, such as phosphorylation, are involved. In this review, we summarize the various repressor proteins and their methods of regulation. In addition, we also shed light on other post-transcriptional modifications, including protein sumoylation, acetylation, methylation, and S-nitrosylation, which might be involved in repressor regulation. We conclude that repressors are the gatekeepers of phytohormone signaling, allowing transcription of phytohormone-responsive genes only when required and thus serving as a universal mechanism to conserve energy in plants. Finally, we strongly recommend that plant research should be focused further on elucidating the mechanisms regulating repressor abundance or activity, to improve our understanding of phytohormone signal transduction.
Collapse
Affiliation(s)
- Usman Aziz
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Muhammad Saad Rehmani
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Baoshan Xian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China.
| |
Collapse
|
11
|
Song Y, Zhai Y, Li L, Yang Z, Ge X, Yang Z, Zhang C, Li F, Ren M. BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2097-2112. [PMID: 34036698 PMCID: PMC8486250 DOI: 10.1111/pbi.13640] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Verticillium wilt is caused by the soil-borne vascular pathogen Verticillium dahliae, and affects a wide range of economically important crops, including upland cotton (Gossypium hirsutum). Previous studies showed that expression levels of BIN2 were significantly down-regulated during infestation with V. dahliae. However, the underlying molecular mechanism of BIN2 in plant regulation against V. dahliae remains enigmatic. Here, we characterized a protein kinase GhBIN2 from Gossypium hirsutum, and identified GhBIN2 as a negative regulator of resistance to V. dahliae. The Verticillium wilt resistance of Arabidopsis and cotton were significantly enhanced when BIN2 was knocked down. Constitutive expression of BIN2 attenuated plant resistance to V. dahliae. We found that BIN2 regulated plant endogenous JA content and influenced the expression of JA-responsive marker genes. Further analysis revealed that BIN2 interacted with and phosphorylated JAZ family proteins, key repressors of the JA signalling pathway in both Arabidopsis and cotton. Spectrometric analysis and site-directed mutagenesis showed that BIN2 phosphorylated AtJAZ1 at T196, resulting in the degradation of JAZ proteins. Collectively, these results show that BIN2 interacts with JAZ proteins and plays a negative role in plant resistance to V. dahliae. Thus, BIN2 may be a potential target gene for genetic engineering against Verticillium wilt in crops.
Collapse
Affiliation(s)
- Yun Song
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- School of Life SciencesLiaocheng UniversityLiaochengChina
| | - Yaohua Zhai
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Linxuan Li
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
| | - Zhaoen Yang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiaoyang Ge
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chaojun Zhang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Maozhi Ren
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
| |
Collapse
|
12
|
Waidmann S, Petutschnig E, Rozhon W, Molnár G, Popova O, Mechtler K, Jonak C. GSK3-mediated phosphorylation of DEK3 regulates chromatin accessibility and stress tolerance in Arabidopsis. FEBS J 2021; 289:473-493. [PMID: 34492159 DOI: 10.1111/febs.16186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Chromatin dynamics enable the precise control of transcriptional programmes. The balance between restricting and opening of regulatory sequences on the DNA needs to be adjusted to prevailing conditions and is fine-tuned by chromatin remodelling proteins. DEK is an evolutionarily conserved chromatin architectural protein regulating important chromatin-related processes. However, the molecular link between DEK-induced chromatin reconfigurations and upstream signalling events remains unknown. Here, we show that ASKβ/AtSK31 is a salt stress-activated glycogen synthase kinase 3 (GSK3) from Arabidopsis thaliana that phosphorylates DEK3. This specific phosphorylation alters nuclear DEK3 protein complex composition and affects nucleosome occupancy and chromatin accessibility that is translated into changes in gene expression, contributing to salt stress tolerance. These findings reveal that DEK3 phosphorylation is critical for chromatin function and cellular stress response and provide a mechanistic example of how GSK3-based signalling is directly linked to chromatin, facilitating a transcriptional response.
Collapse
Affiliation(s)
- Sascha Waidmann
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Elena Petutschnig
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Gergely Molnár
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| | - Olga Popova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna BioCenter, Austria
| | - Claudia Jonak
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria.,AIT Austrian Institute of Technology, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
13
|
Maszkowska J, Szymańska KP, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The Multifaceted Regulation of SnRK2 Kinases. Cells 2021; 10:cells10092180. [PMID: 34571829 PMCID: PMC8465348 DOI: 10.3390/cells10092180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Katarzyna Patrycja Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Adrian Kasztelan
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| |
Collapse
|
14
|
Yang M, He J, Wan S, Li W, Chen W, Wang Y, Jiang X, Cheng P, Chu P, Shen W, Guan R. Fine mapping of the BnaC04.BIL1 gene controlling plant height in Brassica napus L. BMC PLANT BIOLOGY 2021; 21:359. [PMID: 34353289 PMCID: PMC8340546 DOI: 10.1186/s12870-021-03137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant height is an important architecture trait which is a fundamental yield-determining trait in crops. Variety with dwarf or semi-dwarf phenotype is a major objective in the breeding because dwarfing architecture can help to increase harvest index, increase planting density, enhance lodging resistance, and thus be suitable for mechanization harvest. Although some germplasm or genes associated with dwarfing plant type have been carried out. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus L.) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we report a new dwarf mutant Bndwarf2 from our B. napus germplasm. We studied its inheritance and mapped the dwarf locus BnDWARF2. RESULTS The inheritance analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped in an interval of 787.88 kb on the C04 chromosome of B. napus by Illumina Brassica 60 K Bead Chip Array. To fine-map BnDWARF2, 318 simple sequence repeat (SSR) primers were designed to uniformly cover the mapping interval. Among them, 15 polymorphic primers that narrowed down the BnDWARF2 locus to 34.62 kb were detected using a F2:3 family population with 889 individuals. Protein sequence analysis showed that only BnaC04.BIL1 (BnaC04g41660D) had two amino acid residues substitutions (Thr187Ser and Gln399His) between ZS11 and Bndwarf2, which encoding a GLYCOGEN SYNTHASE KINASE 3 (GSK3-like). The quantitative real-time PCR (qRT-PCR) analysis showed that the BnaC04.BIL1 gene expressed in all tissues of oilseed rape. Subcellular localization experiment showed that BnaC04.BIL1 was localized in the nucleus in tobacco leaf cells. Genetic transformation experiments confirmed that the BnaC04.BIL1 is responsible for the plant dwarf phenotype in the Bndwarf2 mutants. Overexpression of BnaC04.BIL1 reduced plant height, but also resulted in compact plant architecture. CONCLUSIONS A dominant dwarfing gene, BnaC04.BIL1, encodes an GSK3-like that negatively regulates plant height, was mapped and isolated. Our identification of a distinct gene locus may help to improve lodging resistance in oilseed rape.
Collapse
Affiliation(s)
- Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenjing Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaomei Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Pu Chu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
15
|
Solovou TGA, Garagounis C, Kyriakis E, Bobas C, Papadopoulos GE, Skamnaki VT, Papadopoulou KK, Leonidas DD. Mutagenesis of a Lotus japonicus GSK3β/Shaggy-like kinase reveals functionally conserved regulatory residues. PHYTOCHEMISTRY 2021; 186:112707. [PMID: 33721796 DOI: 10.1016/j.phytochem.2021.112707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The glycogen synthase kinases 3 family (GSK3s/SKs; serine/threonine protein kinases) is conserved throughout eukaryotic evolution from yeast to plants and mammals. We studied a plant SK kinase from Lotus japonicus (LjSK1), previously implicated in nodule development, by enzyme kinetics and mutagenesis studies to compare it to mammalian homologues. Using a phosphorylated peptide as substrate, LjSK1 displays optimum kinase activity at pH 8.0 and 20 °C following Michaelis-Menten kinetics with Km and Vmax values of 48.2 μM and 111.6 nmol/min/mg, respectively, for ATP. Mutation of critical residues, as inferred by sequence comparison to the human homologue GSK3β and molecular modeling, showed a conserved role for Lys167, while residues conferring substrate specificity in the human enzyme are not as significant in modulating LjSK1 substrate specificity. Mutagenesis studies also indicate a regulation mechanism for LjSK1 via proteolysis since removal of a 98 residue long N-terminal segment increases its catalytic efficiency by almost two-fold. In addition, we evaluated the alteration of LjSK1 kinase activity in planta, by overexpressing the mutant variants in hairy-roots and a phenotype in nodulation and lateral root development was verified.
Collapse
Affiliation(s)
- Theodora G A Solovou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Constantine Garagounis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Efthimios Kyriakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Charalambos Bobas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Georgios E Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
16
|
Mao J, Li W, Liu J, Li J. Versatile Physiological Functions of Plant GSK3-Like Kinases. Genes (Basel) 2021; 12:genes12050697. [PMID: 34066668 PMCID: PMC8151121 DOI: 10.3390/genes12050697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
The plant glycogen synthase kinase 3 (GSK3)-like kinases are highly conserved protein serine/threonine kinases that are grouped into four subfamilies. Similar to their mammalian homologs, these kinases are constitutively active under normal growth conditions but become inactivated in response to diverse developmental and environmental signals. Since their initial discoveries in the early 1990s, many biochemical and genetic studies were performed to investigate their physiological functions in various plant species. These studies have demonstrated that the plant GSK3-like kinases are multifunctional kinases involved not only in a wide variety of plant growth and developmental processes but also in diverse plant stress responses. Here we summarize our current understanding of the versatile physiological functions of the plant GSK3-like kinases along with their confirmed and potential substrates.
Collapse
Affiliation(s)
- Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.M.); (J.L.)
| | - Wenxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.L.); (J.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (J.M.); (J.L.)
| |
Collapse
|
17
|
Kloc Y, Dmochowska-Boguta M, Zielezinski A, Nadolska-Orczyk A, Karlowski WM, Orczyk W. Silencing of HvGSK1.1-A GSK3/SHAGGY-Like Kinase-Enhances Barley ( Hordeum vulgare L.) Growth in Normal and in Salt Stress Conditions. Int J Mol Sci 2020; 21:ijms21186616. [PMID: 32927724 PMCID: PMC7554974 DOI: 10.3390/ijms21186616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a highly conserved kinase present in all eukaryotes and functions as a key regulator of a wide range of physiological and developmental processes. The kinase, known in land plants as GSK3/SHAGGY-like kinase (GSK), is a key player in the brassinosteroid (BR) signaling pathway. The GSK genes, through the BRs, affect diverse developmental processes and modulate responses to environmental factors. In this work, we describe functional analysis of HvGSK1.1, which is one of the GSK3/SHAGGY-like orthologs in barley. The RNAi-mediated silencing of the target HvGSK1.1 gene was associated with modified expression of its paralogs HvGSK1.2, HvGSK2.1, HvGSK3.1, and HvGSK4.1 in plants grown in normal and in salt stress conditions. Low nucleotide similarity between the silencing fragment and barley GSK genes and the presence of BR-dependent transcription factors’ binding sites in promoter regions of barley and rice GSK genes imply an innate mechanism responsible for co-regulation of the genes. The results of the leaf inclination assay indicated that silencing of HvGSK1.1 and the changes of GSK paralogs enhanced the BR-dependent signaling in the plants. The strongest phenotype of transgenic lines with downregulated HvGSK1.1 and GSK paralogs had greater biomass of the seedlings grown in normal conditions and salt stress as well as elevated kernel weight of plants grown in normal conditions. Both traits showed a strong negative correlation with the transcript level of the target gene and the paralogs. The characteristics of barley lines with silenced expression of HvGSK1.1 are compatible with the expected phenotypes of plants with enhanced BR signaling. The results show that manipulation of the GSK-encoding genes provides data to explore their biological functions and confirm it as a feasible strategy to generate plants with improved agricultural traits.
Collapse
Affiliation(s)
- Yuliya Kloc
- Department of Genetic Engineering, Plant Breeding and Acclimatization, Institute–National Research Institute, Radzikow, 05-870 Blonie, Poland; (Y.K.); (M.D.-B.)
| | - Marta Dmochowska-Boguta
- Department of Genetic Engineering, Plant Breeding and Acclimatization, Institute–National Research Institute, Radzikow, 05-870 Blonie, Poland; (Y.K.); (M.D.-B.)
| | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.Z.); (W.M.K.)
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization, Institute–National Research Institute, Radzikow, 05-870 Blonie, Poland;
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.Z.); (W.M.K.)
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization, Institute–National Research Institute, Radzikow, 05-870 Blonie, Poland; (Y.K.); (M.D.-B.)
- Correspondence:
| |
Collapse
|
18
|
Chen Y, Song S, Gan Y, Jiang L, Yu H, Shen L. SHAGGY-like kinase 12 regulates flowering through mediating CONSTANS stability in Arabidopsis. SCIENCE ADVANCES 2020; 6:eaaw0413. [PMID: 32582842 PMCID: PMC7292628 DOI: 10.1126/sciadv.aaw0413] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 09/05/2019] [Accepted: 04/14/2020] [Indexed: 05/18/2023]
Abstract
Photoperiod is a major environmental cue that determines the floral transition from vegetative to reproductive development in flowering plants. Arabidopsis thaliana responds to photoperiodic signals mainly through a central regulator CONSTANS (CO). Although it has been suggested that phosphorylation of CO contributes to its role in photoperiodic control of flowering, how this is regulated so far remains unknown. Here, we report that a glycogen synthase kinase-3 member, SHAGGY-like kinase 12 (SK12), plays an important role in preventing precocious flowering through phosphorylating CO. Loss of function of SK12 causes early flowering. SK12 expression in seedlings is decreased during the floral transition, and its expression in vascular tissues is required for repressing flowering. SK12 interacts with and phosphorylates CO at threonine 119, thus facilitating CO degradation. Our findings suggest that site-specific phosphorylation of CO by SK12 is critical for modulating the photoperiodic output for the floral induction in Arabidopsis.
Collapse
Affiliation(s)
- Ying Chen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyong Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Yinbo Gan
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Corresponding author. (H.Y.); (L.S.)
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (H.Y.); (L.S.)
| |
Collapse
|
19
|
Kashyap H, Gupta S, Bist R. Impact of Active Antihyperglycemic Components as Herbal Therapy for Preventive Health Care Management of Diabetes. Curr Mol Med 2020; 19:12-19. [PMID: 30806316 DOI: 10.2174/1566524019666190219124301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/21/2023]
Abstract
Diabetes is a metabolic hyperglycemic condition that progressively develops, effect small and large sensory fibers in the affected population. It has various complications as hypertension, coronary artery disease, stroke, blindness, kidney disease as well as peripheral neuropathy. Sulfonylureas, thiazolidinediones, metformin, biguanidine, acarbose and insulin are commonly used drugs for diabetic patients, but these all have certain side effects. Even metformin, that is known as the miracle drug for diabetes has been found to be associated with side effects, as during treatment it involves complications with eyes, kidneys, peripheral nerves, heart and vasculature. In the present article, we hypothesize recent discoveries with respect to active ingredients from Indian medicinal plants i.e., polypeptide-p (protein analogue act as artificial insulin), charantin (a steroidal saponin), momordicin (an alkaloid) and osmotin (ubiquitous plant protein and animal analogue of human adeponectin) possessing anti-hyperglycemic potential for diabetes type II. Therefore, plants as herbal therapy have preventive care of hyperglycemia accompanied with healthy lifestyle which can provide significant decline in the incidences of diabetes in future.
Collapse
Affiliation(s)
- Harsha Kashyap
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Renu Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| |
Collapse
|
20
|
Wang T, Li Q, Lou S, Yang Y, Peng L, Lin Z, Hu Q, Ma L. GSK3/shaggy-like kinase 1 ubiquitously regulates cell growth from Arabidopsis to Moso bamboo (Phyllostachys edulis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:290-300. [PMID: 31128699 DOI: 10.1016/j.plantsci.2019.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Moso bamboo (Phyllostachys edulis) is one of the fastest growing species with a maximum growth rate of 1 m/day. However, the regulator genes for this explosive growth phenomenon have not been functionally studied. Here, we found that Moso bamboo GSK3/shaggy-like kinase 1 (PeGSK1) acts as a negative regulator of cell growth. Over-expression of PeGSK1 in Arabidopsis showed significant growth arrest phenotypes, including dwarfism, small leaves, reduced cell length, and disturbed cell elongation of petiole. Furthermore, Overexpression of PeGSK1 fully inhibited the longer hypocotyl phenotype of Arabidopsis atgsk1 mutants. In addition, PeGSK1-overexpressing lines were resistant to exogenous BR treatment and PeGSK1 interacted with the brassinosteroid signal transduction key regulator BZR1. The BZR1-dependent cell growth genes were down-regulated in PeGSK1-overexpressing lines. These results indicated that PeGSK1 is functionally similar to AtGSK1 and inhibited cell growth via the brassinosteroid signaling pathway. Importantly, PeGSK1 also interacted with PeBZR1, and the expression pattern of PeGSK1 was negatively correlated with the internode elongation of bamboo, indicating that PeGSK1 is involved in the cell growth of bamboo. In summary, our results provide insight into the role of brassinosteroids in the rapid-growth of bamboo culms and identifying target genes for the genetic manipulation of plant height.
Collapse
Affiliation(s)
- Taotao Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinzhen Li
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuaitong Lou
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yong Yang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingfang Peng
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zezhong Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qin Hu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liuyin Ma
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
21
|
Garagounis C, Tsikou D, Plitsi PK, Psarrakou IS, Avramidou M, Stedel C, Anagnostou M, Georgopoulou ME, Papadopoulou KK. Lotus SHAGGY-like kinase 1 is required to suppress nodulation in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:228-242. [PMID: 30570783 DOI: 10.1111/tpj.14207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase/SHAGGY-like kinases (SKs) are a highly conserved family of signaling proteins that participate in many developmental, cell-differentiation, and metabolic signaling pathways in plants and animals. Here, we investigate the involvement of SKs in legume nodulation, a process requiring the integration of multiple signaling pathways. We describe a group of SKs in the model legume Lotus japonicus (LSKs), two of which respond to inoculation with the symbiotic nitrogen-fixing bacterium Mesorhizobium loti. RNAi knock-down plants and an insertion mutant for one of these genes, LSK1, display increased nodulation. Ηairy-root lines overexpressing LSK1 form only marginally fewer mature nodules compared with controls. The expression levels of genes involved in the autoregulation of nodulation (AON) mechanism are affected in LSK1 knock-down plants at low nitrate levels, both at early and late stages of nodulation. At higher levels of nitrate, these same plants show the opposite expression pattern of AON-related genes and lose the hypernodulation phenotype. Our findings reveal an additional role for the versatile SK gene family in integrating the signaling pathways governing legume nodulation, and pave the way for further study of their functions in legumes.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Panagiota K Plitsi
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Ioanna S Psarrakou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Catalina Stedel
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria Anagnostou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria E Georgopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
22
|
Wang L, Yang Z, Zhang B, Yu D, Liu J, Gong Q, Qanmber G, Li Y, Lu L, Lin Y, Yang Z, Li F. Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress. BMC PLANT BIOLOGY 2018; 18:330. [PMID: 30514299 PMCID: PMC6280398 DOI: 10.1186/s12870-018-1526-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30 years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. RESULT In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub-networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. CONCLUSION In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Bin Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Qian Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
23
|
Qiu A, Wu J, Lei Y, Cai Y, Wang S, Liu Z, Guan D, He S. CaSK23, a Putative GSK3/SHAGGY-Like Kinase of Capsicum annuum, Acts as a Negative Regulator of Pepper's Response to Ralstonia solanacearum Attack. Int J Mol Sci 2018; 19:ijms19092698. [PMID: 30208566 PMCID: PMC6163794 DOI: 10.3390/ijms19092698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
GSK3-like kinases have been mainly implicated in the brassinosteroids (BR) pathway and, therefore, in plant growth, development, and responses to abiotic stresses; however, their roles in plant immunity remain poorly understood. Herein, we present evidence that CaSK23, a putative GSK3/SHAGGY-like kinase in pepper, acts as a negative regulator in pepper’s response to Ralstonia solanacearum (R. solanacearum) inoculation (RSI). Data from quantitative RT-PCR (qRT-PCR) showed that the constitutively-expressed CaSK23 in pepper leaves was down-regulated by RSI, as well as by exogenously-applied salicylic acid (SA) or methyl jasomonate (MeJA). Silencing of CaSK23 by virus-induced gene silencing (VIGS) decreased the susceptibility of pepper plants to RSI, coupled with up-regulation of the tested genes encoding SA-, JA-, and ethylene (ET)-dependent pathogenesis-related (PR) proteins. In contrast, ectopic overexpression (OE) of CaSK23 conferred a compromised resistance of tobacco plants to RSI, accompanied by down-regulation of the tested immunity-associated SA-, JA-, and ET-dependent PR genes. In addition, transient overexpression of CaSK23 in pepper plants consistently led to down-regulation of the tested SA-, JA-, and ET-dependent PR genes. We speculate that CaSK23 acts as a negative regulator in pepper immunity and its constitutive expression represses pepper immunity in the absence of pathogens. On the other hand, its decreased expression derepresses immunity when pepper plants are attacked by pathogens.
Collapse
Affiliation(s)
- Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Ji Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Yufen Lei
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Yiting Cai
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Song Wang
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Zhiqin Liu
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Deyi Guan
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Shuilin He
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| |
Collapse
|
24
|
Gruszka D. Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. Int J Mol Sci 2018; 19:ijms19092675. [PMID: 30205610 PMCID: PMC6163518 DOI: 10.3390/ijms19092675] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
Brassinosteroids (BRs) are a class of phytohormones, which regulate various processes during plant life cycle. Intensive studies conducted with genetic, physiological and molecular approaches allowed identification of various components participating in the BR signaling—from the ligand perception, through cytoplasmic signal transduction, up to the BR-dependent gene expression, which is regulated by transcription factors and chromatin modifying enzymes. The identification of new components of the BR signaling is an ongoing process, however an emerging view of the BR signalosome indicates that this process is interconnected at various stages with other metabolic pathways. The signaling crosstalk is mediated by the BR signaling proteins, which function as components of the transmembrane BR receptor, by a cytoplasmic kinase playing a role of the major negative regulator of the BR signaling, and by the transcription factors, which regulate the BR-dependent gene expression and form a complicated regulatory system. This molecular network of interdependencies allows a balance in homeostasis of various phytohormones to be maintained. Moreover, the components of the BR signalosome interact with factors regulating plant reactions to environmental cues and stress conditions. This intricate network of interactions enables a rapid adaptation of plant metabolism to constantly changing environmental conditions.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
25
|
Dokládal L, Benková E, Honys D, Dupľáková N, Lee LY, Gelvin SB, Sýkorová E. An armadillo-domain protein participates in a telomerase interaction network. PLANT MOLECULAR BIOLOGY 2018; 97:407-420. [PMID: 29948659 DOI: 10.1007/s11103-018-0747-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein-protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.
Collapse
Affiliation(s)
- Ladislav Dokládal
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eva Benková
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - David Honys
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, Czech Republic
| | - Nikoleta Dupľáková
- Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502, Prague, Czech Republic
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907-1392, USA
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907-1392, USA
| | - Eva Sýkorová
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.
| |
Collapse
|
26
|
Groszyk J, Yanushevska Y, Zielezinski A, Nadolska-Orczyk A, Karlowski WM, Orczyk W. Annotation and profiling of barley GLYCOGEN SYNTHASE3/Shaggy-like genes indicated shift in organ-preferential expression. PLoS One 2018; 13:e0199364. [PMID: 29920545 PMCID: PMC6007836 DOI: 10.1371/journal.pone.0199364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022] Open
Abstract
GLYCOGEN SYNTHASE KINASE3/Shaggy-like kinases (GSKs) represent a highly conserved group of proteins found in all eukaryotes. In plants they are encoded by multigene families and integrate signaling of brassinosteroids, auxin and abscisic acid in wide range of physiological and developmental processes with a strong impact on plant responses to environmental and biotic factors. Based on comprehensively studied structures of 10 Arabidopsis thaliana GSK genes and encoded proteins we report identification and phylogenetic reconstruction of 7 transcriptionally active GSK genes in barley. We re-evaluated annotation of the GSK genes in the current barley genome (Hv_IBSC_PGSB_v2) and provided data that a single gene annotated in the previous barley genome ensemble should be retained in the current one. The novel structure of another GSK, predicted in Hv_IBSC_PGSB_v2 to encode both GSK and amine oxidase domains, was proposed and experimentally confirmed based on the syntenic region in Brachypodium distachyon. The genes were assigned to 4 groups based on their encoded amino acid sequences and protein kinase domains. The analysis confirmed high level of conservation of functional protein domains and motifs among plant GSKs and the identified barley orthologs. Each of the seven identified HvGSK genes was expressed indicating semi-constitutive regulation in all tested organs and developmental stages. Regulation patterns of GSKs from the indicated groups showed a shift in organ-preferential expression in A. thaliana and barley illustrating diversification of biological roles of individual HvGSKs in different plant species.
Collapse
Affiliation(s)
- Jolanta Groszyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute–National Research Institute, Radzikow, Blonie, Poland
| | - Yuliya Yanushevska
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute–National Research Institute, Radzikow, Blonie, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute–National Research Institute, Radzikow, Blonie, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute–National Research Institute, Radzikow, Blonie, Poland
| |
Collapse
|
27
|
Shariatipour N, Heidari B. Investigation of Drought and Salinity Tolerance Related Genes and their Regulatory Mechanisms in Arabidopsis (Arabidopsis thaliana). ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1875036201811010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The development of genome microarrays of the model plant;Arabidopsis thaliana, with increasing repositories of publicly available data and high-throughput data analysis tools, has opened new avenues to genome-wide systemic analysis of plant responses to environmental stresses.Objective:To identify differentially expressed genes and their regulatory networks inArabidopsis thalianaunder harsh environmental condition.Methods:Two replications of eight microarray data sets were derived from two different tissues (root and shoot) and two different time courses (control and 24 hours after the beginning of stress occurrence) for comparative data analysis through various bioinformatics tools.Results:Under drought stress, 2558 gene accessions in root and 3691 in shoot tissues had significantly differential expression with respect to control condition. Likewise, under salinity stress 9078 gene accessions in root and 5785 in shoot tissues were discriminated between stressed and non-stressed conditions. Furthermore, the transcription regulatory activity of differentially expressed genes was mainly due to hormone, light, circadian and stress responsivecis-acting regulatory elements among which ABRE, ERE, P-box, TATC-box, CGTCA-motif, GARE-motif, TGACG-motif, GAG-motif, GA-motif, GATA- motif, TCT-motif, GT1-motif, Box 4, G-Box, I-box, LAMP-element, Sp1, MBS, TC-rich repeats, TCA-element and HSE were the most important elements in the identified up-regulated genes.Conclusion:The results of the high-throughput comparative analyses in this study provide more options for plant breeders and give an insight into genes andcis-acting regulatory elements involved in plant response to drought and salinity stresses in strategic crops such as cereals.
Collapse
|
28
|
Mei Y, Yang X, Huang C, Zhang X, Zhou X. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana. PLoS Pathog 2018; 14:e1006789. [PMID: 29293689 PMCID: PMC5766254 DOI: 10.1371/journal.ppat.1006789] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/12/2018] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Abstract
The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xiuren Zhang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, United States of America
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, United States of America
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Thitisaksakul M, Dong S, Beckles DM. How rice Glycogen Synthase Kinase-like 5 (OsGSK5) integrates salinity stress response to source-sink adaptation: A proposed model. PLANT SIGNALING & BEHAVIOR 2017; 12:e1403708. [PMID: 29131712 PMCID: PMC5792128 DOI: 10.1080/15592324.2017.1403708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/29/2017] [Accepted: 11/03/2017] [Indexed: 05/28/2023]
Abstract
We have previously shown that overexpression of GSK3-like kinase 5 in rice (OsGSK5) was associated with higher starch accumulation and better growth under severe salinity stress. Short-term 14CO2 feeding experiments suggested that OsGSK5 promoted higher flux to starch accumulation in the roots under this condition and that this mechanism may help to underscore the better growth characteristics observed. Here, we expand upon this hypothesis and consider (1) how OsGSK5 action could fit into a signaling model that integrates salinity stress to changes in starch metabolism, and (2) how this would facilitate whole plant physiological adaptations in source-to-sink partitioning. We also discuss additional functions of OsGSK5, necessary to support this adaptive mechanism.
Collapse
Affiliation(s)
- Maysaya Thitisaksakul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Shaoyun Dong
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Diane M. Beckles
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
30
|
Thitisaksakul M, Arias MC, Dong S, Beckles DM. Overexpression of GSK3-like Kinase 5 (OsGSK5) in rice (Oryza sativa) enhances salinity tolerance in part via preferential carbon allocation to root starch. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:705-719. [PMID: 32480600 DOI: 10.1071/fp16424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/01/2017] [Indexed: 05/26/2023]
Abstract
Rice (Oryza sativa L.) is very sensitive to soil salinity. To identify endogenous mechanisms that may help rice to better survive salt stress, we studied a rice GSK3-like isoform (OsGSK5), an orthologue of a Medicago GSK3 previously shown to enhance salinity tolerance in Arabidopsis by altering carbohydrate metabolism. We wanted to determine whether OsGSK5 functions similarly in rice. OsGSK5 was cloned and sequence, expression, evolutionary and functional analyses were conducted. OsGSK5 was expressed highest in rice seedling roots and was both salt and sugar starvation inducible in this tissue. A short-term salt-shock (150mM) activated OsGSK5, whereas moderate (50mM) salinity over the same period repressed the transcript. OsGSK5 response to salinity was due to an ionic effect since it was unaffected by polyethylene glycol. We engineered a rice line with 3.5-fold higher OsGSK5 transcript, which better tolerated cultivation on saline soils (EC=8 and 10dSm-2). This line produced more panicles and leaves, and a higher shoot biomass under high salt stress than the control genotypes. Whole-plant 14C-tracing and correlative analysis of OsGSK5 transcript with eco-physiological assessments pointed to the accelerated allocation of carbon to the root and its deposition as starch, as part of the tolerance mechanism.
Collapse
Affiliation(s)
- Maysaya Thitisaksakul
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Maria C Arias
- Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Unité Mixte de Recherche du Centre National de la Recherche Scientifique no. 8576, 59655 Villeneuve D'Ascq cedex, France
| | - Shaoyun Dong
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
31
|
Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci U S A 2016; 113:10418-23. [PMID: 27562168 DOI: 10.1073/pnas.1521363113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3)-like kinases play important roles in brassinosteroid (BR), abscisic acid, and auxin signaling to regulate many aspects of plant development and stress responses. The Arabidopsis thaliana GSK3-like kinase BR-INSENSITIVE 2 (BIN2) acts as a key negative regulator in the BR signaling pathway, but the mechanisms regulating BIN2 function remain unclear. Here we report that the histone deacetylase HDA6 can interact with and deacetylate BIN2 to repress its kinase activity. The hda6 mutant showed a BR-repressed phenotype in the dark and was less sensitive to BR biosynthesis inhibitors. Genetic analysis indicated that HDA6 regulates BR signaling through BIN2. Furthermore, we identified K189 of BIN2 as an acetylated site, which can be deacetylated by HDA6 to influence BIN2 activity. Glucose can affect the acetylation level of BIN2 in plants, indicating a connection to cellular energy status. These findings provide significant insights into the regulation of GSK3-like kinases in plant growth and development.
Collapse
|
32
|
Jolma IW, Falkeid G, Bamerni M, Ruoff P. Lithium Leads to an Increased FRQ Protein Stability and to a Partial Loss of Temperature Compensation in the Neurospora Circadian Clock. J Biol Rhythms 2016; 21:327-34. [PMID: 16998153 DOI: 10.1177/0748730406292453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In many organisms, the presence of lithium leads to an increase of the circadian period length. In Neurospora crassa, it was earlier found that lithium results in a decrease of overall growth and increased circadian periods. In this article, the authors show that lithium leads to a reduction of FRQ degradation with elevated FRQ levels and to a partial loss of temperature compensation. At a concentration of 13 mM lithium, FRQ degradation is reduced by about 60% while, surprisingly, the activity of the 20S proteasome remains unaffected. Experiments and model calculations have shown that the stability of FRQ is dependent on its phosphorylation state and that increased FRQ protein stabilities lead to increased circadian periods, consistent with the observed increase of the period when lithium is present. Because in Neurospora the proteasome activity is unaffected by lithium concentrations that lead to significant FRQ stabilization, it appears that lithium acts as an inhibitor of kinases that affect phosphorylation of FRQ and other proteins. A competition between Li+and Mg2+ions for Mg2+-binding sites may be a mechanism to how certain kinases are inhibited by Li+. A possible kinase in this respect is GSK-3, which in other organisms is known to be inhibited by lithium. The partial loss of temperature compensation in the presence of lithium can be understood as an increase in the overall activation energy of FRQ degradation. This increase in activation energy may be related to a reduction in FRQ phosphorylation so that more kinase activity, that is, higher temperature and longer times, is required to achieve the necessary amount of FRQ phosphorylation leading to turnover. Using a modified Goodwin oscillator as a semiquantitative model for the Neurospora clock, the effects of lithium can be described by adding lithium inhibitory terms of FRQ degradation to the model.
Collapse
Affiliation(s)
- Ingunn W Jolma
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway
| | | | | | | |
Collapse
|
33
|
FUKUDA H. Signaling, transcriptional regulation, and asynchronous pattern formation governing plant xylem development. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:98-107. [PMID: 26972600 PMCID: PMC4925768 DOI: 10.2183/pjab.92.98] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/26/2016] [Indexed: 05/07/2023]
Abstract
In plants, vascular stem cells continue to give rise to all xylem and phloem cells, which constitute the plant vascular system. During plant vascular development, the peptide, tracheary element differentiation inhibitory factor (TDIF), regulates vascular stem cell fate in a non-cell-autonomous fashion. TDIF promotes vascular stem cell proliferation through up-regulating the transcription factor gene WUS-related HOMEOBOX4, and it suppresses xylem differentiation from vascular stem cells through the activation of Glycogen Synthase Kinase 3 proteins. VASCULAR-RELATED NAC-DOMAIN6 and 7 (VND6 and 7) are master transcription factors, and ectopic expression of VND6 and VND7 in various plants induces differentiation of different types of cells into metaxylem and protoxylem tracheary elements, respectively. These genes up-regulate genes involved in both patterned secondary cell wall formation and programmed cell death to form tracheary elements. Secondary wall patterns are formed by localized deposition of cellulose microfibrils, which is guided by cortical microtubules. Local activation of the small G-protein, Rho-type 11 determines distribution of cortical microtubules.
Collapse
Affiliation(s)
- Hiroo FUKUDA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Anwer R, Qumaizi KIA, Shaqha WMA, Khan FI. From Pancreatic to Non-Pancreatic Insulin: A Miraculous Journey. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijbc.2015.302.317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Kang JG, Nou IS. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:92-104. [PMID: 25931321 DOI: 10.1016/j.plaphy.2015.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 05/07/2023]
Abstract
BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops.
Collapse
Affiliation(s)
- Gopal Saha
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 540-950, South Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 540-950, South Korea
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 540-950, South Korea
| | - Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 540-950, South Korea
| | - Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 540-950, South Korea
| | - Jong-Goo Kang
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 540-950, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 540-950, South Korea.
| |
Collapse
|
36
|
Dong X, Nou IS, Yi H, Hur Y. Suppression of ASKβ (AtSK32), a Clade III Arabidopsis GSK3, Leads to the Pollen Defect during Late Pollen Development. Mol Cells 2015; 38:506-17. [PMID: 25997736 PMCID: PMC4469908 DOI: 10.14348/molcells.2015.2323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/27/2022] Open
Abstract
Arabidopsis Shaggy-like protein kinases (ASKs) are Arabidopsis thaliana homologs of glycogen synthase kinase 3/SHAGGY-like kinases (GSK3/SGG), which are comprised of 10 genes with diverse functions. To dissect the function of ASKβ (AtSK32), ASKβ antisense transgenic plants were generated, revealing the effects of ASKβ down-regulation in Arabidopsis. Suppression of ASKβ expression specifically interfered with pollen development and fertility without altering the plants' vegetative phenotypes, which differed from the phenotypes reported for Arabidopsis plants defective in other ASK members. The strength of these phenotypes showed an inverse correlation with the expression levels of ASKβ and its co-expressed genes. In the aborted pollen of ASKβ antisense plants, loss of nuclei and shrunken cytoplasm began to appear at the bicellular stage of microgametogenesis. The in silico analysis of promoter and the expression characteristics implicate ASKβ is associated with the expression of genes known to be involved in sperm cell differentiation. We speculate that ASKβ indirectly affects the transcription of its co-expressed genes through the phosphorylation of its target proteins during late pollen development.
Collapse
Affiliation(s)
- Xiangshu Dong
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Jeonnam 540-742,
Korea
| | - Hankuil Yi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Yoonkang Hur
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
37
|
Horn F, Habekuß A, Stich B. Genes involved in barley yellow dwarf virus resistance of maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2575-84. [PMID: 25261982 PMCID: PMC4236618 DOI: 10.1007/s00122-014-2400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/11/2014] [Indexed: 05/09/2023]
Abstract
The results of our study suggest that genes involved in general resistance mechanisms of plants contribute to variation of BYDV resistance in maize. With increasing winter temperatures in Europe, Barley yellow dwarf virus (BYDV) is expected to become a prominent problem in maize cultivation. Breeding for resistance is the best strategy to control the disease and break the transmission cycle of the virus. The objectives of our study were (1) to determine genetic variation with respect to BYDV resistance in a broad germplasm set and (2) to identify single nucleotide polymorphism (SNP) markers linked to genes that are involved in BYDV resistance. An association mapping population with 267 genotypes representing the world's maize gene pool was grown in the greenhouse. Plants were inoculated with BYDV-PAV using viruliferous Rhopalosiphum padi. In the association mapping population, we observed considerable genotypic variance for the trait virus extinction as measured by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and the infection rate. In a genome-wide association study, we observed three SNPs significantly [false discovery rate (FDR) = 0.05] associated with the virus extinction on chromosome 10 explaining together 25 % of the phenotypic variance and five SNPs for the infection rate on chromosomes 4 and 10 explaining together 33 % of the phenotypic variance. The SNPs significantly associated with BYDV resistance can be used in marker assisted selection and will accelerate the breeding process for the development of BYDV resistant maize genotypes. Furthermore, these SNPs were located within genes which were in other organisms described to play a role in general resistance mechanisms. This suggests that these genes contribute to variation of BYDV resistance in maize.
Collapse
Affiliation(s)
- Frederike Horn
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Antje Habekuß
- Julius Kuehn-Institute, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany
| | - Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
38
|
Bello B, Zhang X, Liu C, Yang Z, Yang Z, Wang Q, Zhao G, Li F. Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance. PLoS One 2014; 9:e112269. [PMID: 25393623 PMCID: PMC4231032 DOI: 10.1371/journal.pone.0112269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/06/2014] [Indexed: 02/01/2023] Open
Abstract
The molecular mechanisms of stress tolerance and the use of modern genetics approaches for the improvement of drought stress tolerance have been major focuses of plant molecular biologists. In the present study, we cloned the Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 (GhSnRK2) gene and investigated its functions in transgenic Arabidopsis. We further elucidated the function of this gene in transgenic cotton using virus-induced gene silencing (VIGS) techniques. We hypothesized that GhSnRK2 participates in the stress signaling pathway and elucidated its role in enhancing stress tolerance in plants via various stress-related pathways and stress-responsive genes. We determined that the subcellular localization of the GhSnRK2-green fluorescent protein (GFP) was localized in the nuclei and cytoplasm. In contrast to wild-type plants, transgenic plants overexpressing GhSnRK2 exhibited increased tolerance to drought, cold, abscisic acid and salt stresses, suggesting that GhSnRK2 acts as a positive regulator in response to cold and drought stresses. Plants overexpressing GhSnRK2 displayed evidence of reduced water loss, turgor regulation, elevated relative water content, biomass, and proline accumulation. qRT-PCR analysis of GhSnRK2 expression suggested that this gene may function in diverse tissues. Under normal and stress conditions, the expression levels of stress-inducible genes, such as AtRD29A, AtRD29B, AtP5CS1, AtABI3, AtCBF1, and AtABI5, were increased in the GhSnRK2-overexpressing plants compared to the wild-type plants. GhSnRK2 gene silencing alleviated drought tolerance in cotton plants, indicating that VIGS technique can certainly be used as an effective means to examine gene function by knocking down the expression of distinctly expressed genes. The results of this study suggested that the GhSnRK2 gene, when incorporated into Arabidopsis, functions in positive responses to drought stress and in low temperature tolerance.
Collapse
Affiliation(s)
- Babatunde Bello
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuanliang Liu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianhua Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ge Zhao
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Christov NK, Christova PK, Kato H, Liu Y, Sasaki K, Imai R. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:251-260. [PMID: 25306528 DOI: 10.1016/j.plaphy.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 05/20/2023]
Abstract
A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals.
Collapse
Affiliation(s)
- Nikolai Kirilov Christov
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; AgroBioInstitute, Dragan Tsankov 8, Sofia 1164, Bulgaria
| | - Petya Koeva Christova
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; AgroBioInstitute, Dragan Tsankov 8, Sofia 1164, Bulgaria
| | - Hideki Kato
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Yuelin Liu
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kentaro Sasaki
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Ryozo Imai
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| |
Collapse
|
40
|
Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014; 49:439-62. [PMID: 25286183 PMCID: PMC4266039 DOI: 10.3109/10409238.2014.953628] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 01/11/2023]
Abstract
Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics.
Collapse
Affiliation(s)
- Tessa Moses
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| | | | - Anne Osbourn
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| |
Collapse
|
41
|
Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX. The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 2014; 15:548. [PMID: 24984858 PMCID: PMC4112214 DOI: 10.1186/1471-2164-15-548] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022] Open
Abstract
Background Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication. Results The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases. Conclusions The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-548) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Garbenstraße 30, Stuttgart 70599, Germany.
| |
Collapse
|
42
|
Sharma M, Pandey A, Pandey GK. β-catenin in plants and animals: common players but different pathways. FRONTIERS IN PLANT SCIENCE 2014; 5:143. [PMID: 24782881 PMCID: PMC3989760 DOI: 10.3389/fpls.2014.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 05/24/2023]
|
43
|
Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF–TDR signalling. Nat Commun 2014; 5:3504. [DOI: 10.1038/ncomms4504] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/25/2014] [Indexed: 11/09/2022] Open
|
44
|
Hu WJ, Chen J, Liu TW, Simon M, Wang WH, Chen J, Wu FH, Liu X, Shen ZJ, Zheng HL. Comparative proteomic analysis of differential responses of Pinus massoniana and Taxus wallichiana var. mairei to simulated acid rain. Int J Mol Sci 2014; 15:4333-55. [PMID: 24625662 PMCID: PMC3975401 DOI: 10.3390/ijms15034333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/05/2014] [Accepted: 02/17/2014] [Indexed: 01/19/2023] Open
Abstract
Acid rain (AR), a serious environmental issue, severely affects plant growth and development. As the gymnosperms of conifer woody plants, Pinus massoniana (AR-sensitive) and Taxus wallichiana var. mairei (AR-resistant) are widely distributed in southern China. Under AR stress, significant necrosis and collapsed lesions were found in P. massoniana needles with remarkable yellowing and wilting tips, whereas T. wallichiana var. mairei did not exhibit chlorosis and visible damage. Due to the activation of a large number of stress-related genes and the synthesis of various functional proteins to counteract AR stress, it is important to study the differences in AR-tolerance mechanisms by comparative proteomic analysis of tolerant and sensitive species. This study revealed a total of 65 and 26 differentially expressed proteins that were identified in P. massoniana and T. wallichiana var. mairei, respectively. Among them, proteins involved in metabolism, photosynthesis, signal transduction and transcription were drastically down-regulated in P. massoniana, whereas most of the proteins participating in metabolism, cell structure, photosynthesis and transcription were increased in T. wallichiana var. mairei. These results suggest the distinct patterns of protein expression in the two woody species in response to AR, allowing a deeper understanding of diversity on AR tolerance in forest tree species.
Collapse
Affiliation(s)
- Wen-Jun Hu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Ting-Wu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Martin Simon
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Wen-Hua Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Fei-Hua Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
45
|
Zhang D, Ye H, Guo H, Johnson A, Zhang M, Lin H, Yin Y. Transcription factor HAT1 is phosphorylated by BIN2 kinase and mediates brassinosteroid repressed gene expression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:59-70. [PMID: 24164091 DOI: 10.1111/tpj.12368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 05/03/2023]
Abstract
Plant steroid hormones, brassinosteroids (BRs), play essential roles in modulating cell elongation, vascular differentiation, senescence and stress responses. BRs signal through plasma membrane-localized receptor and other components to modulate the BES1/BZR1 (BRI1-EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT 1) family of transcription factors that modulate thousands of target genes. Arabodopsis thaliana homeodomain-leucine zipper protein 1 (HAT1), which encodes a homeodomain-leucine zipper (HD-Zip) class II transcription factor, was identified through chromatin immunoprecipitation (ChIP) experiments as a direct target gene of BES1. Loss-of-function and gain-of-function mutants of HAT1 display altered BR responses. HAT1 and its close homolog HAT3 act redundantly, as the double mutant hat1 hat3 displayed a reduced BR response that is stronger than the single mutants alone. Moreover, hat1 hat3 enhanced the phenotype of a weak allele of the BR receptor mutant bri1 and suppressed the phenotype of constitutive BR response mutant bes1-D. These results suggest that HAT1 and HAT3 function to activate BR-mediated growth. Expression levels of several BR-repressed genes are increased in hat1 hat3 and reduced in HAT1OX, suggesting that HAT1 functions to repress the expression of a subset of BR target genes. HAT1 and BES1 bind to a conserved homeodomain binding (HB) site and BR response element (BRRE) respectively, in the promoters of some BR-repressed genes. BES1 and HAT1 interact with each other and cooperate to inhibit BR-repressed gene expression. Furthermore, HAT1 can be phosphorylated and stabilized by GSK3 (GLYCOGEN SYNTHASE KINASE 3)-like kinase BIN2 (BRASSINOSTEROID-INSENSITIVE 2), a well established negative regulator of the BR pathway. Our results thus revealed a previously unknown mechanism by which BR signaling modulates BR-repressed gene expression and coordinates plant growth.
Collapse
Affiliation(s)
- Dawei Zhang
- College of Life Science, Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China; Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Youn JH, Kim TW, Kim EJ, Bu S, Kim SK, Wang ZY, Kim TW. Structural and functional characterization of Arabidopsis GSK3-like kinase AtSK12. Mol Cells 2013; 36:564-70. [PMID: 24292946 PMCID: PMC3887958 DOI: 10.1007/s10059-013-0266-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/14/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022] Open
Abstract
Plant GSK3-like kinases are key regulators that modulate a broad range of physiological processes such as cell growth, stomatal and flower development, responses for abiotic and biotic stress, and carbohydrate metabolism. Arabidopsis Shaggy/GSK3-like kinases (AtSK) consist of ten members that are classified into four subfamilies (I∼IV). Only one of these Arabidopsis GSK3s, BIN2 (also named AtSK21), has been characterized by biochemical and genetic studies. BIN2 acts as a negative regulator in brassinosteroid (BR) signaling that controls cell growth and differentiation. Recent studies suggest that at least seven AtSKs are involved in BR signaling. However, specificities for the substrates and the functional differences of each member of the family remain to be determined. Here we report structural characteristics and distinct function of AtSK12 compared with BIN2. AtSK12 has a longer N-terminal extension, which is absent in BIN2. Transgenic plants overexpressing the AtSK12 mutant carrying deletion of Nterminal region display more severe dwarf phenotypes than those of the wild-type AtSK12. Microscopic analysis reveals that N-terminal-deleted AtSK12 accumulates in the nucleus. This implies that structural difference in the Nterminal region of AtSK members contributes to their subcellular localization. In contrast to BIN2, overexpression of AtSK12 does not cause a stomatal cluster. Furthermore, we show that YODA MAPKKK, which controls stomatal development, interacts with BIN2 but not with AtSK12. Our results suggest that AtSK12 mediates BR-regulated cell growth but not stomatal development while BIN2 regulates both processes. Our study provides evidence that different GSK3 members can have overlapping but non-identical functions.
Collapse
Affiliation(s)
- Ji-Hyun Youn
- Department of Life Science, College of Natural Sciences, Chungang University, Seoul 156-756,
Korea
| | - Tae-Woo Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| | - Eun-Ji Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791,
Korea
| | - Shuolei Bu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305,
USA
| | - Seong-Ki Kim
- Department of Life Science, College of Natural Sciences, Chungang University, Seoul 156-756,
Korea
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305,
USA
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791,
Korea
- Natural Science Institute, Hanyang University, Seoul 133-791,
Korea
| |
Collapse
|
47
|
van Esse GW, Harter K, de Vries SC. Computational modelling of the BRI1 receptor system. PLANT, CELL & ENVIRONMENT 2013; 36:1728-1737. [PMID: 23421559 DOI: 10.1111/pce.12077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
Computational models are useful tools to help understand signalling pathways in plant cells. A systems biology approach where models and experimental data are combined can provide experimentally verifiable predictions and novel insights. The brassinosteroid insensitive 1 (BRI1) receptor is one of the best-understood receptor systems in Arabidopsis with clearly described ligands, mutants and associated phenotypes. Therefore, BRI1-mediated signalling is attractive for mathematical modelling approaches to understand and interpret the spatial and temporal dynamics of signal transduction cascades in planta. To establish such a model, quantitative data sets incorporating local protein concentration, binding affinity and phosphorylation state of the different pathway components are essential. Computational modelling is increasingly employed in studies of plant growth and development. In this section, we have focused on the use of quantitative imaging of fluorescently labelled proteins as an entry point in modelling studies.
Collapse
Affiliation(s)
- G Wilma van Esse
- Department of Biochemistry, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|
48
|
Qi X, Chanderbali AS, Wong GKS, Soltis DE, Soltis PS. Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants. BMC Evol Biol 2013; 13:143. [PMID: 23834366 PMCID: PMC3710211 DOI: 10.1186/1471-2148-13-143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND GSK3 (glycogen synthase kinase 3) genes encode signal transduction proteins with roles in a variety of biological processes in eukaryotes. In contrast to the low copy numbers observed in animals, GSK3 genes have expanded into a multi-gene family in land plants (embryophytes), and have also evolved functions in diverse plant specific processes, including floral development in angiosperms. However, despite previous efforts, the phylogeny of land plant GSK3 genes is currently unclear. Here, we analyze genes from a representative sample of phylogenetically pivotal taxa, including basal angiosperms, gymnosperms, and monilophytes, to reconstruct the evolutionary history and functional diversification of the GSK3 gene family in land plants. RESULTS Maximum Likelihood phylogenetic analyses resolve a gene tree with four major gene duplication events that coincide with the emergence of novel land plant clades. The single GSK3 gene inherited from the ancestor of land plants was first duplicated along the ancestral branch to extant vascular plants, and three subsequent duplications produced three GSK3 loci in the ancestor of euphyllophytes, four in the ancestor of seed plants, and at least five in the ancestor of angiosperms. A single gene in the Amborella trichopoda genome may be the sole survivor of a sixth GSK3 locus that originated in the ancestor of extant angiosperms. Homologs of two Arabidopsis GSK3 genes with genetically confirmed roles in floral development, AtSK11 and AtSK12, exhibit floral preferential expression in several basal angiosperms, suggesting evolutionary conservation of their floral functions. Members of other gene lineages appear to have independently evolved roles in plant reproductive tissues in individual taxa. CONCLUSIONS Our phylogenetic analyses provide the most detailed reconstruction of GSK3 gene evolution in land plants to date and offer new insights into the origins, relationships, and functions of family members. Notably, the diversity of this "green" branch of the gene family has increased in concert with the increasing morphological and physiological complexity of land plant life forms. Expression data for seed plants indicate that the functions of GSK3 genes have also diversified during evolutionary time.
Collapse
Affiliation(s)
- Xinshuai Qi
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - André S Chanderbali
- Department of Biology, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Gruszka D. The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int J Mol Sci 2013; 14:8740-74. [PMID: 23615468 PMCID: PMC3676754 DOI: 10.3390/ijms14058740] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/15/2022] Open
Abstract
Brassinosteroids (BRs) are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, Katowice 40-032, Poland.
| |
Collapse
|
50
|
Bittner T, Campagne S, Neuhaus G, Rensing SA, Fischer-Iglesias C. Identification and characterization of two wheat Glycogen Synthase Kinase 3/ SHAGGY-like kinases. BMC PLANT BIOLOGY 2013; 13:64. [PMID: 23594413 PMCID: PMC3637598 DOI: 10.1186/1471-2229-13-64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/09/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant Glycogen Synthase Kinase 3/ SHAGGY-like kinases (GSKs) have been implicated in numerous biological processes ranging from embryonic, flower, stomata development to stress and wound responses. They are key regulators of brassinosteroid signaling and are also involved in the cross-talk between auxin and brassinosteroid pathways. In contrast to the human genome that contains two genes, plant GSKs are encoded by a multigene family. Little is known about Liliopsida resp. Poaceae in comparison to Brassicaceae GSKs. Here, we report the identification and structural characterization of two GSK homologs named TaSK1 and TaSK2 in the hexaploid wheat genome as well as a widespread phylogenetic analysis of land plant GSKs. RESULTS Genomic and cDNA sequence alignments as well as chromosome localization using nullisomic-tetrasomic lines provided strong evidence for three expressed gene copies located on homoeolog chromosomes for TaSK1 as well as for TaSK2. Predicted proteins displayed a clear GSK signature. In vitro kinase assays showed that TaSK1 and TaSK2 possessed kinase activity. A phylogenetic analysis of land plant GSKs indicated that TaSK1 and TaSK2 belong to clade II of plant GSKs, the Arabidopsis members of which are all involved in Brassinosteroid signaling. Based on a single ancestral gene in the last common ancestor of all land plants, paralogs were acquired and retained through paleopolyploidization events, resulting in six to eight genes in angiosperms. More recent duplication events have increased the number up to ten in some lineages. CONCLUSIONS To account for plant diversity in terms of functionality, morphology and development, attention has to be devoted to Liliopsida resp Poaceae GSKs in addition to Arabidopsis GSKs. In this study, molecular characterization, chromosome localization, kinase activity test and phylogenetic analysis (1) clarified the homologous/paralogous versus homoeologous status of TaSK sequences, (2) pointed out their affiliation to the GSK multigene family, (3) showed a functional kinase activity, (4) allowed a classification in clade II, members of which are involved in BR signaling and (5) allowed to gain information on acquisition and retention of GSK paralogs in angiosperms in the context of whole genome duplication events. Our results provide a framework to explore Liliopsida resp Poaceae GSKs functions in development.
Collapse
Affiliation(s)
- Thomas Bittner
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Sarah Campagne
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Gunther Neuhaus
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | - Stefan A Rensing
- Faculty of Biology & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
- Cell Biology, Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| | | |
Collapse
|